Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: finemapping template and DAG for UKB PPP #10

Merged
merged 10 commits into from
Sep 18, 2024
44 changes: 44 additions & 0 deletions src/ot_orchestration/dags/ukb_ppp_finemapping.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
"""Airflow DAG that uses Google Cloud Batch to run the SuSie Finemapper step for UKB PPP."""

from __future__ import annotations

from pathlib import Path

from airflow.decorators import task
from airflow.models.dag import DAG

from ot_orchestration.templates.finemapping import (
FinemappingBatchOperator,
generate_manifests_for_finemapping,
)
from ot_orchestration.utils import common

COLLECTED_LOCI = (
"gs://genetics-portal-dev-analysis/dc16/output/ukb_ppp/clean_loci.parquet"
)
MANIFEST_PREFIX = "gs://gentropy-tmp/ukb/manifest"
OUTPUT_BASE_PATH = "gs://gentropy-tmp/ukb/output"
STUDY_INDEX_PATH = "gs://ukb_ppp_eur_data/study_index"


@task
def generate_manifests():
return generate_manifests_for_finemapping(
collected_loci=COLLECTED_LOCI,
manifest_prefix=MANIFEST_PREFIX,
output_path=OUTPUT_BASE_PATH,
max_records_per_chunk=100_000,
)


with DAG(
dag_id=Path(__file__).stem,
description="Open Targets Genetics — finemap study loci with SuSie",
default_args=common.shared_dag_args,
**common.shared_dag_kwargs,
) as dag:
(
FinemappingBatchOperator.partial(
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The partial will not work beyond the threshold, and I have tested it on local airflow DAG, this breaks on around ~5k partial tasks even with the threshold increase.

https://airflow.apache.org/docs/apache-airflow/stable/authoring-and-scheduling/dynamic-task-mapping.html#placing-limits-on-mapped-tasks

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Indeed, but just to clarify, in this PR the partial/expand routine iterates not on individual loci (of which there are potentially 100,000s in the worst case), but on chunks of the manifest, of which there are <10 in either case

task_id="finemapping_batch_job", study_index_path=STUDY_INDEX_PATH
).expand(manifest=generate_manifests())
)
212 changes: 212 additions & 0 deletions src/ot_orchestration/templates/finemapping.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,212 @@
"""A reusable template for finemapping jobs."""

import time

from airflow.providers.google.cloud.operators.cloud_batch import (
CloudBatchSubmitJobOperator,
)
from google.cloud import storage
from google.cloud.batch_v1 import (
AllocationPolicy,
ComputeResource,
Job,
LifecyclePolicy,
LogsPolicy,
Runnable,
TaskGroup,
TaskSpec,
)
from ot_orchestration.utils import common


def finemapping_batch_job(
study_index_path: str,
study_locus_manifest_path: str,
task_count: int,
docker_image_url: str = common.GENTROPY_DOCKER_IMAGE,
) -> Job:
"""Create a Batch job to run fine-mapping based on an input-output manifest.

Args:
study_index_path (str): The path to the study index.
study_locus_manifest_path (str): Path to the CSV manifest containing all study locus input and output locations. Should contain two columns: study_locus_input and study_locus_output
task_count (int): Total number of tasks in a job to run.
docker_image_url (str): The URL of the Docker image to use for the job. By default, use a project wide image.

Returns:
Job: A Batch job to run fine-mapping on the given study loci.
"""
# Define runnable: container and parameters to use.
runnable = Runnable(
container=Runnable.Container(
image_uri=docker_image_url,
entrypoint="/bin/sh",
commands=[
"-c",
(
"poetry run gentropy "
"step=susie_finemapping "
f"step.study_index_path={study_index_path} "
f"step.study_locus_manifest_path={study_locus_manifest_path} "
"step.study_locus_index=$BATCH_TASK_INDEX "
"step.max_causal_snps=10 "
"step.primary_signal_pval_threshold=1 "
"step.secondary_signal_pval_threshold=1 "
"step.purity_mean_r2_threshold=0 "
"step.purity_min_r2_threshold=0 "
"step.cs_lbf_thr=2 step.sum_pips=0.99 "
"step.susie_est_tausq=False "
"step.run_carma=False "
"step.run_sumstat_imputation=False "
"step.carma_time_limit=600 "
"step.imputed_r2_threshold=0.9 "
"step.ld_score_threshold=5 "
"step.carma_tau=0.15 "
"+step.session.extended_spark_conf={spark.jars:https://storage.googleapis.com/hadoop-lib/gcs/gcs-connector-hadoop3-latest.jar} "
"+step.session.extended_spark_conf={spark.dynamicAllocation.enabled:false} "
"+step.session.extended_spark_conf={spark.driver.memory:30g} "
"+step.session.extended_spark_conf={spark.kryoserializer.buffer.max:500m} "
"+step.session.extended_spark_conf={spark.driver.maxResultSize:5g} "
"step.session.write_mode=overwrite"
),
],
options="-e HYDRA_FULL_ERROR=1",
)
)

