-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: finemapping template and DAG for UKB PPP (#10)
* feat: template for creating finemapping jobs * feat: example DAG for creating finemapping jobs * fix: quote parameters containing = for Hydra * chore: add GENTROPY_DOCKER_IMAGE to common layer * feat: always use a list of jobs in the DAG * refactor: use manifest as input * feat: implement generate_manifests_for_finemapping * refactor: rewrite the DAG to use new functions * fix: import errors in DAG * fix: multiple fixes following test runs
- Loading branch information
Showing
3 changed files
with
261 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
"""Airflow DAG that uses Google Cloud Batch to run the SuSie Finemapper step for UKB PPP.""" | ||
|
||
from __future__ import annotations | ||
|
||
from pathlib import Path | ||
|
||
from airflow.decorators import task | ||
from airflow.models.dag import DAG | ||
|
||
from ot_orchestration.templates.finemapping import ( | ||
FinemappingBatchOperator, | ||
generate_manifests_for_finemapping, | ||
) | ||
from ot_orchestration.utils import common | ||
|
||
COLLECTED_LOCI = ( | ||
"gs://genetics-portal-dev-analysis/dc16/output/ukb_ppp/clean_loci.parquet" | ||
) | ||
MANIFEST_PREFIX = "gs://gentropy-tmp/ukb/manifest" | ||
OUTPUT_BASE_PATH = "gs://gentropy-tmp/ukb/output" | ||
STUDY_INDEX_PATH = "gs://ukb_ppp_eur_data/study_index" | ||
|
||
|
||
@task | ||
def generate_manifests(): | ||
return generate_manifests_for_finemapping( | ||
collected_loci=COLLECTED_LOCI, | ||
manifest_prefix=MANIFEST_PREFIX, | ||
output_path=OUTPUT_BASE_PATH, | ||
max_records_per_chunk=100_000, | ||
) | ||
|
||
|
||
with DAG( | ||
dag_id=Path(__file__).stem, | ||
description="Open Targets Genetics — finemap study loci with SuSie", | ||
default_args=common.shared_dag_args, | ||
**common.shared_dag_kwargs, | ||
) as dag: | ||
( | ||
FinemappingBatchOperator.partial( | ||
task_id="finemapping_batch_job", study_index_path=STUDY_INDEX_PATH | ||
).expand(manifest=generate_manifests()) | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,212 @@ | ||
"""A reusable template for finemapping jobs.""" | ||
|
||
import time | ||
|
||
from airflow.providers.google.cloud.operators.cloud_batch import ( | ||
CloudBatchSubmitJobOperator, | ||
) | ||
from google.cloud import storage | ||
from google.cloud.batch_v1 import ( | ||
AllocationPolicy, | ||
ComputeResource, | ||
Job, | ||
LifecyclePolicy, | ||
LogsPolicy, | ||
Runnable, | ||
TaskGroup, | ||
TaskSpec, | ||
) | ||
from ot_orchestration.utils import common | ||
|
||
|
||
def finemapping_batch_job( | ||
study_index_path: str, | ||
study_locus_manifest_path: str, | ||
task_count: int, | ||
docker_image_url: str = common.GENTROPY_DOCKER_IMAGE, | ||
) -> Job: | ||
"""Create a Batch job to run fine-mapping based on an input-output manifest. | ||
Args: | ||
study_index_path (str): The path to the study index. | ||
study_locus_manifest_path (str): Path to the CSV manifest containing all study locus input and output locations. Should contain two columns: study_locus_input and study_locus_output | ||
task_count (int): Total number of tasks in a job to run. | ||
docker_image_url (str): The URL of the Docker image to use for the job. By default, use a project wide image. | ||
Returns: | ||
Job: A Batch job to run fine-mapping on the given study loci. | ||
""" | ||
# Define runnable: container and parameters to use. | ||
runnable = Runnable( | ||
container=Runnable.Container( | ||
image_uri=docker_image_url, | ||
entrypoint="/bin/sh", | ||
commands=[ | ||
"-c", | ||
( | ||
"poetry run gentropy " | ||
"step=susie_finemapping " | ||
f"step.study_index_path={study_index_path} " | ||
f"step.study_locus_manifest_path={study_locus_manifest_path} " | ||
"step.study_locus_index=$BATCH_TASK_INDEX " | ||
"step.max_causal_snps=10 " | ||
"step.primary_signal_pval_threshold=1 " | ||
"step.secondary_signal_pval_threshold=1 " | ||
"step.purity_mean_r2_threshold=0 " | ||
"step.purity_min_r2_threshold=0 " | ||
"step.cs_lbf_thr=2 step.sum_pips=0.99 " | ||
"step.susie_est_tausq=False " | ||
"step.run_carma=False " | ||
"step.run_sumstat_imputation=False " | ||
"step.carma_time_limit=600 " | ||
"step.imputed_r2_threshold=0.9 " | ||
"step.ld_score_threshold=5 " | ||
"step.carma_tau=0.15 " | ||
"+step.session.extended_spark_conf={spark.jars:https://storage.googleapis.com/hadoop-lib/gcs/gcs-connector-hadoop3-latest.jar} " | ||
"+step.session.extended_spark_conf={spark.dynamicAllocation.enabled:false} " | ||
"+step.session.extended_spark_conf={spark.driver.memory:30g} " | ||
"+step.session.extended_spark_conf={spark.kryoserializer.buffer.max:500m} " | ||
"+step.session.extended_spark_conf={spark.driver.maxResultSize:5g} " | ||
"step.session.write_mode=overwrite" | ||
), | ||
], | ||
options="-e HYDRA_FULL_ERROR=1", | ||
) | ||
) | ||
|
||
# Define task spec: runnable, compute resources, retry and lifecycle policies; shared between all tasks. | ||
task_spec = TaskSpec( | ||
