diff --git a/404.html b/404.html index a84029d6..6f34e204 100644 --- a/404.html +++ b/404.html @@ -13,8 +13,8 @@ - - + + diff --git a/CODE_OF_CONDUCT.html b/CODE_OF_CONDUCT.html index f7632620..f340ec1d 100644 --- a/CODE_OF_CONDUCT.html +++ b/CODE_OF_CONDUCT.html @@ -1,5 +1,5 @@ -Contributor Code of Conduct • visRContributor Code of Conduct • visR diff --git a/LICENSE-text.html b/LICENSE-text.html index 8ab54837..4a1bbede 100644 --- a/LICENSE-text.html +++ b/LICENSE-text.html @@ -1,5 +1,5 @@ -License • visRLicense • visR diff --git a/LICENSE.html b/LICENSE.html index 18209599..4768754e 100644 --- a/LICENSE.html +++ b/LICENSE.html @@ -1,5 +1,5 @@ -MIT License • visRMIT License • visR diff --git a/articles/CDISC_ADaM.html b/articles/CDISC_ADaM.html index 6827063c..0168497e 100644 --- a/articles/CDISC_ADaM.html +++ b/articles/CDISC_ADaM.html @@ -14,8 +14,8 @@ - - + + @@ -101,7 +101,7 @@

Introduction
 library(ggplot2)
-library(visR)
+library(visR)

Global Document Setup @@ -147,23 +147,23 @@

Time-to-event analysis#> Please use `fct_na_value_to_level()` instead. #> The deprecated feature was likely used in the visR package. #> Please report the issue at <https://github.com/openpharma/visR/issues>.

-
- @@ -673,23 +673,23 @@

Time-to-event analysis# Display test statistics associated with the survival estimate visR::render(survfit_object %>% get_pvalue(), title = "P-values", datasource = DATASET)

-
- diff --git a/articles/CDISC_ADaM_files/figure-html/km_plot_1-1.png b/articles/CDISC_ADaM_files/figure-html/km_plot_1-1.png index 4abe9b82..d16a740c 100644 Binary files a/articles/CDISC_ADaM_files/figure-html/km_plot_1-1.png and b/articles/CDISC_ADaM_files/figure-html/km_plot_1-1.png differ diff --git a/articles/Consort_flow_diagram.html b/articles/Consort_flow_diagram.html index dbb44b73..496079c7 100644 --- a/articles/Consort_flow_diagram.html +++ b/articles/Consort_flow_diagram.html @@ -14,8 +14,8 @@ - - + + @@ -92,7 +92,7 @@ +library(visR)

Attrition example

diff --git a/articles/Consort_flow_diagram_files/figure-html/render1-1.png b/articles/Consort_flow_diagram_files/figure-html/render1-1.png index 36af7289..44bea5b3 100644 Binary files a/articles/Consort_flow_diagram_files/figure-html/render1-1.png and b/articles/Consort_flow_diagram_files/figure-html/render1-1.png differ diff --git a/articles/Consort_flow_diagram_files/figure-html/render2-1.png b/articles/Consort_flow_diagram_files/figure-html/render2-1.png index 4f7b9e9d..408af3bf 100644 Binary files a/articles/Consort_flow_diagram_files/figure-html/render2-1.png and b/articles/Consort_flow_diagram_files/figure-html/render2-1.png differ diff --git a/articles/Consort_flow_diagram_files/figure-html/render3-1.png b/articles/Consort_flow_diagram_files/figure-html/render3-1.png index 5614b809..968d5ff4 100644 Binary files a/articles/Consort_flow_diagram_files/figure-html/render3-1.png and b/articles/Consort_flow_diagram_files/figure-html/render3-1.png differ diff --git a/articles/Consort_flow_diagram_files/figure-html/render4-1.png b/articles/Consort_flow_diagram_files/figure-html/render4-1.png index bccfa44e..e38ac9a0 100644 Binary files a/articles/Consort_flow_diagram_files/figure-html/render4-1.png and b/articles/Consort_flow_diagram_files/figure-html/render4-1.png differ diff --git a/articles/Styling_KM_plots.html b/articles/Styling_KM_plots.html index c6baed8f..7a4c5c1a 100644 --- a/articles/Styling_KM_plots.html +++ b/articles/Styling_KM_plots.html @@ -14,8 +14,8 @@ - - + + @@ -95,7 +95,7 @@

Introduction

+library(visR)

This tutorial illustrates the usage of the styling function that visR provides. By default, visR::visr() does not apply any form of visual changes to the generated survival plots. diff --git a/articles/Styling_KM_plots_files/figure-html/default-ggplot2-plot-1.png b/articles/Styling_KM_plots_files/figure-html/default-ggplot2-plot-1.png index 228b3777..75ba1745 100644 Binary files a/articles/Styling_KM_plots_files/figure-html/default-ggplot2-plot-1.png and b/articles/Styling_KM_plots_files/figure-html/default-ggplot2-plot-1.png differ diff --git a/articles/Styling_KM_plots_files/figure-html/styling-with-ggplot2-1.png b/articles/Styling_KM_plots_files/figure-html/styling-with-ggplot2-1.png index a0c3e373..a3ff934a 100644 Binary files a/articles/Styling_KM_plots_files/figure-html/styling-with-ggplot2-1.png and b/articles/Styling_KM_plots_files/figure-html/styling-with-ggplot2-1.png differ diff --git a/articles/Styling_KM_plots_files/figure-html/visr-apply_theme-empty-1.png b/articles/Styling_KM_plots_files/figure-html/visr-apply_theme-empty-1.png index 986fcda1..ca441fbd 100644 Binary files a/articles/Styling_KM_plots_files/figure-html/visr-apply_theme-empty-1.png and b/articles/Styling_KM_plots_files/figure-html/visr-apply_theme-empty-1.png differ diff --git a/articles/Styling_KM_plots_files/figure-html/visr-apply_theme-nonempty-1.png b/articles/Styling_KM_plots_files/figure-html/visr-apply_theme-nonempty-1.png index 32b88c90..1e29d251 100644 Binary files a/articles/Styling_KM_plots_files/figure-html/visr-apply_theme-nonempty-1.png and b/articles/Styling_KM_plots_files/figure-html/visr-apply_theme-nonempty-1.png differ diff --git a/articles/Styling_KM_plots_files/figure-html/visr-parameter-styling-1.png b/articles/Styling_KM_plots_files/figure-html/visr-parameter-styling-1.png index 38e74aaf..0d6c0b3b 100644 Binary files a/articles/Styling_KM_plots_files/figure-html/visr-parameter-styling-1.png and b/articles/Styling_KM_plots_files/figure-html/visr-parameter-styling-1.png differ diff --git a/articles/Time_to_event_analysis.html b/articles/Time_to_event_analysis.html index 58f1fbe6..a351782d 100644 --- a/articles/Time_to_event_analysis.html +++ b/articles/Time_to_event_analysis.html @@ -14,8 +14,8 @@ - - + + @@ -79,11 +79,11 @@ - - - - - + + + + +

+library(visR)

Global Document Setup @@ -178,23 +178,23 @@

Cohort Overview (Table one) # Render the tableone visR::render(tab1, title = "Overview over Lung Cancer patients", datasource = DATASET)

-
- @@ -662,7 +662,7 @@

Cohort Overview (Table one) -Data Source: NCCTG Lung Cancer Dataset (from survival package 3.4.0) +Data Source: NCCTG Lung Cancer Dataset (from survival package 3.5.8) @@ -676,23 +676,23 @@

Cohort Overview (Table one)
 # Use wrapper functionality to create and display a tableone
 visR::tableone(lung_cohort_tab1, title = "Overview over Lung Cancer patients", datasource = DATASET)

-
- @@ -1160,7 +1160,7 @@

Cohort Overview (Table one) -Data Source: NCCTG Lung Cancer Dataset (from survival package 3.4.0) +Data Source: NCCTG Lung Cancer Dataset (from survival package 3.5.8) @@ -1177,23 +1177,23 @@

Cohort Overview (Table one)# Create and render a tableone with a stratifier and without displaying the total visR::tableone(lung_cohort_tab1, strata = "Sex", overall = FALSE, title = "Overview over Lung Cancer patients", datasource = DATASET)

-
- @@ -1655,7 +1655,7 @@

Cohort Overview (Table one) -Data Source: NCCTG Lung Cancer Dataset (from survival package 3.4.0) +Data Source: NCCTG Lung Cancer Dataset (from survival package 3.5.8) @@ -1672,8 +1672,8 @@

Cohort Overview (Table one)visR::tableone(lung_cohort_tab1, strata = "Sex", overall = FALSE, title = "Overview over Lung Cancer patients", datasource = DATASET, engine = "dt")

-
-

…and kable for flexible displaying in various output +

+

…and kable for flexible displaying in various output formats (html by default, latex supported).

@@ -1701,7 +1701,7 @@ 

Cohort Overview (Table one) - + Age @@ -1716,9 +1716,6 @@

Cohort Overview (Table one) -Age - - Median (IQR) @@ -1730,9 +1727,6 @@

Cohort Overview (Table one) -Age - - Min-max @@ -1744,9 +1738,6 @@

Cohort Overview (Table one) -Age - - Missing @@ -1777,7 +1768,7 @@

Cohort Overview (Table one) - NCCTG Lung Cancer Dataset (from survival package 3.4.0) + NCCTG Lung Cancer Dataset (from survival package 3.5.8) @@ -1841,23 +1832,23 @@

Displaying the risktable # Display the risktable visR::render(rt, title = "Overview over survival rates of Lung Cancer patients", datasource = DATASET)

-
- @@ -2342,7 +2333,7 @@

Displaying the risktable -Data Source: NCCTG Lung Cancer Dataset (from survival package 3.4.0) +Data Source: NCCTG Lung Cancer Dataset (from survival package 3.5.8) @@ -2356,23 +2347,23 @@

Displaying the risktable
 # Display a summary of the survival estimate
 visR::render(lung_suvival_object %>% visR::get_summary(), title = "Summary", datasource = DATASET)

-
- @@ -2833,7 +2824,7 @@

Displaying the risktable -Data Source: NCCTG Lung Cancer Dataset (from survival package 3.4.0) +Data Source: NCCTG Lung Cancer Dataset (from survival package 3.5.8) @@ -2844,23 +2835,23 @@

Displaying the risktable
 # Display test statistics associated with the survival estimate
 visR::render(lung_suvival_object %>% visR::get_pvalue(), title = "P-values", datasource = DATASET)

-
- @@ -3318,7 +3309,7 @@

Displaying the risktable -Data Source: NCCTG Lung Cancer Dataset (from survival package 3.4.0) +Data Source: NCCTG Lung Cancer Dataset (from survival package 3.5.8) @@ -3329,23 +3320,23 @@

Displaying the risktable
 # Display qunatile information of the survival estimate
 visR::render(lung_suvival_object %>% visR::get_quantile(), title = "Quantile Information", datasource = DATASET)

-
- @@ -3828,7 +3819,7 @@

Displaying the risktable -Data Source: NCCTG Lung Cancer Dataset (from survival package 3.4.0) +Data Source: NCCTG Lung Cancer Dataset (from survival package 3.5.8) @@ -3840,23 +3831,23 @@

Displaying the risktable# Display a cox model estimate associated with the survival estimate visR::render(lung_suvival_object %>% visR::get_COX_HR(), title = "COX estimate", datasource = DATASET) #> tidyme S3 default method (broom::tidy) used.