# Define task spec: runnable, compute resources, retry and lifecycle policies; shared between all tasks.
task_spec = TaskSpec(
runnables=[runnable],
compute_resource=ComputeResource(cpu_milli=4000, memory_mib=25000),
max_run_duration="7200s",
max_retry_count=5,
lifecycle_policies=[
LifecyclePolicy(
action=LifecyclePolicy.Action.FAIL_TASK,
action_condition=LifecyclePolicy.ActionCondition(
exit_codes=[50005] # Execution time exceeded.
),
)
],
)

# Define task group: collection of parameterised tasks.
task_group = TaskGroup(
task_spec=task_spec,
parallelism=2000,
task_count=task_count,
)

# Define allocation policy: method of mapping a task group to compute resources.
allocation_policy = AllocationPolicy(
instances=[
AllocationPolicy.InstancePolicyOrTemplate(
policy=AllocationPolicy.InstancePolicy(
machine_type="n2-highmem-4",
provisioning_model=AllocationPolicy.ProvisioningModel.SPOT,
boot_disk=AllocationPolicy.Disk(size_gb=60),
)
)
]
)

# Define and return job: a complete description of the workload, ready to be submitted to Google Batch.
return Job(
task_groups=[task_group],
allocation_policy=allocation_policy,
logs_policy=LogsPolicy(destination=LogsPolicy.Destination.CLOUD_LOGGING),
)


def upload_strings_to_gcs(strings_list: list[str], csv_upload_path: str) -> None:
"""Upload a list of strings directly to Google Cloud Storage as a single blob.

Args:
strings_list (List[str]): The list of strings to be uploaded.
csv_upload_path (str): The full Google Storage path (gs://bucket_name/path/to/file.csv) where the data will be uploaded.

Returns:
None
"""
# Join the list of strings with newlines to form the content.
content = "\n".join(strings_list)

# Extract bucket and path from csv_upload_path (format: gs://bucket_name/path/to/file.csv).
bucket_name, file_path = csv_upload_path.replace("gs://", "").split("/", 1)

# Initialise the Google Cloud Storage client.
client = storage.Client()
bucket = client.get_bucket(bucket_name)
blob = bucket.blob(file_path)

# Upload the joined content directly.
blob.upload_from_string(content, content_type="text/plain")


def generate_manifests_for_finemapping(
collected_loci: str,
manifest_prefix: str,
output_path: str,
max_records_per_chunk: int = 100_000,
) -> list[(int, str, int)]:
"""Starting from collected_loci, generate manifests for finemapping, splitting in chunks of at most 100,000 records.

Args:
collected_loci (str): Google Storage path for collected loci.
manifest_prefix (str): Google Storage path prefix for uploading the manifests.
output_path (str): Google Storage path to store the finemapping results.
max_records_per_chunk (int): Maximum number of records per one chunk. Defaults to 100,000, which is the maximum number of tasks per job that Google Batch supports.

Return:
list[(int, str, int)]: List of tuples, where the first value is index of the manifest, the second value is a path to manifest, and the third is the number of records in that manifest.
"""
# Get list of loci from the input Google Storage path.
client = storage.Client()
bucket_name, prefix = collected_loci.replace("gs://", "").split("/", 1)
bucket = client.get_bucket(bucket_name)
blobs = bucket.list_blobs(prefix=prefix)
all_loci = [
blob.name[:-1].split("/")[-1]
for blob in blobs
if "studyLocusId" in blob.name and blob.name.endswith("/")
]

# Generate full list of input-output file paths.
inputs_outputs = [
f"{collected_loci}/{locus},{output_path}/{locus}" for locus in all_loci
]

# Split into chunks of max size, as specified.
split_inputs_outputs = [
inputs_outputs[i : i + max_records_per_chunk]
for i in range(0, len(inputs_outputs), max_records_per_chunk)
]

# Generate and upload manifests.
all_manifests = []
for i, chunk in enumerate(split_inputs_outputs):
lines = ["study_locus_input,study_locus_output"] + chunk
manifest_path = f"{manifest_prefix}/chunk_{i}"
upload_strings_to_gcs(lines, manifest_path)
all_manifests.append(
(i, manifest_path, len(chunk)),
)

return all_manifests


class FinemappingBatchOperator(CloudBatchSubmitJobOperator):
def __init__(self, manifest: list[int, str, int], study_index_path: str, **kwargs):
i, manifest_path, num_of_tasks = manifest
super().__init__(
project_id=common.GCP_PROJECT,
region=common.GCP_REGION,
job_name=f"finemapping-job-{i}-{time.strftime('%Y%m%d-%H%M%S')}",
job=finemapping_batch_job(
study_index_path=study_index_path,
study_locus_manifest_path=manifest_path,
task_count=num_of_tasks,
),
deferrable=False,
**kwargs,
)
5 changes: 5 additions & 0 deletions src/ot_orchestration/utils/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,11 @@
GCP_DATAPROC_IMAGE = "2.1"
GCP_AUTOSCALING_POLICY = "otg-etl"

# Image configuration.
GENTROPY_DOCKER_IMAGE = (
"europe-west1-docker.pkg.dev/open-targets-genetics-dev/gentropy-app/gentropy:dev"
)

# Cluster init configuration.
INITIALISATION_BASE_PATH = (
f"gs://genetics_etl_python_playground/initialisation/{GENTROPY_VERSION}"
Expand Down