Skip to content

Commit

Permalink
[GPU] add convert precision for converting bool to u8 (#28654)
Browse files Browse the repository at this point in the history
### Details:
- *Add abs + ceiling + clamp before convert when convert is changed from
bool to u8*

### Tickets:
 - *CVS-160217*
  • Loading branch information
ahnyoung-paul authored Feb 3, 2025
1 parent 4c01a98 commit 0213116
Show file tree
Hide file tree
Showing 4 changed files with 158 additions and 2 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@

#include "intel_gpu/runtime/execution_config.hpp"
#include "intel_gpu/runtime/device.hpp"
#include "transformations/convert_precision.hpp"

namespace ov::intel_gpu {

Expand All @@ -21,6 +22,8 @@ class TransformationsPipeline {
void apply(std::shared_ptr<ov::Model> func);

private:
static bool fuse_type_to_convert(const std::shared_ptr<ov::Node>& node, const precisions_map& precisions);

const ExecutionConfig& config;
std::shared_ptr<RemoteContextImpl> m_context;
cldnn::device_info device_info;
Expand Down
50 changes: 49 additions & 1 deletion src/plugins/intel_gpu/src/plugin/transformations_pipeline.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
#include <tuple>
#include <vector>

#include "openvino/opsets/opset10.hpp"
#include "intel_gpu/plugin/transformations_pipeline.hpp"
#include "intel_gpu/runtime/debug_configuration.hpp"
#include "intel_gpu/runtime/itt.hpp"
Expand Down Expand Up @@ -281,6 +282,49 @@ extern bool query_microkernels_supported(cldnn::engine& e, const cldnn::Executio

namespace ov::intel_gpu {

bool TransformationsPipeline::fuse_type_to_convert(const std::shared_ptr<ov::Node>& node, const precisions_map& precisions) {
auto convert = ov::as_type_ptr<ov::opset10::Convert>(node);
if (!convert)
return false;
const auto& from = node->get_output_element_type(0);
auto it = precisions.find(from);
if (it == precisions.end())
return false;
const auto& to = it->second;

if (convert->get_convert_element_type() == ov::element::boolean && to.is_integral_number()) {
// For Convert node, converting precision from numerical data types to boolean will lead to mathematical
// error, because here the output precision boolean is replaced by u8:
// - floating point value 0.01 is converted to be 1 for boolean, but 0 for u8 - need to insert Ceil.
// - either float or int values should be clipped with the interval [0; 1] to mimic bool cast behavior, i.e.
// 0 - is false, 1 - is true
// - to perform clamping correctly an Abs op should be inserted before Clamp
// Thus an Abs, Ceil and Clamp nodes should be added before the Convert node for this scenario.
ov::pass::NodeRegistry reg;
const auto& in_prec = convert->get_input_element_type(0);
auto parent_node = convert->input_value(0).get_node_shared_ptr();
auto item = precisions.find(in_prec);
if (item != precisions.end()) {
// Add convert node for unsupported precision, such as FP64 or INT64
parent_node = reg.make<ov::opset10::Convert>(parent_node, item->second);
}
if (in_prec.is_signed()) {
parent_node = reg.make<ov::opset10::Abs>(parent_node);
}
if (in_prec.is_real()) {
parent_node = reg.make<ov::opset10::Ceiling>(parent_node);
}
parent_node = reg.make<ov::opset10::Clamp>(parent_node, 0, 1);
const auto new_convert = reg.make<ov::opset10::Convert>(parent_node, to);
new_convert->set_friendly_name(convert->get_friendly_name());
ov::copy_runtime_info(convert, reg.get());
ov::replace_node(convert, new_convert);
return true;
}
convert->set_convert_element_type(to);
return true;
}

void TransformationsPipeline::apply(std::shared_ptr<ov::Model> func) {
OV_ITT_SCOPED_TASK(itt::domains::intel_gpu_plugin, "TransformationsPipeline::apply");
using const_node_ptr = const std::shared_ptr<const ov::Node>;
Expand Down Expand Up @@ -403,6 +447,7 @@ void TransformationsPipeline::apply(std::shared_ptr<ov::Model> func) {
const bool keep_precision_sensitive_in_fp32_1 = true;
const bool convert_input_output_precision = false;
const bool store_original_precision_as_rt_attribute = true;

manager.register_pass<ov::pass::ConvertPrecision>(fp_convert_precision_map,
empty_fuse_map,
keep_precision_sensitive_in_fp32_1,
Expand Down Expand Up @@ -514,8 +559,11 @@ void TransformationsPipeline::apply(std::shared_ptr<ov::Model> func) {

manager.register_pass<ov::pass::Validate>();
const bool keep_precision_sensitive_in_fp32_2 = true;

// To convert to f16 input to boolean which is converted to u8, add abs + ceiling + clamp before convert.
type_to_fuse_map type_to_fuse = {{ov::opset10::Convert::get_type_info_static(), fuse_type_to_convert}};
manager.register_pass<ov::pass::ConvertPrecision>(int_convert_precision_map,
empty_fuse_map,
type_to_fuse,
keep_precision_sensitive_in_fp32_2,
convert_input_output_precision);