-
- @@ -4302,7 +4293,7 @@

Displaying the risktable -Data Source: NCCTG Lung Cancer Dataset (from survival package 3.4.0) +Data Source: NCCTG Lung Cancer Dataset (from survival package 3.5.8) diff --git a/articles/Time_to_event_analysis_files/crosstalk-1.2.1/css/crosstalk.min.css b/articles/Time_to_event_analysis_files/crosstalk-1.2.1/css/crosstalk.min.css new file mode 100644 index 00000000..6b453828 --- /dev/null +++ b/articles/Time_to_event_analysis_files/crosstalk-1.2.1/css/crosstalk.min.css @@ -0,0 +1 @@ +.container-fluid.crosstalk-bscols{margin-left:-30px;margin-right:-30px;white-space:normal}body>.container-fluid.crosstalk-bscols{margin-left:auto;margin-right:auto}.crosstalk-input-checkboxgroup .crosstalk-options-group .crosstalk-options-column{display:inline-block;padding-right:12px;vertical-align:top}@media only screen and (max-width: 480px){.crosstalk-input-checkboxgroup .crosstalk-options-group .crosstalk-options-column{display:block;padding-right:inherit}}.crosstalk-input{margin-bottom:15px}.crosstalk-input .control-label{margin-bottom:0;vertical-align:middle}.crosstalk-input input[type="checkbox"]{margin:4px 0 0;margin-top:1px;line-height:normal}.crosstalk-input .checkbox{position:relative;display:block;margin-top:10px;margin-bottom:10px}.crosstalk-input .checkbox>label{padding-left:20px;margin-bottom:0;font-weight:400;cursor:pointer}.crosstalk-input .checkbox input[type="checkbox"],.crosstalk-input .checkbox-inline input[type="checkbox"]{position:absolute;margin-top:2px;margin-left:-20px}.crosstalk-input .checkbox+.checkbox{margin-top:-5px}.crosstalk-input .checkbox-inline{position:relative;display:inline-block;padding-left:20px;margin-bottom:0;font-weight:400;vertical-align:middle;cursor:pointer}.crosstalk-input .checkbox-inline+.checkbox-inline{margin-top:0;margin-left:10px} diff --git a/articles/Time_to_event_analysis_files/crosstalk-1.2.1/js/crosstalk.js b/articles/Time_to_event_analysis_files/crosstalk-1.2.1/js/crosstalk.js new file mode 100644 index 00000000..fd9eb53d --- /dev/null +++ b/articles/Time_to_event_analysis_files/crosstalk-1.2.1/js/crosstalk.js @@ -0,0 +1,1474 @@ +(function(){function e(t,n,r){function s(o,u){if(!n[o]){if(!t[o]){var a=typeof require=="function"&&require;if(!u&&a)return a(o,!0);if(i)return i(o,!0);var f=new Error("Cannot find module '"+o+"'");throw f.code="MODULE_NOT_FOUND",f}var l=n[o]={exports:{}};t[o][0].call(l.exports,function(e){var n=t[o][1][e];return s(n?n:e)},l,l.exports,e,t,n,r)}return n[o].exports}var i=typeof require=="function"&&require;for(var o=0;o b) { + return 1; + } +} + +/** + * @private + */ + +var FilterSet = function () { + function FilterSet() { + _classCallCheck(this, FilterSet); + + this.reset(); + } + + _createClass(FilterSet, [{ + key: "reset", + value: function reset() { + // Key: handle ID, Value: array of selected keys, or null + this._handles = {}; + // Key: key string, Value: count of handles that include it + this._keys = {}; + this._value = null; + this._activeHandles = 0; + } + }, { + key: "update", + value: function update(handleId, keys) { + if (keys !== null) { + keys = keys.slice(0); // clone before sorting + keys.sort(naturalComparator); + } + + var _diffSortedLists = (0, _util.diffSortedLists)(this._handles[handleId], keys), + added = _diffSortedLists.added, + removed = _diffSortedLists.removed; + + this._handles[handleId] = keys; + + for (var i = 0; i < added.length; i++) { + this._keys[added[i]] = (this._keys[added[i]] || 0) + 1; + } + for (var _i = 0; _i < removed.length; _i++) { + this._keys[removed[_i]]--; + } + + this._updateValue(keys); + } + + /** + * @param {string[]} keys Sorted array of strings that indicate + * a superset of possible keys. + * @private + */ + + }, { + key: "_updateValue", + value: function _updateValue() { + var keys = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : this._allKeys; + + var handleCount = Object.keys(this._handles).length; + if (handleCount === 0) { + this._value = null; + } else { + this._value = []; + for (var i = 0; i < keys.length; i++) { + var count = this._keys[keys[i]]; + if (count === handleCount) { + this._value.push(keys[i]); + } + } + } + } + }, { + key: "clear", + value: function clear(handleId) { + if (typeof this._handles[handleId] === "undefined") { + return; + } + + var keys = this._handles[handleId]; + if (!keys) { + keys = []; + } + + for (var i = 0; i < keys.length; i++) { + this._keys[keys[i]]--; + } + delete this._handles[handleId]; + + this._updateValue(); + } + }, { + key: "value", + get: function get() { + return this._value; + } + }, { + key: "_allKeys", + get: function get() { + var allKeys = Object.keys(this._keys); + allKeys.sort(naturalComparator); + return allKeys; + } + }]); + + return FilterSet; +}(); + +exports.default = FilterSet; + +},{"./util":11}],4:[function(require,module,exports){ +(function (global){ +"use strict"; + +Object.defineProperty(exports, "__esModule", { + value: true +}); + +var _createClass = function () { function defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if ("value" in descriptor) descriptor.writable = true; Object.defineProperty(target, descriptor.key, descriptor); } } return function (Constructor, protoProps, staticProps) { if (protoProps) defineProperties(Constructor.prototype, protoProps); if (staticProps) defineProperties(Constructor, staticProps); return Constructor; }; }(); + +var _typeof = typeof Symbol === "function" && typeof Symbol.iterator === "symbol" ? function (obj) { return typeof obj; } : function (obj) { return obj && typeof Symbol === "function" && obj.constructor === Symbol && obj !== Symbol.prototype ? "symbol" : typeof obj; }; + +exports.default = group; + +var _var2 = require("./var"); + +var _var3 = _interopRequireDefault(_var2); + +function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; } + +function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } } + +// Use a global so that multiple copies of crosstalk.js can be loaded and still +// have groups behave as singletons across all copies. +global.__crosstalk_groups = global.__crosstalk_groups || {}; +var groups = global.__crosstalk_groups; + +function group(groupName) { + if (groupName && typeof groupName === "string") { + if (!groups.hasOwnProperty(groupName)) { + groups[groupName] = new Group(groupName); + } + return groups[groupName]; + } else if ((typeof groupName === "undefined" ? "undefined" : _typeof(groupName)) === "object" && groupName._vars && groupName.var) { + // Appears to already be a group object + return groupName; + } else if (Array.isArray(groupName) && groupName.length == 1 && typeof groupName[0] === "string") { + return group(groupName[0]); + } else { + throw new Error("Invalid groupName argument"); + } +} + +var Group = function () { + function Group(name) { + _classCallCheck(this, Group); + + this.name = name; + this._vars = {}; + } + + _createClass(Group, [{ + key: "var", + value: function _var(name) { + if (!name || typeof name !== "string") { + throw new Error("Invalid var name"); + } + + if (!this._vars.hasOwnProperty(name)) this._vars[name] = new _var3.default(this, name); + return this._vars[name]; + } + }, { + key: "has", + value: function has(name) { + if (!name || typeof name !== "string") { + throw new Error("Invalid var name"); + } + + return this._vars.hasOwnProperty(name); + } + }]); + + return Group; +}(); + +}).call(this,typeof global !== "undefined" ? global : typeof self !== "undefined" ? self : typeof window !== "undefined" ? window : {}) + +},{"./var":12}],5:[function(require,module,exports){ +(function (global){ +"use strict"; + +Object.defineProperty(exports, "__esModule", { + value: true +}); + +var _group = require("./group"); + +var _group2 = _interopRequireDefault(_group); + +var _selection = require("./selection"); + +var _filter = require("./filter"); + +var _input = require("./input"); + +require("./input_selectize"); + +require("./input_checkboxgroup"); + +require("./input_slider"); + +function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; } + +var defaultGroup = (0, _group2.default)("default"); + +function var_(name) { + return defaultGroup.var(name); +} + +function has(name) { + return defaultGroup.has(name); +} + +if (global.Shiny) { + global.Shiny.addCustomMessageHandler("update-client-value", function (message) { + if (typeof message.group === "string") { + (0, _group2.default)(message.group).var(message.name).set(message.value); + } else { + var_(message.name).set(message.value); + } + }); +} + +var crosstalk = { + group: _group2.default, + var: var_, + has: has, + SelectionHandle: _selection.SelectionHandle, + FilterHandle: _filter.FilterHandle, + bind: _input.bind +}; + +/** + * @namespace crosstalk + */ +exports.default = crosstalk; + +global.crosstalk = crosstalk; + +}).call(this,typeof global !== "undefined" ? global : typeof self !== "undefined" ? self : typeof window !== "undefined" ? window : {}) + +},{"./filter":2,"./group":4,"./input":6,"./input_checkboxgroup":7,"./input_selectize":8,"./input_slider":9,"./selection":10}],6:[function(require,module,exports){ +(function (global){ +"use strict"; + +Object.defineProperty(exports, "__esModule", { + value: true +}); +exports.register = register; +exports.bind = bind; +var $ = global.jQuery; + +var bindings = {}; + +function register(reg) { + bindings[reg.className] = reg; + if (global.document && global.document.readyState !== "complete") { + $(function () { + bind(); + }); + } else if (global.document) { + setTimeout(bind, 100); + } +} + +function bind() { + Object.keys(bindings).forEach(function (className) { + var binding = bindings[className]; + $("." + binding.className).not(".crosstalk-input-bound").each(function (i, el) { + bindInstance(binding, el); + }); + }); +} + +// Escape jQuery identifier +function $escape(val) { + return val.replace(/([!"#$%&'()*+,./:;<=>?@[\\\]^`{|}~])/g, "\\$1"); +} + +function bindEl(el) { + var $el = $(el); + Object.keys(bindings).forEach(function (className) { + if ($el.hasClass(className) && !$el.hasClass("crosstalk-input-bound")) { + var binding = bindings[className]; + bindInstance(binding, el); + } + }); +} + +function bindInstance(binding, el) { + var jsonEl = $(el).find("script[type='application/json'][data-for='" + $escape(el.id) + "']"); + var data = JSON.parse(jsonEl[0].innerText); + + var instance = binding.factory(el, data); + $(el).data("crosstalk-instance", instance); + $(el).addClass("crosstalk-input-bound"); +} + +if (global.Shiny) { + var inputBinding = new global.Shiny.InputBinding(); + var _$ = global.jQuery; + _$.extend(inputBinding, { + find: function find(scope) { + return _$(scope).find(".crosstalk-input"); + }, + initialize: function initialize(el) { + if (!_$(el).hasClass("crosstalk-input-bound")) { + bindEl(el); + } + }, + getId: function getId(el) { + return el.id; + }, + getValue: function getValue(el) {}, + setValue: function setValue(el, value) {}, + receiveMessage: function receiveMessage(el, data) {}, + subscribe: function subscribe(el, callback) { + _$(el).data("crosstalk-instance").resume(); + }, + unsubscribe: function unsubscribe(el) { + _$(el).data("crosstalk-instance").suspend(); + } + }); + global.Shiny.inputBindings.register(inputBinding, "crosstalk.inputBinding"); +} + +}).call(this,typeof global !== "undefined" ? global : typeof self !== "undefined" ? self : typeof window !== "undefined" ? window : {}) + +},{}],7:[function(require,module,exports){ +(function (global){ +"use strict"; + +var _input = require("./input"); + +var input = _interopRequireWildcard(_input); + +var _filter = require("./filter"); + +function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } } + +var $ = global.jQuery; + +input.register({ + className: "crosstalk-input-checkboxgroup", + + factory: function factory(el, data) { + /* + * map: {"groupA": ["keyA", "keyB", ...], ...} + * group: "ct-groupname" + */ + var ctHandle = new _filter.FilterHandle(data.group); + + var lastKnownKeys = void 0; + var $el = $(el); + $el.on("change", "input[type='checkbox']", function () { + var checked = $el.find("input[type='checkbox']:checked"); + if (checked.length === 0) { + lastKnownKeys = null; + ctHandle.clear(); + } else { + var keys = {}; + checked.each(function () { + data.map[this.value].forEach(function (key) { + keys[key] = true; + }); + }); + var keyArray = Object.keys(keys); + keyArray.sort(); + lastKnownKeys = keyArray; + ctHandle.set(keyArray); + } + }); + + return { + suspend: function suspend() { + ctHandle.clear(); + }, + resume: function resume() { + if (lastKnownKeys) ctHandle.set(lastKnownKeys); + } + }; + } +}); + +}).call(this,typeof global !== "undefined" ? global : typeof self !== "undefined" ? self : typeof window !== "undefined" ? window : {}) + +},{"./filter":2,"./input":6}],8:[function(require,module,exports){ +(function (global){ +"use strict"; + +var _input = require("./input"); + +var input = _interopRequireWildcard(_input); + +var _util = require("./util"); + +var util = _interopRequireWildcard(_util); + +var _filter = require("./filter"); + +function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } } + +var $ = global.jQuery; + +input.register({ + className: "crosstalk-input-select", + + factory: function factory(el, data) { + /* + * items: {value: [...], label: [...]} + * map: {"groupA": ["keyA", "keyB", ...], ...} + * group: "ct-groupname" + */ + + var first = [{ value: "", label: "(All)" }]; + var items = util.dataframeToD3(data.items); + var opts = { + options: first.concat(items), + valueField: "value", + labelField: "label", + searchField: "label" + }; + + var select = $(el).find("select")[0]; + + var selectize = $(select).selectize(opts)[0].selectize; + + var ctHandle = new _filter.FilterHandle(data.group); + + var lastKnownKeys = void 0; + selectize.on("change", function () { + if (selectize.items.length === 0) { + lastKnownKeys = null; + ctHandle.clear(); + } else { + var keys = {}; + selectize.items.forEach(function (group) { + data.map[group].forEach(function (key) { + keys[key] = true; + }); + }); + var keyArray = Object.keys(keys); + keyArray.sort(); + lastKnownKeys = keyArray; + ctHandle.set(keyArray); + } + }); + + return { + suspend: function suspend() { + ctHandle.clear(); + }, + resume: function resume() { + if (lastKnownKeys) ctHandle.set(lastKnownKeys); + } + }; + } +}); + +}).call(this,typeof global !== "undefined" ? global : typeof self !== "undefined" ? self : typeof window !== "undefined" ? window : {}) + +},{"./filter":2,"./input":6,"./util":11}],9:[function(require,module,exports){ +(function (global){ +"use strict"; + +var _slicedToArray = function () { function sliceIterator(arr, i) { var _arr = []; var _n = true; var _d = false; var _e = undefined; try { for (var _i = arr[Symbol.iterator](), _s; !(_n = (_s = _i.next()).done); _n = true) { _arr.push(_s.value); if (i && _arr.length === i) break; } } catch (err) { _d = true; _e = err; } finally { try { if (!_n && _i["return"]) _i["return"](); } finally { if (_d) throw _e; } } return _arr; } return function (arr, i) { if (Array.isArray(arr)) { return arr; } else if (Symbol.iterator in Object(arr)) { return sliceIterator(arr, i); } else { throw new TypeError("Invalid attempt to destructure non-iterable instance"); } }; }(); + +var _input = require("./input"); + +var input = _interopRequireWildcard(_input); + +var _filter = require("./filter"); + +function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } } + +var $ = global.jQuery; +var strftime = global.strftime; + +input.register({ + className: "crosstalk-input-slider", + + factory: function factory(el, data) { + /* + * map: {"groupA": ["keyA", "keyB", ...], ...} + * group: "ct-groupname" + */ + var ctHandle = new _filter.FilterHandle(data.group); + + var opts = {}; + var $el = $(el).find("input"); + var dataType = $el.data("data-type"); + var timeFormat = $el.data("time-format"); + var round = $el.data("round"); + var timeFormatter = void 0; + + // Set up formatting functions + if (dataType === "date") { + timeFormatter = strftime.utc(); + opts.prettify = function (num) { + return timeFormatter(timeFormat, new Date(num)); + }; + } else if (dataType === "datetime") { + var timezone = $el.data("timezone"); + if (timezone) timeFormatter = strftime.timezone(timezone);else timeFormatter = strftime; + + opts.prettify = function (num) { + return timeFormatter(timeFormat, new Date(num)); + }; + } else if (dataType === "number") { + if (typeof round !== "undefined") opts.prettify = function (num) { + var factor = Math.pow(10, round); + return Math.round(num * factor) / factor; + }; + } + + $el.ionRangeSlider(opts); + + function getValue() { + var result = $el.data("ionRangeSlider").result; + + // Function for converting numeric value from slider to appropriate type. + var convert = void 0; + var dataType = $el.data("data-type"); + if (dataType === "date") { + convert = function convert(val) { + return formatDateUTC(new Date(+val)); + }; + } else if (dataType === "datetime") { + convert = function convert(val) { + // Convert ms to s + return +val / 1000; + }; + } else { + convert = function convert(val) { + return +val; + }; + } + + if ($el.data("ionRangeSlider").options.type === "double") { + return [convert(result.from), convert(result.to)]; + } else { + return convert(result.from); + } + } + + var lastKnownKeys = null; + + $el.on("change.crosstalkSliderInput", function (event) { + if (!$el.data("updating") && !$el.data("animating")) { + var _getValue = getValue(), + _getValue2 = _slicedToArray(_getValue, 2), + from = _getValue2[0], + to = _getValue2[1]; + + var keys = []; + for (var i = 0; i < data.values.length; i++) { + var val = data.values[i]; + if (val >= from && val <= to) { + keys.push(data.keys[i]); + } + } + keys.sort(); + ctHandle.set(keys); + lastKnownKeys = keys; + } + }); + + // let $el = $(el); + // $el.on("change", "input[type="checkbox"]", function() { + // let checked = $el.find("input[type="checkbox"]:checked"); + // if (checked.length === 0) { + // ctHandle.clear(); + // } else { + // let keys = {}; + // checked.each(function() { + // data.map[this.value].forEach(function(key) { + // keys[key] = true; + // }); + // }); + // let keyArray = Object.keys(keys); + // keyArray.sort(); + // ctHandle.set(keyArray); + // } + // }); + + return { + suspend: function suspend() { + ctHandle.clear(); + }, + resume: function resume() { + if (lastKnownKeys) ctHandle.set(lastKnownKeys); + } + }; + } +}); + +// Convert a number to a string with leading zeros +function padZeros(n, digits) { + var str = n.toString(); + while (str.length < digits) { + str = "0" + str; + }return str; +} + +// Given a Date object, return a string in yyyy-mm-dd format, using the +// UTC date. This may be a day off from the date in the local time zone. +function formatDateUTC(date) { + if (date instanceof Date) { + return date.getUTCFullYear() + "-" + padZeros(date.getUTCMonth() + 1, 2) + "-" + padZeros(date.getUTCDate(), 2); + } else { + return null; + } +} + +}).call(this,typeof global !== "undefined" ? global : typeof self !== "undefined" ? self : typeof window !== "undefined" ? window : {}) + +},{"./filter":2,"./input":6}],10:[function(require,module,exports){ +"use strict"; + +Object.defineProperty(exports, "__esModule", { + value: true +}); +exports.SelectionHandle = undefined; + +var _createClass = function () { function defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if ("value" in descriptor) descriptor.writable = true; Object.defineProperty(target, descriptor.key, descriptor); } } return function (Constructor, protoProps, staticProps) { if (protoProps) defineProperties(Constructor.prototype, protoProps); if (staticProps) defineProperties(Constructor, staticProps); return Constructor; }; }(); + +var _events = require("./events"); + +var _events2 = _interopRequireDefault(_events); + +var _group = require("./group"); + +var _group2 = _interopRequireDefault(_group); + +var _util = require("./util"); + +var util = _interopRequireWildcard(_util); + +function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } } + +function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; } + +function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } } + +/** + * Use this class to read and write (and listen for changes to) the selection + * for a Crosstalk group. This is intended to be used for linked brushing. + * + * If two (or more) `SelectionHandle` instances in the same webpage share the + * same group name, they will share the same state. Setting the selection using + * one `SelectionHandle` instance will result in the `value` property instantly + * changing across the others, and `"change"` event listeners on all instances + * (including the one that initiated the sending) will fire. + * + * @param {string} [group] - The name of the Crosstalk group, or if none, + * null or undefined (or any other falsy value). This can be changed later + * via the [SelectionHandle#setGroup](#setGroup) method. + * @param {Object} [extraInfo] - An object whose properties will be copied to + * the event object whenever an event is emitted. + */ +var SelectionHandle = exports.SelectionHandle = function () { + function SelectionHandle() { + var group = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : null; + var extraInfo = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : null; + + _classCallCheck(this, SelectionHandle); + + this._eventRelay = new _events2.default(); + this._emitter = new util.SubscriptionTracker(this._eventRelay); + + // Name of the group we're currently tracking, if any. Can change over time. + this._group = null; + // The Var we're currently tracking, if any. Can change over time. + this._var = null; + // The event handler subscription we currently have on var.on("change"). + this._varOnChangeSub = null; + + this._extraInfo = util.extend({ sender: this }, extraInfo); + + this.setGroup(group); + } + + /** + * Changes the Crosstalk group membership of this SelectionHandle. The group + * being switched away from (if any) will not have its selection value + * modified as a result of calling `setGroup`, even if this handle was the + * most recent handle to set the selection of the group. + * + * The group being switched to (if any) will also not have its selection value + * modified as a result of calling `setGroup`. If you want to set the + * selection value of the new group, call `set` explicitly. + * + * @param {string} group - The name of the Crosstalk group, or null (or + * undefined) to clear the group. + */ + + + _createClass(SelectionHandle, [{ + key: "setGroup", + value: function setGroup(group) { + var _this = this; + + // If group is unchanged, do nothing + if (this._group === group) return; + // Treat null, undefined, and other falsy values the same + if (!this._group && !group) return; + + if (this._var) { + this._var.off("change", this._varOnChangeSub); + this._var = null; + this._varOnChangeSub = null; + } + + this._group = group; + + if (group) { + this._var = (0, _group2.default)(group).var("selection"); + var sub = this._var.on("change", function (e) { + _this._eventRelay.trigger("change", e, _this); + }); + this._varOnChangeSub = sub; + } + } + + /** + * Retrieves the current selection for the group represented by this + * `SelectionHandle`. + * + * - If no selection is active, then this value will be falsy. + * - If a selection is active, but no data points are selected, then this + * value will be an empty array. + * - If a selection is active, and data points are selected, then the keys + * of the selected data points will be present in the array. + */ + + }, { + key: "_mergeExtraInfo", + + + /** + * Combines the given `extraInfo` (if any) with the handle's default + * `_extraInfo` (if any). + * @private + */ + value: function _mergeExtraInfo(extraInfo) { + // Important incidental effect: shallow clone is returned + return util.extend({}, this._extraInfo ? this._extraInfo : null, extraInfo ? extraInfo : null); + } + + /** + * Overwrites the current selection for the group, and raises the `"change"` + * event among all of the group's '`SelectionHandle` instances (including + * this one). + * + * @fires SelectionHandle#change + * @param {string[]} selectedKeys - Falsy, empty array, or array of keys (see + * {@link SelectionHandle#value}). + * @param {Object} [extraInfo] - Extra properties to be included on the event + * object that's passed to listeners (in addition to any options that were + * passed into the `SelectionHandle` constructor). + */ + + }, { + key: "set", + value: function set(selectedKeys, extraInfo) { + if (this._var) this._var.set(selectedKeys, this._mergeExtraInfo(extraInfo)); + } + + /** + * Overwrites the current selection for the group, and raises the `"change"` + * event among all of the group's '`SelectionHandle` instances (including + * this one). + * + * @fires SelectionHandle#change + * @param {Object} [extraInfo] - Extra properties to be included on the event + * object that's passed to listeners (in addition to any that were passed + * into the `SelectionHandle` constructor). + */ + + }, { + key: "clear", + value: function clear(extraInfo) { + if (this._var) this.set(void 0, this._mergeExtraInfo(extraInfo)); + } + + /** + * Subscribes to events on this `SelectionHandle`. + * + * @param {string} eventType - Indicates the type of events to listen to. + * Currently, only `"change"` is supported. + * @param {SelectionHandle~listener} listener - The callback function that + * will be invoked when the event occurs. + * @return {string} - A token to pass to {@link SelectionHandle#off} to cancel + * this subscription. + */ + + }, { + key: "on", + value: function on(eventType, listener) { + return this._emitter.on(eventType, listener); + } + + /** + * Cancels event subscriptions created by {@link SelectionHandle#on}. + * + * @param {string} eventType - The type of event to unsubscribe. + * @param {string|SelectionHandle~listener} listener - Either the callback + * function previously passed into {@link SelectionHandle#on}, or the + * string that was returned from {@link SelectionHandle#on}. + */ + + }, { + key: "off", + value: function off(eventType, listener) { + return this._emitter.off(eventType, listener); + } + + /** + * Shuts down the `SelectionHandle` object. + * + * Removes all event listeners that were added through this handle. + */ + + }, { + key: "close", + value: function close() { + this._emitter.removeAllListeners(); + this.setGroup(null); + } + }, { + key: "value", + get: function get() { + return this._var ? this._var.get() : null; + } + }]); + + return SelectionHandle; +}(); + +/** + * @callback SelectionHandle~listener + * @param {Object} event - An object containing details of the event. For + * `"change"` events, this includes the properties `value` (the new + * value of the selection, or `undefined` if no selection is active), + * `oldValue` (the previous value of the selection), and `sender` (the + * `SelectionHandle` instance that made the change). + */ + +/** + * @event SelectionHandle#change + * @type {object} + * @property {object} value - The new value of the selection, or `undefined` + * if no selection is active. + * @property {object} oldValue - The previous value of the selection. + * @property {SelectionHandle} sender - The `SelectionHandle` instance that + * changed the value. + */ + +},{"./events":1,"./group":4,"./util":11}],11:[function(require,module,exports){ +"use strict"; + +Object.defineProperty(exports, "__esModule", { + value: true +}); + +var _createClass = function () { function defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if ("value" in descriptor) descriptor.writable = true; Object.defineProperty(target, descriptor.key, descriptor); } } return function (Constructor, protoProps, staticProps) { if (protoProps) defineProperties(Constructor.prototype, protoProps); if (staticProps) defineProperties(Constructor, staticProps); return Constructor; }; }(); + +var _typeof = typeof Symbol === "function" && typeof Symbol.iterator === "symbol" ? function (obj) { return typeof obj; } : function (obj) { return obj && typeof Symbol === "function" && obj.constructor === Symbol && obj !== Symbol.prototype ? "symbol" : typeof obj; }; + +exports.extend = extend; +exports.checkSorted = checkSorted; +exports.diffSortedLists = diffSortedLists; +exports.dataframeToD3 = dataframeToD3; + +function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } } + +function extend(target) { + for (var _len = arguments.length, sources = Array(_len > 1 ? _len - 1 : 0), _key = 1; _key < _len; _key++) { + sources[_key - 1] = arguments[_key]; + } + + for (var i = 0; i < sources.length; i++) { + var src = sources[i]; + if (typeof src === "undefined" || src === null) continue; + + for (var key in src) { + if (src.hasOwnProperty(key)) { + target[key] = src[key]; + } + } + } + return target; +} + +function checkSorted(list) { + for (var i = 1; i < list.length; i++) { + if (list[i] <= list[i - 1]) { + throw new Error("List is not sorted or contains duplicate"); + } + } +} + +function diffSortedLists(a, b) { + var i_a = 0; + var i_b = 0; + + if (!a) a = []; + if (!b) b = []; + + var a_only = []; + var b_only = []; + + checkSorted(a); + checkSorted(b); + + while (i_a < a.length && i_b < b.length) { + if (a[i_a] === b[i_b]) { + i_a++; + i_b++; + } else if (a[i_a] < b[i_b]) { + a_only.push(a[i_a++]); + } else { + b_only.push(b[i_b++]); + } + } + + if (i_a < a.length) a_only = a_only.concat(a.slice(i_a)); + if (i_b < b.length) b_only = b_only.concat(b.slice(i_b)); + return { + removed: a_only, + added: b_only + }; +} + +// Convert from wide: { colA: [1,2,3], colB: [4,5,6], ... } +// to long: [ {colA: 1, colB: 4}, {colA: 2, colB: 5}, ... ] +function dataframeToD3(df) { + var names = []; + var length = void 0; + for (var name in df) { + if (df.hasOwnProperty(name)) names.push(name); + if (_typeof(df[name]) !== "object" || typeof df[name].length === "undefined") { + throw new Error("All fields must be arrays"); + } else if (typeof length !== "undefined" && length !== df[name].length) { + throw new Error("All fields must be arrays of the same length"); + } + length = df[name].length; + } + var results = []; + var item = void 0; + for (var row = 0; row < length; row++) { + item = {}; + for (var col = 0; col < names.length; col++) { + item[names[col]] = df[names[col]][row]; + } + results.push(item); + } + return results; +} + +/** + * Keeps track of all event listener additions/removals and lets all active + * listeners be removed with a single operation. + * + * @private + */ + +var SubscriptionTracker = exports.SubscriptionTracker = function () { + function SubscriptionTracker(emitter) { + _classCallCheck(this, SubscriptionTracker); + + this._emitter = emitter; + this._subs = {}; + } + + _createClass(SubscriptionTracker, [{ + key: "on", + value: function on(eventType, listener) { + var sub = this._emitter.on(eventType, listener); + this._subs[sub] = eventType; + return sub; + } + }, { + key: "off", + value: function off(eventType, listener) { + var sub = this._emitter.off(eventType, listener); + if (sub) { + delete this._subs[sub]; + } + return sub; + } + }, { + key: "removeAllListeners", + value: function removeAllListeners() { + var _this = this; + + var current_subs = this._subs; + this._subs = {}; + Object.keys(current_subs).forEach(function (sub) { + _this._emitter.off(current_subs[sub], sub); + }); + } + }]); + + return SubscriptionTracker; +}(); + +},{}],12:[function(require,module,exports){ +(function (global){ +"use strict"; + +Object.defineProperty(exports, "__esModule", { + value: true +}); + +var _typeof = typeof Symbol === "function" && typeof Symbol.iterator === "symbol" ? function (obj) { return typeof obj; } : function (obj) { return obj && typeof Symbol === "function" && obj.constructor === Symbol && obj !== Symbol.prototype ? "symbol" : typeof obj; }; + +var _createClass = function () { function defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if ("value" in descriptor) descriptor.writable = true; Object.defineProperty(target, descriptor.key, descriptor); } } return function (Constructor, protoProps, staticProps) { if (protoProps) defineProperties(Constructor.prototype, protoProps); if (staticProps) defineProperties(Constructor, staticProps); return Constructor; }; }(); + +var _events = require("./events"); + +var _events2 = _interopRequireDefault(_events); + +function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; } + +function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } } + +var Var = function () { + function Var(group, name, /*optional*/value) { + _classCallCheck(this, Var); + + this._group = group; + this._name = name; + this._value = value; + this._events = new _events2.default(); + } + + _createClass(Var, [{ + key: "get", + value: function get() { + return this._value; + } + }, { + key: "set", + value: function set(value, /*optional*/event) { + if (this._value === value) { + // Do nothing; the value hasn't changed + return; + } + var oldValue = this._value; + this._value = value; + // Alert JavaScript listeners that the value has changed + var evt = {}; + if (event && (typeof event === "undefined" ? "undefined" : _typeof(event)) === "object") { + for (var k in event) { + if (event.hasOwnProperty(k)) evt[k] = event[k]; + } + } + evt.oldValue = oldValue; + evt.value = value; + this._events.trigger("change", evt, this); + + // TODO: Make this extensible, to let arbitrary back-ends know that + // something has changed + if (global.Shiny && global.Shiny.onInputChange) { + global.Shiny.onInputChange(".clientValue-" + (this._group.name !== null ? this._group.name + "-" : "") + this._name, typeof value === "undefined" ? null : value); + } + } + }, { + key: "on", + value: function on(eventType, listener) { + return this._events.on(eventType, listener); + } + }, { + key: "off", + value: function off(eventType, listener) { + return this._events.off(eventType, listener); + } + }]); + + return Var; +}(); + +exports.default = Var; + +}).call(this,typeof global !== "undefined" ? global : typeof self !== "undefined" ? self : typeof window !== "undefined" ? window : {}) + +},{"./events":1}]},{},[5]) +//# sourceMappingURL=crosstalk.js.map diff --git a/articles/Time_to_event_analysis_files/crosstalk-1.2.1/js/crosstalk.js.map b/articles/Time_to_event_analysis_files/crosstalk-1.2.1/js/crosstalk.js.map new file mode 100644 index 00000000..cff94f08 --- /dev/null +++ b/articles/Time_to_event_analysis_files/crosstalk-1.2.1/js/crosstalk.js.map @@ -0,0 +1,37 @@ +{ + "version": 3, + "sources": [ + "node_modules/browser-pack/_prelude.js", + "javascript/src/events.js", + "javascript/src/filter.js", + "javascript/src/filterset.js", + "javascript/src/group.js", + "javascript/src/index.js", + "javascript/src/input.js", + "javascript/src/input_checkboxgroup.js", + "javascript/src/input_selectize.js", + "javascript/src/input_slider.js", + "javascript/src/selection.js", + "javascript/src/util.js", + "javascript/src/var.js" + ], + "names": [], + "mappings": "AAAA;;;;;;;;;;;ICAqB,M;AACnB,oBAAc;AAAA;;AACZ,SAAK,MAAL,GAAc,EAAd;AACA,SAAK,IAAL,GAAY,CAAZ;AACD;;;;uBAEE,S,EAAW,Q,EAAU;AACtB,UAAI,OAAO,KAAK,MAAL,CAAY,SAAZ,CAAX;AACA,UAAI,CAAC,IAAL,EAAW;AACT,eAAO,KAAK,MAAL,CAAY,SAAZ,IAAyB,EAAhC;AACD;AACD,UAAI,MAAM,QAAS,KAAK,IAAL,EAAnB;AACA,WAAK,GAAL,IAAY,QAAZ;AACA,aAAO,GAAP;AACD;;AAED;;;;wBACI,S,EAAW,Q,EAAU;AACvB,UAAI,OAAO,KAAK,MAAL,CAAY,SAAZ,CAAX;AACA,UAAI,OAAO,QAAP,KAAqB,UAAzB,EAAqC;AACnC,aAAK,IAAI,GAAT,IAAgB,IAAhB,EAAsB;AACpB,cAAI,KAAK,cAAL,CAAoB,GAApB,CAAJ,EAA8B;AAC5B,gBAAI,KAAK,GAAL,MAAc,QAAlB,EAA4B;AAC1B,qBAAO,KAAK,GAAL,CAAP;AACA,qBAAO,GAAP;AACD;AACF;AACF;AACD,eAAO,KAAP;AACD,OAVD,MAUO,IAAI,OAAO,QAAP,KAAqB,QAAzB,EAAmC;AACxC,YAAI,QAAQ,KAAK,QAAL,CAAZ,EAA4B;AAC1B,iBAAO,KAAK,QAAL,CAAP;AACA,iBAAO,QAAP;AACD;AACD,eAAO,KAAP;AACD,OANM,MAMA;AACL,cAAM,IAAI,KAAJ,CAAU,8BAAV,CAAN;AACD;AACF;;;4BAEO,S,EAAW,G,EAAK,O,EAAS;AAC/B,UAAI,OAAO,KAAK,MAAL,CAAY,SAAZ,CAAX;AACA,WAAK,IAAI,GAAT,IAAgB,IAAhB,EAAsB;AACpB,YAAI,KAAK,cAAL,CAAoB,GAApB,CAAJ,EAA8B;AAC5B,eAAK,GAAL,EAAU,IAAV,CAAe,OAAf,EAAwB,GAAxB;AACD;AACF;AACF;;;;;;kBA/CkB,M;;;;;;;;;;;;ACArB;;;;AACA;;;;AACA;;;;AACA;;IAAY,I;;;;;;;;AAEZ,SAAS,YAAT,CAAsB,KAAtB,EAA6B;AAC3B,MAAI,QAAQ,MAAM,GAAN,CAAU,WAAV,CAAZ;AACA,MAAI,SAAS,MAAM,GAAN,EAAb;AACA,MAAI,CAAC,MAAL,EAAa;AACX,aAAS,yBAAT;AACA,UAAM,GAAN,CAAU,MAAV;AACD;AACD,SAAO,MAAP;AACD;;AAED,IAAI,KAAK,CAAT;AACA,SAAS,MAAT,GAAkB;AAChB,SAAO,IAAP;AACD;;AAED;;;;;;;;;;;;;;;;;;;;;;;;;IAwBa,Y,WAAA,Y;AACX,wBAAY,KAAZ,EAAmB,SAAnB,EAA8B;AAAA;;AAC5B,SAAK,WAAL,GAAmB,sBAAnB;AACA,SAAK,QAAL,GAAgB,IAAI,KAAK,mBAAT,CAA6B,KAAK,WAAlC,CAAhB;;AAEA;AACA,SAAK,MAAL,GAAc,IAAd;AACA;AACA,SAAK,UAAL,GAAkB,IAAlB;AACA;AACA,SAAK,UAAL,GAAkB,IAAlB;AACA;AACA,SAAK,eAAL,GAAuB,IAAvB;;AAEA,SAAK,UAAL,GAAkB,KAAK,MAAL,CAAY,EAAE,QAAQ,IAAV,EAAZ,EAA8B,SAA9B,CAAlB;;AAEA,SAAK,GAAL,GAAW,WAAW,QAAtB;;AAEA,SAAK,QAAL,CAAc,KAAd;AACD;;AAED;;;;;;;;;;;;;;6BAUS,K,EAAO;AAAA;;AACd;AACA,UAAI,KAAK,MAAL,KAAgB,KAApB,EACE;AACF;AACA,UAAI,CAAC,KAAK,MAAN,IAAgB,CAAC,KAArB,EACE;;AAEF,UAAI,KAAK,UAAT,EAAqB;AACnB,aAAK,UAAL,CAAgB,GAAhB,CAAoB,QAApB,EAA8B,KAAK,eAAnC;AACA,aAAK,KAAL;AACA,aAAK,eAAL,GAAuB,IAAvB;AACA,aAAK,UAAL,GAAkB,IAAlB;AACA,aAAK,UAAL,GAAkB,IAAlB;AACD;;AAED,WAAK,MAAL,GAAc,KAAd;;AAEA,UAAI,KAAJ,EAAW;AACT,gBAAQ,qBAAI,KAAJ,CAAR;AACA,aAAK,UAAL,GAAkB,aAAa,KAAb,CAAlB;AACA,aAAK,UAAL,GAAkB,qBAAI,KAAJ,EAAW,GAAX,CAAe,QAAf,CAAlB;AACA,YAAI,MAAM,KAAK,UAAL,CAAgB,EAAhB,CAAmB,QAAnB,EAA6B,UAAC,CAAD,EAAO;AAC5C,gBAAK,WAAL,CAAiB,OAAjB,CAAyB,QAAzB,EAAmC,CAAnC;AACD,SAFS,CAAV;AAGA,aAAK,eAAL,GAAuB,GAAvB;AACD;AACF;;AAED;;;;;;;;oCAKgB,S,EAAW;AACzB,aAAO,KAAK,MAAL,CAAY,EAAZ,EACL,KAAK,UAAL,GAAkB,KAAK,UAAvB,GAAoC,IAD/B,EAEL,YAAY,SAAZ,GAAwB,IAFnB,CAAP;AAGD;;AAED;;;;;;;4BAIQ;AACN,WAAK,QAAL,CAAc,kBAAd;AACA,WAAK,KAAL;AACA,WAAK,QAAL,CAAc,IAAd;AACD;;AAED;;;;;;;;;;;;0BASM,S,EAAW;AACf,UAAI,CAAC,KAAK,UAAV,EACE;AACF,WAAK,UAAL,CAAgB,KAAhB,CAAsB,KAAK,GAA3B;AACA,WAAK,SAAL,CAAe,SAAf;AACD;;AAED;;;;;;;;;;;;;;;;;;;;wBAiBI,I,EAAM,S,EAAW;AACnB,UAAI,CAAC,KAAK,UAAV,EACE;AACF,WAAK,UAAL,CAAgB,MAAhB,CAAuB,KAAK,GAA5B,EAAiC,IAAjC;AACA,WAAK,SAAL,CAAe,SAAf;AACD;;AAED;;;;;;;;;;AASA;;;;;;;;;;uBAUG,S,EAAW,Q,EAAU;AACtB,aAAO,KAAK,QAAL,CAAc,EAAd,CAAiB,SAAjB,EAA4B,QAA5B,CAAP;AACD;;AAED;;;;;;;;;;;wBAQI,S,EAAW,Q,EAAU;AACvB,aAAO,KAAK,QAAL,CAAc,GAAd,CAAkB,SAAlB,EAA6B,QAA7B,CAAP;AACD;;;8BAES,S,EAAW;AACnB,UAAI,CAAC,KAAK,UAAV,EACE;AACF,WAAK,UAAL,CAAgB,GAAhB,CAAoB,KAAK,UAAL,CAAgB,KAApC,EAA2C,KAAK,eAAL,CAAqB,SAArB,CAA3C;AACD;;AAED;;;;;;;;;;;wBApCmB;AACjB,aAAO,KAAK,UAAL,GAAkB,KAAK,UAAL,CAAgB,KAAlC,GAA0C,IAAjD;AACD;;;;;;AA6CH;;;;;;;;;;;;;;;;;;;ACzNA;;;;AAEA,SAAS,iBAAT,CAA2B,CAA3B,EAA8B,CAA9B,EAAiC;AAC/B,MAAI,MAAM,CAAV,EAAa;AACX,WAAO,CAAP;AACD,GAFD,MAEO,IAAI,IAAI,CAAR,EAAW;AAChB,WAAO,CAAC,CAAR;AACD,GAFM,MAEA,IAAI,IAAI,CAAR,EAAW;AAChB,WAAO,CAAP;AACD;AACF;;AAED;;;;IAGqB,S;AACnB,uBAAc;AAAA;;AACZ,SAAK,KAAL;AACD;;;;4BAEO;AACN;AACA,WAAK,QAAL,GAAgB,EAAhB;AACA;AACA,WAAK,KAAL,GAAa,EAAb;AACA,WAAK,MAAL,GAAc,IAAd;AACA,WAAK,cAAL,GAAsB,CAAtB;AACD;;;2BAMM,Q,EAAU,I,EAAM;AACrB,UAAI,SAAS,IAAb,EAAmB;AACjB,eAAO,KAAK,KAAL,CAAW,CAAX,CAAP,CADiB,CACK;AACtB,aAAK,IAAL,CAAU,iBAAV;AACD;;AAJoB,6BAME,2BAAgB,KAAK,QAAL,CAAc,QAAd,CAAhB,EAAyC,IAAzC,CANF;AAAA,UAMhB,KANgB,oBAMhB,KANgB;AAAA,UAMT,OANS,oBAMT,OANS;;AAOrB,WAAK,QAAL,CAAc,QAAd,IAA0B,IAA1B;;AAEA,WAAK,IAAI,IAAI,CAAb,EAAgB,IAAI,MAAM,MAA1B,EAAkC,GAAlC,EAAuC;AACrC,aAAK,KAAL,CAAW,MAAM,CAAN,CAAX,IAAuB,CAAC,KAAK,KAAL,CAAW,MAAM,CAAN,CAAX,KAAwB,CAAzB,IAA8B,CAArD;AACD;AACD,WAAK,IAAI,KAAI,CAAb,EAAgB,KAAI,QAAQ,MAA5B,EAAoC,IAApC,EAAyC;AACvC,aAAK,KAAL,CAAW,QAAQ,EAAR,CAAX;AACD;;AAED,WAAK,YAAL,CAAkB,IAAlB;AACD;;AAED;;;;;;;;mCAKmC;AAAA,UAAtB,IAAsB,uEAAf,KAAK,QAAU;;AACjC,UAAI,cAAc,OAAO,IAAP,CAAY,KAAK,QAAjB,EAA2B,MAA7C;AACA,UAAI,gBAAgB,CAApB,EAAuB;AACrB,aAAK,MAAL,GAAc,IAAd;AACD,OAFD,MAEO;AACL,aAAK,MAAL,GAAc,EAAd;AACA,aAAK,IAAI,IAAI,CAAb,EAAgB,IAAI,KAAK,MAAzB,EAAiC,GAAjC,EAAsC;AACpC,cAAI,QAAQ,KAAK,KAAL,CAAW,KAAK,CAAL,CAAX,CAAZ;AACA,cAAI,UAAU,WAAd,EAA2B;AACzB,iBAAK,MAAL,CAAY,IAAZ,CAAiB,KAAK,CAAL,CAAjB;AACD;AACF;AACF;AACF;;;0BAEK,Q,EAAU;AACd,UAAI,OAAO,KAAK,QAAL,CAAc,QAAd,CAAP,KAAoC,WAAxC,EAAqD;AACnD;AACD;;AAED,UAAI,OAAO,KAAK,QAAL,CAAc,QAAd,CAAX;AACA,UAAI,CAAC,IAAL,EAAW;AACT,eAAO,EAAP;AACD;;AAED,WAAK,IAAI,IAAI,CAAb,EAAgB,IAAI,KAAK,MAAzB,EAAiC,GAAjC,EAAsC;AACpC,aAAK,KAAL,CAAW,KAAK,CAAL,CAAX;AACD;AACD,aAAO,KAAK,QAAL,CAAc,QAAd,CAAP;;AAEA,WAAK,YAAL;AACD;;;wBA3DW;AACV,aAAO,KAAK,MAAZ;AACD;;;wBA2Dc;AACb,UAAI,UAAU,OAAO,IAAP,CAAY,KAAK,KAAjB,CAAd;AACA,cAAQ,IAAR,CAAa,iBAAb;AACA,aAAO,OAAP;AACD;;;;;;kBA/EkB,S;;;;;;;;;;;;;;kBCRG,K;;AAPxB;;;;;;;;AAEA;AACA;AACA,OAAO,kBAAP,GAA4B,OAAO,kBAAP,IAA6B,EAAzD;AACA,IAAI,SAAS,OAAO,kBAApB;;AAEe,SAAS,KAAT,CAAe,SAAf,EAA0B;AACvC,MAAI,aAAa,OAAO,SAAP,KAAsB,QAAvC,EAAiD;AAC/C,QAAI,CAAC,OAAO,cAAP,CAAsB,SAAtB,CAAL,EAAuC;AACrC,aAAO,SAAP,IAAoB,IAAI,KAAJ,CAAU,SAAV,CAApB;AACD;AACD,WAAO,OAAO,SAAP,CAAP;AACD,GALD,MAKO,IAAI,QAAO,SAAP,yCAAO,SAAP,OAAsB,QAAtB,IAAkC,UAAU,KAA5C,IAAqD,UAAU,GAAnE,EAAwE;AAC7E;AACA,WAAO,SAAP;AACD,GAHM,MAGA,IAAI,MAAM,OAAN,CAAc,SAAd,KACP,UAAU,MAAV,IAAoB,CADb,IAEP,OAAO,UAAU,CAAV,CAAP,KAAyB,QAFtB,EAEgC;AACrC,WAAO,MAAM,UAAU,CAAV,CAAN,CAAP;AACD,GAJM,MAIA;AACL,UAAM,IAAI,KAAJ,CAAU,4BAAV,CAAN;AACD;AACF;;IAEK,K;AACJ,iBAAY,IAAZ,EAAkB;AAAA;;AAChB,SAAK,IAAL,GAAY,IAAZ;AACA,SAAK,KAAL,GAAa,EAAb;AACD;;;;yBAEG,I,EAAM;AACR,UAAI,CAAC,IAAD,IAAS,OAAO,IAAP,KAAiB,QAA9B,EAAwC;AACtC,cAAM,IAAI,KAAJ,CAAU,kBAAV,CAAN;AACD;;AAED,UAAI,CAAC,KAAK,KAAL,CAAW,cAAX,CAA0B,IAA1B,CAAL,EACE,KAAK,KAAL,CAAW,IAAX,IAAmB,kBAAQ,IAAR,EAAc,IAAd,CAAnB;AACF,aAAO,KAAK,KAAL,CAAW,IAAX,CAAP;AACD;;;wBAEG,I,EAAM;AACR,UAAI,CAAC,IAAD,IAAS,OAAO,IAAP,KAAiB,QAA9B,EAAwC;AACtC,cAAM,IAAI,KAAJ,CAAU,kBAAV,CAAN;AACD;;AAED,aAAO,KAAK,KAAL,CAAW,cAAX,CAA0B,IAA1B,CAAP;AACD;;;;;;;;;;;;;;;;AC/CH;;;;AACA;;AACA;;AACA;;AACA;;AACA;;AACA;;;;AAEA,IAAM,eAAe,qBAAM,SAAN,CAArB;;AAEA,SAAS,IAAT,CAAc,IAAd,EAAoB;AAClB,SAAO,aAAa,GAAb,CAAiB,IAAjB,CAAP;AACD;;AAED,SAAS,GAAT,CAAa,IAAb,EAAmB;AACjB,SAAO,aAAa,GAAb,CAAiB,IAAjB,CAAP;AACD;;AAED,IAAI,OAAO,KAAX,EAAkB;AAChB,SAAO,KAAP,CAAa,uBAAb,CAAqC,qBAArC,EAA4D,UAAS,OAAT,EAAkB;AAC5E,QAAI,OAAO,QAAQ,KAAf,KAA0B,QAA9B,EAAwC;AACtC,2BAAM,QAAQ,KAAd,EAAqB,GAArB,CAAyB,QAAQ,IAAjC,EAAuC,GAAvC,CAA2C,QAAQ,KAAnD;AACD,KAFD,MAEO;AACL,WAAK,QAAQ,IAAb,EAAmB,GAAnB,CAAuB,QAAQ,KAA/B;AACD;AACF,GAND;AAOD;;AAED,IAAM,YAAY;AAChB,wBADgB;AAEhB,OAAK,IAFW;AAGhB,OAAK,GAHW;AAIhB,6CAJgB;AAKhB,oCALgB;AAMhB;AANgB,CAAlB;;AASA;;;kBAGe,S;;AACf,OAAO,SAAP,GAAmB,SAAnB;;;;;;;;;;;QCrCgB,Q,GAAA,Q;QAWA,I,GAAA,I;AAfhB,IAAI,IAAI,OAAO,MAAf;;AAEA,IAAI,WAAW,EAAf;;AAEO,SAAS,QAAT,CAAkB,GAAlB,EAAuB;AAC5B,WAAS,IAAI,SAAb,IAA0B,GAA1B;AACA,MAAI,OAAO,QAAP,IAAmB,OAAO,QAAP,CAAgB,UAAhB,KAA+B,UAAtD,EAAkE;AAChE,MAAE,YAAM;AACN;AACD,KAFD;AAGD,GAJD,MAIO,IAAI,OAAO,QAAX,EAAqB;AAC1B,eAAW,IAAX,EAAiB,GAAjB;AACD;AACF;;AAEM,SAAS,IAAT,GAAgB;AACrB,SAAO,IAAP,CAAY,QAAZ,EAAsB,OAAtB,CAA8B,UAAS,SAAT,EAAoB;AAChD,QAAI,UAAU,SAAS,SAAT,CAAd;AACA,MAAE,MAAM,QAAQ,SAAhB,EAA2B,GAA3B,CAA+B,wBAA/B,EAAyD,IAAzD,CAA8D,UAAS,CAAT,EAAY,EAAZ,EAAgB;AAC5E,mBAAa,OAAb,EAAsB,EAAtB;AACD,KAFD;AAGD,GALD;AAMD;;AAED;AACA,SAAS,OAAT,CAAiB,GAAjB,EAAsB;AACpB,SAAO,IAAI,OAAJ,CAAY,uCAAZ,EAAqD,MAArD,CAAP;AACD;;AAED,SAAS,MAAT,CAAgB,EAAhB,EAAoB;AAClB,MAAI,MAAM,EAAE,EAAF,CAAV;AACA,SAAO,IAAP,CAAY,QAAZ,EAAsB,OAAtB,CAA8B,UAAS,SAAT,EAAoB;AAChD,QAAI,IAAI,QAAJ,CAAa,SAAb,KAA2B,CAAC,IAAI,QAAJ,CAAa,uBAAb,CAAhC,EAAuE;AACrE,UAAI,UAAU,SAAS,SAAT,CAAd;AACA,mBAAa,OAAb,EAAsB,EAAtB;AACD;AACF,GALD;AAMD;;AAED,SAAS,YAAT,CAAsB,OAAtB,EAA+B,EAA/B,EAAmC;AACjC,MAAI,SAAS,EAAE,EAAF,EAAM,IAAN,CAAW,+CAA+C,QAAQ,GAAG,EAAX,CAA/C,GAAgE,IAA3E,CAAb;AACA,MAAI,OAAO,KAAK,KAAL,CAAW,OAAO,CAAP,EAAU,SAArB,CAAX;;AAEA,MAAI,WAAW,QAAQ,OAAR,CAAgB,EAAhB,EAAoB,IAApB,CAAf;AACA,IAAE,EAAF,EAAM,IAAN,CAAW,oBAAX,EAAiC,QAAjC;AACA,IAAE,EAAF,EAAM,QAAN,CAAe,uBAAf;AACD;;AAED,IAAI,OAAO,KAAX,EAAkB;AAChB,MAAI,eAAe,IAAI,OAAO,KAAP,CAAa,YAAjB,EAAnB;AACA,MAAI,KAAI,OAAO,MAAf;AACA,KAAE,MAAF,CAAS,YAAT,EAAuB;AACrB,UAAM,cAAS,KAAT,EAAgB;AACpB,aAAO,GAAE,KAAF,EAAS,IAAT,CAAc,kBAAd,CAAP;AACD,KAHoB;AAIrB,gBAAY,oBAAS,EAAT,EAAa;AACvB,UAAI,CAAC,GAAE,EAAF,EAAM,QAAN,CAAe,uBAAf,CAAL,EAA8C;AAC5C,eAAO,EAAP;AACD;AACF,KARoB;AASrB,WAAO,eAAS,EAAT,EAAa;AAClB,aAAO,GAAG,EAAV;AACD,KAXoB;AAYrB,cAAU,kBAAS,EAAT,EAAa,CAEtB,CAdoB;AAerB,cAAU,kBAAS,EAAT,EAAa,KAAb,EAAoB,CAE7B,CAjBoB;AAkBrB,oBAAgB,wBAAS,EAAT,EAAa,IAAb,EAAmB,CAElC,CApBoB;AAqBrB,eAAW,mBAAS,EAAT,EAAa,QAAb,EAAuB;AAChC,SAAE,EAAF,EAAM,IAAN,CAAW,oBAAX,EAAiC,MAAjC;AACD,KAvBoB;AAwBrB,iBAAa,qBAAS,EAAT,EAAa;AACxB,SAAE,EAAF,EAAM,IAAN,CAAW,oBAAX,EAAiC,OAAjC;AACD;AA1BoB,GAAvB;AA4BA,SAAO,KAAP,CAAa,aAAb,CAA2B,QAA3B,CAAoC,YAApC,EAAkD,wBAAlD;AACD;;;;;;;;AChFD;;IAAY,K;;AACZ;;;;AAEA,IAAI,IAAI,OAAO,MAAf;;AAEA,MAAM,QAAN,CAAe;AACb,aAAW,+BADE;;AAGb,WAAS,iBAAS,EAAT,EAAa,IAAb,EAAmB;AAC1B;;;;AAIA,QAAI,WAAW,yBAAiB,KAAK,KAAtB,CAAf;;AAEA,QAAI,sBAAJ;AACA,QAAI,MAAM,EAAE,EAAF,CAAV;AACA,QAAI,EAAJ,CAAO,QAAP,EAAiB,wBAAjB,EAA2C,YAAW;AACpD,UAAI,UAAU,IAAI,IAAJ,CAAS,gCAAT,CAAd;AACA,UAAI,QAAQ,MAAR,KAAmB,CAAvB,EAA0B;AACxB,wBAAgB,IAAhB;AACA,iBAAS,KAAT;AACD,OAHD,MAGO;AACL,YAAI,OAAO,EAAX;AACA,gBAAQ,IAAR,CAAa,YAAW;AACtB,eAAK,GAAL,CAAS,KAAK,KAAd,EAAqB,OAArB,CAA6B,UAAS,GAAT,EAAc;AACzC,iBAAK,GAAL,IAAY,IAAZ;AACD,WAFD;AAGD,SAJD;AAKA,YAAI,WAAW,OAAO,IAAP,CAAY,IAAZ,CAAf;AACA,iBAAS,IAAT;AACA,wBAAgB,QAAhB;AACA,iBAAS,GAAT,CAAa,QAAb;AACD;AACF,KAjBD;;AAmBA,WAAO;AACL,eAAS,mBAAW;AAClB,iBAAS,KAAT;AACD,OAHI;AAIL,cAAQ,kBAAW;AACjB,YAAI,aAAJ,EACE,SAAS,GAAT,CAAa,aAAb;AACH;AAPI,KAAP;AASD;AAxCY,CAAf;;;;;;;;ACLA;;IAAY,K;;AACZ;;IAAY,I;;AACZ;;;;AAEA,IAAI,IAAI,OAAO,MAAf;;AAEA,MAAM,QAAN,CAAe;AACb,aAAW,wBADE;;AAGb,WAAS,iBAAS,EAAT,EAAa,IAAb,EAAmB;AAC1B;;;;;;AAMA,QAAI,QAAQ,CAAC,EAAC,OAAO,EAAR,EAAY,OAAO,OAAnB,EAAD,CAAZ;AACA,QAAI,QAAQ,KAAK,aAAL,CAAmB,KAAK,KAAxB,CAAZ;AACA,QAAI,OAAO;AACT,eAAS,MAAM,MAAN,CAAa,KAAb,CADA;AAET,kBAAY,OAFH;AAGT,kBAAY,OAHH;AAIT,mBAAa;AAJJ,KAAX;;AAOA,QAAI,SAAS,EAAE,EAAF,EAAM,IAAN,CAAW,QAAX,EAAqB,CAArB,CAAb;;AAEA,QAAI,YAAY,EAAE,MAAF,EAAU,SAAV,CAAoB,IAApB,EAA0B,CAA1B,EAA6B,SAA7C;;AAEA,QAAI,WAAW,yBAAiB,KAAK,KAAtB,CAAf;;AAEA,QAAI,sBAAJ;AACA,cAAU,EAAV,CAAa,QAAb,EAAuB,YAAW;AAChC,UAAI,UAAU,KAAV,CAAgB,MAAhB,KAA2B,CAA/B,EAAkC;AAChC,wBAAgB,IAAhB;AACA,iBAAS,KAAT;AACD,OAHD,MAGO;AACL,YAAI,OAAO,EAAX;AACA,kBAAU,KAAV,CAAgB,OAAhB,CAAwB,UAAS,KAAT,EAAgB;AACtC,eAAK,GAAL,CAAS,KAAT,EAAgB,OAAhB,CAAwB,UAAS,GAAT,EAAc;AACpC,iBAAK,GAAL,IAAY,IAAZ;AACD,WAFD;AAGD,SAJD;AAKA,YAAI,WAAW,OAAO,IAAP,CAAY,IAAZ,CAAf;AACA,iBAAS,IAAT;AACA,wBAAgB,QAAhB;AACA,iBAAS,GAAT,CAAa,QAAb;AACD;AACF,KAhBD;;AAkBA,WAAO;AACL,eAAS,mBAAW;AAClB,iBAAS,KAAT;AACD,OAHI;AAIL,cAAQ,kBAAW;AACjB,YAAI,aAAJ,EACE,SAAS,GAAT,CAAa,aAAb;AACH;AAPI,KAAP;AASD;AArDY,CAAf;;;;;;;;;;ACNA;;IAAY,K;;AACZ;;;;AAEA,IAAI,IAAI,OAAO,MAAf;AACA,IAAI,WAAW,OAAO,QAAtB;;AAEA,MAAM,QAAN,CAAe;AACb,aAAW,wBADE;;AAGb,WAAS,iBAAS,EAAT,EAAa,IAAb,EAAmB;AAC1B;;;;AAIA,QAAI,WAAW,yBAAiB,KAAK,KAAtB,CAAf;;AAEA,QAAI,OAAO,EAAX;AACA,QAAI,MAAM,EAAE,EAAF,EAAM,IAAN,CAAW,OAAX,CAAV;AACA,QAAI,WAAW,IAAI,IAAJ,CAAS,WAAT,CAAf;AACA,QAAI,aAAa,IAAI,IAAJ,CAAS,aAAT,CAAjB;AACA,QAAI,QAAQ,IAAI,IAAJ,CAAS,OAAT,CAAZ;AACA,QAAI,sBAAJ;;AAEA;AACA,QAAI,aAAa,MAAjB,EAAyB;AACvB,sBAAgB,SAAS,GAAT,EAAhB;AACA,WAAK,QAAL,GAAgB,UAAS,GAAT,EAAc;AAC5B,eAAO,cAAc,UAAd,EAA0B,IAAI,IAAJ,CAAS,GAAT,CAA1B,CAAP;AACD,OAFD;AAID,KAND,MAMO,IAAI,aAAa,UAAjB,EAA6B;AAClC,UAAI,WAAW,IAAI,IAAJ,CAAS,UAAT,CAAf;AACA,UAAI,QAAJ,EACE,gBAAgB,SAAS,QAAT,CAAkB,QAAlB,CAAhB,CADF,KAGE,gBAAgB,QAAhB;;AAEF,WAAK,QAAL,GAAgB,UAAS,GAAT,EAAc;AAC5B,eAAO,cAAc,UAAd,EAA0B,IAAI,IAAJ,CAAS,GAAT,CAA1B,CAAP;AACD,OAFD;AAGD,KAVM,MAUA,IAAI,aAAa,QAAjB,EAA2B;AAChC,UAAI,OAAO,KAAP,KAAiB,WAArB,EACE,KAAK,QAAL,GAAgB,UAAS,GAAT,EAAc;AAC5B,YAAI,SAAS,KAAK,GAAL,CAAS,EAAT,EAAa,KAAb,CAAb;AACA,eAAO,KAAK,KAAL,CAAW,MAAM,MAAjB,IAA2B,MAAlC;AACD,OAHD;AAIH;;AAED,QAAI,cAAJ,CAAmB,IAAnB;;AAEA,aAAS,QAAT,GAAoB;AAClB,UAAI,SAAS,IAAI,IAAJ,CAAS,gBAAT,EAA2B,MAAxC;;AAEA;AACA,UAAI,gBAAJ;AACA,UAAI,WAAW,IAAI,IAAJ,CAAS,WAAT,CAAf;AACA,UAAI,aAAa,MAAjB,EAAyB;AACvB,kBAAU,iBAAS,GAAT,EAAc;AACtB,iBAAO,cAAc,IAAI,IAAJ,CAAS,CAAC,GAAV,CAAd,CAAP;AACD,SAFD;AAGD,OAJD,MAIO,IAAI,aAAa,UAAjB,EAA6B;AAClC,kBAAU,iBAAS,GAAT,EAAc;AACtB;AACA,iBAAO,CAAC,GAAD,GAAO,IAAd;AACD,SAHD;AAID,OALM,MAKA;AACL,kBAAU,iBAAS,GAAT,EAAc;AAAE,iBAAO,CAAC,GAAR;AAAc,SAAxC;AACD;;AAED,UAAI,IAAI,IAAJ,CAAS,gBAAT,EAA2B,OAA3B,CAAmC,IAAnC,KAA4C,QAAhD,EAA0D;AACxD,eAAO,CAAC,QAAQ,OAAO,IAAf,CAAD,EAAuB,QAAQ,OAAO,EAAf,CAAvB,CAAP;AACD,OAFD,MAEO;AACL,eAAO,QAAQ,OAAO,IAAf,CAAP;AACD;AACF;;AAED,QAAI,gBAAgB,IAApB;;AAEA,QAAI,EAAJ,CAAO,6BAAP,EAAsC,UAAS,KAAT,EAAgB;AACpD,UAAI,CAAC,IAAI,IAAJ,CAAS,UAAT,CAAD,IAAyB,CAAC,IAAI,IAAJ,CAAS,WAAT,CAA9B,EAAqD;AAAA,wBAClC,UADkC;AAAA;AAAA,YAC9C,IAD8C;AAAA,YACxC,EADwC;;AAEnD,YAAI,OAAO,EAAX;AACA,aAAK,IAAI,IAAI,CAAb,EAAgB,IAAI,KAAK,MAAL,CAAY,MAAhC,EAAwC,GAAxC,EAA6C;AAC3C,cAAI,MAAM,KAAK,MAAL,CAAY,CAAZ,CAAV;AACA,cAAI,OAAO,IAAP,IAAe,OAAO,EAA1B,EAA8B;AAC5B,iBAAK,IAAL,CAAU,KAAK,IAAL,CAAU,CAAV,CAAV;AACD;AACF;AACD,aAAK,IAAL;AACA,iBAAS,GAAT,CAAa,IAAb;AACA,wBAAgB,IAAhB;AACD;AACF,KAdD;;AAiBA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;AAEA,WAAO;AACL,eAAS,mBAAW;AAClB,iBAAS,KAAT;AACD,OAHI;AAIL,cAAQ,kBAAW;AACjB,YAAI,aAAJ,EACE,SAAS,GAAT,CAAa,aAAb;AACH;AAPI,KAAP;AASD;AApHY,CAAf;;AAwHA;AACA,SAAS,QAAT,CAAkB,CAAlB,EAAqB,MAArB,EAA6B;AAC3B,MAAI,MAAM,EAAE,QAAF,EAAV;AACA,SAAO,IAAI,MAAJ,GAAa,MAApB;AACE,UAAM,MAAM,GAAZ;AADF,GAEA,OAAO,GAAP;AACD;;AAED;AACA;AACA,SAAS,aAAT,CAAuB,IAAvB,EAA6B;AAC3B,MAAI,gBAAgB,IAApB,EAA0B;AACxB,WAAO,KAAK,cAAL,KAAwB,GAAxB,GACA,SAAS,KAAK,WAAL,KAAmB,CAA5B,EAA+B,CAA/B,CADA,GACoC,GADpC,GAEA,SAAS,KAAK,UAAL,EAAT,EAA4B,CAA5B,CAFP;AAID,GALD,MAKO;AACL,WAAO,IAAP;AACD;AACF;;;;;;;;;;;;;;ACjJD;;;;AACA;;;;AACA;;IAAY,I;;;;;;;;AAEZ;;;;;;;;;;;;;;;;IAgBa,e,WAAA,e;AAEX,6BAA4C;AAAA,QAAhC,KAAgC,uEAAxB,IAAwB;AAAA,QAAlB,SAAkB,uEAAN,IAAM;;AAAA;;AAC1C,SAAK,WAAL,GAAmB,sBAAnB;AACA,SAAK,QAAL,GAAgB,IAAI,KAAK,mBAAT,CAA6B,KAAK,WAAlC,CAAhB;;AAEA;AACA,SAAK,MAAL,GAAc,IAAd;AACA;AACA,SAAK,IAAL,GAAY,IAAZ;AACA;AACA,SAAK,eAAL,GAAuB,IAAvB;;AAEA,SAAK,UAAL,GAAkB,KAAK,MAAL,CAAY,EAAE,QAAQ,IAAV,EAAZ,EAA8B,SAA9B,CAAlB;;AAEA,SAAK,QAAL,CAAc,KAAd;AACD;;AAED;;;;;;;;;;;;;;;;;6BAaS,K,EAAO;AAAA;;AACd;AACA,UAAI,KAAK,MAAL,KAAgB,KAApB,EACE;AACF;AACA,UAAI,CAAC,KAAK,MAAN,IAAgB,CAAC,KAArB,EACE;;AAEF,UAAI,KAAK,IAAT,EAAe;AACb,aAAK,IAAL,CAAU,GAAV,CAAc,QAAd,EAAwB,KAAK,eAA7B;AACA,aAAK,IAAL,GAAY,IAAZ;AACA,aAAK,eAAL,GAAuB,IAAvB;AACD;;AAED,WAAK,MAAL,GAAc,KAAd;;AAEA,UAAI,KAAJ,EAAW;AACT,aAAK,IAAL,GAAY,qBAAI,KAAJ,EAAW,GAAX,CAAe,WAAf,CAAZ;AACA,YAAI,MAAM,KAAK,IAAL,CAAU,EAAV,CAAa,QAAb,EAAuB,UAAC,CAAD,EAAO;AACtC,gBAAK,WAAL,CAAiB,OAAjB,CAAyB,QAAzB,EAAmC,CAAnC;AACD,SAFS,CAAV;AAGA,aAAK,eAAL,GAAuB,GAAvB;AACD;AACF;;AAED;;;;;;;;;;;;;;;AAcA;;;;;oCAKgB,S,EAAW;AACzB;AACA,aAAO,KAAK,MAAL,CAAY,EAAZ,EACL,KAAK,UAAL,GAAkB,KAAK,UAAvB,GAAoC,IAD/B,EAEL,YAAY,SAAZ,GAAwB,IAFnB,CAAP;AAGD;;AAED;;;;;;;;;;;;;;;wBAYI,Y,EAAc,S,EAAW;AAC3B,UAAI,KAAK,IAAT,EACE,KAAK,IAAL,CAAU,GAAV,CAAc,YAAd,EAA4B,KAAK,eAAL,CAAqB,SAArB,CAA5B;AACH;;AAED;;;;;;;;;;;;;0BAUM,S,EAAW;AACf,UAAI,KAAK,IAAT,EACE,KAAK,GAAL,CAAS,KAAK,CAAd,EAAiB,KAAK,eAAL,CAAqB,SAArB,CAAjB;AACH;;AAED;;;;;;;;;;;;;uBAUG,S,EAAW,Q,EAAU;AACtB,aAAO,KAAK,QAAL,CAAc,EAAd,CAAiB,SAAjB,EAA4B,QAA5B,CAAP;AACD;;AAED;;;;;;;;;;;wBAQI,S,EAAW,Q,EAAU;AACvB,aAAO,KAAK,QAAL,CAAc,GAAd,CAAkB,SAAlB,EAA6B,QAA7B,CAAP;AACD;;AAED;;;;;;;;4BAKQ;AACN,WAAK,QAAL,CAAc,kBAAd;AACA,WAAK,QAAL,CAAc,IAAd;AACD;;;wBAlFW;AACV,aAAO,KAAK,IAAL,GAAY,KAAK,IAAL,CAAU,GAAV,EAAZ,GAA8B,IAArC;AACD;;;;;;AAmFH;;;;;;;;;AASA;;;;;;;;;;;;;;;;;;;;;QCpLgB,M,GAAA,M;QAeA,W,GAAA,W;QAQA,e,GAAA,e;QAoCA,a,GAAA,a;;;;AA3DT,SAAS,MAAT,CAAgB,MAAhB,EAAoC;AAAA,oCAAT,OAAS;AAAT,WAAS;AAAA;;AACzC,OAAK,IAAI,IAAI,CAAb,EAAgB,IAAI,QAAQ,MAA5B,EAAoC,GAApC,EAAyC;AACvC,QAAI,MAAM,QAAQ,CAAR,CAAV;AACA,QAAI,OAAO,GAAP,KAAgB,WAAhB,IAA+B,QAAQ,IAA3C,EACE;;AAEF,SAAK,IAAI,GAAT,IAAgB,GAAhB,EAAqB;AACnB,UAAI,IAAI,cAAJ,CAAmB,GAAnB,CAAJ,EAA6B;AAC3B,eAAO,GAAP,IAAc,IAAI,GAAJ,CAAd;AACD;AACF;AACF;AACD,SAAO,MAAP;AACD;;AAEM,SAAS,WAAT,CAAqB,IAArB,EAA2B;AAChC,OAAK,IAAI,IAAI,CAAb,EAAgB,IAAI,KAAK,MAAzB,EAAiC,GAAjC,EAAsC;AACpC,QAAI,KAAK,CAAL,KAAW,KAAK,IAAE,CAAP,CAAf,EAA0B;AACxB,YAAM,IAAI,KAAJ,CAAU,0CAAV,CAAN;AACD;AACF;AACF;;AAEM,SAAS,eAAT,CAAyB,CAAzB,EAA4B,CAA5B,EAA+B;AACpC,MAAI,MAAM,CAAV;AACA,MAAI,MAAM,CAAV;;AAEA,MAAI,CAAC,CAAL,EAAQ,IAAI,EAAJ;AACR,MAAI,CAAC,CAAL,EAAQ,IAAI,EAAJ;;AAER,MAAI,SAAS,EAAb;AACA,MAAI,SAAS,EAAb;;AAEA,cAAY,CAAZ;AACA,cAAY,CAAZ;;AAEA,SAAO,MAAM,EAAE,MAAR,IAAkB,MAAM,EAAE,MAAjC,EAAyC;AACvC,QAAI,EAAE,GAAF,MAAW,EAAE,GAAF,CAAf,EAAuB;AACrB;AACA;AACD,KAHD,MAGO,IAAI,EAAE,GAAF,IAAS,EAAE,GAAF,CAAb,EAAqB;AAC1B,aAAO,IAAP,CAAY,EAAE,KAAF,CAAZ;AACD,KAFM,MAEA;AACL,aAAO,IAAP,CAAY,EAAE,KAAF,CAAZ;AACD;AACF;;AAED,MAAI,MAAM,EAAE,MAAZ,EACE,SAAS,OAAO,MAAP,CAAc,EAAE,KAAF,CAAQ,GAAR,CAAd,CAAT;AACF,MAAI,MAAM,EAAE,MAAZ,EACE,SAAS,OAAO,MAAP,CAAc,EAAE,KAAF,CAAQ,GAAR,CAAd,CAAT;AACF,SAAO;AACL,aAAS,MADJ;AAEL,WAAO;AAFF,GAAP;AAID;;AAED;AACA;AACO,SAAS,aAAT,CAAuB,EAAvB,EAA2B;AAChC,MAAI,QAAQ,EAAZ;AACA,MAAI,eAAJ;AACA,OAAK,IAAI,IAAT,IAAiB,EAAjB,EAAqB;AACnB,QAAI,GAAG,cAAH,CAAkB,IAAlB,CAAJ,EACE,MAAM,IAAN,CAAW,IAAX;AACF,QAAI,QAAO,GAAG,IAAH,CAAP,MAAqB,QAArB,IAAiC,OAAO,GAAG,IAAH,EAAS,MAAhB,KAA4B,WAAjE,EAA8E;AAC5E,YAAM,IAAI,KAAJ,CAAU,2BAAV,CAAN;AACD,KAFD,MAEO,IAAI,OAAO,MAAP,KAAmB,WAAnB,IAAkC,WAAW,GAAG,IAAH,EAAS,MAA1D,EAAkE;AACvE,YAAM,IAAI,KAAJ,CAAU,8CAAV,CAAN;AACD;AACD,aAAS,GAAG,IAAH,EAAS,MAAlB;AACD;AACD,MAAI,UAAU,EAAd;AACA,MAAI,aAAJ;AACA,OAAK,IAAI,MAAM,CAAf,EAAkB,MAAM,MAAxB,EAAgC,KAAhC,EAAuC;AACrC,WAAO,EAAP;AACA,SAAK,IAAI,MAAM,CAAf,EAAkB,MAAM,MAAM,MAA9B,EAAsC,KAAtC,EAA6C;AAC3C,WAAK,MAAM,GAAN,CAAL,IAAmB,GAAG,MAAM,GAAN,CAAH,EAAe,GAAf,CAAnB;AACD;AACD,YAAQ,IAAR,CAAa,IAAb;AACD;AACD,SAAO,OAAP;AACD;;AAED;;;;;;;IAMa,mB,WAAA,mB;AACX,+BAAY,OAAZ,EAAqB;AAAA;;AACnB,SAAK,QAAL,GAAgB,OAAhB;AACA,SAAK,KAAL,GAAa,EAAb;AACD;;;;uBAEE,S,EAAW,Q,EAAU;AACtB,UAAI,MAAM,KAAK,QAAL,CAAc,EAAd,CAAiB,SAAjB,EAA4B,QAA5B,CAAV;AACA,WAAK,KAAL,CAAW,GAAX,IAAkB,SAAlB;AACA,aAAO,GAAP;AACD;;;wBAEG,S,EAAW,Q,EAAU;AACvB,UAAI,MAAM,KAAK,QAAL,CAAc,GAAd,CAAkB,SAAlB,EAA6B,QAA7B,CAAV;AACA,UAAI,GAAJ,EAAS;AACP,eAAO,KAAK,KAAL,CAAW,GAAX,CAAP;AACD;AACD,aAAO,GAAP;AACD;;;yCAEoB;AAAA;;AACnB,UAAI,eAAe,KAAK,KAAxB;AACA,WAAK,KAAL,GAAa,EAAb;AACA,aAAO,IAAP,CAAY,YAAZ,EAA0B,OAA1B,CAAkC,UAAC,GAAD,EAAS;AACzC,cAAK,QAAL,CAAc,GAAd,CAAkB,aAAa,GAAb,CAAlB,EAAqC,GAArC;AACD,OAFD;AAGD;;;;;;;;;;;;;;;;;;ACpHH;;;;;;;;IAEqB,G;AACnB,eAAY,KAAZ,EAAmB,IAAnB,EAAyB,YAAa,KAAtC,EAA6C;AAAA;;AAC3C,SAAK,MAAL,GAAc,KAAd;AACA,SAAK,KAAL,GAAa,IAAb;AACA,SAAK,MAAL,GAAc,KAAd;AACA,SAAK,OAAL,GAAe,sBAAf;AACD;;;;0BAEK;AACJ,aAAO,KAAK,MAAZ;AACD;;;wBAEG,K,EAAO,YAAa,K,EAAO;AAC7B,UAAI,KAAK,MAAL,KAAgB,KAApB,EAA2B;AACzB;AACA;AACD;AACD,UAAI,WAAW,KAAK,MAApB;AACA,WAAK,MAAL,GAAc,KAAd;AACA;AACA,UAAI,MAAM,EAAV;AACA,UAAI,SAAS,QAAO,KAAP,yCAAO,KAAP,OAAkB,QAA/B,EAAyC;AACvC,aAAK,IAAI,CAAT,IAAc,KAAd,EAAqB;AACnB,cAAI,MAAM,cAAN,CAAqB,CAArB,CAAJ,EACE,IAAI,CAAJ,IAAS,MAAM,CAAN,CAAT;AACH;AACF;AACD,UAAI,QAAJ,GAAe,QAAf;AACA,UAAI,KAAJ,GAAY,KAAZ;AACA,WAAK,OAAL,CAAa,OAAb,CAAqB,QAArB,EAA+B,GAA/B,EAAoC,IAApC;;AAEA;AACA;AACA,UAAI,OAAO,KAAP,IAAgB,OAAO,KAAP,CAAa,aAAjC,EAAgD;AAC9C,eAAO,KAAP,CAAa,aAAb,CACE,mBACG,KAAK,MAAL,CAAY,IAAZ,KAAqB,IAArB,GAA4B,KAAK,MAAL,CAAY,IAAZ,GAAmB,GAA/C,GAAqD,EADxD,IAEE,KAAK,KAHT,EAIE,OAAO,KAAP,KAAkB,WAAlB,GAAgC,IAAhC,GAAuC,KAJzC;AAMD;AACF;;;uBAEE,S,EAAW,Q,EAAU;AACtB,aAAO,KAAK,OAAL,CAAa,EAAb,CAAgB,SAAhB,EAA2B,QAA3B,CAAP;AACD;;;wBAEG,S,EAAW,Q,EAAU;AACvB,aAAO,KAAK,OAAL,CAAa,GAAb,CAAiB,SAAjB,EAA4B,QAA5B,CAAP;AACD;;;;;;kBAjDkB,G", + "file": "generated.js", + "sourceRoot": "", + "sourcesContent": [ + "(function(){function e(t,n,r){function s(o,u){if(!n[o]){if(!t[o]){var a=typeof require==\"function\"&&require;if(!u&&a)return a(o,!0);if(i)return i(o,!0);var f=new Error(\"Cannot find module '\"+o+\"'\");throw f.code=\"MODULE_NOT_FOUND\",f}var l=n[o]={exports:{}};t[o][0].call(l.exports,function(e){var n=t[o][1][e];return s(n?n:e)},l,l.exports,e,t,n,r)}return n[o].exports}var i=typeof require==\"function\"&&require;for(var o=0;o {\n this._eventRelay.trigger(\"change\", e, this);\n });\n this._varOnChangeSub = sub;\n }\n }\n\n /**\n * Combine the given `extraInfo` (if any) with the handle's default\n * `_extraInfo` (if any).\n * @private\n */\n _mergeExtraInfo(extraInfo) {\n return util.extend({},\n this._extraInfo ? this._extraInfo : null,\n extraInfo ? extraInfo : null);\n }\n\n /**\n * Close the handle. This clears this handle's contribution to the filter set,\n * and unsubscribes all event listeners.\n */\n close() {\n this._emitter.removeAllListeners();\n this.clear();\n this.setGroup(null);\n }\n\n /**\n * Clear this handle's contribution to the filter set.\n *\n * @param {Object} [extraInfo] - Extra properties to be included on the event\n * object that's passed to listeners (in addition to any options that were\n * passed into the `FilterHandle` constructor).\n * \n * @fires FilterHandle#change\n */\n clear(extraInfo) {\n if (!this._filterSet)\n return;\n this._filterSet.clear(this._id);\n this._onChange(extraInfo);\n }\n\n /**\n * Set this handle's contribution to the filter set. This array should consist\n * of the keys of the rows that _should_ be displayed; any keys that are not\n * present in the array will be considered _filtered out_. Note that multiple\n * `FilterHandle` instances in the group may each contribute an array of keys,\n * and only those keys that appear in _all_ of the arrays make it through the\n * filter.\n *\n * @param {string[]} keys - Empty array, or array of keys. To clear the\n * filter, don't pass an empty array; instead, use the\n * {@link FilterHandle#clear} method.\n * @param {Object} [extraInfo] - Extra properties to be included on the event\n * object that's passed to listeners (in addition to any options that were\n * passed into the `FilterHandle` constructor).\n * \n * @fires FilterHandle#change\n */\n set(keys, extraInfo) {\n if (!this._filterSet)\n return;\n this._filterSet.update(this._id, keys);\n this._onChange(extraInfo);\n }\n\n /**\n * @return {string[]|null} - Either: 1) an array of keys that made it through\n * all of the `FilterHandle` instances, or, 2) `null`, which means no filter\n * is being applied (all data should be displayed).\n */\n get filteredKeys() {\n return this._filterSet ? this._filterSet.value : null;\n }\n\n /**\n * Subscribe to events on this `FilterHandle`.\n *\n * @param {string} eventType - Indicates the type of events to listen to.\n * Currently, only `\"change\"` is supported.\n * @param {FilterHandle~listener} listener - The callback function that\n * will be invoked when the event occurs.\n * @return {string} - A token to pass to {@link FilterHandle#off} to cancel\n * this subscription.\n */\n on(eventType, listener) {\n return this._emitter.on(eventType, listener);\n }\n\n /**\n * Cancel event subscriptions created by {@link FilterHandle#on}.\n *\n * @param {string} eventType - The type of event to unsubscribe.\n * @param {string|FilterHandle~listener} listener - Either the callback\n * function previously passed into {@link FilterHandle#on}, or the\n * string that was returned from {@link FilterHandle#on}.\n */\n off(eventType, listener) {\n return this._emitter.off(eventType, listener);\n }\n\n _onChange(extraInfo) {\n if (!this._filterSet)\n return;\n this._filterVar.set(this._filterSet.value, this._mergeExtraInfo(extraInfo));\n }\n\n /**\n * @callback FilterHandle~listener\n * @param {Object} event - An object containing details of the event. For\n * `\"change\"` events, this includes the properties `value` (the new\n * value of the filter set, or `null` if no filter set is active),\n * `oldValue` (the previous value of the filter set), and `sender` (the\n * `FilterHandle` instance that made the change).\n */\n\n}\n\n/**\n * @event FilterHandle#change\n * @type {object}\n * @property {object} value - The new value of the filter set, or `null`\n * if no filter set is active.\n * @property {object} oldValue - The previous value of the filter set.\n * @property {FilterHandle} sender - The `FilterHandle` instance that\n * changed the value.\n */\n", + "import { diffSortedLists } from \"./util\";\n\nfunction naturalComparator(a, b) {\n if (a === b) {\n return 0;\n } else if (a < b) {\n return -1;\n } else if (a > b) {\n return 1;\n }\n}\n\n/**\n * @private\n */\nexport default class FilterSet {\n constructor() {\n this.reset();\n }\n\n reset() {\n // Key: handle ID, Value: array of selected keys, or null\n this._handles = {};\n // Key: key string, Value: count of handles that include it\n this._keys = {};\n this._value = null;\n this._activeHandles = 0;\n }\n\n get value() {\n return this._value;\n }\n\n update(handleId, keys) {\n if (keys !== null) {\n keys = keys.slice(0); // clone before sorting\n keys.sort(naturalComparator);\n }\n\n let {added, removed} = diffSortedLists(this._handles[handleId], keys);\n this._handles[handleId] = keys;\n\n for (let i = 0; i < added.length; i++) {\n this._keys[added[i]] = (this._keys[added[i]] || 0) + 1;\n }\n for (let i = 0; i < removed.length; i++) {\n this._keys[removed[i]]--;\n }\n\n this._updateValue(keys);\n }\n\n /**\n * @param {string[]} keys Sorted array of strings that indicate\n * a superset of possible keys.\n * @private\n */\n _updateValue(keys = this._allKeys) {\n let handleCount = Object.keys(this._handles).length;\n if (handleCount === 0) {\n this._value = null;\n } else {\n this._value = [];\n for (let i = 0; i < keys.length; i++) {\n let count = this._keys[keys[i]];\n if (count === handleCount) {\n this._value.push(keys[i]);\n }\n }\n }\n }\n\n clear(handleId) {\n if (typeof(this._handles[handleId]) === \"undefined\") {\n return;\n }\n\n let keys = this._handles[handleId];\n if (!keys) {\n keys = [];\n }\n\n for (let i = 0; i < keys.length; i++) {\n this._keys[keys[i]]--;\n }\n delete this._handles[handleId];\n\n this._updateValue();\n }\n\n get _allKeys() {\n let allKeys = Object.keys(this._keys);\n allKeys.sort(naturalComparator);\n return allKeys;\n }\n}\n", + "import Var from \"./var\";\n\n// Use a global so that multiple copies of crosstalk.js can be loaded and still\n// have groups behave as singletons across all copies.\nglobal.__crosstalk_groups = global.__crosstalk_groups || {};\nlet groups = global.__crosstalk_groups;\n\nexport default function group(groupName) {\n if (groupName && typeof(groupName) === \"string\") {\n if (!groups.hasOwnProperty(groupName)) {\n groups[groupName] = new Group(groupName);\n }\n return groups[groupName];\n } else if (typeof(groupName) === \"object\" && groupName._vars && groupName.var) {\n // Appears to already be a group object\n return groupName;\n } else if (Array.isArray(groupName) &&\n groupName.length == 1 &&\n typeof(groupName[0]) === \"string\") {\n return group(groupName[0]);\n } else {\n throw new Error(\"Invalid groupName argument\");\n }\n}\n\nclass Group {\n constructor(name) {\n this.name = name;\n this._vars = {};\n }\n\n var(name) {\n if (!name || typeof(name) !== \"string\") {\n throw new Error(\"Invalid var name\");\n }\n\n if (!this._vars.hasOwnProperty(name))\n this._vars[name] = new Var(this, name);\n return this._vars[name];\n }\n\n has(name) {\n if (!name || typeof(name) !== \"string\") {\n throw new Error(\"Invalid var name\");\n }\n\n return this._vars.hasOwnProperty(name);\n }\n}\n", + "import group from \"./group\";\nimport { SelectionHandle } from \"./selection\";\nimport { FilterHandle } from \"./filter\";\nimport { bind } from \"./input\";\nimport \"./input_selectize\";\nimport \"./input_checkboxgroup\";\nimport \"./input_slider\";\n\nconst defaultGroup = group(\"default\");\n\nfunction var_(name) {\n return defaultGroup.var(name);\n}\n\nfunction has(name) {\n return defaultGroup.has(name);\n}\n\nif (global.Shiny) {\n global.Shiny.addCustomMessageHandler(\"update-client-value\", function(message) {\n if (typeof(message.group) === \"string\") {\n group(message.group).var(message.name).set(message.value);\n } else {\n var_(message.name).set(message.value);\n }\n });\n}\n\nconst crosstalk = {\n group: group,\n var: var_,\n has: has,\n SelectionHandle: SelectionHandle,\n FilterHandle: FilterHandle,\n bind: bind\n};\n\n/**\n * @namespace crosstalk\n */\nexport default crosstalk;\nglobal.crosstalk = crosstalk;\n", + "let $ = global.jQuery;\n\nlet bindings = {};\n\nexport function register(reg) {\n bindings[reg.className] = reg;\n if (global.document && global.document.readyState !== \"complete\") {\n $(() => {\n bind();\n });\n } else if (global.document) {\n setTimeout(bind, 100);\n }\n}\n\nexport function bind() {\n Object.keys(bindings).forEach(function(className) {\n let binding = bindings[className];\n $(\".\" + binding.className).not(\".crosstalk-input-bound\").each(function(i, el) {\n bindInstance(binding, el);\n });\n });\n}\n\n// Escape jQuery identifier\nfunction $escape(val) {\n return val.replace(/([!\"#$%&'()*+,./:;<=>?@[\\\\\\]^`{|}~])/g, \"\\\\$1\");\n}\n\nfunction bindEl(el) {\n let $el = $(el);\n Object.keys(bindings).forEach(function(className) {\n if ($el.hasClass(className) && !$el.hasClass(\"crosstalk-input-bound\")) {\n let binding = bindings[className];\n bindInstance(binding, el);\n }\n });\n}\n\nfunction bindInstance(binding, el) {\n let jsonEl = $(el).find(\"script[type='application/json'][data-for='\" + $escape(el.id) + \"']\");\n let data = JSON.parse(jsonEl[0].innerText);\n\n let instance = binding.factory(el, data);\n $(el).data(\"crosstalk-instance\", instance);\n $(el).addClass(\"crosstalk-input-bound\");\n}\n\nif (global.Shiny) {\n let inputBinding = new global.Shiny.InputBinding();\n let $ = global.jQuery;\n $.extend(inputBinding, {\n find: function(scope) {\n return $(scope).find(\".crosstalk-input\");\n },\n initialize: function(el) {\n if (!$(el).hasClass(\"crosstalk-input-bound\")) {\n bindEl(el);\n }\n },\n getId: function(el) {\n return el.id;\n },\n getValue: function(el) {\n\n },\n setValue: function(el, value) {\n\n },\n receiveMessage: function(el, data) {\n\n },\n subscribe: function(el, callback) {\n $(el).data(\"crosstalk-instance\").resume();\n },\n unsubscribe: function(el) {\n $(el).data(\"crosstalk-instance\").suspend();\n }\n });\n global.Shiny.inputBindings.register(inputBinding, \"crosstalk.inputBinding\");\n}\n", + "import * as input from \"./input\";\nimport { FilterHandle } from \"./filter\";\n\nlet $ = global.jQuery;\n\ninput.register({\n className: \"crosstalk-input-checkboxgroup\",\n\n factory: function(el, data) {\n /*\n * map: {\"groupA\": [\"keyA\", \"keyB\", ...], ...}\n * group: \"ct-groupname\"\n */\n let ctHandle = new FilterHandle(data.group);\n\n let lastKnownKeys;\n let $el = $(el);\n $el.on(\"change\", \"input[type='checkbox']\", function() {\n let checked = $el.find(\"input[type='checkbox']:checked\");\n if (checked.length === 0) {\n lastKnownKeys = null;\n ctHandle.clear();\n } else {\n let keys = {};\n checked.each(function() {\n data.map[this.value].forEach(function(key) {\n keys[key] = true;\n });\n });\n let keyArray = Object.keys(keys);\n keyArray.sort();\n lastKnownKeys = keyArray;\n ctHandle.set(keyArray);\n }\n });\n\n return {\n suspend: function() {\n ctHandle.clear();\n },\n resume: function() {\n if (lastKnownKeys)\n ctHandle.set(lastKnownKeys);\n }\n };\n }\n});\n", + "import * as input from \"./input\";\nimport * as util from \"./util\";\nimport { FilterHandle } from \"./filter\";\n\nlet $ = global.jQuery;\n\ninput.register({\n className: \"crosstalk-input-select\",\n\n factory: function(el, data) {\n /*\n * items: {value: [...], label: [...]}\n * map: {\"groupA\": [\"keyA\", \"keyB\", ...], ...}\n * group: \"ct-groupname\"\n */\n\n let first = [{value: \"\", label: \"(All)\"}];\n let items = util.dataframeToD3(data.items);\n let opts = {\n options: first.concat(items),\n valueField: \"value\",\n labelField: \"label\",\n searchField: \"label\"\n };\n\n let select = $(el).find(\"select\")[0];\n\n let selectize = $(select).selectize(opts)[0].selectize;\n\n let ctHandle = new FilterHandle(data.group);\n\n let lastKnownKeys;\n selectize.on(\"change\", function() {\n if (selectize.items.length === 0) {\n lastKnownKeys = null;\n ctHandle.clear();\n } else {\n let keys = {};\n selectize.items.forEach(function(group) {\n data.map[group].forEach(function(key) {\n keys[key] = true;\n });\n });\n let keyArray = Object.keys(keys);\n keyArray.sort();\n lastKnownKeys = keyArray;\n ctHandle.set(keyArray);\n }\n });\n\n return {\n suspend: function() {\n ctHandle.clear();\n },\n resume: function() {\n if (lastKnownKeys)\n ctHandle.set(lastKnownKeys);\n }\n };\n }\n});\n", + "import * as input from \"./input\";\nimport { FilterHandle } from \"./filter\";\n\nlet $ = global.jQuery;\nlet strftime = global.strftime;\n\ninput.register({\n className: \"crosstalk-input-slider\",\n\n factory: function(el, data) {\n /*\n * map: {\"groupA\": [\"keyA\", \"keyB\", ...], ...}\n * group: \"ct-groupname\"\n */\n let ctHandle = new FilterHandle(data.group);\n\n let opts = {};\n let $el = $(el).find(\"input\");\n let dataType = $el.data(\"data-type\");\n let timeFormat = $el.data(\"time-format\");\n let round = $el.data(\"round\");\n let timeFormatter;\n\n // Set up formatting functions\n if (dataType === \"date\") {\n timeFormatter = strftime.utc();\n opts.prettify = function(num) {\n return timeFormatter(timeFormat, new Date(num));\n };\n\n } else if (dataType === \"datetime\") {\n let timezone = $el.data(\"timezone\");\n if (timezone)\n timeFormatter = strftime.timezone(timezone);\n else\n timeFormatter = strftime;\n\n opts.prettify = function(num) {\n return timeFormatter(timeFormat, new Date(num));\n };\n } else if (dataType === \"number\") {\n if (typeof round !== \"undefined\")\n opts.prettify = function(num) {\n let factor = Math.pow(10, round);\n return Math.round(num * factor) / factor;\n };\n }\n\n $el.ionRangeSlider(opts);\n\n function getValue() {\n let result = $el.data(\"ionRangeSlider\").result;\n\n // Function for converting numeric value from slider to appropriate type.\n let convert;\n let dataType = $el.data(\"data-type\");\n if (dataType === \"date\") {\n convert = function(val) {\n return formatDateUTC(new Date(+val));\n };\n } else if (dataType === \"datetime\") {\n convert = function(val) {\n // Convert ms to s\n return +val / 1000;\n };\n } else {\n convert = function(val) { return +val; };\n }\n\n if ($el.data(\"ionRangeSlider\").options.type === \"double\") {\n return [convert(result.from), convert(result.to)];\n } else {\n return convert(result.from);\n }\n }\n\n let lastKnownKeys = null;\n\n $el.on(\"change.crosstalkSliderInput\", function(event) {\n if (!$el.data(\"updating\") && !$el.data(\"animating\")) {\n let [from, to] = getValue();\n let keys = [];\n for (let i = 0; i < data.values.length; i++) {\n let val = data.values[i];\n if (val >= from && val <= to) {\n keys.push(data.keys[i]);\n }\n }\n keys.sort();\n ctHandle.set(keys);\n lastKnownKeys = keys;\n }\n });\n\n\n // let $el = $(el);\n // $el.on(\"change\", \"input[type=\"checkbox\"]\", function() {\n // let checked = $el.find(\"input[type=\"checkbox\"]:checked\");\n // if (checked.length === 0) {\n // ctHandle.clear();\n // } else {\n // let keys = {};\n // checked.each(function() {\n // data.map[this.value].forEach(function(key) {\n // keys[key] = true;\n // });\n // });\n // let keyArray = Object.keys(keys);\n // keyArray.sort();\n // ctHandle.set(keyArray);\n // }\n // });\n\n return {\n suspend: function() {\n ctHandle.clear();\n },\n resume: function() {\n if (lastKnownKeys)\n ctHandle.set(lastKnownKeys);\n }\n };\n }\n});\n\n\n// Convert a number to a string with leading zeros\nfunction padZeros(n, digits) {\n let str = n.toString();\n while (str.length < digits)\n str = \"0\" + str;\n return str;\n}\n\n// Given a Date object, return a string in yyyy-mm-dd format, using the\n// UTC date. This may be a day off from the date in the local time zone.\nfunction formatDateUTC(date) {\n if (date instanceof Date) {\n return date.getUTCFullYear() + \"-\" +\n padZeros(date.getUTCMonth()+1, 2) + \"-\" +\n padZeros(date.getUTCDate(), 2);\n\n } else {\n return null;\n }\n}\n", + "import Events from \"./events\";\nimport grp from \"./group\";\nimport * as util from \"./util\";\n\n/**\n * Use this class to read and write (and listen for changes to) the selection\n * for a Crosstalk group. This is intended to be used for linked brushing.\n *\n * If two (or more) `SelectionHandle` instances in the same webpage share the\n * same group name, they will share the same state. Setting the selection using\n * one `SelectionHandle` instance will result in the `value` property instantly\n * changing across the others, and `\"change\"` event listeners on all instances\n * (including the one that initiated the sending) will fire.\n *\n * @param {string} [group] - The name of the Crosstalk group, or if none,\n * null or undefined (or any other falsy value). This can be changed later\n * via the [SelectionHandle#setGroup](#setGroup) method.\n * @param {Object} [extraInfo] - An object whose properties will be copied to\n * the event object whenever an event is emitted.\n */\nexport class SelectionHandle {\n\n constructor(group = null, extraInfo = null) {\n this._eventRelay = new Events();\n this._emitter = new util.SubscriptionTracker(this._eventRelay);\n\n // Name of the group we're currently tracking, if any. Can change over time.\n this._group = null;\n // The Var we're currently tracking, if any. Can change over time.\n this._var = null;\n // The event handler subscription we currently have on var.on(\"change\").\n this._varOnChangeSub = null;\n\n this._extraInfo = util.extend({ sender: this }, extraInfo);\n\n this.setGroup(group);\n }\n\n /**\n * Changes the Crosstalk group membership of this SelectionHandle. The group\n * being switched away from (if any) will not have its selection value\n * modified as a result of calling `setGroup`, even if this handle was the\n * most recent handle to set the selection of the group.\n *\n * The group being switched to (if any) will also not have its selection value\n * modified as a result of calling `setGroup`. If you want to set the\n * selection value of the new group, call `set` explicitly.\n *\n * @param {string} group - The name of the Crosstalk group, or null (or\n * undefined) to clear the group.\n */\n setGroup(group) {\n // If group is unchanged, do nothing\n if (this._group === group)\n return;\n // Treat null, undefined, and other falsy values the same\n if (!this._group && !group)\n return;\n\n if (this._var) {\n this._var.off(\"change\", this._varOnChangeSub);\n this._var = null;\n this._varOnChangeSub = null;\n }\n\n this._group = group;\n\n if (group) {\n this._var = grp(group).var(\"selection\");\n let sub = this._var.on(\"change\", (e) => {\n this._eventRelay.trigger(\"change\", e, this);\n });\n this._varOnChangeSub = sub;\n }\n }\n\n /**\n * Retrieves the current selection for the group represented by this\n * `SelectionHandle`.\n *\n * - If no selection is active, then this value will be falsy.\n * - If a selection is active, but no data points are selected, then this\n * value will be an empty array.\n * - If a selection is active, and data points are selected, then the keys\n * of the selected data points will be present in the array.\n */\n get value() {\n return this._var ? this._var.get() : null;\n }\n\n /**\n * Combines the given `extraInfo` (if any) with the handle's default\n * `_extraInfo` (if any).\n * @private\n */\n _mergeExtraInfo(extraInfo) {\n // Important incidental effect: shallow clone is returned\n return util.extend({},\n this._extraInfo ? this._extraInfo : null,\n extraInfo ? extraInfo : null);\n }\n\n /**\n * Overwrites the current selection for the group, and raises the `\"change\"`\n * event among all of the group's '`SelectionHandle` instances (including\n * this one).\n *\n * @fires SelectionHandle#change\n * @param {string[]} selectedKeys - Falsy, empty array, or array of keys (see\n * {@link SelectionHandle#value}).\n * @param {Object} [extraInfo] - Extra properties to be included on the event\n * object that's passed to listeners (in addition to any options that were\n * passed into the `SelectionHandle` constructor).\n */\n set(selectedKeys, extraInfo) {\n if (this._var)\n this._var.set(selectedKeys, this._mergeExtraInfo(extraInfo));\n }\n\n /**\n * Overwrites the current selection for the group, and raises the `\"change\"`\n * event among all of the group's '`SelectionHandle` instances (including\n * this one).\n *\n * @fires SelectionHandle#change\n * @param {Object} [extraInfo] - Extra properties to be included on the event\n * object that's passed to listeners (in addition to any that were passed\n * into the `SelectionHandle` constructor).\n */\n clear(extraInfo) {\n if (this._var)\n this.set(void 0, this._mergeExtraInfo(extraInfo));\n }\n\n /**\n * Subscribes to events on this `SelectionHandle`.\n *\n * @param {string} eventType - Indicates the type of events to listen to.\n * Currently, only `\"change\"` is supported.\n * @param {SelectionHandle~listener} listener - The callback function that\n * will be invoked when the event occurs.\n * @return {string} - A token to pass to {@link SelectionHandle#off} to cancel\n * this subscription.\n */\n on(eventType, listener) {\n return this._emitter.on(eventType, listener);\n }\n\n /**\n * Cancels event subscriptions created by {@link SelectionHandle#on}.\n *\n * @param {string} eventType - The type of event to unsubscribe.\n * @param {string|SelectionHandle~listener} listener - Either the callback\n * function previously passed into {@link SelectionHandle#on}, or the\n * string that was returned from {@link SelectionHandle#on}.\n */\n off(eventType, listener) {\n return this._emitter.off(eventType, listener);\n }\n\n /**\n * Shuts down the `SelectionHandle` object.\n *\n * Removes all event listeners that were added through this handle.\n */\n close() {\n this._emitter.removeAllListeners();\n this.setGroup(null);\n }\n}\n\n/**\n * @callback SelectionHandle~listener\n * @param {Object} event - An object containing details of the event. For\n * `\"change\"` events, this includes the properties `value` (the new\n * value of the selection, or `undefined` if no selection is active),\n * `oldValue` (the previous value of the selection), and `sender` (the\n * `SelectionHandle` instance that made the change).