Skip to content

Latest commit

 

History

History
59 lines (45 loc) · 2.49 KB

install.md

File metadata and controls

59 lines (45 loc) · 2.49 KB

Installing Hive

Installing Community Release via OperatorHub

Hive is published to OperatorHub weekly and this is the best method to install and use Hive if you do not need to build from source.

  1. Create a hive namespace,
    $ oc new-project hive
    
  2. Install the Hive Operator:
    • In the OpenShift web console, navigate to Administrator perspective > Operators > OperatorHub.
    • Search for “hive” and select the "Hive for Red Hat OpenShift" operator and click Install.
    • Select the “alpha” update channel, install to a specific namespace (select the “hive” namespace previously created), approval strategy: automatic, and press Install.
    • You should now have a hive-operator pod running in the hive namespace.
  3. Create a HiveConfig to trigger the actual deployment of Hive.
    • Create a hive_config.yaml file with the following content:

      apiVersion: hive.openshift.io/v1
      kind: HiveConfig
      metadata:
        name: hive
      spec:
        logLevel: debug
        targetNamespace: hive
    • Apply hive_config.yaml,

      $ oc apply -f hive_config.yaml
      

The hive-operator pod should now deploy the remaining components (hive-controllers, hive-clustersync, hiveadmission), and once running Hive is now ready to begin accepting ClusterDeployments.

Deploy From Source

See developer instructions

Verify that Hive is running

Run: $ oc get pods -n hive

Sample output:

$ oc get pods -n hive
NAME                                READY   STATUS    RESTARTS   AGE
hive-clustersync-0                  1/1     Running   0          16m
hive-controllers-6fcbf74864-hdn27   1/1     Running   0          17m
hive-operator-7b877b996b-ndlpj      1/1     Running   0          17m
hiveadmission-7969fd9dd-l24jb       1/1     Running   0          17m
hiveadmission-7969fd9dd-pl2ml       1/1     Running   0          17m

Next Step

Provision an OpenShift cluster using Hive. For details refer using Hive documentation.