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -4,11 +4,76 @@

#include <vector>

#include "single_op_tests/conversion.hpp"
#include "common_test_utils/test_constants.hpp"
#include "common_test_utils/data_utils.hpp"
#include "common_test_utils/ov_tensor_utils.hpp"
#include "conversion.hpp"

namespace ov {
namespace test {

void ConvertToBooleanLayerTest::generate_inputs(const std::vector<ov::Shape>& targetInputStaticShapes) {
inputs.clear();
const auto& funcInputs = function->inputs();

auto shape = targetInputStaticShapes.front();
auto size = shape_size(shape);
auto input_type = funcInputs[0].get_element_type();

ov::Tensor tensor = ov::Tensor(input_type, shape);
const auto first_part_size = size / 2;
const auto second_part_size = size - first_part_size;

// 1). Validate the nearest to zero values (Abs + Ceil)
{
double start_from = -2;
uint32_t range = 4;
int32_t resolution = size;
if (input_type == ov::element::f32) {
auto* rawBlobDataPtr = static_cast<float*>(tensor.data());
ov::test::utils::fill_data_random(rawBlobDataPtr, first_part_size, range, start_from, resolution);
} else if (input_type == ov::element::f16) {
auto* rawBlobDataPtr = static_cast<ov::float16*>(tensor.data());
ov::test::utils::fill_data_random(rawBlobDataPtr, first_part_size, range, start_from, resolution);
} else {
FAIL() << "Generating inputs with precision " << input_type.to_string() << " isn't supported, if output precision is boolean.";
}
}

// 2). Validate the values that are more than UINT8_MAX in absolute (Abs + Min)
{
ov::test::utils::InputGenerateData in_data_neg;
double neg_start_from = -1.5 * std::numeric_limits<uint8_t>::max();
double pos_start_from = 0.5 * std::numeric_limits<uint8_t>::max();
uint32_t range = 256;
auto neg_size = second_part_size / 2;
auto pos_size = second_part_size - neg_size;
int32_t resolution = 1;

if (input_type == ov::element::f32) {
auto* rawBlobDataPtr = static_cast<float*>(tensor.data());
ov::test::utils::fill_data_random(rawBlobDataPtr + first_part_size, neg_size, range, neg_start_from, resolution);
ov::test::utils::fill_data_random(rawBlobDataPtr + first_part_size + neg_size, pos_size, range, pos_start_from, resolution);
} else if (input_type == ov::element::f16) {
auto* rawBlobDataPtr = static_cast<ov::float16*>(tensor.data());
ov::test::utils::fill_data_random(rawBlobDataPtr + first_part_size, neg_size, range, neg_start_from, resolution);
ov::test::utils::fill_data_random(rawBlobDataPtr + first_part_size + neg_size, pos_size, range, pos_start_from, resolution);
} else {
FAIL() << "Generating inputs with precision " << input_type.to_string() << " isn't supported, if output precision is boolean.";
}
}

inputs.insert({funcInputs[0].get_node_shared_ptr(), tensor});
}

} // namespace test
} // namespace ov


namespace {
using ov::test::ConversionLayerTest;
using ov::test::ConvertToBooleanLayerTest;

const std::vector<ov::test::utils::ConversionTypes> conversionOpTypes = {
ov::test::utils::ConversionTypes::CONVERT,
ov::test::utils::ConversionTypes::CONVERT_LIKE,
Expand All @@ -32,4 +97,22 @@ INSTANTIATE_TEST_SUITE_P(smoke_NoReshape, ConversionLayerTest,
::testing::Values(ov::test::utils::DEVICE_GPU)),
ConversionLayerTest::getTestCaseName);

TEST_P(ConvertToBooleanLayerTest, CompareWithRefs) {
run();
};

const std::vector<ov::element::Type> precisions_floating_point = {
ov::element::f32,
ov::element::f16
};

INSTANTIATE_TEST_SUITE_P(smoke_NoReshape, ConvertToBooleanLayerTest,
::testing::Combine(
::testing::ValuesIn({ov::test::utils::ConversionTypes::CONVERT}),
::testing::ValuesIn(ov::test::static_shapes_to_test_representation(inShape)),
::testing::ValuesIn(precisions_floating_point),
::testing::Values(ov::element::boolean),
::testing::Values(ov::test::utils::DEVICE_GPU)),
ConvertToBooleanLayerTest::getTestCaseName);

} // namespace
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
// Copyright (C) 2023 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//

#pragma once

#include "shared_test_classes/base/ov_subgraph.hpp"
#include "common_test_utils/ov_tensor_utils.hpp"
#include "gtest/gtest.h"
#include "single_op_tests/conversion.hpp"


namespace ov {
namespace test {

class ConvertToBooleanLayerTest : public ConversionLayerTest {
protected:
void generate_inputs(const std::vector<ov::Shape>& targetInputStaticShapes) override;
};

} // namespace test
} // namespace ov

0 comments on commit 0213116

Please sign in to comment.