\n */\n\n/**\n * @event SelectionHandle#change\n * @type {object}\n * @property {object} value - The new value of the selection, or `undefined`\n * if no selection is active.\n * @property {object} oldValue - The previous value of the selection.\n * @property {SelectionHandle} sender - The `SelectionHandle` instance that\n * changed the value.\n */\n", + "export function extend(target, ...sources) {\n for (let i = 0; i < sources.length; i++) {\n let src = sources[i];\n if (typeof(src) === \"undefined\" || src === null)\n continue;\n\n for (let key in src) {\n if (src.hasOwnProperty(key)) {\n target[key] = src[key];\n }\n }\n }\n return target;\n}\n\nexport function checkSorted(list) {\n for (let i = 1; i < list.length; i++) {\n if (list[i] <= list[i-1]) {\n throw new Error(\"List is not sorted or contains duplicate\");\n }\n }\n}\n\nexport function diffSortedLists(a, b) {\n let i_a = 0;\n let i_b = 0;\n\n if (!a) a = [];\n if (!b) b = [];\n\n let a_only = [];\n let b_only = [];\n\n checkSorted(a);\n checkSorted(b);\n\n while (i_a < a.length && i_b < b.length) {\n if (a[i_a] === b[i_b]) {\n i_a++;\n i_b++;\n } else if (a[i_a] < b[i_b]) {\n a_only.push(a[i_a++]);\n } else {\n b_only.push(b[i_b++]);\n }\n }\n\n if (i_a < a.length)\n a_only = a_only.concat(a.slice(i_a));\n if (i_b < b.length)\n b_only = b_only.concat(b.slice(i_b));\n return {\n removed: a_only,\n added: b_only\n };\n}\n\n// Convert from wide: { colA: [1,2,3], colB: [4,5,6], ... }\n// to long: [ {colA: 1, colB: 4}, {colA: 2, colB: 5}, ... ]\nexport function dataframeToD3(df) {\n let names = [];\n let length;\n for (let name in df) {\n if (df.hasOwnProperty(name))\n names.push(name);\n if (typeof(df[name]) !== \"object\" || typeof(df[name].length) === \"undefined\") {\n throw new Error(\"All fields must be arrays\");\n } else if (typeof(length) !== \"undefined\" && length !== df[name].length) {\n throw new Error(\"All fields must be arrays of the same length\");\n }\n length = df[name].length;\n }\n let results = [];\n let item;\n for (let row = 0; row < length; row++) {\n item = {};\n for (let col = 0; col < names.length; col++) {\n item[names[col]] = df[names[col]][row];\n }\n results.push(item);\n }\n return results;\n}\n\n/**\n * Keeps track of all event listener additions/removals and lets all active\n * listeners be removed with a single operation.\n *\n * @private\n */\nexport class SubscriptionTracker {\n constructor(emitter) {\n this._emitter = emitter;\n this._subs = {};\n }\n\n on(eventType, listener) {\n let sub = this._emitter.on(eventType, listener);\n this._subs[sub] = eventType;\n return sub;\n }\n\n off(eventType, listener) {\n let sub = this._emitter.off(eventType, listener);\n if (sub) {\n delete this._subs[sub];\n }\n return sub;\n }\n\n removeAllListeners() {\n let current_subs = this._subs;\n this._subs = {};\n Object.keys(current_subs).forEach((sub) => {\n this._emitter.off(current_subs[sub], sub);\n });\n }\n}\n", + "import Events from \"./events\";\n\nexport default class Var {\n constructor(group, name, /*optional*/ value) {\n this._group = group;\n this._name = name;\n this._value = value;\n this._events = new Events();\n }\n\n get() {\n return this._value;\n }\n\n set(value, /*optional*/ event) {\n if (this._value === value) {\n // Do nothing; the value hasn't changed\n return;\n }\n let oldValue = this._value;\n this._value = value;\n // Alert JavaScript listeners that the value has changed\n let evt = {};\n if (event && typeof(event) === \"object\") {\n for (let k in event) {\n if (event.hasOwnProperty(k))\n evt[k] = event[k];\n }\n }\n evt.oldValue = oldValue;\n evt.value = value;\n this._events.trigger(\"change\", evt, this);\n\n // TODO: Make this extensible, to let arbitrary back-ends know that\n // something has changed\n if (global.Shiny && global.Shiny.onInputChange) {\n global.Shiny.onInputChange(\n \".clientValue-\" +\n (this._group.name !== null ? this._group.name + \"-\" : \"\") +\n this._name,\n typeof(value) === \"undefined\" ? null : value\n );\n }\n }\n\n on(eventType, listener) {\n return this._events.on(eventType, listener);\n }\n\n off(eventType, listener) {\n return this._events.off(eventType, listener);\n }\n}\n" + ] +} \ No newline at end of file diff --git a/articles/Time_to_event_analysis_files/crosstalk-1.2.1/js/crosstalk.min.js b/articles/Time_to_event_analysis_files/crosstalk-1.2.1/js/crosstalk.min.js new file mode 100644 index 00000000..b7ec0ac9 --- /dev/null +++ b/articles/Time_to_event_analysis_files/crosstalk-1.2.1/js/crosstalk.min.js @@ -0,0 +1,2 @@ +!function o(u,a,l){function s(n,e){if(!a[n]){if(!u[n]){var t="function"==typeof require&&require;if(!e&&t)return t(n,!0);if(f)return f(n,!0);var r=new Error("Cannot find module '"+n+"'");throw r.code="MODULE_NOT_FOUND",r}var i=a[n]={exports:{}};u[n][0].call(i.exports,function(e){var t=u[n][1][e];return s(t||e)},i,i.exports,o,u,a,l)}return a[n].exports}for(var f="function"==typeof require&&require,e=0;e?@[\\\]^`{|}~])/g,"\\$1")+"']"),r=JSON.parse(n[0].innerText),i=e.factory(t,r);o(t).data("crosstalk-instance",i),o(t).addClass("crosstalk-input-bound")}if(t.Shiny){var e=new t.Shiny.InputBinding,u=t.jQuery;u.extend(e,{find:function(e){return u(e).find(".crosstalk-input")},initialize:function(e){var t,n;u(e).hasClass("crosstalk-input-bound")||(n=o(t=e),Object.keys(r).forEach(function(e){n.hasClass(e)&&!n.hasClass("crosstalk-input-bound")&&i(r[e],t)}))},getId:function(e){return e.id},getValue:function(e){},setValue:function(e,t){},receiveMessage:function(e,t){},subscribe:function(e,t){u(e).data("crosstalk-instance").resume()},unsubscribe:function(e){u(e).data("crosstalk-instance").suspend()}}),t.Shiny.inputBindings.register(e,"crosstalk.inputBinding")}}).call(this,"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{}],7:[function(r,e,t){(function(e){"use strict";var t=function(e){{if(e&&e.__esModule)return e;var t={};if(null!=e)for(var n in e)Object.prototype.hasOwnProperty.call(e,n)&&(t[n]=e[n]);return t.default=e,t}}(r("./input")),n=r("./filter");var a=e.jQuery;t.register({className:"crosstalk-input-checkboxgroup",factory:function(e,r){var i=new n.FilterHandle(r.group),o=void 0,u=a(e);return u.on("change","input[type='checkbox']",function(){var e=u.find("input[type='checkbox']:checked");if(0===e.length)o=null,i.clear();else{var t={};e.each(function(){r.map[this.value].forEach(function(e){t[e]=!0})});var n=Object.keys(t);n.sort(),o=n,i.set(n)}}),{suspend:function(){i.clear()},resume:function(){o&&i.set(o)}}}})}).call(this,"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{"./filter":2,"./input":6}],8:[function(r,e,t){(function(e){"use strict";var t=n(r("./input")),l=n(r("./util")),s=r("./filter");function n(e){if(e&&e.__esModule)return e;var t={};if(null!=e)for(var n in e)Object.prototype.hasOwnProperty.call(e,n)&&(t[n]=e[n]);return t.default=e,t}var f=e.jQuery;t.register({className:"crosstalk-input-select",factory:function(e,n){var t=l.dataframeToD3(n.items),r={options:[{value:"",label:"(All)"}].concat(t),valueField:"value",labelField:"label",searchField:"label"},i=f(e).find("select")[0],o=f(i).selectize(r)[0].selectize,u=new s.FilterHandle(n.group),a=void 0;return o.on("change",function(){if(0===o.items.length)a=null,u.clear();else{var t={};o.items.forEach(function(e){n.map[e].forEach(function(e){t[e]=!0})});var e=Object.keys(t);e.sort(),a=e,u.set(e)}}),{suspend:function(){u.clear()},resume:function(){a&&u.set(a)}}}})}).call(this,"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{"./filter":2,"./input":6,"./util":11}],9:[function(n,e,t){(function(e){"use strict";var d=function(e,t){if(Array.isArray(e))return e;if(Symbol.iterator in Object(e))return function(e,t){var n=[],r=!0,i=!1,o=void 0;try{for(var u,a=e[Symbol.iterator]();!(r=(u=a.next()).done)&&(n.push(u.value),!t||n.length!==t);r=!0);}catch(e){i=!0,o=e}finally{try{!r&&a.return&&a.return()}finally{if(i)throw o}}return n}(e,t);throw new TypeError("Invalid attempt to destructure non-iterable instance")},t=function(e){{if(e&&e.__esModule)return e;var t={};if(null!=e)for(var n in e)Object.prototype.hasOwnProperty.call(e,n)&&(t[n]=e[n]);return t.default=e,t}}(n("./input")),a=n("./filter");var v=e.jQuery,p=e.strftime;function y(e,t){for(var n=e.toString();n.length {\n this._eventRelay.trigger(\"change\", e, this);\n });\n this._varOnChangeSub = sub;\n }\n }\n\n /**\n * Combine the given `extraInfo` (if any) with the handle's default\n * `_extraInfo` (if any).\n * @private\n */\n _mergeExtraInfo(extraInfo) {\n return util.extend({},\n this._extraInfo ? this._extraInfo : null,\n extraInfo ? extraInfo : null);\n }\n\n /**\n * Close the handle. This clears this handle's contribution to the filter set,\n * and unsubscribes all event listeners.\n */\n close() {\n this._emitter.removeAllListeners();\n this.clear();\n this.setGroup(null);\n }\n\n /**\n * Clear this handle's contribution to the filter set.\n *\n * @param {Object} [extraInfo] - Extra properties to be included on the event\n * object that's passed to listeners (in addition to any options that were\n * passed into the `FilterHandle` constructor).\n * \n * @fires FilterHandle#change\n */\n clear(extraInfo) {\n if (!this._filterSet)\n return;\n this._filterSet.clear(this._id);\n this._onChange(extraInfo);\n }\n\n /**\n * Set this handle's contribution to the filter set. This array should consist\n * of the keys of the rows that _should_ be displayed; any keys that are not\n * present in the array will be considered _filtered out_. Note that multiple\n * `FilterHandle` instances in the group may each contribute an array of keys,\n * and only those keys that appear in _all_ of the arrays make it through the\n * filter.\n *\n * @param {string[]} keys - Empty array, or array of keys. To clear the\n * filter, don't pass an empty array; instead, use the\n * {@link FilterHandle#clear} method.\n * @param {Object} [extraInfo] - Extra properties to be included on the event\n * object that's passed to listeners (in addition to any options that were\n * passed into the `FilterHandle` constructor).\n * \n * @fires FilterHandle#change\n */\n set(keys, extraInfo) {\n if (!this._filterSet)\n return;\n this._filterSet.update(this._id, keys);\n this._onChange(extraInfo);\n }\n\n /**\n * @return {string[]|null} - Either: 1) an array of keys that made it through\n * all of the `FilterHandle` instances, or, 2) `null`, which means no filter\n * is being applied (all data should be displayed).\n */\n get filteredKeys() {\n return this._filterSet ? this._filterSet.value : null;\n }\n\n /**\n * Subscribe to events on this `FilterHandle`.\n *\n * @param {string} eventType - Indicates the type of events to listen to.\n * Currently, only `\"change\"` is supported.\n * @param {FilterHandle~listener} listener - The callback function that\n * will be invoked when the event occurs.\n * @return {string} - A token to pass to {@link FilterHandle#off} to cancel\n * this subscription.\n */\n on(eventType, listener) {\n return this._emitter.on(eventType, listener);\n }\n\n /**\n * Cancel event subscriptions created by {@link FilterHandle#on}.\n *\n * @param {string} eventType - The type of event to unsubscribe.\n * @param {string|FilterHandle~listener} listener - Either the callback\n * function previously passed into {@link FilterHandle#on}, or the\n * string that was returned from {@link FilterHandle#on}.\n */\n off(eventType, listener) {\n return this._emitter.off(eventType, listener);\n }\n\n _onChange(extraInfo) {\n if (!this._filterSet)\n return;\n this._filterVar.set(this._filterSet.value, this._mergeExtraInfo(extraInfo));\n }\n\n /**\n * @callback FilterHandle~listener\n * @param {Object} event - An object containing details of the event. For\n * `\"change\"` events, this includes the properties `value` (the new\n * value of the filter set, or `null` if no filter set is active),\n * `oldValue` (the previous value of the filter set), and `sender` (the\n * `FilterHandle` instance that made the change).\n */\n\n}\n\n/**\n * @event FilterHandle#change\n * @type {object}\n * @property {object} value - The new value of the filter set, or `null`\n * if no filter set is active.\n * @property {object} oldValue - The previous value of the filter set.\n * @property {FilterHandle} sender - The `FilterHandle` instance that\n * changed the value.\n */\n","import { diffSortedLists } from \"./util\";\n\nfunction naturalComparator(a, b) {\n if (a === b) {\n return 0;\n } else if (a < b) {\n return -1;\n } else if (a > b) {\n return 1;\n }\n}\n\n/**\n * @private\n */\nexport default class FilterSet {\n constructor() {\n this.reset();\n }\n\n reset() {\n // Key: handle ID, Value: array of selected keys, or null\n this._handles = {};\n // Key: key string, Value: count of handles that include it\n this._keys = {};\n this._value = null;\n this._activeHandles = 0;\n }\n\n get value() {\n return this._value;\n }\n\n update(handleId, keys) {\n if (keys !== null) {\n keys = keys.slice(0); // clone before sorting\n keys.sort(naturalComparator);\n }\n\n let {added, removed} = diffSortedLists(this._handles[handleId], keys);\n this._handles[handleId] = keys;\n\n for (let i = 0; i < added.length; i++) {\n this._keys[added[i]] = (this._keys[added[i]] || 0) + 1;\n }\n for (let i = 0; i < removed.length; i++) {\n this._keys[removed[i]]--;\n }\n\n this._updateValue(keys);\n }\n\n /**\n * @param {string[]} keys Sorted array of strings that indicate\n * a superset of possible keys.\n * @private\n */\n _updateValue(keys = this._allKeys) {\n let handleCount = Object.keys(this._handles).length;\n if (handleCount === 0) {\n this._value = null;\n } else {\n this._value = [];\n for (let i = 0; i < keys.length; i++) {\n let count = this._keys[keys[i]];\n if (count === handleCount) {\n this._value.push(keys[i]);\n }\n }\n }\n }\n\n clear(handleId) {\n if (typeof(this._handles[handleId]) === \"undefined\") {\n return;\n }\n\n let keys = this._handles[handleId];\n if (!keys) {\n keys = [];\n }\n\n for (let i = 0; i < keys.length; i++) {\n this._keys[keys[i]]--;\n }\n delete this._handles[handleId];\n\n this._updateValue();\n }\n\n get _allKeys() {\n let allKeys = Object.keys(this._keys);\n allKeys.sort(naturalComparator);\n return allKeys;\n }\n}\n","import Var from \"./var\";\n\n// Use a global so that multiple copies of crosstalk.js can be loaded and still\n// have groups behave as singletons across all copies.\nglobal.__crosstalk_groups = global.__crosstalk_groups || {};\nlet groups = global.__crosstalk_groups;\n\nexport default function group(groupName) {\n if (groupName && typeof(groupName) === \"string\") {\n if (!groups.hasOwnProperty(groupName)) {\n groups[groupName] = new Group(groupName);\n }\n return groups[groupName];\n } else if (typeof(groupName) === \"object\" && groupName._vars && groupName.var) {\n // Appears to already be a group object\n return groupName;\n } else if (Array.isArray(groupName) &&\n groupName.length == 1 &&\n typeof(groupName[0]) === \"string\") {\n return group(groupName[0]);\n } else {\n throw new Error(\"Invalid groupName argument\");\n }\n}\n\nclass Group {\n constructor(name) {\n this.name = name;\n this._vars = {};\n }\n\n var(name) {\n if (!name || typeof(name) !== \"string\") {\n throw new Error(\"Invalid var name\");\n }\n\n if (!this._vars.hasOwnProperty(name))\n this._vars[name] = new Var(this, name);\n return this._vars[name];\n }\n\n has(name) {\n if (!name || typeof(name) !== \"string\") {\n throw new Error(\"Invalid var name\");\n }\n\n return this._vars.hasOwnProperty(name);\n }\n}\n","import group from \"./group\";\nimport { SelectionHandle } from \"./selection\";\nimport { FilterHandle } from \"./filter\";\nimport { bind } from \"./input\";\nimport \"./input_selectize\";\nimport \"./input_checkboxgroup\";\nimport \"./input_slider\";\n\nconst defaultGroup = group(\"default\");\n\nfunction var_(name) {\n return defaultGroup.var(name);\n}\n\nfunction has(name) {\n return defaultGroup.has(name);\n}\n\nif (global.Shiny) {\n global.Shiny.addCustomMessageHandler(\"update-client-value\", function(message) {\n if (typeof(message.group) === \"string\") {\n group(message.group).var(message.name).set(message.value);\n } else {\n var_(message.name).set(message.value);\n }\n });\n}\n\nconst crosstalk = {\n group: group,\n var: var_,\n has: has,\n SelectionHandle: SelectionHandle,\n FilterHandle: FilterHandle,\n bind: bind\n};\n\n/**\n * @namespace crosstalk\n */\nexport default crosstalk;\nglobal.crosstalk = crosstalk;\n","let $ = global.jQuery;\n\nlet bindings = {};\n\nexport function register(reg) {\n bindings[reg.className] = reg;\n if (global.document && global.document.readyState !== \"complete\") {\n $(() => {\n bind();\n });\n } else if (global.document) {\n setTimeout(bind, 100);\n }\n}\n\nexport function bind() {\n Object.keys(bindings).forEach(function(className) {\n let binding = bindings[className];\n $(\".\" + binding.className).not(\".crosstalk-input-bound\").each(function(i, el) {\n bindInstance(binding, el);\n });\n });\n}\n\n// Escape jQuery identifier\nfunction $escape(val) {\n return val.replace(/([!\"#$%&'()*+,./:;<=>?@[\\\\\\]^`{|}~])/g, \"\\\\$1\");\n}\n\nfunction bindEl(el) {\n let $el = $(el);\n Object.keys(bindings).forEach(function(className) {\n if ($el.hasClass(className) && !$el.hasClass(\"crosstalk-input-bound\")) {\n let binding = bindings[className];\n bindInstance(binding, el);\n }\n });\n}\n\nfunction bindInstance(binding, el) {\n let jsonEl = $(el).find(\"script[type='application/json'][data-for='\" + $escape(el.id) + \"']\");\n let data = JSON.parse(jsonEl[0].innerText);\n\n let instance = binding.factory(el, data);\n $(el).data(\"crosstalk-instance\", instance);\n $(el).addClass(\"crosstalk-input-bound\");\n}\n\nif (global.Shiny) {\n let inputBinding = new global.Shiny.InputBinding();\n let $ = global.jQuery;\n $.extend(inputBinding, {\n find: function(scope) {\n return $(scope).find(\".crosstalk-input\");\n },\n initialize: function(el) {\n if (!$(el).hasClass(\"crosstalk-input-bound\")) {\n bindEl(el);\n }\n },\n getId: function(el) {\n return el.id;\n },\n getValue: function(el) {\n\n },\n setValue: function(el, value) {\n\n },\n receiveMessage: function(el, data) {\n\n },\n subscribe: function(el, callback) {\n $(el).data(\"crosstalk-instance\").resume();\n },\n unsubscribe: function(el) {\n $(el).data(\"crosstalk-instance\").suspend();\n }\n });\n global.Shiny.inputBindings.register(inputBinding, \"crosstalk.inputBinding\");\n}\n","import * as input from \"./input\";\nimport { FilterHandle } from \"./filter\";\n\nlet $ = global.jQuery;\n\ninput.register({\n className: \"crosstalk-input-checkboxgroup\",\n\n factory: function(el, data) {\n /*\n * map: {\"groupA\": [\"keyA\", \"keyB\", ...], ...}\n * group: \"ct-groupname\"\n */\n let ctHandle = new FilterHandle(data.group);\n\n let lastKnownKeys;\n let $el = $(el);\n $el.on(\"change\", \"input[type='checkbox']\", function() {\n let checked = $el.find(\"input[type='checkbox']:checked\");\n if (checked.length === 0) {\n lastKnownKeys = null;\n ctHandle.clear();\n } else {\n let keys = {};\n checked.each(function() {\n data.map[this.value].forEach(function(key) {\n keys[key] = true;\n });\n });\n let keyArray = Object.keys(keys);\n keyArray.sort();\n lastKnownKeys = keyArray;\n ctHandle.set(keyArray);\n }\n });\n\n return {\n suspend: function() {\n ctHandle.clear();\n },\n resume: function() {\n if (lastKnownKeys)\n ctHandle.set(lastKnownKeys);\n }\n };\n }\n});\n","import * as input from \"./input\";\nimport * as util from \"./util\";\nimport { FilterHandle } from \"./filter\";\n\nlet $ = global.jQuery;\n\ninput.register({\n className: \"crosstalk-input-select\",\n\n factory: function(el, data) {\n /*\n * items: {value: [...], label: [...]}\n * map: {\"groupA\": [\"keyA\", \"keyB\", ...], ...}\n * group: \"ct-groupname\"\n */\n\n let first = [{value: \"\", label: \"(All)\"}];\n let items = util.dataframeToD3(data.items);\n let opts = {\n options: first.concat(items),\n valueField: \"value\",\n labelField: \"label\",\n searchField: \"label\"\n };\n\n let select = $(el).find(\"select\")[0];\n\n let selectize = $(select).selectize(opts)[0].selectize;\n\n let ctHandle = new FilterHandle(data.group);\n\n let lastKnownKeys;\n selectize.on(\"change\", function() {\n if (selectize.items.length === 0) {\n lastKnownKeys = null;\n ctHandle.clear();\n } else {\n let keys = {};\n selectize.items.forEach(function(group) {\n data.map[group].forEach(function(key) {\n keys[key] = true;\n });\n });\n let keyArray = Object.keys(keys);\n keyArray.sort();\n lastKnownKeys = keyArray;\n ctHandle.set(keyArray);\n }\n });\n\n return {\n suspend: function() {\n ctHandle.clear();\n },\n resume: function() {\n if (lastKnownKeys)\n ctHandle.set(lastKnownKeys);\n }\n };\n }\n});\n","import * as input from \"./input\";\nimport { FilterHandle } from \"./filter\";\n\nlet $ = global.jQuery;\nlet strftime = global.strftime;\n\ninput.register({\n className: \"crosstalk-input-slider\",\n\n factory: function(el, data) {\n /*\n * map: {\"groupA\": [\"keyA\", \"keyB\", ...], ...}\n * group: \"ct-groupname\"\n */\n let ctHandle = new FilterHandle(data.group);\n\n let opts = {};\n let $el = $(el).find(\"input\");\n let dataType = $el.data(\"data-type\");\n let timeFormat = $el.data(\"time-format\");\n let round = $el.data(\"round\");\n let timeFormatter;\n\n // Set up formatting functions\n if (dataType === \"date\") {\n timeFormatter = strftime.utc();\n opts.prettify = function(num) {\n return timeFormatter(timeFormat, new Date(num));\n };\n\n } else if (dataType === \"datetime\") {\n let timezone = $el.data(\"timezone\");\n if (timezone)\n timeFormatter = strftime.timezone(timezone);\n else\n timeFormatter = strftime;\n\n opts.prettify = function(num) {\n return timeFormatter(timeFormat, new Date(num));\n };\n } else if (dataType === \"number\") {\n if (typeof round !== \"undefined\")\n opts.prettify = function(num) {\n let factor = Math.pow(10, round);\n return Math.round(num * factor) / factor;\n };\n }\n\n $el.ionRangeSlider(opts);\n\n function getValue() {\n let result = $el.data(\"ionRangeSlider\").result;\n\n // Function for converting numeric value from slider to appropriate type.\n let convert;\n let dataType = $el.data(\"data-type\");\n if (dataType === \"date\") {\n convert = function(val) {\n return formatDateUTC(new Date(+val));\n };\n } else if (dataType === \"datetime\") {\n convert = function(val) {\n // Convert ms to s\n return +val / 1000;\n };\n } else {\n convert = function(val) { return +val; };\n }\n\n if ($el.data(\"ionRangeSlider\").options.type === \"double\") {\n return [convert(result.from), convert(result.to)];\n } else {\n return convert(result.from);\n }\n }\n\n let lastKnownKeys = null;\n\n $el.on(\"change.crosstalkSliderInput\", function(event) {\n if (!$el.data(\"updating\") && !$el.data(\"animating\")) {\n let [from, to] = getValue();\n let keys = [];\n for (let i = 0; i < data.values.length; i++) {\n let val = data.values[i];\n if (val >= from && val <= to) {\n keys.push(data.keys[i]);\n }\n }\n keys.sort();\n ctHandle.set(keys);\n lastKnownKeys = keys;\n }\n });\n\n\n // let $el = $(el);\n // $el.on(\"change\", \"input[type=\"checkbox\"]\", function() {\n // let checked = $el.find(\"input[type=\"checkbox\"]:checked\");\n // if (checked.length === 0) {\n // ctHandle.clear();\n // } else {\n // let keys = {};\n // checked.each(function() {\n // data.map[this.value].forEach(function(key) {\n // keys[key] = true;\n // });\n // });\n // let keyArray = Object.keys(keys);\n // keyArray.sort();\n // ctHandle.set(keyArray);\n // }\n // });\n\n return {\n suspend: function() {\n ctHandle.clear();\n },\n resume: function() {\n if (lastKnownKeys)\n ctHandle.set(lastKnownKeys);\n }\n };\n }\n});\n\n\n// Convert a number to a string with leading zeros\nfunction padZeros(n, digits) {\n let str = n.toString();\n while (str.length < digits)\n str = \"0\" + str;\n return str;\n}\n\n// Given a Date object, return a string in yyyy-mm-dd format, using the\n// UTC date. This may be a day off from the date in the local time zone.\nfunction formatDateUTC(date) {\n if (date instanceof Date) {\n return date.getUTCFullYear() + \"-\" +\n padZeros(date.getUTCMonth()+1, 2) + \"-\" +\n padZeros(date.getUTCDate(), 2);\n\n } else {\n return null;\n }\n}\n","import Events from \"./events\";\nimport grp from \"./group\";\nimport * as util from \"./util\";\n\n/**\n * Use this class to read and write (and listen for changes to) the selection\n * for a Crosstalk group. This is intended to be used for linked brushing.\n *\n * If two (or more) `SelectionHandle` instances in the same webpage share the\n * same group name, they will share the same state. Setting the selection using\n * one `SelectionHandle` instance will result in the `value` property instantly\n * changing across the others, and `\"change\"` event listeners on all instances\n * (including the one that initiated the sending) will fire.\n *\n * @param {string} [group] - The name of the Crosstalk group, or if none,\n * null or undefined (or any other falsy value). This can be changed later\n * via the [SelectionHandle#setGroup](#setGroup) method.\n * @param {Object} [extraInfo] - An object whose properties will be copied to\n * the event object whenever an event is emitted.\n */\nexport class SelectionHandle {\n\n constructor(group = null, extraInfo = null) {\n this._eventRelay = new Events();\n this._emitter = new util.SubscriptionTracker(this._eventRelay);\n\n // Name of the group we're currently tracking, if any. Can change over time.\n this._group = null;\n // The Var we're currently tracking, if any. Can change over time.\n this._var = null;\n // The event handler subscription we currently have on var.on(\"change\").\n this._varOnChangeSub = null;\n\n this._extraInfo = util.extend({ sender: this }, extraInfo);\n\n this.setGroup(group);\n }\n\n /**\n * Changes the Crosstalk group membership of this SelectionHandle. The group\n * being switched away from (if any) will not have its selection value\n * modified as a result of calling `setGroup`, even if this handle was the\n * most recent handle to set the selection of the group.\n *\n * The group being switched to (if any) will also not have its selection value\n * modified as a result of calling `setGroup`. If you want to set the\n * selection value of the new group, call `set` explicitly.\n *\n * @param {string} group - The name of the Crosstalk group, or null (or\n * undefined) to clear the group.\n */\n setGroup(group) {\n // If group is unchanged, do nothing\n if (this._group === group)\n return;\n // Treat null, undefined, and other falsy values the same\n if (!this._group && !group)\n return;\n\n if (this._var) {\n this._var.off(\"change\", this._varOnChangeSub);\n this._var = null;\n this._varOnChangeSub = null;\n }\n\n this._group = group;\n\n if (group) {\n this._var = grp(group).var(\"selection\");\n let sub = this._var.on(\"change\", (e) => {\n this._eventRelay.trigger(\"change\", e, this);\n });\n this._varOnChangeSub = sub;\n }\n }\n\n /**\n * Retrieves the current selection for the group represented by this\n * `SelectionHandle`.\n *\n * - If no selection is active, then this value will be falsy.\n * - If a selection is active, but no data points are selected, then this\n * value will be an empty array.\n * - If a selection is active, and data points are selected, then the keys\n * of the selected data points will be present in the array.\n */\n get value() {\n return this._var ? this._var.get() : null;\n }\n\n /**\n * Combines the given `extraInfo` (if any) with the handle's default\n * `_extraInfo` (if any).\n * @private\n */\n _mergeExtraInfo(extraInfo) {\n // Important incidental effect: shallow clone is returned\n return util.extend({},\n this._extraInfo ? this._extraInfo : null,\n extraInfo ? extraInfo : null);\n }\n\n /**\n * Overwrites the current selection for the group, and raises the `\"change\"`\n * event among all of the group's '`SelectionHandle` instances (including\n * this one).\n *\n * @fires SelectionHandle#change\n * @param {string[]} selectedKeys - Falsy, empty array, or array of keys (see\n * {@link SelectionHandle#value}).\n * @param {Object} [extraInfo] - Extra properties to be included on the event\n * object that's passed to listeners (in addition to any options that were\n * passed into the `SelectionHandle` constructor).\n */\n set(selectedKeys, extraInfo) {\n if (this._var)\n this._var.set(selectedKeys, this._mergeExtraInfo(extraInfo));\n }\n\n /**\n * Overwrites the current selection for the group, and raises the `\"change\"`\n * event among all of the group's '`SelectionHandle` instances (including\n * this one).\n *\n * @fires SelectionHandle#change\n * @param {Object} [extraInfo] - Extra properties to be included on the event\n * object that's passed to listeners (in addition to any that were passed\n * into the `SelectionHandle` constructor).\n */\n clear(extraInfo) {\n if (this._var)\n this.set(void 0, this._mergeExtraInfo(extraInfo));\n }\n\n /**\n * Subscribes to events on this `SelectionHandle`.\n *\n * @param {string} eventType - Indicates the type of events to listen to.\n * Currently, only `\"change\"` is supported.\n * @param {SelectionHandle~listener} listener - The callback function that\n * will be invoked when the event occurs.\n * @return {string} - A token to pass to {@link SelectionHandle#off} to cancel\n * this subscription.\n */\n on(eventType, listener) {\n return this._emitter.on(eventType, listener);\n }\n\n /**\n * Cancels event subscriptions created by {@link SelectionHandle#on}.\n *\n * @param {string} eventType - The type of event to unsubscribe.\n * @param {string|SelectionHandle~listener} listener - Either the callback\n * function previously passed into {@link SelectionHandle#on}, or the\n * string that was returned from {@link SelectionHandle#on}.\n */\n off(eventType, listener) {\n return this._emitter.off(eventType, listener);\n }\n\n /**\n * Shuts down the `SelectionHandle` object.\n *\n * Removes all event listeners that were added through this handle.\n */\n close() {\n this._emitter.removeAllListeners();\n this.setGroup(null);\n }\n}\n\n/**\n * @callback SelectionHandle~listener\n * @param {Object} event - An object containing details of the event. For\n * `\"change\"` events, this includes the properties `value` (the new\n * value of the selection, or `undefined` if no selection is active),\n * `oldValue` (the previous value of the selection), and `sender` (the\n * `SelectionHandle` instance that made the change).\n */\n\n/**\n * @event SelectionHandle#change\n * @type {object}\n * @property {object} value - The new value of the selection, or `undefined`\n * if no selection is active.\n * @property {object} oldValue - The previous value of the selection.\n * @property {SelectionHandle} sender - The `SelectionHandle` instance that\n * changed the value.\n */\n","export function extend(target, ...sources) {\n for (let i = 0; i < sources.length; i++) {\n let src = sources[i];\n if (typeof(src) === \"undefined\" || src === null)\n continue;\n\n for (let key in src) {\n if (src.hasOwnProperty(key)) {\n target[key] = src[key];\n }\n }\n }\n return target;\n}\n\nexport function checkSorted(list) {\n for (let i = 1; i < list.length; i++) {\n if (list[i] <= list[i-1]) {\n throw new Error(\"List is not sorted or contains duplicate\");\n }\n }\n}\n\nexport function diffSortedLists(a, b) {\n let i_a = 0;\n let i_b = 0;\n\n if (!a) a = [];\n if (!b) b = [];\n\n let a_only = [];\n let b_only = [];\n\n checkSorted(a);\n checkSorted(b);\n\n while (i_a < a.length && i_b < b.length) {\n if (a[i_a] === b[i_b]) {\n i_a++;\n i_b++;\n } else if (a[i_a] < b[i_b]) {\n a_only.push(a[i_a++]);\n } else {\n b_only.push(b[i_b++]);\n }\n }\n\n if (i_a < a.length)\n a_only = a_only.concat(a.slice(i_a));\n if (i_b < b.length)\n b_only = b_only.concat(b.slice(i_b));\n return {\n removed: a_only,\n added: b_only\n };\n}\n\n// Convert from wide: { colA: [1,2,3], colB: [4,5,6], ... }\n// to long: [ {colA: 1, colB: 4}, {colA: 2, colB: 5}, ... ]\nexport function dataframeToD3(df) {\n let names = [];\n let length;\n for (let name in df) {\n if (df.hasOwnProperty(name))\n names.push(name);\n if (typeof(df[name]) !== \"object\" || typeof(df[name].length) === \"undefined\") {\n throw new Error(\"All fields must be arrays\");\n } else if (typeof(length) !== \"undefined\" && length !== df[name].length) {\n throw new Error(\"All fields must be arrays of the same length\");\n }\n length = df[name].length;\n }\n let results = [];\n let item;\n for (let row = 0; row < length; row++) {\n item = {};\n for (let col = 0; col < names.length; col++) {\n item[names[col]] = df[names[col]][row];\n }\n results.push(item);\n }\n return results;\n}\n\n/**\n * Keeps track of all event listener additions/removals and lets all active\n * listeners be removed with a single operation.\n *\n * @private\n */\nexport class SubscriptionTracker {\n constructor(emitter) {\n this._emitter = emitter;\n this._subs = {};\n }\n\n on(eventType, listener) {\n let sub = this._emitter.on(eventType, listener);\n this._subs[sub] = eventType;\n return sub;\n }\n\n off(eventType, listener) {\n let sub = this._emitter.off(eventType, listener);\n if (sub) {\n delete this._subs[sub];\n }\n return sub;\n }\n\n removeAllListeners() {\n let current_subs = this._subs;\n this._subs = {};\n Object.keys(current_subs).forEach((sub) => {\n this._emitter.off(current_subs[sub], sub);\n });\n }\n}\n","import Events from \"./events\";\n\nexport default class Var {\n constructor(group, name, /*optional*/ value) {\n this._group = group;\n this._name = name;\n this._value = value;\n this._events = new Events();\n }\n\n get() {\n return this._value;\n }\n\n set(value, /*optional*/ event) {\n if (this._value === value) {\n // Do nothing; the value hasn't changed\n return;\n }\n let oldValue = this._value;\n this._value = value;\n // Alert JavaScript listeners that the value has changed\n let evt = {};\n if (event && typeof(event) === \"object\") {\n for (let k in event) {\n if (event.hasOwnProperty(k))\n evt[k] = event[k];\n }\n }\n evt.oldValue = oldValue;\n evt.value = value;\n this._events.trigger(\"change\", evt, this);\n\n // TODO: Make this extensible, to let arbitrary back-ends know that\n // something has changed\n if (global.Shiny && global.Shiny.onInputChange) {\n global.Shiny.onInputChange(\n \".clientValue-\" +\n (this._group.name !== null ? this._group.name + \"-\" : \"\") +\n this._name,\n typeof(value) === \"undefined\" ? null : value\n );\n }\n }\n\n on(eventType, listener) {\n return this._events.on(eventType, listener);\n }\n\n off(eventType, listener) {\n return this._events.off(eventType, listener);\n }\n}\n"]} \ No newline at end of file diff --git a/articles/Time_to_event_analysis_files/crosstalk-1.2.1/scss/crosstalk.scss b/articles/Time_to_event_analysis_files/crosstalk-1.2.1/scss/crosstalk.scss new file mode 100644 index 00000000..35665616 --- /dev/null +++ b/articles/Time_to_event_analysis_files/crosstalk-1.2.1/scss/crosstalk.scss @@ -0,0 +1,75 @@ +/* Adjust margins outwards, so column contents line up with the edges of the + parent of container-fluid. */ +.container-fluid.crosstalk-bscols { + margin-left: -30px; + margin-right: -30px; + white-space: normal; +} + +/* But don't adjust the margins outwards if we're directly under the body, + i.e. we were the top-level of something at the console. */ +body > .container-fluid.crosstalk-bscols { + margin-left: auto; + margin-right: auto; +} + +.crosstalk-input-checkboxgroup .crosstalk-options-group .crosstalk-options-column { + display: inline-block; + padding-right: 12px; + vertical-align: top; +} + +@media only screen and (max-width:480px) { + .crosstalk-input-checkboxgroup .crosstalk-options-group .crosstalk-options-column { + display: block; + padding-right: inherit; + } +} + +/* Relevant BS3 styles to make filter_checkbox() look reasonable without Bootstrap */ +.crosstalk-input { + margin-bottom: 15px; /* a la .form-group */ + .control-label { + margin-bottom: 0; + vertical-align: middle; + } + input[type="checkbox"] { + margin: 4px 0 0; + margin-top: 1px; + line-height: normal; + } + .checkbox { + position: relative; + display: block; + margin-top: 10px; + margin-bottom: 10px; + } + .checkbox > label{ + padding-left: 20px; + margin-bottom: 0; + font-weight: 400; + cursor: pointer; + } + .checkbox input[type="checkbox"], + .checkbox-inline input[type="checkbox"] { + position: absolute; + margin-top: 2px; + margin-left: -20px; + } + .checkbox + .checkbox { + margin-top: -5px; + } + .checkbox-inline { + position: relative; + display: inline-block; + padding-left: 20px; + margin-bottom: 0; + font-weight: 400; + vertical-align: middle; + cursor: pointer; + } + .checkbox-inline + .checkbox-inline { + margin-top: 0; + margin-left: 10px; + } +} diff --git a/articles/Time_to_event_analysis_files/datatables-binding-0.32/datatables.js b/articles/Time_to_event_analysis_files/datatables-binding-0.32/datatables.js new file mode 100644 index 00000000..6a3c3d5c --- /dev/null +++ b/articles/Time_to_event_analysis_files/datatables-binding-0.32/datatables.js @@ -0,0 +1,1536 @@ +(function() { + +// some helper functions: using a global object DTWidget so that it can be used +// in JS() code, e.g. datatable(options = list(foo = JS('code'))); unlike R's +// dynamic scoping, when 'code' is eval'ed, JavaScript does not know objects +// from the "parent frame", e.g. JS('DTWidget') will not work unless it was made +// a global object +var DTWidget = {}; + +// 123456666.7890 -> 123,456,666.7890 +var markInterval = function(d, digits, interval, mark, decMark, precision) { + x = precision ? d.toPrecision(digits) : d.toFixed(digits); + if (!/^-?[\d.]+$/.test(x)) return x; + var xv = x.split('.'); + if (xv.length > 2) return x; // should have at most one decimal point + xv[0] = xv[0].replace(new RegExp('\\B(?=(\\d{' + interval + '})+(?!\\d))', 'g'), mark); + return xv.join(decMark); +}; + +DTWidget.formatCurrency = function(data, currency, digits, interval, mark, decMark, before, zeroPrint) { + var d = parseFloat(data); + if (isNaN(d)) return ''; + if (zeroPrint !== null && d === 0.0) return zeroPrint; + var res = markInterval(d, digits, interval, mark, decMark); + res = before ? (/^-/.test(res) ? '-' + currency + res.replace(/^-/, '') : currency + res) : + res + currency; + return res; +}; + +DTWidget.formatString = function(data, prefix, suffix) { + var d = data; + if (d === null) return ''; + return prefix + d + suffix; +}; + +DTWidget.formatPercentage = function(data, digits, interval, mark, decMark, zeroPrint) { + var d = parseFloat(data); + if (isNaN(d)) return ''; + if (zeroPrint !