runnables=[runnable], | ||
compute_resource=ComputeResource(cpu_milli=4000, memory_mib=25000), | ||
max_run_duration="7200s", | ||
max_retry_count=5, | ||
lifecycle_policies=[ | ||
LifecyclePolicy( | ||
action=LifecyclePolicy.Action.FAIL_TASK, | ||
action_condition=LifecyclePolicy.ActionCondition( | ||
exit_codes=[50005] # Execution time exceeded. | ||
), | ||
) | ||
], | ||
) | ||
|
||
# Define task group: collection of parameterised tasks. | ||
task_group = TaskGroup( | ||
task_spec=task_spec, | ||
parallelism=2000, | ||
task_count=task_count, | ||
) | ||
|
||
# Define allocation policy: method of mapping a task group to compute resources. | ||
allocation_policy = AllocationPolicy( | ||
instances=[ | ||
AllocationPolicy.InstancePolicyOrTemplate( | ||
policy=AllocationPolicy.InstancePolicy( | ||
machine_type="n2-highmem-4", | ||
provisioning_model=AllocationPolicy.ProvisioningModel.SPOT, | ||
boot_disk=AllocationPolicy.Disk(size_gb=60), | ||
) | ||
) | ||
] | ||
) | ||
|
||
# Define and return job: a complete description of the workload, ready to be submitted to Google Batch. | ||
return Job( | ||
task_groups=[task_group], | ||
allocation_policy=allocation_policy, | ||
logs_policy=LogsPolicy(destination=LogsPolicy.Destination.CLOUD_LOGGING), | ||
) | ||
|
||
|
||
def upload_strings_to_gcs(strings_list: list[str], csv_upload_path: str) -> None: | ||
"""Upload a list of strings directly to Google Cloud Storage as a single blob. | ||
Args: | ||
strings_list (List[str]): The list of strings to be uploaded. | ||
csv_upload_path (str): The full Google Storage path (gs://bucket_name/path/to/file.csv) where the data will be uploaded. | ||
Returns: | ||
None | ||
""" | ||
# Join the list of strings with newlines to form the content. | ||
content = "\n".join(strings_list) | ||
|
||
# Extract bucket and path from csv_upload_path (format: gs://bucket_name/path/to/file.csv). | ||
bucket_name, file_path = csv_upload_path.replace("gs://", "").split("/", 1) | ||
|
||
# Initialise the Google Cloud Storage client. | ||
client = storage.Client() | ||
bucket = client.get_bucket(bucket_name) | ||
blob = bucket.blob(file_path) | ||
|
||
# Upload the joined content directly. | ||
blob.upload_from_string(content, content_type="text/plain") | ||
|
||
|
||
def generate_manifests_for_finemapping( | ||
collected_loci: str, | ||
manifest_prefix: str, | ||
output_path: str, | ||
max_records_per_chunk: int = 100_000, | ||
) -> list[(int, str, int)]: | ||
"""Starting from collected_loci, generate manifests for finemapping, splitting in chunks of at most 100,000 records. | ||
Args: | ||
collected_loci (str): Google Storage path for collected loci. | ||
manifest_prefix (str): Google Storage path prefix for uploading the manifests. | ||
output_path (str): Google Storage path to store the finemapping results. | ||
max_records_per_chunk (int): Maximum number of records per one chunk. Defaults to 100,000, which is the maximum number of tasks per job that Google Batch supports. | ||
Return: | ||
list[(int, str, int)]: List of tuples, where the first value is index of the manifest, the second value is a path to manifest, and the third is the number of records in that manifest. | ||
""" | ||
# Get list of loci from the input Google Storage path. | ||
client = storage.Client() | ||
bucket_name, prefix = collected_loci.replace("gs://", "").split("/", 1) | ||
bucket = client.get_bucket(bucket_name) | ||
blobs = bucket.list_blobs(prefix=prefix) | ||
all_loci = [ | ||
blob.name[:-1].split("/")[-1] | ||
for blob in blobs | ||
if "studyLocusId" in blob.name and blob.name.endswith("/") | ||
] | ||
|
||
# Generate full list of input-output file paths. | ||
inputs_outputs = [ | ||
f"{collected_loci}/{locus},{output_path}/{locus}" for locus in all_loci | ||
] | ||
|
||
# Split into chunks of max size, as specified. | ||
split_inputs_outputs = [ | ||
inputs_outputs[i : i + max_records_per_chunk] | ||
for i in range(0, len(inputs_outputs), max_records_per_chunk) | ||
] | ||
|
||
# Generate and upload manifests. | ||
all_manifests = [] | ||
for i, chunk in enumerate(split_inputs_outputs): | ||
lines = ["study_locus_input,study_locus_output"] + chunk | ||
manifest_path = f"{manifest_prefix}/chunk_{i}" | ||
upload_strings_to_gcs(lines, manifest_path) | ||
all_manifests.append( | ||
(i, manifest_path, len(chunk)), | ||
) | ||
|
||
return all_manifests | ||
|
||
|
||
class FinemappingBatchOperator(CloudBatchSubmitJobOperator): | ||
def __init__(self, manifest: list[int, str, int], study_index_path: str, **kwargs): | ||
i, manifest_path, num_of_tasks = manifest | ||
super().__init__( | ||
project_id=common.GCP_PROJECT, | ||
region=common.GCP_REGION, | ||
job_name=f"finemapping-job-{i}-{time.strftime('%Y%m%d-%H%M%S')}", | ||
job=finemapping_batch_job( | ||
study_index_path=study_index_path, | ||
study_locus_manifest_path=manifest_path, | ||
task_count=num_of_tasks, | ||
), | ||
deferrable=False, | ||
**kwargs, | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters