-
Notifications
You must be signed in to change notification settings - Fork 4
/
multigraph.py
137 lines (107 loc) · 5.68 KB
/
multigraph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import os
import sys
import argparse
from traceback import print_exc
import pickle
import tqdm
import pandas as pd
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
import torch
import bittensor
from meta_utils import load_metagraphs
from meta2frame import make_dataframe
#TODO: make line charts and other cool stuff for each metagraph snapshot
def process(block, netuid=1, lite=True, difficulty=False, prune_weights=False, return_graph=False, half=True, subtensor=None):
if subtensor is None:
subtensor = bittensor.subtensor(network='archive')
try:
metagraph = subtensor.metagraph(block=block, netuid=netuid, lite=lite)
if difficulty:
metagraph.difficulty = subtensor.difficulty(block=block, netuid=netuid)
if not lite:
if half:
metagraph.weights = torch.nn.Parameter(metagraph.weights.half(), requires_grad=False)
if prune_weights:
metagraph.weights = metagraph.weights[metagraph.weights.sum(axis=1) > 0]
with open(f'data/metagraph/{netuid}/{block}.pkl', 'wb') as f:
pickle.dump(metagraph, f)
return metagraph if return_graph else True
except Exception as e:
print(f'Error processing block {block}: {e}')
def parse_arguments():
example_usage = """
SN1 metagraphs for most recent 30 days without weights: python multigraph.py --lite --netuid 1 --step_size 7200 --num_blocks 30
SN0 metagraphs for most recent 12 hours with weights: python multigraph.py --lite --netuid 0 --step_size 300 --num_blocks 12
"""
parser = argparse.ArgumentParser(description=f'Process metagraphs for a given network.',
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog=f'\nExamples:\n{example_usage}')
parser.add_argument('--netuid', type=int, default=1, help='Network UID to use.')
parser.add_argument('--lite', action='store_true', help='Do not include weights.')
parser.add_argument('--difficulty', action='store_true', help='Include difficulty in metagraph.')
parser.add_argument('--prune_weights', action='store_true', help='Prune weights in metagraph.')
parser.add_argument('--return_graph', action='store_true', help='Return metagraph instead of True.')
parser.add_argument('--no_dataframe', action='store_true', help='Do not create dataframe.')
parser.add_argument('--max_workers', type=int, default=32, help='Max workers to use.')
parser.add_argument('--start_block', type=int, default=None, help='Start block.')
parser.add_argument('--num_blocks', type=int, default=0, help='Number of blocks.')
parser.add_argument('--end_block', type=int, default=600_000, help='End block.')
parser.add_argument('--step_size', type=int, default=100, help='Step size.')
parser.add_argument('--overwrite', action='store_true',help='Overwrite existing files')
return parser.parse_args()
if __name__ == '__main__':
subtensor = bittensor.subtensor(network='archive')
print(f'Current block: {subtensor.block}')
args = parse_arguments()
print(args)
netuid=args.netuid
lite=args.lite
difficulty=args.difficulty
return_graph=args.return_graph
step_size = args.step_size
start_block = args.start_block or subtensor.get_current_block()
start_block = (min(subtensor.block, start_block)//step_size)*step_size # round to nearest step_size
if args.num_blocks:
end_block = start_block - int(args.num_blocks*step_size)
else:
end_block = args.end_block
blocks = range(start_block, end_block, -step_size)
max_workers = min(args.max_workers, len(blocks))
datadir = f'data/metagraph/{netuid}'
os.makedirs(datadir, exist_ok=True)
if not args.overwrite:
blocks = [block for block in blocks if not os.path.exists(f'data/metagraph/{netuid}/{block}.pkl')]
metagraphs = []
if len(blocks)>0:
print(f'Processing {len(blocks)} blocks from {blocks[0]}-{blocks[-1]} using {max_workers} workers.')
with ProcessPoolExecutor(max_workers=max_workers) as executor:
futures = [
executor.submit(process, block, lite=args.lite, netuid=netuid, difficulty=difficulty)
for block in blocks
]
success = 0
with tqdm.tqdm(total=len(futures)) as pbar:
for block, future in zip(blocks,futures):
try:
metagraphs.append(future.result())
success += 1
except Exception as e:
print(f'generated an exception: {print_exc(e)}')
pbar.update(1)
pbar.set_description(f'Processed {success} blocks. Current block: {block}')
if not success:
raise ValueError('No blocks were successfully processed.')
print(f'Processed {success} blocks.')
if return_graph:
for metagraph in metagraphs:
print(f'{metagraph.block}: {metagraph.n.item()} nodes, difficulty={getattr(metagraph, "difficulty", None)}, weights={metagraph.weights.shape if hasattr(metagraph, "weights") else None}')
print(metagraphs[-1])
else:
print(f'No blocks to process. Current block: {subtensor.block}')
if not args.no_dataframe:
save_path = f'data/metagraph/{netuid}/df.parquet'
blocks = range(start_block, end_block, -step_size)
print(f'Making a dataframe for {len(blocks)} blocks in {blocks}')
df = make_dataframe(netuid = netuid, block_min = min(blocks), block_max = max(blocks), weights = not lite)
df.to_parquet(save_path)
print(f'Saved dataframe to {save_path!r}')