== null && d === 0.0) return zeroPrint; + return markInterval(d * 100, digits, interval, mark, decMark) + '%'; +}; + +DTWidget.formatRound = function(data, digits, interval, mark, decMark, zeroPrint) { + var d = parseFloat(data); + if (isNaN(d)) return ''; + if (zeroPrint !== null && d === 0.0) return zeroPrint; + return markInterval(d, digits, interval, mark, decMark); +}; + +DTWidget.formatSignif = function(data, digits, interval, mark, decMark, zeroPrint) { + var d = parseFloat(data); + if (isNaN(d)) return ''; + if (zeroPrint !== null && d === 0.0) return zeroPrint; + return markInterval(d, digits, interval, mark, decMark, true); +}; + +DTWidget.formatDate = function(data, method, params) { + var d = data; + if (d === null) return ''; + // (new Date('2015-10-28')).toDateString() may return 2015-10-27 because the + // actual time created could be like 'Tue Oct 27 2015 19:00:00 GMT-0500 (CDT)', + // i.e. the date-only string is treated as UTC time instead of local time + if ((method === 'toDateString' || method === 'toLocaleDateString') && /^\d{4,}\D\d{2}\D\d{2}$/.test(d)) { + d = d.split(/\D/); + d = new Date(d[0], d[1] - 1, d[2]); + } else { + d = new Date(d); + } + return d[method].apply(d, params); +}; + +window.DTWidget = DTWidget; + +// A helper function to update the properties of existing filters +var setFilterProps = function(td, props) { + // Update enabled/disabled state + var $input = $(td).find('input').first(); + var searchable = $input.data('searchable'); + $input.prop('disabled', !searchable || props.disabled); + + // Based on the filter type, set its new values + var type = td.getAttribute('data-type'); + if (['factor', 'logical'].includes(type)) { + // Reformat the new dropdown options for use with selectize + var new_vals = props.params.options.map(function(item) { + return { text: item, value: item }; + }); + + // Find the selectize object + var dropdown = $(td).find('.selectized').eq(0)[0].selectize; + + // Note the current values + var old_vals = dropdown.getValue(); + + // Remove the existing values + dropdown.clearOptions(); + + // Add the new options + dropdown.addOption(new_vals); + + // Preserve the existing values + dropdown.setValue(old_vals); + + } else if (['number', 'integer', 'date', 'time'].includes(type)) { + // Apply internal scaling to new limits. Updating scale not yet implemented. + var slider = $(td).find('.noUi-target').eq(0); + var scale = Math.pow(10, Math.max(0, +slider.data('scale') || 0)); + var new_vals = [props.params.min * scale, props.params.max * scale]; + + // Note what the new limits will be just for this filter + var new_lims = new_vals.slice(); + + // Determine the current values and limits + var old_vals = slider.val().map(Number); + var old_lims = slider.noUiSlider('options').range; + old_lims = [old_lims.min, old_lims.max]; + + // Preserve the current values if filters have been applied; otherwise, apply no filtering + if (old_vals[0] != old_lims[0]) { + new_vals[0] = Math.max(old_vals[0], new_vals[0]); + } + + if (old_vals[1] != old_lims[1]) { + new_vals[1] = Math.min(old_vals[1], new_vals[1]); + } + + // Update the endpoints of the slider + slider.noUiSlider({ + start: new_vals, + range: {'min': new_lims[0], 'max': new_lims[1]} + }, true); + } +}; + +var transposeArray2D = function(a) { + return a.length === 0 ? a : HTMLWidgets.transposeArray2D(a); +}; + +var crosstalkPluginsInstalled = false; + +function maybeInstallCrosstalkPlugins() { + if (crosstalkPluginsInstalled) + return; + crosstalkPluginsInstalled = true; + + $.fn.dataTable.ext.afnFiltering.push( + function(oSettings, aData, iDataIndex) { + var ctfilter = oSettings.nTable.ctfilter; + if (ctfilter && !ctfilter[iDataIndex]) + return false; + + var ctselect = oSettings.nTable.ctselect; + if (ctselect && !ctselect[iDataIndex]) + return false; + + return true; + } + ); +} + +HTMLWidgets.widget({ + name: "datatables", + type: "output", + renderOnNullValue: true, + initialize: function(el, width, height) { + // in order that the type=number inputs return a number + $.valHooks.number = { + get: function(el) { + var value = parseFloat(el.value); + return isNaN(value) ? "" : value; + } + }; + $(el).html(' '); + return { + data: null, + ctfilterHandle: new crosstalk.FilterHandle(), + ctfilterSubscription: null, + ctselectHandle: new crosstalk.SelectionHandle(), + ctselectSubscription: null + }; + }, + renderValue: function(el, data, instance) { + if (el.offsetWidth === 0 || el.offsetHeight === 0) { + instance.data = data; + return; + } + instance.data = null; + var $el = $(el); + $el.empty(); + + if (data === null) { + $el.append(' '); + // clear previous Shiny inputs (if any) + for (var i in instance.clearInputs) instance.clearInputs[i](); + instance.clearInputs = {}; + return; + } + + var crosstalkOptions = data.crosstalkOptions; + if (!crosstalkOptions) crosstalkOptions = { + 'key': null, 'group': null + }; + if (crosstalkOptions.group) { + maybeInstallCrosstalkPlugins(); + instance.ctfilterHandle.setGroup(crosstalkOptions.group); + instance.ctselectHandle.setGroup(crosstalkOptions.group); + } + + // if we are in the viewer then we always want to fillContainer and + // and autoHideNavigation (unless the user has explicitly set these) + if (window.HTMLWidgets.viewerMode) { + if (!data.hasOwnProperty("fillContainer")) + data.fillContainer = true; + if (!data.hasOwnProperty("autoHideNavigation")) + data.autoHideNavigation = true; + } + + // propagate fillContainer to instance (so we have it in resize) + instance.fillContainer = data.fillContainer; + + var cells = data.data; + + if (cells instanceof Array) cells = transposeArray2D(cells); + + $el.append(data.container); + var $table = $el.find('table'); + if (data.class) $table.addClass(data.class); + if (data.caption) $table.prepend(data.caption); + + if (!data.selection) data.selection = { + mode: 'none', selected: null, target: 'row', selectable: null + }; + if (HTMLWidgets.shinyMode && data.selection.mode !== 'none' && + data.selection.target === 'row+column') { + if ($table.children('tfoot').length === 0) { + $table.append($('')); + $table.find('thead tr').clone().appendTo($table.find('tfoot')); + } + } + + // column filters + var filterRow; + switch (data.filter) { + case 'top': + $table.children('thead').append(data.filterHTML); + filterRow = $table.find('thead tr:last td'); + break; + case 'bottom': + if ($table.children('tfoot').length === 0) { + $table.append($('')); + } + $table.children('tfoot').prepend(data.filterHTML); + filterRow = $table.find('tfoot tr:first td'); + break; + } + + var options = { searchDelay: 1000 }; + if (cells !== null) $.extend(options, { + data: cells + }); + + // options for fillContainer + var bootstrapActive = typeof($.fn.popover) != 'undefined'; + if (instance.fillContainer) { + + // force scrollX/scrollY and turn off autoWidth + options.scrollX = true; + options.scrollY = "100px"; // can be any value, we'll adjust below + + // if we aren't paginating then move around the info/filter controls + // to save space at the bottom and rephrase the info callback + if (data.options.paging === false) { + + // we know how to do this cleanly for bootstrap, not so much + // for other themes/layouts + if (bootstrapActive) { + options.dom = "<'row'<'col-sm-4'i><'col-sm-8'f>>" + + "<'row'<'col-sm-12'tr>>"; + } + + options.fnInfoCallback = function(oSettings, iStart, iEnd, + iMax, iTotal, sPre) { + return Number(iTotal).toLocaleString() + " records"; + }; + } + } + + // auto hide navigation if requested + // Note, this only works on client-side processing mode as on server-side, + // cells (data.data) is null; In addition, we require the pageLength option + // being provided explicitly to enable this. Despite we may be able to deduce + // the default value of pageLength, it may complicate things so we'd rather + // put this responsiblity to users and warn them on the R side. + if (data.autoHideNavigation === true && data.options.paging !== false) { + // strip all nav if length >= cells + if ((cells instanceof Array) && data.options.pageLength >= cells.length) + options.dom = bootstrapActive ? "<'row'<'col-sm-12'tr>>" : "t"; + // alternatively lean things out for flexdashboard mobile portrait + else if (bootstrapActive && window.FlexDashboard && window.FlexDashboard.isMobilePhone()) + options.dom = "<'row'<'col-sm-12'f>>" + + "<'row'<'col-sm-12'tr>>" + + "<'row'<'col-sm-12'p>>"; + } + + $.extend(true, options, data.options || {}); + + var searchCols = options.searchCols; + if (searchCols) { + searchCols = searchCols.map(function(x) { + return x === null ? '' : x.search; + }); + // FIXME: this means I don't respect the escapeRegex setting + delete options.searchCols; + } + + // server-side processing? + var server = options.serverSide === true; + + // use the dataSrc function to pre-process JSON data returned from R + var DT_rows_all = [], DT_rows_current = []; + if (server && HTMLWidgets.shinyMode && typeof options.ajax === 'object' && + /^session\/[\da-z]+\/dataobj/.test(options.ajax.url) && !options.ajax.dataSrc) { + options.ajax.dataSrc = function(json) { + DT_rows_all = $.makeArray(json.DT_rows_all); + DT_rows_current = $.makeArray(json.DT_rows_current); + var data = json.data; + if (!colReorderEnabled()) return data; + var table = $table.DataTable(), order = table.colReorder.order(), flag = true, i, j, row; + for (i = 0; i < order.length; ++i) if (order[i] !== i) flag = false; + if (flag) return data; + for (i = 0; i < data.length; ++i) { + row = data[i].slice(); + for (j = 0; j < order.length; ++j) data[i][j] = row[order[j]]; + } + return data; + }; + } + + var thiz = this; + if (instance.fillContainer) $table.on('init.dt', function(e) { + thiz.fillAvailableHeight(el, $(el).innerHeight()); + }); + // If the page contains serveral datatables and one of which enables colReorder, + // the table.colReorder.order() function will exist but throws error when called. + // So it seems like the only way to know if colReorder is enabled or not is to + // check the options. + var colReorderEnabled = function() { return "colReorder" in options; }; + var table = $table.DataTable(options); + $el.data('datatable', table); + + if ('rowGroup' in options) { + // Maintain RowGroup dataSrc when columns are reordered (#1109) + table.on('column-reorder', function(e, settings, details) { + var oldDataSrc = table.rowGroup().dataSrc(); + var newDataSrc = details.mapping[oldDataSrc]; + table.rowGroup().dataSrc(newDataSrc); + }); + } + + // Unregister previous Crosstalk event subscriptions, if they exist + if (instance.ctfilterSubscription) { + instance.ctfilterHandle.off("change", instance.ctfilterSubscription); + instance.ctfilterSubscription = null; + } + if (instance.ctselectSubscription) { + instance.ctselectHandle.off("change", instance.ctselectSubscription); + instance.ctselectSubscription = null; + } + + if (!crosstalkOptions.group) { + $table[0].ctfilter = null; + $table[0].ctselect = null; + } else { + var key = crosstalkOptions.key; + function keysToMatches(keys) { + if (!keys) { + return null; + } else { + var selectedKeys = {}; + for (var i = 0; i < keys.length; i++) { + selectedKeys[keys[i]] = true; + } + var matches = {}; + for (var j = 0; j < key.length; j++) { + if (selectedKeys[key[j]]) + matches[j] = true; + } + return matches; + } + } + + function applyCrosstalkFilter(e) { + $table[0].ctfilter = keysToMatches(e.value); + table.draw(); + } + instance.ctfilterSubscription = instance.ctfilterHandle.on("change", applyCrosstalkFilter); + applyCrosstalkFilter({value: instance.ctfilterHandle.filteredKeys}); + + function applyCrosstalkSelection(e) { + if (e.sender !== instance.ctselectHandle) { + table + .rows('.' + selClass, {search: 'applied'}) + .nodes() + .to$() + .removeClass(selClass); + if (selectedRows) + changeInput('rows_selected', selectedRows(), void 0, true); + } + + if (e.sender !== instance.ctselectHandle && e.value && e.value.length) { + var matches = keysToMatches(e.value); + + // persistent selection with plotly (& leaflet) + var ctOpts = crosstalk.var("plotlyCrosstalkOpts").get() || {}; + if (ctOpts.persistent === true) { + var matches = $.extend(matches, $table[0].ctselect); + } + + $table[0].ctselect = matches; + table.draw(); + } else { + if ($table[0].ctselect) { + $table[0].ctselect = null; + table.draw(); + } + } + } + instance.ctselectSubscription = instance.ctselectHandle.on("change", applyCrosstalkSelection); + // TODO: This next line doesn't seem to work when renderDataTable is used + applyCrosstalkSelection({value: instance.ctselectHandle.value}); + } + + var inArray = function(val, array) { + return $.inArray(val, $.makeArray(array)) > -1; + }; + + // search the i-th column + var searchColumn = function(i, value) { + var regex = false, ci = true; + if (options.search) { + regex = options.search.regex, + ci = options.search.caseInsensitive !== false; + } + // need to transpose the column index when colReorder is enabled + if (table.colReorder) i = table.colReorder.transpose(i); + return table.column(i).search(value, regex, !regex, ci); + }; + + if (data.filter !== 'none') { + if (!data.hasOwnProperty('filterSettings')) data.filterSettings = {}; + + filterRow.each(function(i, td) { + + var $td = $(td), type = $td.data('type'), filter; + var $input = $td.children('div').first().children('input'); + var disabled = $input.prop('disabled'); + var searchable = table.settings()[0].aoColumns[i].bSearchable; + $input.prop('disabled', !searchable || disabled); + $input.data('searchable', searchable); // for updating later + $input.on('input blur', function() { + $input.next('span').toggle(Boolean($input.val())); + }); + // Bootstrap sets pointer-events to none and we won't be able to click + // the clear button + $input.next('span').css('pointer-events', 'auto').hide().click(function() { + $(this).hide().prev('input').val('').trigger('input').focus(); + }); + var searchCol; // search string for this column + if (searchCols && searchCols[i]) { + searchCol = searchCols[i]; + $input.val(searchCol).trigger('input'); + } + var $x = $td.children('div').last(); + + // remove the overflow: hidden attribute of the scrollHead + // (otherwise the scrolling table body obscures the filters) + // The workaround and the discussion from + // https://github.com/rstudio/DT/issues/554#issuecomment-518007347 + // Otherwise the filter selection will not be anchored to the values + // when the columns number is many and scrollX is enabled. + var scrollHead = $(el).find('.dataTables_scrollHead,.dataTables_scrollFoot'); + var cssOverflowHead = scrollHead.css('overflow'); + var scrollBody = $(el).find('.dataTables_scrollBody'); + var cssOverflowBody = scrollBody.css('overflow'); + var scrollTable = $(el).find('.dataTables_scroll'); + var cssOverflowTable = scrollTable.css('overflow'); + if (cssOverflowHead === 'hidden') { + $x.on('show hide', function(e) { + if (e.type === 'show') { + scrollHead.css('overflow', 'visible'); + scrollBody.css('overflow', 'visible'); + scrollTable.css('overflow-x', 'scroll'); + } else { + scrollHead.css('overflow', cssOverflowHead); + scrollBody.css('overflow', cssOverflowBody); + scrollTable.css('overflow-x', cssOverflowTable); + } + }); + $x.css('z-index', 25); + } + + if (inArray(type, ['factor', 'logical'])) { + $input.on({ + click: function() { + $input.parent().hide(); $x.show().trigger('show'); filter[0].selectize.focus(); + }, + input: function() { + var v1 = JSON.stringify(filter[0].selectize.getValue()), v2 = $input.val(); + if (v1 === '[]') v1 = ''; + if (v1 !== v2) filter[0].selectize.setValue(v2 === '' ? [] : JSON.parse(v2)); + } + }); + var $input2 = $x.children('select'); + filter = $input2.selectize($.extend({ + options: $input2.data('options').map(function(v, i) { + return ({text: v, value: v}); + }), + plugins: ['remove_button'], + hideSelected: true, + onChange: function(value) { + if (value === null) value = []; // compatibility with jQuery 3.0 + $input.val(value.length ? JSON.stringify(value) : ''); + if (value.length) $input.trigger('input'); + $input.attr('title', $input.val()); + if (server) { + searchColumn(i, value.length ? JSON.stringify(value) : '').draw(); + return; + } + // turn off filter if nothing selected + $td.data('filter', value.length > 0); + table.draw(); // redraw table, and filters will be applied + } + }, data.filterSettings.select)); + filter[0].selectize.on('blur', function() { + $x.hide().trigger('hide'); $input.parent().show(); $input.trigger('blur'); + }); + filter.next('div').css('margin-bottom', 'auto'); + } else if (type === 'character') { + var fun = function() { + searchColumn(i, $input.val()).draw(); + }; + // throttle searching for server-side processing + var throttledFun = $.fn.dataTable.util.throttle(fun, options.searchDelay); + $input.on('input', function(e, immediate) { + // always bypass throttling when immediate = true (via the updateSearch method) + (immediate || !server) ? fun() : throttledFun(); + }); + } else if (inArray(type, ['number', 'integer', 'date', 'time'])) { + var $x0 = $x; + $x = $x0.children('div').first(); + $x0.css({ + 'background-color': '#fff', + 'border': '1px #ddd solid', + 'border-radius': '4px', + 'padding': data.vertical ? '35px 20px': '20px 20px 10px 20px' + }); + var $spans = $x0.children('span').css({ + 'margin-top': data.vertical ? '0' : '10px', + 'white-space': 'nowrap' + }); + var $span1 = $spans.first(), $span2 = $spans.last(); + var r1 = +$x.data('min'), r2 = +$x.data('max'); + // when the numbers are too small or have many decimal places, the + // slider may have numeric precision problems (#150) + var scale = Math.pow(10, Math.max(0, +$x.data('scale') || 0)); + r1 = Math.round(r1 * scale); r2 = Math.round(r2 * scale); + var scaleBack = function(x, scale) { + if (scale === 1) return x; + var d = Math.round(Math.log(scale) / Math.log(10)); + // to avoid problems like 3.423/100 -> 0.034230000000000003 + return (x / scale).toFixed(d); + }; + var slider_min = function() { + return filter.noUiSlider('options').range.min; + }; + var slider_max = function() { + return filter.noUiSlider('options').range.max; + }; + $input.on({ + focus: function() { + $x0.show().trigger('show'); + // first, make sure the slider div leaves at least 20px between + // the two (slider value) span's + $x0.width(Math.max(160, $span1.outerWidth() + $span2.outerWidth() + 20)); + // then, if the input is really wide or slider is vertical, + // make the slider the same width as the input + if ($x0.outerWidth() < $input.outerWidth() || data.vertical) { + $x0.outerWidth($input.outerWidth()); + } + // make sure the slider div does not reach beyond the right margin + if ($(window).width() < $x0.offset().left + $x0.width()) { + $x0.offset({ + 'left': $input.offset().left + $input.outerWidth() - $x0.outerWidth() + }); + } + }, + blur: function() { + $x0.hide().trigger('hide'); + }, + input: function() { + if ($input.val() === '') filter.val([slider_min(), slider_max()]); + }, + change: function() { + var v = $input.val().replace(/\s/g, ''); + if (v === '') return; + v = v.split('...'); + if (v.length !== 2) { + $input.parent().addClass('has-error'); + return; + } + if (v[0] === '') v[0] = slider_min(); + if (v[1] === '') v[1] = slider_max(); + $input.parent().removeClass('has-error'); + // treat date as UTC time at midnight + var strTime = function(x) { + var s = type === 'date' ? 'T00:00:00Z' : ''; + var t = new Date(x + s).getTime(); + // add 10 minutes to date since it does not hurt the date, and + // it helps avoid the tricky floating point arithmetic problems, + // e.g. sometimes the date may be a few milliseconds earlier + // than the midnight due to precision problems in noUiSlider + return type === 'date' ? t + 3600000 : t; + }; + if (inArray(type, ['date', 'time'])) { + v[0] = strTime(v[0]); + v[1] = strTime(v[1]); + } + if (v[0] != slider_min()) v[0] *= scale; + if (v[1] != slider_max()) v[1] *= scale; + filter.val(v); + } + }); + var formatDate = function(d) { + d = scaleBack(d, scale); + if (type === 'number') return d; + if (type === 'integer') return parseInt(d); + var x = new Date(+d); + if (type === 'date') { + var pad0 = function(x) { + return ('0' + x).substr(-2, 2); + }; + return x.getUTCFullYear() + '-' + pad0(1 + x.getUTCMonth()) + + '-' + pad0(x.getUTCDate()); + } else { + return x.toISOString(); + } + }; + var opts = type === 'date' ? { step: 60 * 60 * 1000 } : + type === 'integer' ? { step: 1 } : {}; + + opts.orientation = data.vertical ? 'vertical': 'horizontal'; + opts.direction = data.vertical ? 'rtl': 'ltr'; + + filter = $x.noUiSlider($.extend({ + start: [r1, r2], + range: {min: r1, max: r2}, + connect: true + }, opts, data.filterSettings.slider)); + if (scale > 1) (function() { + var t1 = r1, t2 = r2; + var val = filter.val(); + while (val[0] > r1 || val[1] < r2) { + if (val[0] > r1) { + t1 -= val[0] - r1; + } + if (val[1] < r2) { + t2 += r2 - val[1]; + } + filter = $x.noUiSlider($.extend({ + start: [t1, t2], + range: {min: t1, max: t2}, + connect: true + }, opts, data.filterSettings.slider), true); + val = filter.val(); + } + r1 = t1; r2 = t2; + })(); + // format with active column renderer, if defined + var colDef = data.options.columnDefs.find(function(def) { + return (def.targets === i || inArray(i, def.targets)) && 'render' in def; + }); + var updateSliderText = function(v1, v2) { + // we only know how to use function renderers + if (colDef && typeof colDef.render === 'function') { + var restore = function(v) { + v = scaleBack(v, scale); + return inArray(type, ['date', 'time']) ? new Date(+v) : v; + } + $span1.text(colDef.render(restore(v1), 'display')); + $span2.text(colDef.render(restore(v2), 'display')); + } else { + $span1.text(formatDate(v1)); + $span2.text(formatDate(v2)); + } + }; + updateSliderText(r1, r2); + var updateSlider = function(e) { + var val = filter.val(); + // turn off filter if in full range + $td.data('filter', val[0] > slider_min() || val[1] < slider_max()); + var v1 = formatDate(val[0]), v2 = formatDate(val[1]), ival; + if ($td.data('filter')) { + ival = v1 + ' ... ' + v2; + $input.attr('title', ival).val(ival).trigger('input'); + } else { + $input.attr('title', '').val(''); + } + updateSliderText(val[0], val[1]); + if (e.type === 'slide') return; // no searching when sliding only + if (server) { + searchColumn(i, $td.data('filter') ? ival : '').draw(); + return; + } + table.draw(); + }; + filter.on({ + set: updateSlider, + slide: updateSlider + }); + } + + // server-side processing will be handled by R (or whatever server + // language you use); the following code is only needed for client-side + // processing + if (server) { + // if a search string has been pre-set, search now + if (searchCol) $input.trigger('input').trigger('change'); + return; + } + + var customFilter = function(settings, data, dataIndex) { + // there is no way to attach a search function to a specific table, + // and we need to make sure a global search function is not applied to + // all tables (i.e. a range filter in a previous table should not be + // applied to the current table); we use the settings object to + // determine if we want to perform searching on the current table, + // since settings.sTableId will be different to different tables + if (table.settings()[0] !== settings) return true; + // no filter on this column or no need to filter this column + if (typeof filter === 'undefined' || !$td.data('filter')) return true; + + var r = filter.val(), v, r0, r1; + var i_data = function(i) { + if (!colReorderEnabled()) return i; + var order = table.colReorder.order(), k; + for (k = 0; k < order.length; ++k) if (order[k] === i) return k; + return i; // in theory it will never be here... + } + v = data[i_data(i)]; + if (type === 'number' || type === 'integer') { + v = parseFloat(v); + // how to handle NaN? currently exclude these rows + if (isNaN(v)) return(false); + r0 = parseFloat(scaleBack(r[0], scale)) + r1 = parseFloat(scaleBack(r[1], scale)); + if (v >= r0 && v <= r1) return true; + } else if (type === 'date' || type === 'time') { + v = new Date(v); + r0 = new Date(r[0] / scale); r1 = new Date(r[1] / scale); + if (v >= r0 && v <= r1) return true; + } else if (type === 'factor') { + if (r.length === 0 || inArray(v, r)) return true; + } else if (type === 'logical') { + if (r.length === 0) return true; + if (inArray(v === '' ? 'na' : v, r)) return true; + } + return false; + }; + + $.fn.dataTable.ext.search.push(customFilter); + + // search for the preset search strings if it is non-empty + if (searchCol) $input.trigger('input').trigger('change'); + + }); + + } + + // highlight search keywords + var highlight = function() { + var body = $(table.table().body()); + // removing the old highlighting first + body.unhighlight(); + + // don't highlight the "not found" row, so we get the rows using the api + if (table.rows({ filter: 'applied' }).data().length === 0) return; + // highlight global search keywords + body.highlight($.trim(table.search()).split(/\s+/)); + // then highlight keywords from individual column filters + if (filterRow) filterRow.each(function(i, td) { + var $td = $(td), type = $td.data('type'); + if (type !== 'character') return; + var $input = $td.children('div').first().children('input'); + var column = table.column(i).nodes().to$(), + val = $.trim($input.val()); + if (type !== 'character' || val === '') return; + column.highlight(val.split(/\s+/)); + }); + }; + + if (options.searchHighlight) { + table + .on('draw.dt.dth column-visibility.dt.dth column-reorder.dt.dth', highlight) + .on('destroy', function() { + // remove event handler + table.off('draw.dt.dth column-visibility.dt.dth column-reorder.dt.dth'); + }); + + // Set the option for escaping regex characters in our search string. This will be used + // for all future matching. + jQuery.fn.highlight.options.escapeRegex = (!options.search || !options.search.regex); + + // initial highlight for state saved conditions and initial states + highlight(); + } + + // run the callback function on the table instance + if (typeof data.callback === 'function') data.callback(table); + + // double click to edit the cell, row, column, or all cells + if (data.editable) table.on('dblclick.dt', 'tbody td', function(e) { + // only bring up the editor when the cell itself is dbclicked, and ignore + // other dbclick events bubbled up (e.g. from the ) + if (e.target !== this) return; + var target = [], immediate = false; + switch (data.editable.target) { + case 'cell': + target = [this]; + immediate = true; // edit will take effect immediately + break; + case 'row': + target = table.cells(table.cell(this).index().row, '*').nodes(); + break; + case 'column': + target = table.cells('*', table.cell(this).index().column).nodes(); + break; + case 'all': + target = table.cells().nodes(); + break; + default: + throw 'The editable parameter must be "cell", "row", "column", or "all"'; + } + var disableCols = data.editable.disable ? data.editable.disable.columns : null; + var numericCols = data.editable.numeric; + var areaCols = data.editable.area; + var dateCols = data.editable.date; + for (var i = 0; i < target.length; i++) { + (function(cell, current) { + var $cell = $(cell), html = $cell.html(); + var _cell = table.cell(cell), value = _cell.data(), index = _cell.index().column; + var $input; + if (inArray(index, numericCols)) { + $input = $(''); + } else if (inArray(index, areaCols)) { + $input = $(''); + } else if (inArray(index, dateCols)) { + $input = $(''); + } else { + $input = $(''); + } + if (!immediate) { + $cell.data('input', $input).data('html', html); + $input.attr('title', 'Hit Ctrl+Enter to finish editing, or Esc to cancel'); + } + $input.val(value); + if (inArray(index, disableCols)) { + $input.attr('readonly', '').css('filter', 'invert(25%)'); + } + $cell.empty().append($input); + if (cell === current) $input.focus(); + $input.css('width', '100%'); + + if (immediate) $input.on('blur', function(e) { + var valueNew = $input.val(); + if (valueNew !== value) { + _cell.data(valueNew); + if (HTMLWidgets.shinyMode) { + changeInput('cell_edit', [cellInfo(cell)], 'DT.cellInfo', null, {priority: 'event'}); + } + // for server-side processing, users have to call replaceData() to update the table + if (!server) table.draw(false); + } else { + $cell.html(html); + } + }).on('keyup', function(e) { + // hit Escape to cancel editing + if (e.keyCode === 27) $input.trigger('blur'); + }); + + // bulk edit (row, column, or all) + if (!immediate) $input.on('keyup', function(e) { + var removeInput = function($cell, restore) { + $cell.data('input').remove(); + if (restore) $cell.html($cell.data('html')); + } + if (e.keyCode === 27) { + for (var i = 0; i < target.length; i++) { + removeInput($(target[i]), true); + } + } else if (e.keyCode === 13 && e.ctrlKey) { + // Ctrl + Enter + var cell, $cell, _cell, cellData = []; + for (var i = 0; i < target.length; i++) { + cell = target[i]; $cell = $(cell); _cell = table.cell(cell); + _cell.data($cell.data('input').val()); + HTMLWidgets.shinyMode && cellData.push(cellInfo(cell)); + removeInput($cell, false); + } + if (HTMLWidgets.shinyMode) { + changeInput('cell_edit', cellData, 'DT.cellInfo', null, {priority: "event"}); + } + if (!server) table.draw(false); + } + }); + })(target[i], this); + } + }); + + // interaction with shiny + if (!HTMLWidgets.shinyMode && !crosstalkOptions.group) return; + + var methods = {}; + var shinyData = {}; + + methods.updateCaption = function(caption) { + if (!caption) return; + $table.children('caption').replaceWith(caption); + } + + // register clear functions to remove input values when the table is removed + instance.clearInputs = {}; + + var changeInput = function(id, value, type, noCrosstalk, opts) { + var event = id; + id = el.id + '_' + id; + if (type) id = id + ':' + type; + // do not update if the new value is the same as old value + if (event !== 'cell_edit' && !/_clicked$/.test(event) && shinyData.hasOwnProperty(id) && shinyData[id] === JSON.stringify(value)) + return; + shinyData[id] = JSON.stringify(value); + if (HTMLWidgets.shinyMode && Shiny.setInputValue) { + Shiny.setInputValue(id, value, opts); + if (!instance.clearInputs[id]) instance.clearInputs[id] = function() { + Shiny.setInputValue(id, null); + } + } + + // HACK + if (event === "rows_selected" && !noCrosstalk) { + if (crosstalkOptions.group) { + var keys = crosstalkOptions.key; + var selectedKeys = null; + if (value) { + selectedKeys = []; + for (var i = 0; i < value.length; i++) { + // The value array's contents use 1-based row numbers, so we must + // convert to 0-based before indexing into the keys array. + selectedKeys.push(keys[value[i] - 1]); + } + } + instance.ctselectHandle.set(selectedKeys); + } + } + }; + + var addOne = function(x) { + return x.map(function(i) { return 1 + i; }); + }; + + var unique = function(x) { + var ux = []; + $.each(x, function(i, el){ + if ($.inArray(el, ux) === -1) ux.push(el); + }); + return ux; + } + + // change the row index of a cell + var tweakCellIndex = function(cell) { + var info = cell.index(); + // some cell may not be valid. e.g, #759 + // when using the RowGroup extension, datatables will + // generate the row label and the cells are not part of + // the data thus contain no row/col info + if (info === undefined) + return {row: null, col: null}; + if (server) { + info.row = DT_rows_current[info.row]; + } else { + info.row += 1; + } + return {row: info.row, col: info.column}; + } + + var cleanSelectedValues = function() { + changeInput('rows_selected', []); + changeInput('columns_selected', []); + changeInput('cells_selected', transposeArray2D([]), 'shiny.matrix'); + } + // #828 we should clean the selection on the server-side when the table reloads + cleanSelectedValues(); + + // a flag to indicates if select extension is initialized or not + var flagSelectExt = table.settings()[0]._select !== undefined; + // the Select extension should only be used in the client mode and + // when the selection.mode is set to none + if (data.selection.mode === 'none' && !server && flagSelectExt) { + var updateRowsSelected = function() { + var rows = table.rows({selected: true}); + var selected = []; + $.each(rows.indexes().toArray(), function(i, v) { + selected.push(v + 1); + }); + changeInput('rows_selected', selected); + } + var updateColsSelected = function() { + var columns = table.columns({selected: true}); + changeInput('columns_selected', columns.indexes().toArray()); + } + var updateCellsSelected = function() { + var cells = table.cells({selected: true}); + var selected = []; + cells.every(function() { + var row = this.index().row; + var col = this.index().column; + selected = selected.concat([[row + 1, col]]); + }); + changeInput('cells_selected', transposeArray2D(selected), 'shiny.matrix'); + } + table.on('select deselect', function(e, dt, type, indexes) { + updateRowsSelected(); + updateColsSelected(); + updateCellsSelected(); + }) + } + + var selMode = data.selection.mode, selTarget = data.selection.target; + var selDisable = data.selection.selectable === false; + if (inArray(selMode, ['single', 'multiple'])) { + var selClass = inArray(data.style, ['bootstrap', 'bootstrap4']) ? 'active' : 'selected'; + // selected1: row indices; selected2: column indices + var initSel = function(x) { + if (x === null || typeof x === 'boolean' || selTarget === 'cell') { + return {rows: [], cols: []}; + } else if (selTarget === 'row') { + return {rows: $.makeArray(x), cols: []}; + } else if (selTarget === 'column') { + return {rows: [], cols: $.makeArray(x)}; + } else if (selTarget === 'row+column') { + return {rows: $.makeArray(x.rows), cols: $.makeArray(x.cols)}; + } + } + var selected = data.selection.selected; + var selected1 = initSel(selected).rows, selected2 = initSel(selected).cols; + // selectable should contain either all positive or all non-positive values, not both + // positive values indicate "selectable" while non-positive values means "nonselectable" + // the assertion is performed on R side. (only column indicides could be zero which indicates + // the row name) + var selectable = data.selection.selectable; + var selectable1 = initSel(selectable).rows, selectable2 = initSel(selectable).cols; + + // After users reorder the rows or filter the table, we cannot use the table index + // directly. Instead, we need this function to find out the rows between the two clicks. + // If user filter the table again between the start click and the end click, the behavior + // would be undefined, but it should not be a problem. + var shiftSelRowsIndex = function(start, end) { + var indexes = server ? DT_rows_all : table.rows({ search: 'applied' }).indexes().toArray(); + start = indexes.indexOf(start); end = indexes.indexOf(end); + // if start is larger than end, we need to swap + if (start > end) { + var tmp = end; end = start; start = tmp; + } + return indexes.slice(start, end + 1); + } + + var serverRowIndex = function(clientRowIndex) { + return server ? DT_rows_current[clientRowIndex] : clientRowIndex + 1; + } + + // row, column, or cell selection + var lastClickedRow; + if (inArray(selTarget, ['row', 'row+column'])) { + // Get the current selected rows. It will also + // update the selected1's value based on the current row selection state + // Note we can't put this function inside selectRows() directly, + // the reason is method.selectRows() will override selected1's value but this + // function will add rows to selected1 (keep the existing selection), which is + // inconsistent with column and cell selection. + var selectedRows = function() { + var rows = table.rows('.' + selClass); + var idx = rows.indexes().toArray(); + if (!server) { + selected1 = addOne(idx); + return selected1; + } + idx = idx.map(function(i) { + return DT_rows_current[i]; + }); + selected1 = selMode === 'multiple' ? unique(selected1.concat(idx)) : idx; + return selected1; + } + // Change selected1's value based on selectable1, then refresh the row state + var onlyKeepSelectableRows = function() { + if (selDisable) { // users can't select; useful when only want backend select + selected1 = []; + return; + } + if (selectable1.length === 0) return; + var nonselectable = selectable1[0] <= 0; + if (nonselectable) { + // should make selectable1 positive + selected1 = $(selected1).not(selectable1.map(function(i) { return -i; })).get(); + } else { + selected1 = $(selected1).filter(selectable1).get(); + } + } + // Change selected1's value based on selectable1, then + // refresh the row selection state according to values in selected1 + var selectRows = function(ignoreSelectable) { + if (!ignoreSelectable) onlyKeepSelectableRows(); + table.$('tr.' + selClass).removeClass(selClass); + if (selected1.length === 0) return; + if (server) { + table.rows({page: 'current'}).every(function() { + if (inArray(DT_rows_current[this.index()], selected1)) { + $(this.node()).addClass(selClass); + } + }); + } else { + var selected0 = selected1.map(function(i) { return i - 1; }); + $(table.rows(selected0).nodes()).addClass(selClass); + } + } + table.on('mousedown.dt', 'tbody tr', function(e) { + var $this = $(this), thisRow = table.row(this); + if (selMode === 'multiple') { + if (e.shiftKey && lastClickedRow !== undefined) { + // select or de-select depends on the last clicked row's status + var flagSel = !$this.hasClass(selClass); + var crtClickedRow = serverRowIndex(thisRow.index()); + if (server) { + var rowsIndex = shiftSelRowsIndex(lastClickedRow, crtClickedRow); + // update current page's selClass + rowsIndex.map(function(i) { + var rowIndex = DT_rows_current.indexOf(i); + if (rowIndex >= 0) { + var row = table.row(rowIndex).nodes().to$(); + var flagRowSel = !row.hasClass(selClass); + if (flagSel === flagRowSel) row.toggleClass(selClass); + } + }); + // update selected1 + if (flagSel) { + selected1 = unique(selected1.concat(rowsIndex)); + } else { + selected1 = selected1.filter(function(index) { + return !inArray(index, rowsIndex); + }); + } + } else { + // js starts from 0 + shiftSelRowsIndex(lastClickedRow - 1, crtClickedRow - 1).map(function(value) { + var row = table.row(value).nodes().to$(); + var flagRowSel = !row.hasClass(selClass); + if (flagSel === flagRowSel) row.toggleClass(selClass); + }); + } + e.preventDefault(); + } else { + $this.toggleClass(selClass); + } + } else { + if ($this.hasClass(selClass)) { + $this.removeClass(selClass); + } else { + table.$('tr.' + selClass).removeClass(selClass); + $this.addClass(selClass); + } + } + if (server && !$this.hasClass(selClass)) { + var id = DT_rows_current[thisRow.index()]; + // remove id from selected1 since its class .selected has been removed + if (inArray(id, selected1)) selected1.splice($.inArray(id, selected1), 1); + } + selectedRows(); // update selected1's value based on selClass + selectRows(false); // only keep the selectable rows + changeInput('rows_selected', selected1); + changeInput('row_last_clicked', serverRowIndex(thisRow.index()), null, null, {priority: 'event'}); + lastClickedRow = serverRowIndex(thisRow.index()); + }); + selectRows(false); // in case users have specified pre-selected rows + // restore selected rows after the table is redrawn (e.g. sort/search/page); + // client-side tables will preserve the selections automatically; for + // server-side tables, we have to *real* row indices are in `selected1` + changeInput('rows_selected', selected1); + if (server) table.on('draw.dt', function(e) { selectRows(false); }); + methods.selectRows = function(selected, ignoreSelectable) { + selected1 = $.makeArray(selected); + selectRows(ignoreSelectable); + changeInput('rows_selected', selected1); + } + } + + if (inArray(selTarget, ['column', 'row+column'])) { + if (selTarget === 'row+column') { + $(table.columns().footer()).css('cursor', 'pointer'); + } + // update selected2's value based on selectable2 + var onlyKeepSelectableCols = function() { + if (selDisable) { // users can't select; useful when only want backend select + selected2 = []; + return; + } + if (selectable2.length === 0) return; + var nonselectable = selectable2[0] <= 0; + if (nonselectable) { + // need to make selectable2 positive + selected2 = $(selected2).not(selectable2.map(function(i) { return -i; })).get(); + } else { + selected2 = $(selected2).filter(selectable2).get(); + } + } + // update selected2 and then + // refresh the col selection state according to values in selected2 + var selectCols = function(ignoreSelectable) { + if (!ignoreSelectable) onlyKeepSelectableCols(); + // if selected2 is not a valide index (e.g., larger than the column number) + // table.columns(selected2) will fail and result in a blank table + // this is different from the table.rows(), where the out-of-range indexes + // doesn't affect at all + selected2 = $(selected2).filter(table.columns().indexes()).get(); + table.columns().nodes().flatten().to$().removeClass(selClass); + if (selected2.length > 0) + table.columns(selected2).nodes().flatten().to$().addClass(selClass); + } + var callback = function() { + var colIdx = selTarget === 'column' ? table.cell(this).index().column : + $.inArray(this, table.columns().footer()), + thisCol = $(table.column(colIdx).nodes()); + if (colIdx === -1) return; + if (thisCol.hasClass(selClass)) { + thisCol.removeClass(selClass); + selected2.splice($.inArray(colIdx, selected2), 1); + } else { + if (selMode === 'single') $(table.cells().nodes()).removeClass(selClass); + thisCol.addClass(selClass); + selected2 = selMode === 'single' ? [colIdx] : unique(selected2.concat([colIdx])); + } + selectCols(false); // update selected2 based on selectable + changeInput('columns_selected', selected2); + } + if (selTarget === 'column') { + $(table.table().body()).on('click.dt', 'td', callback); + } else { + $(table.table().footer()).on('click.dt', 'tr th', callback); + } + selectCols(false); // in case users have specified pre-selected columns + changeInput('columns_selected', selected2); + if (server) table.on('draw.dt', function(e) { selectCols(false); }); + methods.selectColumns = function(selected, ignoreSelectable) { + selected2 = $.makeArray(selected); + selectCols(ignoreSelectable); + changeInput('columns_selected', selected2); + } + } + + if (selTarget === 'cell') { + var selected3 = [], selectable3 = []; + if (selected !== null) selected3 = selected; + if (selectable !== null && typeof selectable !== 'boolean') selectable3 = selectable; + var findIndex = function(ij, sel) { + for (var i = 0; i < sel.length; i++) { + if (ij[0] === sel[i][0] && ij[1] === sel[i][1]) return i; + } + return -1; + } + // Change selected3's value based on selectable3, then refresh the cell state + var onlyKeepSelectableCells = function() { + if (selDisable) { // users can't select; useful when only want backend select + selected3 = []; + return; + } + if (selectable3.length === 0) return; + var nonselectable = selectable3[0][0] <= 0; + var out = []; + if (nonselectable) { + selected3.map(function(ij) { + // should make selectable3 positive + if (findIndex([-ij[0], -ij[1]], selectable3) === -1) { out.push(ij); } + }); + } else { + selected3.map(function(ij) { + if (findIndex(ij, selectable3) > -1) { out.push(ij); } + }); + } + selected3 = out; + } + // Change selected3's value based on selectable3, then + // refresh the cell selection state according to values in selected3 + var selectCells = function(ignoreSelectable) { + if (!ignoreSelectable) onlyKeepSelectableCells(); + table.$('td.' + selClass).removeClass(selClass); + if (selected3.length === 0) return; + if (server) { + table.cells({page: 'current'}).every(function() { + var info = tweakCellIndex(this); + if (findIndex([info.row, info.col], selected3) > -1) + $(this.node()).addClass(selClass); + }); + } else { + selected3.map(function(ij) { + $(table.cell(ij[0] - 1, ij[1]).node()).addClass(selClass); + }); + } + }; + table.on('click.dt', 'tbody td', function() { + var $this = $(this), info = tweakCellIndex(table.cell(this)); + if ($this.hasClass(selClass)) { + $this.removeClass(selClass); + selected3.splice(findIndex([info.row, info.col], selected3), 1); + } else { + if (selMode === 'single') $(table.cells().nodes()).removeClass(selClass); + $this.addClass(selClass); + selected3 = selMode === 'single' ? [[info.row, info.col]] : + unique(selected3.concat([[info.row, info.col]])); + } + selectCells(false); // must call this to update selected3 based on selectable3 + changeInput('cells_selected', transposeArray2D(selected3), 'shiny.matrix'); + }); + selectCells(false); // in case users have specified pre-selected columns + changeInput('cells_selected', transposeArray2D(selected3), 'shiny.matrix'); + + if (server) table.on('draw.dt', function(e) { selectCells(false); }); + methods.selectCells = function(selected, ignoreSelectable) { + selected3 = selected ? selected : []; + selectCells(ignoreSelectable); + changeInput('cells_selected', transposeArray2D(selected3), 'shiny.matrix'); + } + } + } + + // expose some table info to Shiny + var updateTableInfo = function(e, settings) { + // TODO: is anyone interested in the page info? + // changeInput('page_info', table.page.info()); + var updateRowInfo = function(id, modifier) { + var idx; + if (server) { + idx = modifier.page === 'current' ? DT_rows_current : DT_rows_all; + } else { + var rows = table.rows($.extend({ + search: 'applied', + page: 'all' + }, modifier)); + idx = addOne(rows.indexes().toArray()); + } + changeInput('rows' + '_' + id, idx); + }; + updateRowInfo('current', {page: 'current'}); + updateRowInfo('all', {}); + } + table.on('draw.dt', updateTableInfo); + updateTableInfo(); + + // state info + table.on('draw.dt column-visibility.dt', function() { + changeInput('state', table.state()); + }); + changeInput('state', table.state()); + + // search info + var updateSearchInfo = function() { + changeInput('search', table.search()); + if (filterRow) changeInput('search_columns', filterRow.toArray().map(function(td) { + return $(td).find('input').first().val(); + })); + } + table.on('draw.dt', updateSearchInfo); + updateSearchInfo(); + + var cellInfo = function(thiz) { + var info = tweakCellIndex(table.cell(thiz)); + info.value = table.cell(thiz).data(); + return info; + } + // the current cell clicked on + table.on('click.dt', 'tbody td', function() { + changeInput('cell_clicked', cellInfo(this), null, null, {priority: 'event'}); + }) + changeInput('cell_clicked', {}); + + // do not trigger table selection when clicking on links unless they have classes + table.on('mousedown.dt', 'tbody td a', function(e) { + if (this.className === '') e.stopPropagation(); + }); + + methods.addRow = function(data, rowname, resetPaging) { + var n = table.columns().indexes().length, d = n - data.length; + if (d === 1) { + data = rowname.concat(data) + } else if (d !== 0) { + console.log(data); + console.log(table.columns().indexes()); + throw 'New data must be of the same length as current data (' + n + ')'; + }; + table.row.add(data).draw(resetPaging); + } + + methods.updateSearch = function(keywords) { + if (keywords.global !== null) + $(table.table().container()).find('input[type=search]').first() + .val(keywords.global).trigger('input'); + var columns = keywords.columns; + if (!filterRow || columns === null) return; + filterRow.toArray().map(function(td, i) { + var v = typeof columns === 'string' ? columns : columns[i]; + if (typeof v === 'undefined') { + console.log('The search keyword for column ' + i + ' is undefined') + return; + } + // Update column search string and values on linked filter widgets. + // 'input' for factor and char filters, 'change' for numeric filters. + $(td).find('input').first().val(v).trigger('input', [true]).trigger('change'); + }); + table.draw(); + } + + methods.hideCols = function(hide, reset) { + if (reset) table.columns().visible(true, false); + table.columns(hide).visible(false); + } + + methods.showCols = function(show, reset) { + if (reset) table.columns().visible(false, false); + table.columns(show).visible(true); + } + + methods.colReorder = function(order, origOrder) { + table.colReorder.order(order, origOrder); + } + + methods.selectPage = function(page) { + if (table.page.info().pages < page || page < 1) { + throw 'Selected page is out of range'; + }; + table.page(page - 1).draw(false); + } + + methods.reloadData = function(resetPaging, clearSelection) { + // empty selections first if necessary + if (methods.selectRows && inArray('row', clearSelection)) methods.selectRows([]); + if (methods.selectColumns && inArray('column', clearSelection)) methods.selectColumns([]); + if (methods.selectCells && inArray('cell', clearSelection)) methods.selectCells([]); + table.ajax.reload(null, resetPaging); + } + + // update table filters (set new limits of sliders) + methods.updateFilters = function(newProps) { + // loop through each filter in the filter row + filterRow.each(function(i, td) { + var k = i; + if (filterRow.length > newProps.length) { + if (i === 0) return; // first column is row names + k = i - 1; + } + // Update the filters to reflect the updated data. + // Allow "falsy" (e.g. NULL) to signify a no-op. + if (newProps[k]) { + setFilterProps(td, newProps[k]); + } + }); + }; + + table.shinyMethods = methods; + }, + resize: function(el, width, height, instance) { + if (instance.data) this.renderValue(el, instance.data, instance); + + // dynamically adjust height if fillContainer = TRUE + if (instance.fillContainer) + this.fillAvailableHeight(el, height); + + this.adjustWidth(el); + }, + + // dynamically set the scroll body to fill available height + // (used with fillContainer = TRUE) + fillAvailableHeight: function(el, availableHeight) { + + // see how much of the table is occupied by header/footer elements + // and use that to compute a target scroll body height + var dtWrapper = $(el).find('div.dataTables_wrapper'); + var dtScrollBody = $(el).find($('div.dataTables_scrollBody')); + var framingHeight = dtWrapper.innerHeight() - dtScrollBody.innerHeight(); + var scrollBodyHeight = availableHeight - framingHeight; + + // we need to set `max-height` to none as datatables library now sets this + // to a fixed height, disabling the ability to resize to fill the window, + // as it will be set to a fixed 100px under such circumstances, e.g., RStudio IDE, + // or FlexDashboard + // see https://github.com/rstudio/DT/issues/951#issuecomment-1026464509 + dtScrollBody.css('max-height', 'none'); + // set the height + dtScrollBody.height(scrollBodyHeight + 'px'); + }, + + // adjust the width of columns; remove the hard-coded widths on table and the + // scroll header when scrollX/Y are enabled + adjustWidth: function(el) { + var $el = $(el), table = $el.data('datatable'); + if (table) table.columns.adjust(); + $el.find('.dataTables_scrollHeadInner').css('width', '') + .children('table').css('margin-left', ''); + } +}); + + if (!HTMLWidgets.shinyMode) return; + + Shiny.addCustomMessageHandler('datatable-calls', function(data) { + var id = data.id; + var el = document.getElementById(id); + var table = el ? $(el).data('datatable') : null; + if (!table) { + console.log("Couldn't find table with id " + id); + return; + } + + var methods = table.shinyMethods, call = data.call; + if (methods[call.method]) { + methods[call.method].apply(table, call.args); + } else { + console.log("Unknown method " + call.method); + } + }); + +})(); diff --git a/articles/Time_to_event_analysis_files/dt-core-1.13.6/css/jquery.dataTables.extra.css b/articles/Time_to_event_analysis_files/dt-core-1.13.6/css/jquery.dataTables.extra.css new file mode 100644 index 00000000..b2dd141f --- /dev/null +++ b/articles/Time_to_event_analysis_files/dt-core-1.13.6/css/jquery.dataTables.extra.css @@ -0,0 +1,28 @@ +/* Selected rows/cells */ +table.dataTable tr.selected td, table.dataTable td.selected { + background-color: #b0bed9 !important; +} +/* In case of scrollX/Y or FixedHeader */ +.dataTables_scrollBody .dataTables_sizing { + visibility: hidden; +} + +/* The datatables' theme CSS file doesn't define +the color but with white background. It leads to an issue that +when the HTML's body color is set to 'white', the user can't +see the text since the background is white. One case happens in the +RStudio's IDE when inline viewing the DT table inside an Rmd file, +if the IDE theme is set to "Cobalt". + +See https://github.com/rstudio/DT/issues/447 for more info + +This fixes should have little side-effects because all the other elements +of the default theme use the #333 font color. + +TODO: The upstream may use relative colors for both the table background +and the color. It means the table can display well without this patch +then. At that time, we need to remove the below CSS attributes. +*/ +div.datatables { + color: #333; +} diff --git a/articles/Time_to_event_analysis_files/dt-core-1.13.6/css/jquery.dataTables.min.css b/articles/Time_to_event_analysis_files/dt-core-1.13.6/css/jquery.dataTables.min.css new file mode 100644 index 00000000..ad59f843 --- /dev/null +++ b/articles/Time_to_event_analysis_files/dt-core-1.13.6/css/jquery.dataTables.min.css @@ -0,0 +1 @@ +:root{--dt-row-selected: 13, 110, 253;--dt-row-selected-text: 255, 255, 255;--dt-row-selected-link: 9, 10, 11;--dt-row-stripe: 0, 0, 0;--dt-row-hover: 0, 0, 0;--dt-column-ordering: 0, 0, 0;--dt-html-background: white}:root.dark{--dt-html-background: rgb(33, 37, 41)}table.dataTable td.dt-control{text-align:center;cursor:pointer}table.dataTable td.dt-control:before{display:inline-block;color:rgba(0, 0, 0, 0.5);content:"►"}table.dataTable tr.dt-hasChild td.dt-control:before{content:"▼"}html.dark table.dataTable td.dt-control:before{color:rgba(255, 255, 255, 0.5)}html.dark table.dataTable tr.dt-hasChild td.dt-control:before{color:rgba(255, 255, 255, 0.5)}table.dataTable thead>tr>th.sorting,table.dataTable thead>tr>th.sorting_asc,table.dataTable thead>tr>th.sorting_desc,table.dataTable thead>tr>th.sorting_asc_disabled,table.dataTable thead>tr>th.sorting_desc_disabled,table.dataTable thead>tr>td.sorting,table.dataTable thead>tr>td.sorting_asc,table.dataTable thead>tr>td.sorting_desc,table.dataTable thead>tr>td.sorting_asc_disabled,table.dataTable thead>tr>td.sorting_desc_disabled{cursor:pointer;position:relative;padding-right:26px}table.dataTable thead>tr>th.sorting:before,table.dataTable thead>tr>th.sorting:after,table.dataTable thead>tr>th.sorting_asc:before,table.dataTable thead>tr>th.sorting_asc:after,table.dataTable thead>tr>th.sorting_desc:before,table.dataTable thead>tr>th.sorting_desc:after,table.dataTable thead>tr>th.sorting_asc_disabled:before,table.dataTable thead>tr>th.sorting_asc_disabled:after,table.dataTable thead>tr>th.sorting_desc_disabled:before,table.dataTable thead>tr>th.sorting_desc_disabled:after,table.dataTable thead>tr>td.sorting:before,table.dataTable thead>tr>td.sorting:after,table.dataTable thead>tr>td.sorting_asc:before,table.dataTable thead>tr>td.sorting_asc:after,table.dataTable thead>tr>td.sorting_desc:before,table.dataTable thead>tr>td.sorting_desc:after,table.dataTable thead>tr>td.sorting_asc_disabled:before,table.dataTable thead>tr>td.sorting_asc_disabled:after,table.dataTable thead>tr>td.sorting_desc_disabled:before,table.dataTable thead>tr>td.sorting_desc_disabled:after{position:absolute;display:block;opacity:.125;right:10px;line-height:9px;font-size:.8em}table.dataTable thead>tr>th.sorting:before,table.dataTable thead>tr>th.sorting_asc:before,table.dataTable thead>tr>th.sorting_desc:before,table.dataTable thead>tr>th.sorting_asc_disabled:before,table.dataTable thead>tr>th.sorting_desc_disabled:before,table.dataTable thead>tr>td.sorting:before,table.dataTable thead>tr>td.sorting_asc:before,table.dataTable thead>tr>td.sorting_desc:before,table.dataTable thead>tr>td.sorting_asc_disabled:before,table.dataTable thead>tr>td.sorting_desc_disabled:before{bottom:50%;content:"▲";content:"▲"/""}table.dataTable thead>tr>th.sorting:after,table.dataTable thead>tr>th.sorting_asc:after,table.dataTable thead>tr>th.sorting_desc:after,table.dataTable thead>tr>th.sorting_asc_disabled:after,table.dataTable thead>tr>th.sorting_desc_disabled:after,table.dataTable thead>tr>td.sorting:after,table.dataTable thead>tr>td.sorting_asc:after,table.dataTable thead>tr>td.sorting_desc:after,table.dataTable thead>tr>td.sorting_asc_disabled:after,table.dataTable thead>tr>td.sorting_desc_disabled:after{top:50%;content:"▼";content:"▼"/""}table.dataTable thead>tr>th.sorting_asc:before,table.dataTable thead>tr>th.sorting_desc:after,table.dataTable thead>tr>td.sorting_asc:before,table.dataTable thead>tr>td.sorting_desc:after{opacity:.6}table.dataTable thead>tr>th.sorting_desc_disabled:after,table.dataTable thead>tr>th.sorting_asc_disabled:before,table.dataTable thead>tr>td.sorting_desc_disabled:after,table.dataTable thead>tr>td.sorting_asc_disabled:before{display:none}table.dataTable thead>tr>th:active,table.dataTable thead>tr>td:active{outline:none}div.dataTables_scrollBody>table.dataTable>thead>tr>th:before,div.dataTables_scrollBody>table.dataTable>thead>tr>th:after,div.dataTables_scrollBody>table.dataTable>thead>tr>td:before,div.dataTables_scrollBody>table.dataTable>thead>tr>td:after{display:none}div.dataTables_processing{position:absolute;top:50%;left:50%;width:200px;margin-left:-100px;margin-top:-26px;text-align:center;padding:2px}div.dataTables_processing>div:last-child{position:relative;width:80px;height:15px;margin:1em auto}div.dataTables_processing>div:last-child>div{position:absolute;top:0;width:13px;height:13px;border-radius:50%;background:rgb(13, 110, 253);background:rgb(var(--dt-row-selected));animation-timing-function:cubic-bezier(0, 1, 1, 0)}div.dataTables_processing>div:last-child>div:nth-child(1){left:8px;animation:datatables-loader-1 .6s infinite}div.dataTables_processing>div:last-child>div:nth-child(2){left:8px;animation:datatables-loader-2 .6s infinite}div.dataTables_processing>div:last-child>div:nth-child(3){left:32px;animation:datatables-loader-2 .6s infinite}div.dataTables_processing>div:last-child>div:nth-child(4){left:56px;animation:datatables-loader-3 .6s infinite}@keyframes datatables-loader-1{0%{transform:scale(0)}100%{transform:scale(1)}}@keyframes datatables-loader-3{0%{transform:scale(1)}100%{transform:scale(0)}}@keyframes datatables-loader-2{0%{transform:translate(0, 0)}100%{transform:translate(24px, 0)}}table.dataTable.nowrap th,table.dataTable.nowrap td{white-space:nowrap}table.dataTable th.dt-left,table.dataTable td.dt-left{text-align:left}table.dataTable th.dt-center,table.dataTable td.dt-center,table.dataTable td.dataTables_empty{text-align:center}table.dataTable th.dt-right,table.dataTable td.dt-right{text-align:right}table.dataTable th.dt-justify,table.dataTable td.dt-justify{text-align:justify}table.dataTable th.dt-nowrap,table.dataTable td.dt-nowrap{white-space:nowrap}table.dataTable thead th,table.dataTable thead td,table.dataTable tfoot th,table.dataTable tfoot td{text-align:left}table.dataTable thead th.dt-head-left,table.dataTable thead td.dt-head-left,table.dataTable tfoot th.dt-head-left,table.dataTable tfoot td.dt-head-left{text-align:left}table.dataTable thead th.dt-head-center,table.dataTable thead td.dt-head-center,table.dataTable tfoot th.dt-head-center,table.dataTable tfoot td.dt-head-center{text-align:center}table.dataTable thead th.dt-head-right,table.dataTable thead td.dt-head-right,table.dataTable tfoot th.dt-head-right,table.dataTable tfoot td.dt-head-right{text-align:right}table.dataTable thead th.dt-head-justify,table.dataTable thead td.dt-head-justify,table.dataTable tfoot th.dt-head-justify,table.dataTable tfoot td.dt-head-justify{text-align:justify}table.dataTable thead th.dt-head-nowrap,table.dataTable thead td.dt-head-nowrap,table.dataTable tfoot th.dt-head-nowrap,table.dataTable tfoot td.dt-head-nowrap{white-space:nowrap}table.dataTable tbody th.dt-body-left,table.dataTable tbody td.dt-body-left{text-align:left}table.dataTable tbody th.dt-body-center,table.dataTable tbody td.dt-body-center{text-align:center}table.dataTable tbody th.dt-body-right,table.dataTable tbody td.dt-body-right{text-align:right}table.dataTable tbody th.dt-body-justify,table.dataTable tbody td.dt-body-justify{text-align:justify}table.dataTable tbody th.dt-body-nowrap,table.dataTable tbody td.dt-body-nowrap{white-space:nowrap}table.dataTable{width:100%;margin:0 auto;clear:both;border-collapse:separate;border-spacing:0}table.dataTable thead th,table.dataTable tfoot th{font-weight:bold}table.dataTable>thead>tr>th,table.dataTable>thead>tr>td{padding:10px;border-bottom:1px solid rgba(0, 0, 0, 0.3)}table.dataTable>thead>tr>th:active,table.dataTable>thead>tr>td:active{outline:none}table.dataTable>tfoot>tr>th,table.dataTable>tfoot>tr>td{padding:10px 10px 6px 10px;border-top:1px solid rgba(0, 0, 0, 0.3)}table.dataTable tbody tr{background-color:transparent}table.dataTable tbody tr.selected>*{box-shadow:inset 0 0 0 9999px rgba(13, 110, 253, 0.9);box-shadow:inset 0 0 0 9999px rgba(var(--dt-row-selected), 0.9);color:rgb(255, 255, 255);color:rgb(var(--dt-row-selected-text))}table.dataTable tbody tr.selected a{color:rgb(9, 10, 11);color:rgb(var(--dt-row-selected-link))}table.dataTable tbody th,table.dataTable tbody td{padding:8px 10px}table.dataTable.row-border>tbody>tr>th,table.dataTable.row-border>tbody>tr>td,table.dataTable.display>tbody>tr>th,table.dataTable.display>tbody>tr>td{border-top:1px solid rgba(0, 0, 0, 0.15)}table.dataTable.row-border>tbody>tr:first-child>th,table.dataTable.row-border>tbody>tr:first-child>td,table.dataTable.display>tbody>tr:first-child>th,table.dataTable.display>tbody>tr:first-child>td{border-top:none}table.dataTable.row-border>tbody>tr.selected+tr.selected>td,table.dataTable.display>tbody>tr.selected+tr.selected>td{border-top-color:#0262ef}table.dataTable.cell-border>tbody>tr>th,table.dataTable.cell-border>tbody>tr>td{border-top:1px solid rgba(0, 0, 0, 0.15);border-right:1px solid rgba(0, 0, 0, 0.15)}table.dataTable.cell-border>tbody>tr>th:first-child,table.dataTable.cell-border>tbody>tr>td:first-child{border-left:1px solid rgba(0, 0, 0, 0.15)}table.dataTable.cell-border>tbody>tr:first-child>th,table.dataTable.cell-border>tbody>tr:first-child>td{border-top:none}table.dataTable.stripe>tbody>tr.odd>*,table.dataTable.display>tbody>tr.odd>*{box-shadow:inset 0 0 0 9999px rgba(0, 0, 0, 0.023);box-shadow:inset 0 0 0 9999px rgba(var(--dt-row-stripe), 0.023)}table.dataTable.stripe>tbody>tr.odd.selected>*,table.dataTable.display>tbody>tr.odd.selected>*{box-shadow:inset 0 0 0 9999px rgba(13, 110, 253, 0.923);box-shadow:inset 0 0 0 9999px rgba(var(--dt-row-selected), 0.923)}table.dataTable.hover>tbody>tr:hover>*,table.dataTable.display>tbody>tr:hover>*{box-shadow:inset 0 0 0 9999px rgba(0, 0, 0, 0.035);box-shadow:inset 0 0 0 9999px rgba(var(--dt-row-hover), 0.035)}table.dataTable.hover>tbody>tr.selected:hover>*,table.dataTable.display>tbody>tr.selected:hover>*{box-shadow:inset 0 0 0 9999px #0d6efd !important;box-shadow:inset 0 0 0 9999px rgba(var(--dt-row-selected), 1) !important}table.dataTable.order-column>tbody tr>.sorting_1,table.dataTable.order-column>tbody tr>.sorting_2,table.dataTable.order-column>tbody tr>.sorting_3,table.dataTable.display>tbody tr>.sorting_1,table.dataTable.display>tbody tr>.sorting_2,table.dataTable.display>tbody tr>.sorting_3{box-shadow:inset 0 0 0 9999px rgba(0, 0, 0, 0.019);box-shadow:inset 0 0 0 9999px rgba(var(--dt-column-ordering), 0.019)}table.dataTable.order-column>tbody tr.selected>.sorting_1,table.dataTable.order-column>tbody tr.selected>.sorting_2,table.dataTable.order-column>tbody tr.selected>.sorting_3,table.dataTable.display>tbody tr.selected>.sorting_1,table.dataTable.display>tbody tr.selected>.sorting_2,table.dataTable.display>tbody tr.selected>.sorting_3{box-shadow:inset 0 0 0 9999px rgba(13, 110, 253, 0.919);box-shadow:inset 0 0 0 9999px rgba(var(--dt-row-selected), 0.919)}table.dataTable.display>tbody>tr.odd>.sorting_1,table.dataTable.order-column.stripe>tbody>tr.odd>.sorting_1{box-shadow:inset 0 0 0 9999px rgba(0, 0, 0, 0.054);box-shadow:inset 0 0 0 9999px rgba(var(--dt-column-ordering), 0.054)}table.dataTable.display>tbody>tr.odd>.sorting_2,table.dataTable.order-column.stripe>tbody>tr.odd>.sorting_2{box-shadow:inset 0 0 0 9999px rgba(0, 0, 0, 0.047);box-shadow:inset 0 0 0 9999px rgba(var(--dt-column-ordering), 0.047)}table.dataTable.display>tbody>tr.odd>.sorting_3,table.dataTable.order-column.stripe>tbody>tr.odd>.sorting_3{box-shadow:inset 0 0 0 9999px rgba(0, 0, 0, 0.039);box-shadow:inset 0 0 0 9999px rgba(var(--dt-column-ordering), 0.039)}table.dataTable.display>tbody>tr.odd.selected>.sorting_1,table.dataTable.order-column.stripe>tbody>tr.odd.selected>.sorting_1{box-shadow:inset 0 0 0 9999px rgba(13, 110, 253, 0.954);box-shadow:inset 0 0 0 9999px rgba(var(--dt-row-selected), 0.954)}table.dataTable.display>tbody>tr.odd.selected>.sorting_2,table.dataTable.order-column.stripe>tbody>tr.odd.selected>.sorting_2{box-shadow:inset 0 0 0 9999px rgba(13, 110, 253, 0.947);box-shadow:inset 0 0 0 9999px rgba(var(--dt-row-selected), 0.947)}table.dataTable.display>tbody>tr.odd.selected>.sorting_3,table.dataTable.order-column.stripe>tbody>tr.odd.selected>.sorting_3{box-shadow:inset 0 0 0 9999px rgba(13, 110, 253, 0.939);box-shadow:inset 0 0 0 9999px rgba(var(--dt-row-selected), 0.939)}table.dataTable.display>tbody>tr.even>.sorting_1,table.dataTable.order-column.stripe>tbody>tr.even>.sorting_1{box-shadow:inset 0 0 0 9999px rgba(0, 0, 0, 0.019);box-shadow:inset 0 0 0 9999px rgba(var(--dt-row-selected), 0.019)}table.dataTable.display>tbody>tr.even>.sorting_2,table.dataTable.order-column.stripe>tbody>tr.even>.sorting_2{box-shadow:inset 0 0 0 9999px rgba(0, 0, 0, 0.011);box-shadow:inset 0 0 0 9999px rgba(var(--dt-row-selected), 0.011)}table.dataTable.display>tbody>tr.even>.sorting_3,table.dataTable.order-column.stripe>tbody>tr.even>.sorting_3{box-shadow:inset 0 0 0 9999px rgba(0, 0, 0, 0.003);box-shadow:inset 0 0 0 9999px rgba(var(--dt-row-selected), 0.003)}table.dataTable.display>tbody>tr.even.selected>.sorting_1,table.dataTable.order-column.stripe>tbody>tr.even.selected>.sorting_1{box-shadow:inset 0 0 0 9999px rgba(13, 110, 253, 0.919);box-shadow:inset 0 0 0 9999px rgba(var(--dt-row-selected), 0.919)}table.dataTable.display>tbody>tr.even.selected>.sorting_2,table.dataTable.order-column.stripe>tbody>tr.even.selected>.sorting_2{box-shadow:inset 0 0 0 9999px rgba(13, 110, 253, 0.911);box-shadow:inset 0 0 0 9999px rgba(var(--dt-row-selected), 0.911)}table.dataTable.display>tbody>tr.even.selected>.sorting_3,table.dataTable.order-column.stripe>tbody>tr.even.selected>.sorting_3{box-shadow:inset 0 0 0 9999px rgba(13, 110, 253, 0.903);box-shadow:inset 0 0 0 9999px rgba(var(--dt-row-selected), 0.903)}table.dataTable.display tbody tr:hover>.sorting_1,table.dataTable.order-column.hover tbody tr:hover>.sorting_1{box-shadow:inset 0 0 0 9999px rgba(0, 0, 0, 0.082);box-shadow:inset 0 0 0 9999px rgba(var(--dt-row-hover), 0.082)}table.dataTable.display tbody tr:hover>.sorting_2,table.dataTable.order-column.hover tbody tr:hover>.sorting_2{box-shadow:inset 0 0 0 9999px rgba(0, 0, 0, 0.074);box-shadow:inset 0 0 0 9999px rgba(var(--dt-row-hover), 0.074)}table.dataTable.display tbody tr:hover>.sorting_3,table.dataTable.order-column.hover tbody tr:hover>.sorting_3{box-shadow:inset 0 0 0 9999px rgba(0, 0, 0, 0.062);box-shadow:inset 0 0 0 9999px rgba(var(--dt-row-hover), 0.062)}table.dataTable.display tbody tr:hover.selected>.sorting_1,table.dataTable.order-column.hover tbody tr:hover.selected>.sorting_1{box-shadow:inset 0 0 0 9999px rgba(13, 110, 253, 0.982);box-shadow:inset 0 0 0 9999px rgba(var(--dt-row-selected), 0.982)}table.dataTable.display tbody tr:hover.selected>.sorting_2,table.dataTable.order-column.hover tbody tr:hover.selected>.sorting_2{box-shadow:inset 0 0 0 9999px rgba(13, 110, 253, 0.974);box-shadow:inset 0 0 0 9999px rgba(var(--dt-row-selected), 0.974)}table.dataTable.display tbody tr:hover.selected>.sorting_3,table.dataTable.order-column.hover tbody tr:hover.selected>.sorting_3{box-shadow:inset 0 0 0 9999px rgba(13, 110, 253, 0.962);box-shadow:inset 0 0 0 9999px rgba(var(--dt-row-selected), 0.962)}table.dataTable.no-footer{border-bottom:1px solid rgba(0, 0, 0, 0.3)}table.dataTable.compact thead th,table.dataTable.compact thead td,table.dataTable.compact tfoot th,table.dataTable.compact tfoot td,table.dataTable.compact tbody th,table.dataTable.compact tbody td{padding:4px}table.dataTable th,table.dataTable td{box-sizing:content-box}.dataTables_wrapper{position:relative;clear:both}.dataTables_wrapper .dataTables_length{float:left}.dataTables_wrapper .dataTables_length select{border:1px solid #aaa;border-radius:3px;padding:5px;background-color:transparent;color:inherit;padding:4px}.dataTables_wrapper .dataTables_filter{float:right;text-align:right}.dataTables_wrapper .dataTables_filter input{border:1px solid #aaa;border-radius:3px;padding:5px;background-color:transparent;color:inherit;margin-left:3px}.dataTables_wrapper .dataTables_info{clear:both;float:left;padding-top:.755em}.dataTables_wrapper .dataTables_paginate{float:right;text-align:right;padding-top:.25em}.dataTables_wrapper .dataTables_paginate .paginate_button{box-sizing:border-box;display:inline-block;min-width:1.5em;padding:.5em 1em;margin-left:2px;text-align:center;text-decoration:none !important;cursor:pointer;color:inherit !important;border:1px solid transparent;border-radius:2px;background:transparent}.dataTables_wrapper .dataTables_paginate .paginate_button.current,.dataTables_wrapper .dataTables_paginate .paginate_button.current:hover{color:inherit !important;border:1px solid rgba(0, 0, 0, 0.3);background-color:rgba(0, 0, 0, 0.05);background:-webkit-gradient(linear, left top, left bottom, color-stop(0%, rgba(230, 230, 230, 0.05)), color-stop(100%, rgba(0, 0, 0, 0.05)));background:-webkit-linear-gradient(top, rgba(230, 230, 230, 0.05) 0%, rgba(0, 0, 0, 0.05) 100%);background:-moz-linear-gradient(top, rgba(230, 230, 230, 0.05) 0%, rgba(0, 0, 0, 0.05) 100%);background:-ms-linear-gradient(top, rgba(230, 230, 230, 0.05) 0%, rgba(0, 0, 0, 0.05) 100%);background:-o-linear-gradient(top, rgba(230, 230, 230, 0.05) 0%, rgba(0, 0, 0, 0.05) 100%);background:linear-gradient(to bottom, rgba(230, 230, 230, 0.05) 0%, rgba(0, 0, 0, 0.05) 100%)}.dataTables_wrapper .dataTables_paginate .paginate_button.disabled,.dataTables_wrapper .dataTables_paginate .paginate_button.disabled:hover,.dataTables_wrapper .dataTables_paginate .paginate_button.disabled:active{cursor:default;color:#666 !important;border:1px solid transparent;background:transparent;box-shadow:none}.dataTables_wrapper .dataTables_paginate .paginate_button:hover{color:white !important;border:1px solid #111;background-color:#111;background:-webkit-gradient(linear, left top, left bottom, color-stop(0%, #585858), color-stop(100%, #111));background:-webkit-linear-gradient(top, #585858 0%, #111 100%);background:-moz-linear-gradient(top, #585858 0%, #111 100%);background:-ms-linear-gradient(top, #585858 0%, #111 100%);background:-o-linear-gradient(top, #585858 0%, #111 100%);background:linear-gradient(to bottom, #585858 0%, #111 100%)}.dataTables_wrapper .dataTables_paginate .paginate_button:active{outline:none;background-color:#0c0c0c;background:-webkit-gradient(linear, left top, left bottom, color-stop(0%, #2b2b2b), color-stop(100%, #0c0c0c));background:-webkit-linear-gradient(top, #2b2b2b 0%, #0c0c0c 100%);background:-moz-linear-gradient(top, #2b2b2b 0%, #0c0c0c 100%);background:-ms-linear-gradient(top, #2b2b2b 0%, #0c0c0c 100%);background:-o-linear-gradient(top, #2b2b2b 0%, #0c0c0c 100%);background:linear-gradient(to bottom, #2b2b2b 0%, #0c0c0c 100%);box-shadow:inset 0 0 3px #111}.dataTables_wrapper .dataTables_paginate .ellipsis{padding:0 1em}.dataTables_wrapper .dataTables_length,.dataTables_wrapper .dataTables_filter,.dataTables_wrapper .dataTables_info,.dataTables_wrapper .dataTables_processing,.dataTables_wrapper .dataTables_paginate{color:inherit}.dataTables_wrapper .dataTables_scroll{clear:both}.dataTables_wrapper .dataTables_scroll div.dataTables_scrollBody{-webkit-overflow-scrolling:touch}.dataTables_wrapper .dataTables_scroll div.dataTables_scrollBody>table>thead>tr>th,.dataTables_wrapper .dataTables_scroll div.dataTables_scrollBody>table>thead>tr>td,.dataTables_wrapper .dataTables_scroll div.dataTables_scrollBody>table>tbody>tr>th,.dataTables_wrapper .dataTables_scroll div.dataTables_scrollBody>table>tbody>tr>td{vertical-align:middle}.dataTables_wrapper .dataTables_scroll div.dataTables_scrollBody>table>thead>tr>th>div.dataTables_sizing,.dataTables_wrapper .dataTables_scroll div.dataTables_scrollBody>table>thead>tr>td>div.dataTables_sizing,.dataTables_wrapper .dataTables_scroll div.dataTables_scrollBody>table>tbody>tr>th>div.dataTables_sizing,.dataTables_wrapper .dataTables_scroll div.dataTables_scrollBody>table>tbody>tr>td>div.dataTables_sizing{height:0;overflow:hidden;margin:0 !important;padding:0 !important}.dataTables_wrapper.no-footer .dataTables_scrollBody{border-bottom:1px solid rgba(0, 0, 0, 0.3)}.dataTables_wrapper.no-footer div.dataTables_scrollHead table.dataTable,.dataTables_wrapper.no-footer div.dataTables_scrollBody>table{border-bottom:none}.dataTables_wrapper:after{visibility:hidden;display:block;content:"";clear:both;height:0}@media screen and (max-width: 767px){.dataTables_wrapper .dataTables_info,.dataTables_wrapper .dataTables_paginate{float:none;text-align:center}.dataTables_wrapper .dataTables_paginate{margin-top:.5em}}@media screen and (max-width: 640px){.dataTables_wrapper .dataTables_length,.dataTables_wrapper .dataTables_filter{float:none;text-align:center}.dataTables_wrapper .dataTables_filter{margin-top:.5em}}html.dark{--dt-row-hover: 255, 255, 255;--dt-row-stripe: 255, 255, 255;--dt-column-ordering: 255, 255, 255}html.dark table.dataTable>thead>tr>th,html.dark table.dataTable>thead>tr>td{border-bottom:1px solid rgb(89, 91, 94)}html.dark table.dataTable>thead>tr>th:active,html.dark table.dataTable>thead>tr>td:active{outline:none}html.dark table.dataTable>tfoot>tr>th,html.dark table.dataTable>tfoot>tr>td{border-top:1px solid rgb(89, 91, 94)}html.dark table.dataTable.row-border>tbody>tr>th,html.dark table.dataTable.row-border>tbody>tr>td,html.dark table.dataTable.display>tbody>tr>th,html.dark table.dataTable.display>tbody>tr>td{border-top:1px solid rgb(64, 67, 70)}html.dark table.dataTable.row-border>tbody>tr.selected+tr.selected>td,html.dark table.dataTable.display>tbody>tr.selected+tr.selected>td{border-top-color:#0257d5}html.dark table.dataTable.cell-border>tbody>tr>th,html.dark table.dataTable.cell-border>tbody>tr>td{border-top:1px solid rgb(64, 67, 70);border-right:1px solid rgb(64, 67, 70)}html.dark table.dataTable.cell-border>tbody>tr>th:first-child,html.dark table.dataTable.cell-border>tbody>tr>td:first-child{border-left:1px solid rgb(64, 67, 70)}html.dark .dataTables_wrapper .dataTables_filter input,html.dark .dataTables_wrapper .dataTables_length select{border:1px solid rgba(255, 255, 255, 0.2);background-color:var(--dt-html-background)}html.dark .dataTables_wrapper .dataTables_paginate .paginate_button.current,html.dark .dataTables_wrapper .dataTables_paginate .paginate_button.current:hover{border:1px solid rgb(89, 91, 94);background:rgba(255, 255, 255, 0.15)}html.dark .dataTables_wrapper .dataTables_paginate .paginate_button.disabled,html.dark .dataTables_wrapper .dataTables_paginate .paginate_button.disabled:hover,html.dark .dataTables_wrapper .dataTables_paginate .paginate_button.disabled:active{color:#666 !important}html.dark .dataTables_wrapper .dataTables_paginate .paginate_button:hover{border:1px solid rgb(53, 53, 53);background:rgb(53, 53, 53)}html.dark .dataTables_wrapper .dataTables_paginate .paginate_button:active{background:#3a3a3a} diff --git a/articles/Time_to_event_analysis_files/dt-core-1.13.6/js/jquery.dataTables.min.js b/articles/Time_to_event_analysis_files/dt-core-1.13.6/js/jquery.dataTables.min.js new file mode 100644 index 00000000..f786b0da --- /dev/null +++ b/articles/Time_to_event_analysis_files/dt-core-1.13.6/js/jquery.dataTables.min.js @@ -0,0 +1,4 @@ +/*! DataTables 1.13.6 + * ©2008-2023 SpryMedia Ltd - datatables.net/license + */ +!function(n){"use strict";var a;"function"==typeof define&&define.amd?define(["jquery"],function(t){return n(t,window,document)}):"object"==typeof exports?(a=require("jquery"),"undefined"==typeof window?module.exports=function(t,e){return t=t||window,e=e||a(t),n(e,t,t.document)}:n(a,window,window.document)):window.DataTable=n(jQuery,window,document)}(function(P,j,v,H){"use strict";function d(t){var e=parseInt(t,10);return!isNaN(e)&&isFinite(t)?e:null}function l(t,e,n){var a=typeof t,r="string"==a;return"number"==a||"bigint"==a||!!h(t)||(e&&r&&(t=$(t,e)),n&&r&&(t=t.replace(q,"")),!isNaN(parseFloat(t))&&isFinite(t))}function a(t,e,n){var a;return!!h(t)||(h(a=t)||"string"==typeof a)&&!!l(t.replace(V,"").replace(/Articles • visR diff --git a/articles/interactive_tte_tutorial/tte_tutorial.html b/articles/interactive_tte_tutorial/tte_tutorial.html index 18c19687..8c2b2d3f 100644 --- a/articles/interactive_tte_tutorial/tte_tutorial.html +++ b/articles/interactive_tte_tutorial/tte_tutorial.html @@ -14,8 +14,8 @@ - - + + @@ -79,8 +79,8 @@ - - + +

Examples


-library(visR)
+library(visR)
 
 # Estimate KM curves by treatment group
 survfit_object <- survival::survfit(data = adtte, survival::Surv(AVAL, 1 - CNSR) ~ TRTP)
 
 ## plot without confidence intervals (CI)
 p <- visR::visr(survfit_object)
+#> Warning: `visr.survfit()` was deprecated in visR 0.4.0.
+#>  Please use `ggsurvfit::ggsurvfit()` instead.
 p
 
 
diff --git a/reference/add_CNSR-1.png b/reference/add_CNSR-1.png
index a61ae2e6..e43eec93 100644
Binary files a/reference/add_CNSR-1.png and b/reference/add_CNSR-1.png differ
diff --git a/reference/add_CNSR-2.png b/reference/add_CNSR-2.png
index aa20fb6b..6b9761c1 100644
Binary files a/reference/add_CNSR-2.png and b/reference/add_CNSR-2.png differ
diff --git a/reference/add_CNSR-3.png b/reference/add_CNSR-3.png
index e019c0e0..30928b43 100644
Binary files a/reference/add_CNSR-3.png and b/reference/add_CNSR-3.png differ
diff --git a/reference/add_CNSR-4.png b/reference/add_CNSR-4.png
index 7547fd96..5ea89802 100644
Binary files a/reference/add_CNSR-4.png and b/reference/add_CNSR-4.png differ
diff --git a/reference/add_CNSR.html b/reference/add_CNSR.html
index 28e68e1a..a4f355eb 100644
--- a/reference/add_CNSR.html
+++ b/reference/add_CNSR.html
@@ -2,7 +2,7 @@
 Add censoring symbols to a visR object — add_CNSR • visRAdd censoring symbols to a visR object — add_CNSR • visRAdd annotations to a visR object — add_annotation • visRHighlight a specific strata — add_highlight • visRHighlight a specific strata — add_highlight • visR
diff --git a/reference/add_quantiles-1.png b/reference/add_quantiles-1.png
index 7a87ccdb..fb0f48e5 100644
Binary files a/reference/add_quantiles-1.png and b/reference/add_quantiles-1.png differ
diff --git a/reference/add_quantiles-2.png b/reference/add_quantiles-2.png
index 131cfac1..41941063 100644
Binary files a/reference/add_quantiles-2.png and b/reference/add_quantiles-2.png differ
diff --git a/reference/add_quantiles-3.png b/reference/add_quantiles-3.png
index 93ef40c3..8ba97bb5 100644
Binary files a/reference/add_quantiles-3.png and b/reference/add_quantiles-3.png differ
diff --git a/reference/add_quantiles-4.png b/reference/add_quantiles-4.png
index a89afa3b..6645a54c 100644
Binary files a/reference/add_quantiles-4.png and b/reference/add_quantiles-4.png differ
diff --git a/reference/add_quantiles.html b/reference/add_quantiles.html
index 8da2f0fd..f96daff3 100644
--- a/reference/add_quantiles.html
+++ b/reference/add_quantiles.html
@@ -1,5 +1,5 @@
 
-Add quantile indicators to visR plot — add_quantiles • visRAdd quantile indicators to visR plot — add_quantiles • visR
@@ -110,7 +110,7 @@ 

Value

Examples


-library(visR)
+library(visR)
 
 adtte %>%
   estimate_KM("SEX") %>%
diff --git a/reference/add_risktable-1.png b/reference/add_risktable-1.png
index 08d5aa0d..3413f260 100644
Binary files a/reference/add_risktable-1.png and b/reference/add_risktable-1.png differ
diff --git a/reference/add_risktable-2.png b/reference/add_risktable-2.png
index dc0bb4d1..63afc095 100644
Binary files a/reference/add_risktable-2.png and b/reference/add_risktable-2.png differ
diff --git a/reference/add_risktable-3.png b/reference/add_risktable-3.png
index 31bb3b70..850e3aaa 100644
Binary files a/reference/add_risktable-3.png and b/reference/add_risktable-3.png differ
diff --git a/reference/add_risktable.html b/reference/add_risktable.html
index 2a1d3e6a..866c1cff 100644
--- a/reference/add_risktable.html
+++ b/reference/add_risktable.html
@@ -5,7 +5,7 @@
 Both the initial visR plot as the individual risktables are stored as attribute component
 in the final object to allow post-modification of the individual plots if desired
 
-">Add risk tables to visR plots through an S3 method — add_risktable • visRAdd risk tables to visR plots through an S3 method — add_risktable • visRadtte - CDISC ADaM compliant time to event data set — adtte • visRadtte - CDISC ADaM compliant time to event data set — adtte • visR
diff --git a/reference/align_plots-1.png b/reference/align_plots-1.png
index 7ced5162..d96d8ee5 100644
Binary files a/reference/align_plots-1.png and b/reference/align_plots-1.png differ
diff --git a/reference/align_plots-2.png b/reference/align_plots-2.png
index da90e0d7..7355e2ed 100644
Binary files a/reference/align_plots-2.png and b/reference/align_plots-2.png differ
diff --git a/reference/align_plots.html b/reference/align_plots.html
index 3fd90886..148c6d99 100644
--- a/reference/align_plots.html
+++ b/reference/align_plots.html
@@ -1,5 +1,5 @@
 
-Align multiple ggplot graphs, taking into account the legend — align_plots • visRAlign multiple ggplot graphs, taking into account the legend — align_plots • visR
diff --git a/reference/apply_attrition.html b/reference/apply_attrition.html
index 0138d6ee..c4af4988 100644
--- a/reference/apply_attrition.html
+++ b/reference/apply_attrition.html
@@ -1,6 +1,6 @@
 
 Apply list of inclusion/exclusion criteria to a patient-level dataframe — apply_attrition • visRApply list of inclusion/exclusion criteria to a patient-level dataframe — apply_attrition • visRApplies a theme to a ggplot object. — apply_theme • visRApplies a theme to a ggplot object. — apply_theme • visRCancer survival data — brca_cohort • visRCancer survival data — brca_cohort • visR
diff --git a/reference/define_theme.html b/reference/define_theme.html
index e95c1f45..5670a874 100644
--- a/reference/define_theme.html
+++ b/reference/define_theme.html
@@ -1,7 +1,7 @@
 
 Provides a simple wrapper for themes — define_theme • visRProvides a simple wrapper for themes — define_theme • visRConverts an alpha value between its numeric and its hex-encoded form. — .convert_alpha • visRConverts an alpha value between its numeric and its hex-encoded form. — .convert_alpha • visR
diff --git a/reference/dot-get_alpha_from_hex_colour.html b/reference/dot-get_alpha_from_hex_colour.html
index 163d0b72..397c6b37 100644
--- a/reference/dot-get_alpha_from_hex_colour.html
+++ b/reference/dot-get_alpha_from_hex_colour.html
@@ -4,7 +4,7 @@
 This yields a string in the form of '#RRGGBB'. Additionally, a fourth optional block can be present encoding
 the alpha transparency of the colour. This extends the string to '#RRGGBBAA'.
 This function takes such a string as input for hex_colour, extracts the 'AA' part and returns the
-numerical representation if it.">Extract the numerical alpha representation of #RRGGBBAA colour — .get_alpha_from_hex_colour • visRExtract the numerical alpha representation of #RRGGBBAA colour — .get_alpha_from_hex_colour • visRGet strata level combinations — .get_strata • visRGet strata level combinations — .get_strata • visR
diff --git a/reference/dot-replace_hex_alpha.html b/reference/dot-replace_hex_alpha.html
index ef3d12b4..a42e9d76 100644
--- a/reference/dot-replace_hex_alpha.html
+++ b/reference/dot-replace_hex_alpha.html
@@ -1,5 +1,5 @@
 
-Replaces the AA part of a #RRGGBBAA hex-colour. — .replace_hex_alpha • visRReplaces the AA part of a #RRGGBBAA hex-colour. — .replace_hex_alpha • visR
diff --git a/reference/estimate_KM.html b/reference/estimate_KM.html
index 3ab68f75..b2807fed 100644
--- a/reference/estimate_KM.html
+++ b/reference/estimate_KM.html
@@ -6,7 +6,7 @@
 downstream functions and methods that rely on the survfit class.
 The function can leverage the conventions and controlled vocabulary from
 CDISC ADaM ADTTE data model,
-and also works with standard, non-CDISC datasets through the formula argument.">Wrapper for Kaplan-Meier Time-to-Event analysis — estimate_KM • visRWrapper for Kaplan-Meier Time-to-Event analysis — estimate_KM • visRCompeting Events Cumulative Incidence — estimate_cuminc • visRCompeting Events Cumulative Incidence — estimate_cuminc • visRSummarize Hazard Ratio from a survival object using S3 method — get_COX_HR • visRSummarize Hazard Ratio from a survival object using S3 method — get_COX_HR • visRGenerate cohort attrition table — get_attrition • visRGenerate cohort attrition table — get_attrition • visRSummarize the test for equality across strata from a survival object using S3 method — get_pvalue • visRSummarize the test for equality across strata from a survival object using S3 method — get_pvalue • visR
diff --git a/reference/get_quantile.html b/reference/get_quantile.html
index 049227cd..3bbd1aa8 100644
--- a/reference/get_quantile.html
+++ b/reference/get_quantile.html
@@ -1,6 +1,6 @@
 
 Wrapper around quantile methods — get_quantile • visRWrapper around quantile methods — get_quantile • visRObtain risk tables for tables and plots — get_risktable • visRObtain risk tables for tables and plots — get_risktable • visRSummarize the descriptive statistics across strata from a survival object using S3 method — get_summary • visRSummarize the descriptive statistics across strata from a survival object using S3 method — get_summary • visRCalculate summary statistics — get_tableone • visRExamples  ) %>%
   dplyr::select(age, age_group, everything()) %>%
   visR::get_tableone()
+#> Warning: There was 1 warning in `summarise()`.
+#>  In argument: `age_group = (function (x) ...`.
+#>  In group 1: `all = "Total"`.
+#> Caused by warning:
+#> ! `fct_explicit_na()` was deprecated in forcats 1.0.0.
+#>  Please use `fct_na_value_to_level()` instead.
+#>  The deprecated feature was likely used in the visR package.
+#>   Please report the issue at <https://github.com/openpharma/visR/issues>.
 #> # A tibble: 21 × 3
 #>    variable  statistic    Total           
 #>    <chr>     <chr>        <chr>           
diff --git a/reference/index.html b/reference/index.html
index 6daf2d3b..457c8b6f 100644
--- a/reference/index.html
+++ b/reference/index.html
@@ -1,5 +1,5 @@
 
-Function reference • visRFunction reference • visR
diff --git a/reference/legendopts.html b/reference/legendopts.html
index fca2c2c5..51299722 100644
--- a/reference/legendopts.html
+++ b/reference/legendopts.html
@@ -1,5 +1,5 @@
 
-Translates options for legend into a list that can be passed to ggplot2 — legendopts • visRTranslates options for legend into a list that can be passed to ggplot2 — legendopts • visR
diff --git a/reference/reexports.html b/reference/reexports.html
index 331d1fa6..e214647c 100644
--- a/reference/reexports.html
+++ b/reference/reexports.html
@@ -10,7 +10,7 @@
 Surv
 
 
-">Objects exported from other packages — reexports • visRObjects exported from other packages — reexports • visRRender a data.frame, risktable, or tableone object as a table — render • visRRender a data.frame, risktable, or tableone object as a table — render • visRStep ribbon statistic — stat_stepribbon • visRDisplay a summary Table (i.e. table one) — tableone • visRDisplay a summary Table (i.e. table one) — tableone • visRvisR: Clinical Graphs and Tables Adhering to Graphical Principles — visR-package • visRvisR: Clinical Graphs and Tables Adhering to Graphical Principles — visR-package • visR,
+    "AGE >= 75",
+    "RACE=='WHITE'",
+    "SEX=='F'"
+  ),
+  subject_column_name = "USUBJID"
+)
+
+## Draw a CONSORT attrition chart without specifying extra text for the complement
+attrition %>%
+  visr("Criteria", "Remaining N")
+
+
+## Add detailed complement descriptions to the "exclusion" part of the CONSORT diagram
+# Step 1. Add new column to attrition dataframe
+attrition$Complement <- c(
+  "NA",
+  "Placebo Group",
+  "Younger than 75 years",
+  "Non-White",
+  "Male"
+)
+
+# Step 2. Define the name of the column in the call to the plotting function
+attrition %>%
+  visr("Criteria", "Remaining N", "Complement")
+
+
+## Styling the CONSORT flowchart
+# Change the fill and outline of the boxes in the flowchart
+attrition %>%
+  visr("Criteria", "Remaining N", "Complement", fill = "lightblue", border = "grey")
+
+
+## Adjust the font size in the boxes
+attrition %>%
+  visr("Criteria", "Remaining N", font_size = 10)
+
+
+
+
+
+ + +
+ + + +
+ + + + + + + diff --git a/search.json b/search.json index 1dd6cee4..00699aa3 100644 --- a/search.json +++ b/search.json @@ -1 +1 @@ -[{"path":"https://openpharma.github.io/visR/CODE_OF_CONDUCT.html","id":null,"dir":"","previous_headings":"","what":"Contributor Code of Conduct","title":"Contributor Code of Conduct","text":"contributors maintainers project, pledge respect people contribute reporting issues, posting feature requests, updating documentation, submitting pull requests patches, activities. committed making participation project harassment-free experience everyone, regardless level experience, gender, gender identity expression, sexual orientation, disability, personal appearance, body size, race, ethnicity, age, religion. Examples unacceptable behavior participants include use sexual language imagery, derogatory comments personal attacks, trolling, public private harassment, insults, unprofessional conduct. Project maintainers right responsibility remove, edit, reject comments, commits, code, wiki edits, issues, contributions aligned Code Conduct. Project maintainers follow Code Conduct may removed project team. Instances abusive, harassing, otherwise unacceptable behavior may reported opening issue contacting one project maintainers. Code Conduct adapted Contributor Covenant (https://www.contributor-covenant.org), version 1.0.0, available https://contributor-covenant.org/version/1/0/0/.","code":""},{"path":"https://openpharma.github.io/visR/LICENSE.html","id":null,"dir":"","previous_headings":"","what":"MIT License","title":"MIT License","text":"Copyright (c) 2022 visR authors Permission hereby granted, free charge, person obtaining copy software associated documentation files (“Software”), deal Software without restriction, including without limitation rights use, copy, modify, merge, publish, distribute, sublicense, /sell copies Software, permit persons Software furnished , subject following conditions: copyright notice permission notice shall included copies substantial portions Software. SOFTWARE PROVIDED “”, WITHOUT WARRANTY KIND, EXPRESS IMPLIED, INCLUDING LIMITED WARRANTIES MERCHANTABILITY, FITNESS PARTICULAR PURPOSE NONINFRINGEMENT. EVENT SHALL AUTHORS COPYRIGHT HOLDERS LIABLE CLAIM, DAMAGES LIABILITY, WHETHER ACTION CONTRACT, TORT OTHERWISE, ARISING , CONNECTION SOFTWARE USE DEALINGS SOFTWARE.","code":""},{"path":"https://openpharma.github.io/visR/articles/CDISC_ADaM.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Survival Analysis with visR using CDISC ADaM Time-To-Event Analysis Dataset (ADTTE)","text":"tutorial illustrates standard time--event analysis can done efficiently data set adheres CDISC ADaM standard. detailed time--event analysis broad overview visR’s functionality presented another vignette.","code":"library(ggplot2) library(visR)"},{"path":"https://openpharma.github.io/visR/articles/CDISC_ADaM.html","id":"global-document-setup","dir":"Articles","previous_headings":"","what":"Global Document Setup","title":"Survival Analysis with visR using CDISC ADaM Time-To-Event Analysis Dataset (ADTTE)","text":"","code":"# Metadata Title DATASET <- paste0(\"Analyis Data Time-To-Event (ADTTE)\") # Save original options() old <- options() # Global formatting options options(digits = 3) # Global ggplot settings theme_set(theme_bw()) # Global table settings options(DT.options = list(pageLength = 10, language = list(search = 'Filter:'), scrollX = TRUE)) # load ADTTE from CDISC pilot data(adtte) # Restore original options() options(old)"},{"path":"https://openpharma.github.io/visR/articles/CDISC_ADaM.html","id":"time-to-event-analysis","dir":"Articles","previous_headings":"","what":"Time-to-event analysis","title":"Survival Analysis with visR using CDISC ADaM Time-To-Event Analysis Dataset (ADTTE)","text":"visR includes wrapper function easily display summary tables (e.g. tableone) wrapper function estimate Kaplan-Meier curve compatible %>% purrr::map functions without losing traceability dataset name inside call object. data set adheres CDISC ADaM standards, stratifier needs specified. Given survival object, visR includes several functions quickly extract additional information survival object (e.g. test statistics p-values) general function display table (render). survival object can plotted using visR function visr. Additional information like confidence intervals risktable can added plot.","code":"# Display a summary table (e.g. tableone) visR::tableone(adtte[,c(\"TRTP\", \"AGE\")], title = \"Demographic summary\" , datasource = DATASET) #> Warning: There was 1 warning in `summarise()`. #> ℹ In argument: `TRTP = (function (x) ...`. #> ℹ In group 1: `all = \"Total\"`. #> Caused by warning: #> ! `fct_explicit_na()` was deprecated in forcats 1.0.0. #> ℹ Please use `fct_na_value_to_level()` instead. #> ℹ The deprecated feature was likely used in the visR package. #> Please report the issue at . # Estimate a survival object survfit_object <- adtte %>% visR::estimate_KM(data = ., strata = \"TRTP\") #> Warning: `estimate_KM()` was deprecated in visR 0.4.0. #> ℹ Please use `ggsurvfit::ggsurvfit()` instead. #> This warning is displayed once every 8 hours. #> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was #> generated. survfit_object #> Call: ~survival::survfit(formula = survival::Surv(AVAL, 1 - CNSR) ~ #> TRTP, data = data) #> #> n events median 0.95LCL 0.95UCL #> TRTP=Placebo 86 29 NA NA NA #> TRTP=Xanomeline High Dose 84 61 36 25 47 #> TRTP=Xanomeline Low Dose 84 62 33 28 51 # Display test statistics associated with the survival estimate visR::render(survfit_object %>% get_pvalue(), title = \"P-values\", datasource = DATASET) # Create and display a Kaplan-Meier from the survival object and add a risktable visr(survfit_object) %>% visR::add_CI() %>% visR::add_risktable() #> Warning: `visr.survfit()` was deprecated in visR 0.4.0. #> ℹ Please use `ggsurvfit::ggsurvfit()` instead. #> This warning is displayed once every 8 hours. #> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was #> generated."},{"path":[]},{"path":"https://openpharma.github.io/visR/articles/Consort_flow_diagram.html","id":"data-preparation","dir":"Articles","previous_headings":"Attrition example","what":"Data preparation","title":"Creating consort flow diagram with visR","text":"Prepare data using attrition function.","code":"attrition <- visR::get_attrition(adtte, criteria_descriptions = c(\"1. Not in Placebo Group\", \"2. Be 75 years of age or older.\", \"3. White\", \"4. Female\"), criteria_conditions = c(\"TRTP != 'Placebo'\", \"AGE >= 75\", \"RACE=='WHITE'\", \"SEX=='F'\"), subject_column_name = \"USUBJID\")"},{"path":"https://openpharma.github.io/visR/articles/Consort_flow_diagram.html","id":"render-chart","dir":"Articles","previous_headings":"Attrition example","what":"Render chart","title":"Creating consort flow diagram with visR","text":"Draw CONSORT attrition chart without specifying extra text complement","code":"attrition %>% visR::visr(\"Criteria\", \"Remaining N\")"},{"path":"https://openpharma.github.io/visR/articles/Consort_flow_diagram.html","id":"adding-more-detail","dir":"Articles","previous_headings":"Attrition example","what":"Adding more detail","title":"Creating consort flow diagram with visR","text":"Adding detailed complement descriptions “exclusion” part CONSORT diagram","code":""},{"path":"https://openpharma.github.io/visR/articles/Consort_flow_diagram.html","id":"add-the-control-group","dir":"Articles","previous_headings":"Attrition example > Adding more detail","what":"Add the control group","title":"Creating consort flow diagram with visR","text":"Step 1. Add new column attrition dataframe","code":"attrition$Complement <- c(\"NA\", \"Placebo Group\", \"Younger than 75 years\", \"Non-White\", \"Male\")"},{"path":"https://openpharma.github.io/visR/articles/Consort_flow_diagram.html","id":"define-metadata","dir":"Articles","previous_headings":"Attrition example > Adding more detail","what":"Define metadata","title":"Creating consort flow diagram with visR","text":"Step 2. Define name column call plotting function","code":"attrition %>% visR::visr(\"Criteria\", \"Remaining N\", \"Complement\")"},{"path":[]},{"path":"https://openpharma.github.io/visR/articles/Consort_flow_diagram.html","id":"styling-the-consort-flowchart-","dir":"Articles","previous_headings":"Additional features","what":"Styling the CONSORT flowchart.","title":"Creating consort flow diagram with visR","text":"Change fill outline boxes flowchart","code":"attrition %>% visR::visr(\"Criteria\", \"Remaining N\", \"Complement\", fill = \"lightblue\", border=\"grey\")"},{"path":"https://openpharma.github.io/visR/articles/Consort_flow_diagram.html","id":"adjusting-size","dir":"Articles","previous_headings":"Additional features","what":"Adjusting size","title":"Creating consort flow diagram with visR","text":"Adjust font size boxes","code":"attrition %>% visR::visr(\"Criteria\", \"Remaining N\", font_size = 10)"},{"path":"https://openpharma.github.io/visR/articles/Styling_KM_plots.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Styling survival plots","text":"tutorial illustrates usage styling function visR provides. default, visR::visr() apply form visual changes generated survival plots. Therefore, default output looks like expect standard ggplot2::ggplot() plot. examples visualize results estimate_KM(), principles apply competing risks cumulative incidence objects created estimate_cuminc() well.","code":"library(visR)"},{"path":"https://openpharma.github.io/visR/articles/Styling_KM_plots.html","id":"preparation-of-the-data","dir":"Articles","previous_headings":"Introduction","what":"Preparation of the data","title":"Styling survival plots","text":"example, work patient data NCCTG Lung Cancer dataset part survival package. data also used demonstrate functions visR another vignette. However, particular one, used demonstrate adjustments aesthetics.","code":""},{"path":"https://openpharma.github.io/visR/articles/Styling_KM_plots.html","id":"generation-of-a-survfit-object","dir":"Articles","previous_headings":"Introduction","what":"Generation of a survfit object","title":"Styling survival plots","text":"","code":"lung_cohort <- survival::lung lung_cohort <- lung_cohort %>% dplyr::mutate(sex = as.factor(ifelse(sex == 1, \"Male\", \"Female\"))) %>% dplyr::mutate(status = status - 1) %>% dplyr::rename(Age = \"age\", Sex = \"sex\", Status = \"status\", Days = \"time\") lung_suvival_object <- lung_cohort %>% visR::estimate_KM(strata = \"Sex\", CNSR = \"Status\", AVAL = \"Days\") #> Warning: `estimate_KM()` was deprecated in visR 0.4.0. #> ℹ Please use `ggsurvfit::ggsurvfit()` instead. #> This warning is displayed once every 8 hours. #> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was #> generated."},{"path":[]},{"path":"https://openpharma.github.io/visR/articles/Styling_KM_plots.html","id":"plotting-the-generated-survfit-object-without-adjustments","dir":"Articles","previous_headings":"Styling","what":"Plotting the generated survfit object without adjustments","title":"Styling survival plots","text":"can, plot shows default ggplot2::theme_grey() style grey background, visible grid default ggplot2 colours.","code":"p <- lung_suvival_object %>% visR::visr() #> Warning: `visr.survfit()` was deprecated in visR 0.4.0. #> ℹ Please use `ggsurvfit::ggsurvfit()` instead. #> This warning is displayed once every 8 hours. #> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was #> generated. p"},{"path":"https://openpharma.github.io/visR/articles/Styling_KM_plots.html","id":"using-ggplot2-to-style-the-plot","dir":"Articles","previous_headings":"Styling","what":"Using ggplot2 to style the plot","title":"Styling survival plots","text":"Since visR::visr() also generates valid ggplot object output, can use conventional styling logic options ggplot2 provides, shown . However, visR also provides functions adjust common aesthetics easily less code.","code":"p + ggplot2::theme_bw() + ggplot2::theme(legend.position = \"top\") + ggplot2::scale_color_manual(values = c(\"red\", \"blue\"))"},{"path":"https://openpharma.github.io/visR/articles/Styling_KM_plots.html","id":"using-visr-to-style-the-plot","dir":"Articles","previous_headings":"Styling","what":"Using visR to style the plot","title":"Styling survival plots","text":"direct option style plots generated visR::visr() using parameters function provides. Internally, parameters like y-axis label automatically deducted used function. following example demonstrates options exposed. However, rather minimal adjustments usually don’t cover things user wants modify. Therefore, provide two additional functions adjust aesthetics: visR::define_theme() visR::apply_theme(). first one provides easy wrapper create nested list list styling options applied plot second function.","code":"lung_suvival_object %>% visR::visr(x_label = \"Time\", y_label = NULL, # NULL (default) causes the label to be deducted from the used function x_ticks = seq(0, 1200, 200), y_ticks = seq(0, 100, 20), fun = \"pct\", legend_position = \"top\")"},{"path":[]},{"path":"https://openpharma.github.io/visR/articles/Styling_KM_plots.html","id":"defining-a-visr_theme-using-visrdefine_theme","dir":"Articles","previous_headings":"New themes","what":"Defining a visR_theme using visR::define_theme()","title":"Styling survival plots","text":"options provided visR::define_theme(), nonetheless returns minimal list reasonable defaults. However, function also takes several styling options. currently usable ones displayed . One particular use mind writing function , wanted option define different colours strata worry present.","code":"visR::define_theme() #> $fontfamily #> [1] \"Helvetica\" #> #> $grid #> [1] FALSE #> #> $bg #> [1] \"transparent\" #> #> attr(,\"class\") #> [1] \"visR_theme\" \"list\" theme <- visR::define_theme( strata = list( \"Sex\" = list(\"Female\" = \"red\", \"Male\" = \"blue\"), \"ph.ecog\" = list(\"0\" = \"cyan\", \"1\" = \"purple\", \"2\" = \"brown\") ), fontsizes = list( \"axis\" = 12, \"ticks\" = 10, \"legend_title\" = 10, \"legend_text\" = 8 ), fontfamily = \"Helvetica\", grid = list(\"major\" = FALSE, \"minor\" = FALSE), #grid = TRUE/FALSE # <- can also be used instead of the named list above bg = \"transparent\", legend_position = \"top\" )"},{"path":"https://openpharma.github.io/visR/articles/Styling_KM_plots.html","id":"apply-styling-using-visrapply_theme","dir":"Articles","previous_headings":"New themes","what":"Apply styling using visR::apply_theme()","title":"Styling survival plots","text":"visR::apply_theme() function exposes user two ways style plot. direct one just apply function plot without specifying options. applies several reasonable defaults plot. second one apply nested list lists , ideally generated visR::define_theme() plot. serves purpose generate detailed visR_theme object apply one several plots single line. lists also easily saved shared. usage theme generated shown .","code":"lung_suvival_object %>% visR::visr() %>% visR::apply_theme() lung_suvival_object %>% visR::visr() %>% visR::apply_theme(theme)"},{"path":"https://openpharma.github.io/visR/articles/Time_to_event_analysis.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Survival Analysis with visR","text":"tutorial illustrates typical use case clinical development - analysis time certain event (e.g., death) different groups. Typically, data obtained randomized clinical trials (RCT) can used estimate overall survival patients one group (e.g., treated drug X) vs another group (e.g., treated drug Y) thus determine treatment difference. thorough introduction Survival Analysis, recommend following tutorial. example, work patient data NCCTG Lung Cancer dataset part survival package. Another vignette presents example using data set following CDISC ADaM standard.","code":"library(ggplot2) library(visR)"},{"path":"https://openpharma.github.io/visR/articles/Time_to_event_analysis.html","id":"global-document-setup","dir":"Articles","previous_headings":"","what":"Global Document Setup","title":"Survival Analysis with visR","text":"","code":"# Metadata Title DATASET <- paste0(\"NCCTG Lung Cancer Dataset (from survival package \", packageVersion(\"survival\"), \")\") # Save original options() old <- options() # Global formatting options options(digits = 3) # Global ggplot settings theme_set(theme_bw()) # Global table settings options(DT.options = list(pageLength = 10, language = list(search = 'Filter:'), scrollX = TRUE)) lung_cohort <- survival::lung # Change gender to be a factor and rename some variables to make output look nicer lung_cohort <- lung_cohort %>% dplyr::mutate(sex = as.factor(ifelse(sex == 1, \"Male\", \"Female\"))) %>% dplyr::rename(Age = \"age\", Sex = \"sex\", Status = \"status\", Days = \"time\") # Restore original options() options(old)"},{"path":"https://openpharma.github.io/visR/articles/Time_to_event_analysis.html","id":"cohort-overview-table-one","dir":"Articles","previous_headings":"","what":"Cohort Overview (Table one)","title":"Survival Analysis with visR","text":"Visualizing tables, like table one risk tables, two-step process visR . First, data.frame (tibble) created get_XXX() function (e.g. get_tableone()). Secondly, data.frame can displayed calling function render(). advantage process data summaries can created, used adjusted throughout analysis, every step data summaries can displayed even downloaded. Populations usually displayed -called table one. Function get_tableone creates tibble includes populations summaries. Function render nicely displays tableone. Additionally, visR includes wrapper function create display tableone one function call. Creating visualizing tableone default settings simple can done one line code. However, customization options. get wrapper functions, stratifier can defined column displaying total information can removed. visR’s render supports three different rendering engines flexible possible. default, render uses gt. Additional engines datatable (dt) include easy downloading options… …kable flexible displaying various output formats (html default, latex supported). Overview Lung Cancer patients Called html output format, html view displayed; called latex string containing latex code printed.","code":"# Select variables of interest and change names to look nicer lung_cohort_tab1 <- lung_cohort %>% dplyr::select(Age, Sex) # Create a table one tab1 <- visR::get_tableone(lung_cohort_tab1) #> Warning: There was 1 warning in `summarise()`. #> ℹ In argument: `Sex = (function (x) ...`. #> ℹ In group 1: `all = \"Total\"`. #> Caused by warning: #> ! `fct_explicit_na()` was deprecated in forcats 1.0.0. #> ℹ Please use `fct_na_value_to_level()` instead. #> ℹ The deprecated feature was likely used in the visR package. #> Please report the issue at . # Render the tableone visR::render(tab1, title = \"Overview over Lung Cancer patients\", datasource = DATASET) # Use wrapper functionality to create and display a tableone visR::tableone(lung_cohort_tab1, title = \"Overview over Lung Cancer patients\", datasource = DATASET) # Create and render a tableone with a stratifier and without displaying the total visR::tableone(lung_cohort_tab1, strata = \"Sex\", overall = FALSE, title = \"Overview over Lung Cancer patients\", datasource = DATASET) # Create and render a tableone with with dt as an engine visR::tableone(lung_cohort_tab1, strata = \"Sex\", overall = FALSE, title = \"Overview over Lung Cancer patients\", datasource = DATASET, engine = \"dt\") # Create and render a tableone with with kable as an engine and html as output format visR::tableone(lung_cohort_tab1, strata = \"Sex\", overall = FALSE, title = \"Overview over Lung Cancer patients\", datasource = DATASET, engine = \"kable\", output_format=\"html\")"},{"path":[]},{"path":"https://openpharma.github.io/visR/articles/Time_to_event_analysis.html","id":"survival-estimation","dir":"Articles","previous_headings":"Time-to-event analysis","what":"Survival estimation","title":"Survival Analysis with visR","text":"visR provides wrapper function estimate Kaplan-Meier curve several functions visualize results. wrapper function compatible %>% purrr::map functions without losing traceability dataset name.","code":"# Select variables of interest and change names to look nicer lung_cohort_survival <- lung_cohort %>% dplyr::select(Age, Sex, Status, Days) # For the survival estimate, the censor must be 0 or 1 lung_cohort_survival$Status <- lung_cohort_survival$Status - 1 # Estimate the survival curve lung_suvival_object <- lung_cohort_survival %>% visR::estimate_KM(strata = \"Sex\", CNSR = \"Status\", AVAL = \"Days\") #> Warning: `estimate_KM()` was deprecated in visR 0.4.0. #> ℹ Please use `ggsurvfit::ggsurvfit()` instead. #> This warning is displayed once every 8 hours. #> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was #> generated. lung_suvival_object #> Call: ~survival::survfit(formula = survival::Surv(Days, 1 - Status) ~ #> Sex, data = data) #> #> n events median 0.95LCL 0.95UCL #> Sex=Female 90 37 529 376 NA #> Sex=Male 138 26 840 806 NA"},{"path":"https://openpharma.github.io/visR/articles/Time_to_event_analysis.html","id":"survival-visualization","dir":"Articles","previous_headings":"Time-to-event analysis","what":"Survival visualization","title":"Survival Analysis with visR","text":"two frequently used ways estimate time--event data: risk table Kaplan-Meier curve. principle, visR allows either visualize risk table Kaplan-Meier curve separately, together one plot.","code":""},{"path":"https://openpharma.github.io/visR/articles/Time_to_event_analysis.html","id":"displaying-the-risktable","dir":"Articles","previous_headings":"Time-to-event analysis > Survival visualization","what":"Displaying the risktable","title":"Survival Analysis with visR","text":"Creating visualizing risk table separately works exact way tableone (): First, get_risktable() creates tibble risk information can still changed. Secondly, risk table can rendered displayed. risktable one piece information can extracted survival object get_XXX rendered.","code":"# Create a risktable rt <- visR::get_risktable(lung_suvival_object) # Display the risktable visR::render(rt, title = \"Overview over survival rates of Lung Cancer patients\", datasource = DATASET) # Display a summary of the survival estimate visR::render(lung_suvival_object %>% visR::get_summary(), title = \"Summary\", datasource = DATASET) # Display test statistics associated with the survival estimate visR::render(lung_suvival_object %>% visR::get_pvalue(), title = \"P-values\", datasource = DATASET) # Display qunatile information of the survival estimate visR::render(lung_suvival_object %>% visR::get_quantile(), title = \"Quantile Information\", datasource = DATASET) # Display a cox model estimate associated with the survival estimate visR::render(lung_suvival_object %>% visR::get_COX_HR(), title = \"COX estimate\", datasource = DATASET) #> tidyme S3 default method (broom::tidy) used."},{"path":"https://openpharma.github.io/visR/articles/Time_to_event_analysis.html","id":"plotting-the-kaplan-meier","dir":"Articles","previous_headings":"Time-to-event analysis > Survival visualization","what":"Plotting the Kaplan-Meier","title":"Survival Analysis with visR","text":"Alternatively, survival data can plotted Kaplan-Meier curve. visR, plot cases ggplot object adapting plot follows general principle creating plot adding visual contents step--step. visR includes wrapper function create risktable add directly Kaplan-Meier plot.","code":"# Create and display a Kaplan-Meier from the survival object gg <- visR::visr(lung_suvival_object) #> Warning: `visr.survfit()` was deprecated in visR 0.4.0. #> ℹ Please use `ggsurvfit::ggsurvfit()` instead. #> This warning is displayed once every 8 hours. #> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was #> generated. gg # Add a confidence interval to the Kaplan-Meier and display the plot gg %>% visR::add_CI() # Add a confidence interval and the censor ticks to the Kaplan-Meier and display the plot gg %>% visR::add_CI() %>% visR::add_CNSR(shape = 3, size = 2) # Add a confidence interval and the censor ticks and a risktable to the Kaplan-Meier and display the plot gg %>% visR::add_CI() %>% visR::add_CNSR(shape = 3, size = 2) %>% visR::add_risktable()"},{"path":"https://openpharma.github.io/visR/articles/Time_to_event_analysis.html","id":"competing-risks","dir":"Articles","previous_headings":"","what":"Competing Risks","title":"Survival Analysis with visR","text":"addition classic right-censored data, {visR} package supports estimation time--event outcomes presence competing events. package wraps {tidycmprsk} package, exports functions cumulative incidence estimation visualization. function estimate_cuminc() estimates cumulative incidence competing event outcome interest. syntax nearly identical estimate_KM(); however, outcome status variable (passed CNSR= argument) must factor first level indicates censoring, second level competing event interest, subsequent levels competing events. Visualization functions, visr(), add_CI(), add_CNSR(), add_risktable() share syntax Kaplan-Meier variants.","code":"visR::estimate_cuminc( tidycmprsk::trial, strata = \"trt\", CNSR = \"death_cr\", AVAL = \"ttdeath\" ) %>% visR::visr( legend_position = \"bottom\", x_label = \"Months from Treatment\", y_label = \"Risk of Death\" ) %>% visR::add_CI() %>% visR::add_risktable(statlist = c(\"n.risk\", \"cum.event\")) #> Warning: `visr.tidycuminc()` was deprecated in visR 0.4.0. #> ℹ Please use `ggsurvfit::ggcuminc()` instead. #> This warning is displayed once every 8 hours. #> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was #> generated."},{"path":[]},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-visr---a-package-for-effective-visualizations-in-pharma","dir":"Articles > Interactive_tte_tutorial","previous_headings":"Welcome","what":"visR - A package for Effective Visualizations in Pharma","title":"visR","text":"tutorial introduce basic usage visR, R package effective visual communication. package presents easy--use interface visualizations relevant clinical development process, implementing several best practices. developed part openpharma initiative, effort open-source cross-industry collaboration.","code":""},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-further-reading","dir":"Articles > Interactive_tte_tutorial","previous_headings":"Welcome","what":"Further reading","title":"visR","text":"graphical principles visR aims implement [graphicsprinciples.github.io] visR Documentation [openpharma.github.io/visR] visR @ GitHub [github.com/openpharma/visR] visR @ CRAN [cran.r-project.org/web/packages/visR] openpharma overview [openpharma.github.io]","code":""},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-package-architecture","dir":"Articles > Interactive_tte_tutorial","previous_headings":"","what":"Package architecture","title":"visR","text":"visR package implements simple--use interface adhering consistent naming conventions.","code":""},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-overview","dir":"Articles > Interactive_tte_tutorial","previous_headings":"Package architecture","what":"Overview","title":"visR","text":"principle, extimate_XXX functions allow estimate statistical models data (e.g. estimate_KM estimates survival model), get_XXX functions get kinds summary statistics (e.g. get_tableone get_pvalue), render visr display plots tables, add_XXX functions add specific information plot table (e.g. add_CI adds confidence intervals plot.)","code":""},{"path":[]},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-outline","dir":"Articles > Interactive_tte_tutorial","previous_headings":"Package architecture","what":"Outline","title":"visR","text":"tutorial walk basic survival analysis show-casing principles features visR. start introducing data set provided COVID-19 India Org Data Operations Group use throughout tutorial. introduce -called table 1 gives overview patient population. estimate_ survival model introduce functions get_ summary statistics. plot survival model show can add_ additional information . integrate summary statistics plots.","code":""},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-the-study-and-the-data","dir":"Articles > Interactive_tte_tutorial","previous_headings":"","what":"The study and the data","title":"visR","text":"Risk Survival Analysis COVID Outbreak Data :Lessons India goal paper assess mortality India due COVID-19. understand survival COVID-19 patients, time--event analysis performed based Kaplan-Meier estimates using gender age group (separately combined) strata. According authors (Bankar et al., 2021), probably biggest retrospective-cohort survival analysis conducted India, according authors. paper used publicly available data COVID-19 India Org Data Operations Group. figure roughly described trends distributions patient population.","code":""},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-the-data","dir":"Articles > Interactive_tte_tutorial","previous_headings":"The study and the data","what":"The data","title":"visR","text":"Patients admitted Karnakata, South India, recruited. final dataset consists 26,741 patients. Age gender patient, number days hospital per stay, status patient (1=censored/alive, 2=dead) age category (<18 yr, 18 yr – 60 yr, >60 yr) collected. [Publication] [GitHub] [Raw data]","code":"# First, we set the default ggplot2 theme theme_set(theme_bw()) # Then, we directly load the data from their GitHub repository data = read.csv(\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\") data Age Sex Stay Status Age_Cat 1 46.00 M 2 2 2 2 90.00 M 7 2 3 3 72.00 F 1 2 3 4 54.00 M 0 2 2 5 51.00 F 4 2 2 6 65.00 M 0 2 3 7 56.00 M 0 2 2 8 39.00 M 1 2 2 9 66.00 F 0 2 3 10 53.00 F 10 2 2 11 62.00 M 0 2 3 12 55.00 M 2 2 2 13 70.00 M 0 2 3 14 46.00 M 1 2 2 15 60.00 F 5 2 3 16 90.00 M 0 2 3 17 45.00 M 3 2 2 18 38.00 F 1 2 2 19 70.00 M 0 2 3 20 70.00 M 13 2 3 21 47.00 F 6 2 2 22 85.00 F 5 2 3 23 81.00 M 3 2 3 24 32.00 M 0 2 2 25 67.00 M 1 2 3 26 40.00 M 1 2 2 27 85.00 F 5 2 3 28 59.00 F 14 2 2 29 54.00 F 6 2 2 30 59.00 M 3 2 2 31 73.00 M 2 2 3 32 78.00 M 1 2 3 33 55.00 M 1 2 2 34 43.00 M 0 2 2 35 28.00 M 1 2 2 36 56.00 M 1 2 2 37 53.00 M 0 2 2 38 60.00 M 3 2 3 39 70.00 F 0 2 3 40 50.00 F 0 2 2 41 68.00 M 0 2 3 42 61.00 M 1 2 3 43 68.00 F 2 2 3 44 87.00 M 0 2 3 45 80.00 F 3 2 3 46 60.00 F 0 2 3 47 38.00 M 3 2 2 48 43.00 F 7 2 2 49 42.00 M 4 2 2 50 75.00 F 2 2 3 51 57.00 M 0 2 2 52 71.00 M 0 2 3 53 55.00 M 1 2 2 54 65.00 F 0 2 3 55 45.00 M 0 2 2 56 63.00 F 3 2 3 57 66.00 F 9 2 3 58 83.00 M 16 2 3 59 65.00 M 10 2 3 60 70.00 M 8 2 3 61 72.00 M 3 2 3 62 74.00 F 5 2 3 63 95.00 F 2 2 3 64 50.00 M 1 2 2 65 75.00 M 0 2 3 66 73.00 M 2 2 3 67 65.00 M 0 2 3 68 73.00 F 0 2 3 69 71.00 F 18 2 3 70 60.00 F 12 2 3 71 66.00 M 4 2 3 72 62.00 M 7 2 3 73 55.00 M 9 2 2 74 55.00 M 6 2 2 75 48.00 F 2 2 2 76 70.00 M 1 2 3 77 76.00 F 1 2 3 78 40.00 M 0 2 2 79 65.00 M 5 2 3 80 50.00 M 1 2 2 81 57.00 M 0 2 2 82 65.00 M 1 2 3 83 31.00 M 1 2 2 84 51.00 F 2 2 2 85 67.00 M 15 2 3 86 80.00 F 1 2 3 87 60.00 M 5 2 3 88 60.00 F 4 2 3 89 59.00 M 4 2 2 90 48.00 M 1 2 2 91 60.00 M 1 2 3 92 50.00 M 1 2 2 93 70.00 M 3 2 3 94 63.00 F 0 2 3 95 40.00 M 0 2 2 96 49.00 F 1 2 2 97 60.00 F 0 2 3 98 56.00 M 2 2 2 99 31.00 M 0 2 2 100 41.00 M 1 2 2 101 56.00 M 0 2 2 102 43.00 M 0 2 2 103 42.00 F 1 2 2 104 31.00 F 1 2 2 105 75.00 F 6 2 3 106 85.00 F 7 2 3 107 83.00 M 6 2 3 108 44.00 M 6 2 2 109 63.00 M 3 2 3 110 55.00 F 2 2 2 111 45.00 M 2 2 2 112 60.00 F 6 2 3 113 63.00 F 1 2 3 114 64.00 F 0 2 3 115 50.00 M 0 2 2 116 50.00 F 1 2 2 117 52.00 M 4 2 2 118 69.00 M 0 2 3 119 32.00 M 0 2 2 120 36.00 M 0 2 2 121 56.00 M 1 2 2 122 58.00 F 2 2 2 123 58.00 F 0 2 2 124 50.00 F 1 2 2 125 50.00 M 4 2 2 126 72.00 M 0 2 3 127 72.00 M 0 2 3 128 80.00 M 3 2 3 129 63.00 M 11 2 3 130 30.00 M 1 2 2 131 66.00 F 12 2 3 132 75.00 M 0 2 3 133 43.00 M 7 2 2 134 79.00 M 8 2 3 135 76.00 M 6 2 3 136 48.00 M 4 2 2 137 75.00 F 3 2 3 138 48.00 M 13 2 2 139 74.00 M 7 2 3 140 61.00 M 1 2 3 141 50.00 M 2 2 2 142 70.00 F 2 2 3 143 65.00 M 1 2 3 144 60.00 M 0 2 3 145 36.00 M 1 2 2 146 55.00 M 0 2 2 147 45.00 M 1 2 2 148 68.00 F 5 2 3 149 31.00 M 0 2 2 150 50.00 F 8 2 2 151 58.00 M 6 2 2 152 73.00 M 14 2 3 153 56.00 M 0 2 2 154 55.00 M 0 2 2 155 63.00 M 0 2 3 156 52.00 M 6 2 2 157 54.00 M 4 2 2 158 87.00 M 3 2 3 159 60.00 M 0 2 3 160 58.00 M 0 2 2 161 65.00 F 2 2 3 162 75.00 F 5 2 3 163 73.00 F 1 2 3 164 80.00 M 8 2 3 165 25.00 F 5 2 2 166 62.00 M 1 2 3 167 70.00 F 1 2 3 168 75.00 M 1 2 3 169 46.00 F 1 2 2 170 48.00 M 0 2 2 171 80.00 F 3 2 3 172 72.00 F 1 2 3 173 66.00 M 2 2 3 174 51.00 M 0 2 2 175 84.00 M 2 2 3 176 82.00 M 6 2 3 177 29.00 M 10 2 2 178 45.00 M 0 2 2 179 57.00 M 4 2 2 180 63.00 M 1 2 3 181 68.00 M 5 2 3 182 65.00 M 4 2 3 183 66.00 F 0 2 3 184 50.00 F 1 2 2 185 52.00 F 7 2 2 186 42.00 F 3 2 2 187 60.00 F 0 2 3 188 39.00 M 0 2 2 189 56.00 M 2 2 2 190 66.00 F 3 2 3 191 53.00 M 4 2 2 192 78.00 F 3 2 3 193 62.00 M 0 2 3 194 60.00 M 1 2 3 195 68.00 F 1 2 3 196 73.00 M 1 2 3 197 47.00 M 3 2 2 198 84.00 M 1 2 3 199 32.00 M 2 2 2 200 80.00 M 0 2 3 201 60.00 F 0 2 3 202 67.00 M 0 2 3 203 65.00 F 0 2 3 204 45.00 F 2 2 2 205 75.00 M 1 2 3 206 73.00 M 1 2 3 207 55.00 M 0 2 2 208 24.00 F 0 2 2 209 70.00 F 2 2 3 210 50.00 M 0 2 2 211 70.00 F 1 2 3 212 31.00 M 1 2 2 213 57.00 M 14 2 2 214 70.00 M 4 2 3 215 55.00 F 17 2 2 216 50.00 F 9 2 2 217 64.00 M 5 2 3 218 58.00 M 0 2 2 219 73.00 M 0 2 3 220 95.00 M 2 2 3 221 48.00 M 1 2 2 222 63.00 M 3 2 3 223 64.00 F 27 2 3 224 54.00 M 8 2 2 225 48.00 M 1 2 2 226 71.00 M 8 2 3 227 62.00 M 0 2 3 228 68.00 M 3 2 3 229 58.00 F 2 2 2 230 77.00 M 1 2 3 231 69.00 M 1 2 3 232 64.00 M 0 2 3 233 50.00 F 5 2 2 234 53.00 M 1 2 2 235 48.00 M 0 2 2 236 78.00 M 0 2 3 237 67.00 F 4 2 3 238 66.00 M 0 2 3 239 70.00 M 0 2 3 240 25.00 F 2 2 2 241 45.00 M 0 2 2 242 54.00 M 2 2 2 243 63.00 M 1 2 3 244 45.00 M 1 2 2 245 60.00 F 0 2 3 246 65.00 M 6 2 3 247 32.00 F 1 2 2 248 59.00 M 0 2 2 249 60.00 M 0 2 3 250 65.00 M 0 2 3 251 44.00 M 11 2 2 252 58.00 M 12 2 2 253 54.00 M 7 2 2 254 79.00 M 4 2 3 255 62.00 M 6 2 3 256 59.00 F 7 2 2 257 59.00 M 12 2 2 258 74.00 M 7 2 3 259 68.00 M 7 2 3 260 73.00 M 3 2 3 261 52.00 M 6 2 2 262 49.00 M 4 2 2 263 60.00 F 3 2 3 264 50.00 M 3 2 2 265 64.00 M 2 2 3 266 78.00 M 1 2 3 267 60.00 M 0 2 3 268 80.00 M 0 2 3 269 90.00 F 0 2 3 270 75.00 M 0 2 3 271 70.00 M 0 2 3 272 22.00 M 1 2 2 273 65.00 F 0 2 3 274 65.00 F 1 2 3 275 40.00 M 0 2 2 276 46.00 M 2 2 2 277 75.00 M 2 2 3 278 38.00 F 0 2 2 279 58.00 M 0 2 2 280 30.00 M 0 2 2 281 80.00 M 2 2 3 282 48.00 M 2 2 2 283 68.00 M 1 2 3 284 75.00 F 2 2 3 285 47.00 M 1 2 2 286 52.00 M 0 2 2 287 55.00 F 0 2 2 288 55.00 M 1 2 2 289 71.00 M 0 2 3 290 40.00 M 2 2 2 291 68.00 F 1 2 3 292 70.00 M 0 2 3 293 70.00 F 0 2 3 294 65.00 M 1 2 3 295 90.00 F 16 2 3 296 42.00 M 4 2 2 297 73.00 M 11 2 3 298 56.00 F 6 2 2 299 37.00 M 10 2 2 300 44.00 M 6 2 2 301 34.00 M 10 2 2 302 60.00 M 7 2 3 303 70.00 M 0 2 3 304 67.00 F 12 2 3 305 60.00 M 5 2 3 306 68.00 M 2 2 3 307 65.00 M 1 2 3 308 55.00 M 8 2 2 309 58.00 F 8 2 2 310 58.00 F 11 2 2 311 70.00 M 5 2 3 312 36.00 M 6 2 2 313 14.00 M 2 2 1 314 50.00 F 10 2 2 315 67.00 M 7 2 3 316 85.00 M 8 2 3 317 65.00 M 1 2 3 318 58.00 M 0 2 2 319 61.00 F 1 2 3 320 29.00 M 4 2 2 321 57.00 M 7 2 2 322 60.00 F 6 2 3 323 35.00 M 13 2 2 324 69.00 M 3 2 3 325 47.00 M 2 2 2 326 34.00 M 5 2 2 327 65.00 M 6 2 3 328 65.00 M 5 2 3 329 65.00 M 13 2 3 330 56.00 M 0 2 2 331 60.00 F 3 2 3 332 70.00 F 8 2 3 333 40.00 M 6 2 2 334 50.00 M 1 2 2 335 80.00 M 3 2 3 336 54.00 M 1 2 2 337 52.00 F 0 2 2 338 48.00 F 1 2 2 339 58.00 F 0 2 2 340 55.00 F 0 2 2 341 48.00 F 1 2 2 342 85.00 F 0 2 3 343 62.00 M 0 2 3 344 65.00 M 1 2 3 345 54.00 F 1 2 2 346 70.00 M 1 2 3 347 65.00 M 0 2 3 348 45.00 F 12 2 2 349 55.00 M 6 2 2 350 88.00 M 2 2 3 351 42.00 M 0 2 2 352 65.00 M 5 2 3 353 77.00 M 3 2 3 354 67.00 M 4 2 3 355 50.00 F 3 2 2 356 78.00 F 0 2 3 357 76.00 F 3 2 3 358 64.00 M 0 2 3 359 52.00 M 0 2 2 360 53.00 M 1 2 2 361 73.00 M 1 2 3 362 54.00 M 3 2 2 363 85.00 M 2 2 3 364 53.00 M 4 2 2 365 59.00 F 15 2 2 366 75.00 M 9 2 3 367 32.00 F 2 2 2 368 70.00 F 9 2 3 369 51.00 M 0 2 2 370 37.00 M 6 2 2 371 71.00 M 4 2 3 372 51.00 M 0 2 2 373 65.00 M 5 2 3 374 65.00 M 2 2 3 375 52.00 M 0 2 2 376 45.00 M 0 2 2 377 90.00 M 1 2 3 378 72.00 M 8 2 3 379 48.00 F 1 2 2 380 65.00 M 0 2 3 381 56.00 M 0 2 2 382 69.00 F 0 2 3 383 31.00 F 1 2 2 384 51.00 M 4 2 2 385 63.00 M 4 2 3 386 55.00 F 0 2 2 387 55.00 M 0 2 2 388 48.00 M 10 2 2 389 45.00 M 3 2 2 390 47.00 M 9 2 2 391 70.00 M 1 2 3 392 42.00 M 7 2 2 393 72.00 M 1 2 3 394 62.00 M 0 2 3 395 68.00 F 0 2 3 396 55.00 F 3 2 2 397 44.00 F 4 2 2 398 66.00 M 6 2 3 399 83.00 M 6 2 3 400 75.00 M 7 2 3 401 62.00 M 8 2 3 402 58.00 F 2 2 2 403 52.00 M 3 2 2 404 40.00 M 3 2 2 405 57.00 M 4 2 2 406 61.00 M 5 2 3 407 61.00 M 4 2 3 408 72.00 M 2 2 3 409 71.00 F 1 2 3 410 55.00 M 1 2 2 411 42.00 M 1 2 2 412 60.00 M 33 2 3 413 35.00 M 1 2 2 414 52.00 M 0 2 2 415 50.00 F 1 2 2 416 57.00 M 1 2 2 417 65.00 F 0 2 3 418 72.00 M 1 2 3 419 49.00 M 1 2 2 420 48.00 M 0 2 2 421 82.00 M 0 2 3 422 65.00 M 14 2 3 423 30.00 M 14 2 2 424 66.00 M 0 2 3 425 58.00 M 2 2 2 426 58.00 F 0 2 2 427 68.00 M 2 2 3 428 63.00 F 3 2 3 429 68.00 M 0 2 3 430 76.00 M 8 2 3 431 62.00 M 5 2 3 432 65.00 F 2 2 3 433 60.00 F 0 2 3 434 83.00 M 1 2 3 435 59.00 M 1 2 2 436 59.00 F 1 2 2 437 58.00 M 0 2 2 438 57.00 F 0 2 2 439 67.00 M 0 2 3 440 54.00 M 4 2 2 441 70.00 F 1 2 3 442 56.00 F 1 2 2 443 49.00 F 0 2 2 444 73.00 M 0 2 3 445 88.00 M 0 2 3 446 54.00 M 1 2 2 447 61.00 M 0 2 3 448 65.00 M 0 2 3 449 79.00 M 1 2 3 450 51.00 F 0 2 2 451 73.00 F 5 2 3 452 40.00 M 8 2 2 453 55.00 F 1 2 2 454 80.00 M 6 2 3 455 51.00 M 4 2 2 456 75.00 M 6 2 3 457 78.00 F 5 2 3 458 84.00 M 6 2 3 459 59.00 M 2 2 2 460 68.00 M 5 2 3 461 73.00 M 1 2 3 462 65.00 M 2 2 3 463 67.00 M 0 2 3 464 55.00 M 2 2 2 465 51.00 F 1 2 2 466 65.00 M 3 2 3 467 58.00 F 0 2 2 468 31.00 M 14 2 2 469 72.00 M 4 2 3 470 65.00 F 0 2 3 471 55.00 M 0 2 2 472 45.00 F 6 2 2 473 58.00 F 1 2 2 474 47.00 M 1 2 2 475 65.00 M 0 2 3 476 54.00 M 1 2 2 477 58.00 M 1 2 2 478 66.00 M 2 2 3 479 55.00 M 11 2 2 480 62.00 M 0 2 3 481 12.00 F 1 2 1 482 46.00 F 0 2 2 483 26.00 F 0 2 2 484 57.00 F 1 2 2 485 62.00 F 5 2 3 486 70.00 M 4 2 3 487 60.00 F 0 2 3 488 68.00 M 1 2 3 489 50.00 M 0 2 2 490 71.00 M 0 2 3 491 58.00 M 1 2 2 492 46.00 M 6 2 2 493 0.00 F 0 2 1 494 70.00 M 11 2 3 495 65.00 M 3 2 3 496 17.00 F 8 2 1 497 45.00 F 13 2 2 498 64.00 M 11 2 3 499 61.00 M 7 2 3 500 59.00 F 2 2 2 501 63.00 M 0 2 3 502 36.00 M 14 2 2 503 60.00 M 3 2 3 504 49.00 F 2 2 2 505 60.00 M 11 2 3 506 45.00 M 3 2 2 507 71.00 F 2 2 3 508 42.00 F 6 2 2 509 84.00 M 0 2 3 510 57.00 M 1 2 2 511 60.00 M 9 2 3 512 33.00 M 23 2 2 513 75.00 F 1 2 3 514 50.00 F 1 2 2 515 60.00 F 6 2 3 516 45.00 F 7 2 2 517 70.00 F 0 2 3 518 60.00 M 9 2 3 519 69.00 M 13 2 3 520 82.00 M 10 2 3 521 68.00 M 0 2 3 522 49.00 M 1 2 2 523 56.00 M 4 2 2 524 33.00 F 2 2 2 525 80.00 F 3 2 3 526 74.00 M 1 2 3 527 65.00 M 2 2 3 528 48.00 M 0 2 2 529 52.00 F 11 2 2 530 75.00 F 0 2 3 531 26.00 M 3 2 2 532 57.00 M 5 2 2 533 62.00 M 7 2 3 534 65.00 M 3 2 3 535 71.00 M 1 2 3 536 56.00 M 1 2 2 537 76.00 F 1 2 3 538 49.00 F 0 2 2 539 57.00 M 1 2 2 540 79.00 M 3 2 3 541 59.00 F 0 2 2 542 54.00 F 0 2 2 543 65.00 F 0 2 3 544 48.00 M 1 2 2 545 70.00 F 8 2 3 546 72.00 M 6 2 3 547 78.00 M 4 2 3 548 53.00 M 2 2 2 549 45.00 F 1 2 2 550 52.00 M 3 2 2 551 50.00 M 2 2 2 552 42.00 M 1 2 2 553 68.00 M 0 2 3 554 58.00 M 3 2 2 555 47.00 M 0 2 2 556 55.00 F 1 2 2 557 60.00 F 1 2 3 558 58.00 F 0 2 2 559 42.00 F 0 2 2 560 60.00 M 1 2 3 561 80.00 F 0 2 3 562 57.00 M 2 2 2 563 45.00 F 10 2 2 564 55.00 F 3 2 2 565 61.00 F 1 2 3 566 52.00 M 4 2 2 567 57.00 M 11 2 2 568 35.00 M 0 2 2 569 36.00 F 1 2 2 570 50.00 F 3 2 2 571 55.00 F 17 2 2 572 48.00 M 0 2 2 573 52.00 M 2 2 2 574 36.00 M 0 2 2 575 48.00 M 0 2 2 576 59.00 M 1 2 2 577 46.00 F 8 2 2 578 45.00 M 0 2 2 579 72.00 F 1 2 3 580 84.00 M 2 2 3 581 29.00 M 10 2 2 582 45.00 M 0 2 2 583 57.00 M 4 2 2 584 65.00 M 3 2 3 585 50.00 F 1 2 2 586 52.00 F 7 2 2 587 42.00 F 3 2 2 588 39.00 M 0 2 2 589 40.00 M 0 2 2 590 66.00 F 3 2 3 591 78.00 F 5 2 3 592 62.00 M 0 2 3 593 55.00 F 1 2 2 594 36.00 F 1 2 2 595 80.00 F 3 2 3 596 63.00 M 2 2 3 597 75.00 F 2 2 3 598 65.00 F 9 2 3 599 48.00 F 1 2 2 600 60.00 F 0 2 3 601 90.00 F 6 2 3 602 80.00 M 6 2 3 603 77.00 M 4 2 3 604 70.00 M 4 2 3 605 62.00 M 2 2 3 606 59.00 M 0 2 2 607 65.00 M 0 2 3 608 63.00 M 1 2 3 609 79.00 M 3 2 3 610 50.00 M 0 2 2 611 65.00 M 4 2 3 612 50.00 M 0 2 2 613 63.00 M 0 2 3 614 52.00 M 0 2 2 615 70.00 M 0 2 3 616 45.00 M 4 2 2 617 20.00 M 3 2 2 618 86.00 F 0 2 3 619 85.00 F 6 2 3 620 39.00 M 6 2 2 621 74.00 M 2 2 3 622 70.00 M 0 2 3 623 51.00 M 1 2 2 624 68.00 M 0 2 3 625 76.00 M 1 2 3 626 52.00 M 2 2 2 627 72.00 M 0 2 3 628 45.00 M 2 2 2 629 45.00 M 1 2 2 630 82.00 F 0 2 3 631 58.00 F 0 2 2 632 69.00 M 2 2 3 633 68.00 M 2 2 3 634 63.00 M 0 2 3 635 38.00 M 2 2 2 636 45.00 F 16 2 2 637 59.00 M 1 2 2 638 47.00 M 0 2 2 639 40.00 M 1 2 2 640 29.00 F 0 2 2 641 50.00 F 0 2 2 642 59.00 M 2 2 2 643 74.00 M 1 2 3 644 58.00 F 1 2 2 645 47.00 M 1 2 2 646 67.00 M 1 2 3 647 73.00 M 2 2 3 648 42.00 F 2 2 2 649 23.00 F 2 2 2 650 55.00 M 0 2 2 651 35.00 M 1 2 2 652 55.00 M 6 2 2 653 64.00 M 7 2 3 654 76.00 F 0 2 3 655 84.00 M 1 2 3 656 54.00 M 3 2 2 657 48.00 M 0 2 2 658 60.00 M 5 2 3 659 60.00 F 0 2 3 660 75.00 F 0 2 3 661 68.00 M 1 2 3 662 53.00 M 2 2 2 663 85.00 M 0 2 3 664 60.00 M 3 2 3 665 55.00 F 0 2 2 666 67.00 F 0 2 3 667 49.00 F 0 2 2 668 68.00 F 2 2 3 669 80.00 F 1 2 3 670 70.00 M 1 2 3 671 35.00 F 1 2 2 672 40.00 F 2 2 2 673 70.00 F 0 2 3 674 49.00 M 0 2 2 675 48.00 M 0 2 2 676 48.00 F 1 2 2 677 42.00 F 3 2 2 678 75.00 F 0 2 3 679 72.00 M 2 2 3 680 52.00 M 4 2 2 681 60.00 M 6 2 3 682 61.00 M 5 2 3 683 50.00 M 0 2 2 684 70.00 F 2 2 3 685 49.00 M 0 2 2 686 38.00 M 0 2 2 687 34.00 F 1 2 2 688 50.00 M 1 2 2 689 41.00 M 1 2 2 690 76.00 M 1 2 3 691 40.00 M 0 2 2 692 55.00 M 1 2 2 693 57.00 M 2 2 2 694 53.00 M 7 2 2 695 61.00 M 0 2 3 696 60.00 M 0 2 3 697 90.00 M 3 2 3 698 41.00 M 1 2 2 699 68.00 M 6 2 3 700 40.00 F 0 2 2 701 50.00 F 2 2 2 702 70.00 M 2 2 3 703 75.00 F 3 2 3 704 70.00 M 22 2 3 705 49.00 F 4 2 2 706 70.00 M 0 2 3 707 56.00 F 2 2 2 708 56.00 M 1 2 2 709 52.00 M 2 2 2 710 76.00 F 0 2 3 711 51.00 F 2 2 2 712 65.00 M 0 2 3 713 85.00 F 3 2 3 714 48.00 M 3 2 2 715 68.00 F 0 2 3 716 60.00 M 0 2 3 717 63.00 F 1 2 3 718 60.00 M 0 2 3 719 71.00 M 0 2 3 720 69.00 M 0 2 3 721 70.00 F 1 2 3 722 58.00 M 0 2 2 723 46.00 M 9 2 2 724 78.00 M 4 2 3 725 56.00 M 4 2 2 726 60.00 F 15 2 3 727 41.00 M 1 2 2 728 66.00 M 6 2 3 729 60.00 F 0 2 3 730 70.00 M 11 2 3 731 52.00 F 13 2 2 732 48.00 M 6 2 2 733 85.00 F 5 2 3 734 55.00 F 9 2 2 735 77.00 M 6 2 3 736 78.00 M 9 2 3 737 51.00 M 6 2 2 738 65.00 M 0 2 3 739 48.00 F 0 2 2 740 62.00 F 1 2 3 741 40.00 M 2 2 2 742 78.00 M 2 2 3 743 61.00 M 1 2 3 744 62.00 M 0 2 3 745 51.00 F 0 2 2 746 26.00 M 0 2 2 747 51.00 M 0 2 2 748 60.00 M 1 2 3 749 81.00 F 0 2 3 750 60.00 M 0 2 3 751 55.00 F 0 2 2 752 63.00 M 3 2 3 753 28.00 M 0 2 2 754 78.00 M 0 2 3 755 60.00 F 1 2 3 756 65.00 M 2 2 3 757 14.00 M 4 2 1 758 70.00 M 6 2 3 759 70.00 F 1 2 3 760 46.00 M 2 2 2 761 47.00 M 1 2 2 762 41.00 M 0 2 2 763 72.00 M 2 2 3 764 65.00 M 0 2 3 765 76.00 M 0 2 3 766 50.00 M 4 2 2 767 80.00 F 2 2 3 768 84.00 M 0 2 3 769 68.00 F 1 2 3 770 54.00 M 0 2 2 771 39.00 M 0 2 2 772 75.00 M 3 2 3 773 48.00 F 1 2 2 774 41.00 M 3 2 2 775 61.00 M 6 2 3 776 27.00 F 0 2 2 777 55.00 F 4 2 2 778 75.00 F 0 2 3 779 56.00 F 0 2 2 780 59.00 M 0 2 2 781 63.00 M 0 2 3 782 45.00 F 1 2 2 783 54.00 F 9 2 2 784 47.00 M 1 2 2 785 38.00 M 0 2 2 786 60.00 M 0 2 3 787 43.00 M 1 2 2 788 62.00 F 0 2 3 789 72.00 F 0 2 3 790 50.00 F 0 2 2 791 38.00 M 0 2 2 792 45.00 M 0 2 2 793 65.00 M 4 2 3 794 49.00 M 0 2 2 795 52.00 F 0 2 2 796 52.00 M 0 2 2 797 75.00 M 1 2 3 798 74.00 F 1 2 3 799 53.00 M 1 2 2 800 38.00 F 0 2 2 801 75.00 F 0 2 3 802 55.00 F 0 2 2 803 46.00 F 1 2 2 804 60.00 M 3 2 3 805 58.00 F 1 2 2 806 68.00 M 1 2 3 807 51.00 M 4 2 2 808 61.00 F 0 2 3 809 45.00 M 0 2 2 810 59.00 M 0 2 2 811 41.00 M 0 2 2 812 56.00 M 0 2 2 813 83.00 F 1 2 3 814 55.00 F 0 2 2 815 66.00 M 11 2 3 816 56.00 M 2 2 2 817 55.00 M 4 2 2 818 55.00 M 1 2 2 819 45.00 M 0 2 2 820 67.00 M 1 2 3 821 27.00 M 0 2 2 822 57.00 M 0 2 2 823 20.00 M 1 2 2 824 61.00 M 0 2 3 825 70.00 M 0 2 3 826 55.00 M 1 2 2 827 56.00 F 1 2 2 828 65.00 M 0 2 3 829 69.00 M 0 2 3 830 50.00 F 1 2 2 831 55.00 M 1 2 2 832 68.00 M 5 2 3 833 58.00 M 2 2 2 834 40.00 F 3 2 2 835 75.00 F 1 2 3 836 58.00 M 2 2 2 837 41.00 M 0 2 2 838 68.00 M 1 2 3 839 70.00 M 0 2 3 840 45.00 M 1 2 2 841 51.00 M 5 2 2 842 72.00 F 1 2 3 843 38.00 M 2 2 2 844 56.00 M 0 2 2 845 34.00 M 0 2 2 846 81.00 M 0 2 3 847 70.00 M 3 2 3 848 45.00 M 0 2 2 849 54.00 M 0 2 2 850 66.00 F 2 2 3 851 57.00 M 0 2 2 852 65.00 M 7 2 3 853 35.00 M 1 2 2 854 50.00 F 0 2 2 855 54.00 M 0 2 2 856 59.00 M 1 2 2 857 82.00 M 3 2 3 858 52.00 M 0 2 2 859 53.00 M 0 2 2 860 60.00 M 0 2 3 861 61.00 M 0 2 3 862 23.00 F 0 2 2 863 37.00 M 0 2 2 864 73.00 F 0 2 3 865 71.00 M 0 2 3 866 68.00 M 0 2 3 867 45.00 M 0 2 2 868 58.00 F 0 2 2 869 32.00 F 1 2 2 870 61.00 M 5 2 3 871 60.00 M 0 2 3 872 38.00 M 3 2 2 873 37.00 M 0 2 2 874 53.00 M 1 2 2 875 65.00 F 1 2 3 876 68.00 F 11 2 3 877 48.00 M 0 2 2 878 63.00 M 0 2 3 879 73.00 M 9 2 3 880 65.00 M 3 2 3 881 66.00 M 5 2 3 882 35.00 M 0 2 2 883 70.00 M 5 2 3 884 65.00 M 4 2 3 885 37.00 F 1 2 2 886 75.00 M 3 2 3 887 65.00 F 3 2 3 888 55.00 M 0 2 2 889 65.00 F 2 2 3 890 48.00 F 3 2 2 891 70.00 M 2 2 3 892 28.00 M 2 2 2 893 56.00 M 1 2 2 894 31.00 M 34 2 2 895 72.00 F 2 2 3 896 43.00 F 5 2 2 897 30.00 M 0 2 2 898 92.00 F 2 2 3 899 66.00 M 5 2 3 900 55.00 F 1 2 2 901 69.00 F 3 2 3 902 58.00 F 3 2 2 903 60.00 F 6 2 3 904 66.00 M 0 2 3 905 55.00 M 2 2 2 906 60.00 M 1 2 3 907 60.00 F 0 2 3 908 65.00 F 0 2 3 909 53.00 M 0 2 2 910 49.00 M 3 2 2 911 45.00 M 0 2 2 912 73.00 M 0 2 3 913 45.00 M 2 2 2 914 50.00 M 13 2 2 915 58.00 M 0 2 2 916 58.00 M 0 2 2 917 40.00 M 0 2 2 918 65.00 M 1 2 3 919 63.00 M 12 2 3 920 61.00 M 0 2 3 921 42.00 M 0 2 2 922 55.00 M 1 2 2 923 55.00 M 0 2 2 924 67.00 M 1 2 3 925 64.00 M 1 2 3 926 50.00 M 0 2 2 927 45.00 M 0 2 2 928 53.00 F 2 2 2 929 50.00 F 2 2 2 930 75.00 M 0 2 3 931 59.00 M 0 2 2 932 51.00 F 4 2 2 933 64.00 M 4 2 3 934 48.00 M 0 2 2 935 37.00 M 0 2 2 936 60.00 M 2 2 3 937 70.00 F 11 2 3 938 62.00 F 3 2 3 939 51.00 M 1 2 2 940 50.00 F 2 2 2 941 73.00 M 3 2 3 942 35.00 F 0 2 2 943 76.00 M 2 2 3 944 40.00 M 1 2 2 945 53.00 M 4 2 2 946 46.00 M 11 2 2 947 61.00 M 4 2 3 948 65.00 M 0 2 3 949 60.00 M 0 2 3 950 55.00 M 0 2 2 951 53.00 M 6 2 2 952 38.00 F 2 2 2 953 84.00 M 14 2 3 954 46.00 M 7 2 2 955 60.00 M 9 2 3 956 85.00 M 5 2 3 957 80.00 M 8 2 3 958 48.00 M 5 2 2 959 38.00 M 0 2 2 960 68.00 F 6 2 3 961 62.00 M 5 2 3 962 75.00 M 6 2 3 963 80.00 F 2 2 3 964 78.00 M 1 2 3 965 61.00 M 0 2 3 966 49.00 M 3 2 2 967 60.00 M 1 2 3 968 65.00 M 0 2 3 969 65.00 M 1 2 3 970 60.00 M 6 2 3 971 52.00 M 7 2 2 972 48.00 M 0 2 2 973 24.00 M 1 2 2 974 50.00 F 0 2 2 975 22.00 M 0 2 2 976 58.00 M 0 2 2 977 60.00 F 2 2 3 978 58.00 M 0 2 2 979 54.00 M 1 2 2 980 78.00 M 0 2 3 981 38.00 F 0 2 2 982 54.00 M 0 2 2 983 65.00 F 0 2 3 984 87.00 F 0 2 3 985 75.00 F 0 2 3 986 60.00 F 0 2 3 987 23.00 F 1 2 2 988 85.00 M 0 2 3 989 69.00 M 4 2 3 990 72.00 M 13 2 3 991 85.00 M 2 2 3 992 57.00 F 1 2 2 993 78.00 M 0 2 3 994 68.00 M 0 2 3 995 63.00 M 2 2 3 996 67.00 M 7 2 3 997 64.00 M 0 2 3 998 77.00 M 0 2 3 999 53.00 M 2 2 2 1000 66.00 M 2 2 3 1001 82.00 M 3 2 3 1002 63.00 M 0 2 3 1003 40.00 M 0 2 2 1004 55.00 F 0 2 2 1005 67.00 M 0 2 3 1006 49.00 M 0 2 2 1007 59.00 F 0 2 2 1008 75.00 F 1 2 3 1009 68.00 M 1 2 3 1010 72.00 M 0 2 3 1011 77.00 M 0 2 3 1012 47.00 M 1 2 2 1013 60.00 M 0 2 3 1014 72.00 M 2 2 3 1015 55.00 M 6 2 2 1016 43.00 F 1 2 2 1017 62.00 M 0 2 3 1018 55.00 M 4 2 2 1019 60.00 M 3 2 3 1020 45.00 F 3 2 2 1021 70.00 M 3 2 3 1022 90.00 F 0 2 3 1023 49.00 M 1 2 2 1024 55.00 F 2 2 2 1025 52.00 F 1 2 2 1026 63.00 M 1 2 3 1027 47.00 M 1 2 2 1028 69.00 M 1 2 3 1029 60.00 F 1 2 3 1030 60.00 M 0 2 3 1031 82.00 M 0 2 3 1032 61.00 M 2 2 3 1033 65.00 M 2 2 3 1034 65.00 M 0 2 3 1035 59.00 M 11 2 2 1036 26.00 M 10 2 2 1037 65.00 M 7 2 3 1038 69.00 M 13 2 3 1039 55.00 F 0 2 2 1040 79.00 M 3 2 3 1041 75.00 F 5 2 3 1042 51.00 M 6 2 2 1043 22.00 M 0 2 2 1044 50.00 M 0 2 2 1045 60.00 M 3 2 3 1046 67.00 F 1 2 3 1047 69.00 M 0 2 3 1048 55.00 F 0 2 2 1049 74.00 M 3 2 3 1050 65.00 M 0 2 3 1051 60.00 M 1 2 3 1052 65.00 M 0 2 3 1053 60.00 M 4 2 3 1054 55.00 M 3 2 2 1055 65.00 M 0 2 3 1056 48.00 M 0 2 2 1057 60.00 F 0 2 3 1058 38.00 M 0 2 2 1059 76.00 F 2 2 3 1060 62.00 F 5 2 3 1061 62.00 F 2 2 3 1062 63.00 M 0 2 3 1063 59.00 M 2 2 2 1064 52.00 M 2 2 2 1065 72.00 M 0 2 3 1066 58.00 M 1 2 2 1067 77.00 M 1 2 3 1068 59.00 M 1 2 2 1069 61.00 M 1 2 3 1070 61.00 F 1 2 3 1071 51.00 M 12 2 2 1072 47.00 F 0 2 2 1073 20.00 F 0 2 2 1074 53.00 M 3 2 2 1075 50.00 M 0 2 2 1076 70.00 M 3 2 3 1077 51.00 M 0 2 2 1078 73.00 M 0 2 3 1079 75.00 M 1 2 3 1080 86.00 F 2 2 3 1081 60.00 M 0 2 3 1082 73.00 F 1 2 3 1083 62.00 M 8 2 3 1084 48.00 F 3 2 2 1085 74.00 M 0 2 3 1086 45.00 M 0 2 2 1087 55.00 F 2 2 2 1088 35.00 F 2 2 2 1089 50.00 F 0 2 2 1090 44.00 M 0 2 2 1091 72.00 M 2 2 3 1092 47.00 M 7 2 2 1093 55.00 M 0 2 2 1094 47.00 F 1 2 2 1095 65.00 M 2 2 3 1096 72.00 M 1 2 3 1097 52.00 M 4 2 2 1098 45.00 F 1 2 2 1099 43.00 M 7 2 2 1100 62.00 M 3 2 3 1101 30.00 F 2 2 2 1102 66.00 F 2 2 3 1103 40.00 F 6 2 2 1104 20.00 F 14 2 2 1105 62.00 M 1 2 3 1106 70.00 M 2 2 3 1107 70.00 F 1 2 3 1108 39.00 M 4 2 2 1109 82.00 M 4 2 3 1110 48.00 F 1 2 2 1111 43.00 M 1 2 2 1112 60.00 F 1 2 3 1113 45.00 F 4 2 2 1114 58.00 F 0 2 2 1115 72.00 M 0 2 3 1116 70.00 F 1 2 3 1117 70.00 F 0 2 3 1118 45.00 F 1 2 2 1119 65.00 M 0 2 3 1120 23.00 F 4 2 2 1121 58.00 M 1 2 2 1122 67.00 M 9 2 3 1123 80.00 F 9 2 3 1124 77.00 M 4 2 3 1125 54.00 M 5 2 2 1126 82.00 M 3 2 3 1127 59.00 M 0 2 2 1128 82.00 M 1 2 3 1129 57.00 M 0 2 2 1130 55.00 F 0 2 2 1131 69.00 F 3 2 3 1132 65.00 M 0 2 3 1133 61.00 M 0 2 3 1134 69.00 M 0 2 3 1135 73.00 F 0 2 3 1136 72.00 M 10 2 3 1137 68.00 F 6 2 3 1138 57.00 M 16 2 2 1139 55.00 M 13 2 2 1140 71.00 M 4 2 3 1141 55.00 M 16 2 2 1142 48.00 M 4 2 2 1143 55.00 M 0 2 2 1144 39.00 M 0 2 2 1145 44.00 M 3 2 2 1146 68.00 F 0 2 3 1147 59.00 M 2 2 2 1148 57.00 F 7 2 2 1149 40.00 M 0 2 2 1150 57.00 M 5 2 2 1151 55.00 M 5 2 2 1152 59.00 M 4 2 2 1153 52.00 M 1 2 2 1154 75.00 F 5 2 3 1155 53.00 M 5 2 2 1156 56.00 F 4 2 2 1157 61.00 M 12 2 3 1158 84.00 M 1 2 3 1159 87.00 F 2 2 3 1160 48.00 F 4 2 2 1161 39.00 M 1 2 2 1162 48.00 M 1 2 2 1163 41.00 M 4 2 2 1164 62.00 M 5 2 3 1165 67.00 M 0 2 3 1166 53.00 F 4 2 2 1167 62.00 M 1 2 3 1168 60.00 M 0 2 3 1169 35.00 M 0 2 2 1170 67.00 M 13 2 3 1171 74.00 M 3 2 3 1172 60.00 M 2 2 3 1173 54.00 M 1 2 2 1174 51.00 F 1 2 2 1175 60.00 F 0 2 3 1176 53.00 M 0 2 2 1177 57.00 F 0 2 2 1178 86.00 F 16 2 3 1179 85.00 M 3 2 3 1180 54.00 F 1 2 2 1181 43.00 M 0 2 2 1182 54.00 M 2 2 2 1183 52.00 F 4 2 2 1184 50.00 F 0 2 2 1185 60.00 F 2 2 3 1186 67.00 M 3 2 3 1187 73.00 M 3 2 3 1188 70.00 F 1 2 3 1189 90.00 M 1 2 3 1190 52.00 F 0 2 2 1191 72.00 M 2 2 3 1192 62.00 M 1 2 3 1193 25.00 M 1 2 2 1194 52.00 M 0 2 2 1195 55.00 F 3 2 2 1196 60.00 M 4 2 3 1197 60.00 F 1 2 3 1198 45.00 M 4 2 2 1199 48.00 M 0 2 2 1200 78.00 M 0 2 3 1201 47.00 F 0 2 2 1202 40.00 M 2 2 2 1203 50.00 F 0 2 2 1204 60.00 M 0 2 3 1205 65.00 F 6 2 3 1206 52.00 M 6 2 2 1207 60.00 M 0 2 3 1208 70.00 F 9 2 3 1209 73.00 M 1 2 3 1210 45.00 M 0 2 2 1211 61.00 M 0 2 3 1212 65.00 F 1 2 3 1213 80.00 F 6 2 3 1214 79.00 M 8 2 3 1215 81.00 F 0 2 3 1216 80.00 F 0 2 3 1217 57.00 F 4 2 2 1218 65.00 M 11 2 3 1219 77.00 F 9 2 3 1220 40.00 M 3 2 2 1221 79.00 M 4 2 3 1222 61.00 F 14 2 3 1223 43.00 M 1 2 2 1224 50.00 F 3 2 2 1225 78.00 M 1 2 3 1226 78.00 M 6 2 3 1227 79.00 F 5 2 3 1228 65.00 M 1 2 3 1229 65.00 M 1 2 3 1230 54.00 M 0 2 2 1231 48.00 M 3 2 2 1232 53.00 M 4 2 2 1233 38.00 F 3 2 2 1234 70.00 M 0 2 3 1235 35.00 F 2 2 2 1236 49.00 F 2 2 2 1237 62.00 M 2 2 3 1238 62.00 M 1 2 3 1239 51.00 M 2 2 2 1240 21.00 F 0 2 2 1241 40.00 M 0 2 2 1242 64.00 M 0 2 3 1243 54.00 M 0 2 2 1244 22.00 F 0 2 2 1245 57.00 F 0 2 2 1246 52.00 M 0 2 2 1247 34.00 F 0 2 2 1248 70.00 F 4 2 3 1249 56.00 F 0 2 2 1250 72.00 M 1 2 3 1251 45.00 M 1 2 2 1252 60.00 F 0 2 3 1253 58.00 M 1 2 2 1254 67.00 F 0 2 3 1255 55.00 F 0 2 2 1256 72.00 M 1 2 3 1257 64.00 F 9 2 3 1258 58.00 M 3 2 2 1259 47.00 M 4 2 2 1260 56.00 M 0 2 2 1261 45.00 F 0 2 2 1262 52.00 M 0 2 2 1263 60.00 M 0 2 3 1264 52.00 F 0 2 2 1265 52.00 M 0 2 2 1266 58.00 F 1 2 2 1267 70.00 M 1 2 3 1268 70.00 M 0 2 3 1269 59.00 F 0 2 2 1270 64.00 M 1 2 3 1271 62.00 M 10 2 3 1272 58.00 M 1 2 2 1273 78.00 F 1 2 3 1274 75.00 F 0 2 3 1275 42.00 M 2 2 2 1276 68.00 M 0 2 3 1277 56.00 F 0 2 2 1278 42.00 M 0 2 2 1279 44.00 F 1 2 2 1280 52.00 M 0 2 2 1281 63.00 M 0 2 3 1282 70.00 M 2 2 3 1283 70.00 F 0 2 3 1284 65.00 M 2 2 3 1285 37.00 M 0 2 2 1286 51.00 M 0 2 2 1287 63.00 M 1 2 3 1288 39.00 F 0 2 2 1289 50.00 F 1 2 2 1290 48.00 M 4 2 2 1291 45.00 M 12 2 2 1292 58.00 M 12 2 2 1293 48.00 M 1 2 2 1294 65.00 M 12 2 3 1295 86.00 M 8 2 3 1296 70.00 F 2 2 3 1297 38.00 F 3 2 2 1298 50.00 M 5 2 2 1299 48.00 F 2 2 2 1300 70.00 F 2 2 3 1301 55.00 M 4 2 2 1302 76.00 M 1 2 3 1303 66.00 M 0 2 3 1304 51.00 F 0 2 2 1305 50.00 M 0 2 2 1306 60.00 M 1 2 3 1307 59.00 F 4 2 2 1308 55.00 M 2 2 2 1309 30.00 F 2 2 2 1310 0.00 M 1 2 1 1311 68.00 F 3 2 3 1312 65.00 M 2 2 3 1313 34.00 M 4 2 2 1314 48.00 M 1 2 2 1315 81.00 M 3 2 3 1316 30.00 F 1 2 2 1317 42.00 F 0 2 2 1318 70.00 F 0 2 3 1319 52.00 F 0 2 2 1320 88.00 F 1 2 3 1321 70.00 F 1 2 3 1322 40.00 M 0 2 2 1323 70.00 M 0 2 3 1324 75.00 M 3 2 3 1325 68.00 M 0 2 3 1326 91.00 F 2 2 3 1327 51.00 M 0 2 2 1328 68.00 M 3 2 3 1329 71.00 M 1 2 3 1330 49.00 M 0 2 2 1331 65.00 M 5 2 3 1332 53.00 F 4 2 2 1333 69.00 M 0 2 3 1334 68.00 M 0 2 3 1335 58.00 M 0 2 2 1336 62.00 M 0 2 3 1337 53.00 M 0 2 2 1338 50.00 M 0 2 2 1339 40.00 M 1 2 2 1340 70.00 F 0 2 3 1341 29.00 M 0 2 2 1342 62.00 M 1 2 3 1343 65.00 F 0 2 3 1344 60.00 F 0 2 3 1345 35.00 M 0 2 2 1346 70.00 M 11 2 3 1347 78.00 F 10 2 3 1348 68.00 M 6 2 3 1349 79.00 F 13 2 3 1350 68.00 M 9 2 3 1351 59.00 M 10 2 2 1352 74.00 M 9 2 3 1353 58.00 F 12 2 2 1354 67.00 M 8 2 3 1355 68.00 M 1 2 3 1356 65.00 M 1 2 3 1357 70.00 M 1 2 3 1358 69.00 M 4 2 3 1359 57.00 F 5 2 2 1360 75.00 M 5 2 3 1361 82.00 M 2 2 3 1362 48.00 F 0 2 2 1363 58.00 M 2 2 2 1364 56.00 F 2 2 2 1365 54.00 M 1 2 2 1366 46.00 M 0 2 2 1367 36.00 M 1 2 2 1368 76.00 M 2 2 3 1369 76.00 F 2 2 3 1370 47.00 M 1 2 2 1371 80.00 M 0 2 3 1372 55.00 M 0 2 2 1373 65.00 F 2 2 3 1374 48.00 F 0 2 2 1375 87.00 M 4 2 3 1376 85.00 M 0 2 3 1377 58.00 F 0 2 2 1378 57.00 M 0 2 2 1379 30.00 F 0 2 2 1380 58.00 F 3 2 2 1381 28.00 M 0 2 2 1382 50.00 M 1 2 2 1383 62.00 M 0 2 3 1384 69.00 M 0 2 3 1385 57.00 M 0 2 2 1386 53.00 M 0 2 2 1387 74.00 M 0 2 3 1388 65.00 M 24 2 3 1389 55.00 F 1 2 2 1390 74.00 F 0 2 3 1391 28.00 F 1 2 2 1392 55.00 M 0 2 2 1393 54.00 M 0 2 2 1394 52.00 M 0 2 2 1395 72.00 M 0 2 3 1396 20.00 F 0 2 2 1397 80.00 M 0 2 3 1398 42.00 F 0 2 2 1399 60.00 M 0 2 3 1400 65.00 M 0 2 3 1401 70.00 F 0 2 3 1402 45.00 F 2 2 2 1403 56.00 M 1 2 2 1404 47.00 M 7 2 2 1405 45.00 M 0 2 2 1406 52.00 M 0 2 2 1407 30.00 M 0 2 2 1408 49.00 F 0 2 2 1409 54.00 F 2 2 2 1410 53.00 M 5 2 2 1411 53.00 M 13 2 2 1412 49.00 M 0 2 2 1413 45.00 F 0 2 2 1414 70.00 M 0 2 3 1415 54.00 M 6 2 2 1416 47.00 M 1 2 2 1417 68.00 M 0 2 3 1418 71.00 M 0 2 3 1419 57.00 M 1 2 2 1420 68.00 M 2 2 3 1421 65.00 M 1 2 3 1422 59.00 F 0 2 2 1423 62.00 M 7 2 3 1424 50.00 M 3 2 2 1425 40.00 M 2 2 2 1426 45.00 M 2 2 2 1427 65.00 F 6 2 3 1428 65.00 M 3 2 3 1429 71.00 M 1 2 3 1430 68.00 F 3 2 3 1431 74.00 M 3 2 3 1432 68.00 M 6 2 3 1433 69.00 M 5 2 3 1434 58.00 F 5 2 2 1435 54.00 M 7 2 2 1436 55.00 M 7 2 2 1437 39.00 F 3 2 2 1438 60.00 M 1 2 3 1439 47.00 M 0 2 2 1440 70.00 M 2 2 3 1441 75.00 M 2 2 3 1442 55.00 M 2 2 2 1443 63.00 M 0 2 3 1444 61.00 M 0 2 3 1445 84.00 F 4 2 3 1446 61.00 M 0 2 3 1447 48.00 M 5 2 2 1448 55.00 F 8 2 2 1449 52.00 F 0 2 2 1450 49.00 M 3 2 2 1451 68.00 F 5 2 3 1452 55.00 M 6 2 2 1453 50.00 F 5 2 2 1454 62.00 M 8 2 3 1455 71.00 F 4 2 3 1456 60.00 M 0 2 3 1457 60.00 M 1 2 3 1458 52.00 M 3 2 2 1459 55.00 F 7 2 2 1460 71.00 M 6 2 3 1461 61.00 M 0 2 3 1462 78.00 M 5 2 3 1463 62.00 M 1 2 3 1464 55.00 M 4 2 2 1465 51.00 F 3 2 2 1466 94.00 F 1 2 3 1467 75.00 F 2 2 3 1468 52.00 F 1 2 2 1469 61.00 M 1 2 3 1470 70.00 M 13 2 3 1471 60.00 F 0 2 3 1472 71.00 M 0 2 3 1473 54.00 M 0 2 2 1474 35.00 F 3 2 2 1475 50.00 F 0 2 2 1476 68.00 M 0 2 3 1477 36.00 F 0 2 2 1478 28.00 M 1 2 2 1479 42.00 M 0 2 2 1480 65.00 F 0 2 3 1481 55.00 M 5 2 2 1482 70.00 M 0 2 3 1483 64.00 M 1 2 3 1484 46.00 F 0 2 2 1485 70.00 M 0 2 3 1486 48.00 M 1 2 2 1487 90.00 M 0 2 3 1488 54.00 M 1 2 2 1489 72.00 F 0 2 3 1490 60.00 M 0 2 3 1491 70.00 F 1 2 3 1492 42.00 M 2 2 2 1493 58.00 M 2 2 2 1494 72.00 M 0 2 3 1495 65.00 M 16 2 3 1496 70.00 F 2 2 3 1497 70.00 M 2 2 3 1498 61.00 M 11 2 3 1499 85.00 F 13 2 3 1500 65.00 M 10 2 3 1501 51.00 F 8 2 2 1502 65.00 M 0 2 3 1503 59.00 M 0 2 2 1504 58.00 F 11 2 2 1505 64.00 M 3 2 3 1506 65.00 F 9 2 3 1507 61.00 M 0 2 3 1508 66.00 F 0 2 3 1509 59.00 M 2 2 2 1510 65.00 M 8 2 3 1511 58.00 M 7 2 2 1512 46.00 F 10 2 2 1513 61.00 M 2 2 3 1514 67.00 M 10 2 3 1515 47.00 M 6 2 2 1516 63.00 F 6 2 3 1517 47.00 M 0 2 2 1518 69.00 M 1 2 3 1519 67.00 M 3 2 3 1520 57.00 M 4 2 2 1521 69.00 F 0 2 3 1522 61.00 M 12 2 3 1523 73.00 M 4 2 3 1524 37.00 F 1 2 2 1525 59.00 M 6 2 2 1526 63.00 M 7 2 3 1527 60.00 F 6 2 3 1528 40.00 F 7 2 2 1529 52.00 M 4 2 2 1530 40.00 M 0 2 2 1531 70.00 M 1 2 3 1532 55.00 M 0 2 2 1533 56.00 F 0 2 2 1534 80.00 M 0 2 3 1535 67.00 M 2 2 3 1536 83.00 F 4 2 3 1537 64.00 M 1 2 3 1538 59.00 F 1 2 2 1539 68.00 M 0 2 3 1540 51.00 M 0 2 2 1541 40.00 F 2 2 2 1542 64.00 F 0 2 3 1543 58.00 M 9 2 2 1544 70.00 M 1 2 3 1545 52.00 M 3 2 2 1546 44.00 M 3 2 2 1547 56.00 M 5 2 2 1548 83.00 M 8 2 3 1549 54.00 F 0 2 2 1550 55.00 F 1 2 2 1551 26.00 F 4 2 2 1552 58.00 M 4 2 2 1553 40.00 M 0 2 2 1554 50.00 M 0 2 2 1555 49.00 M 1 2 2 1556 56.00 M 0 2 2 1557 54.00 M 1 2 2 1558 57.00 M 0 2 2 1559 43.00 F 0 2 2 1560 61.00 M 1 2 3 1561 70.00 M 0 2 3 1562 21.00 M 2 2 2 1563 55.00 M 2 2 2 1564 79.00 F 2 2 3 1565 40.00 M 0 2 2 1566 40.00 M 3 2 2 1567 66.00 M 2 2 3 1568 85.00 M 0 2 3 1569 55.00 M 0 2 2 1570 59.00 F 0 2 2 1571 60.00 F 5 2 3 1572 42.00 M 3 2 2 1573 23.00 M 1 2 2 1574 83.00 M 0 2 3 1575 67.00 M 0 2 3 1576 64.00 M 2 2 3 1577 58.00 F 0 2 2 1578 60.00 M 1 2 3 1579 63.00 M 0 2 3 1580 55.00 M 3 2 2 1581 65.00 M 0 2 3 1582 58.00 M 0 2 2 1583 59.00 M 0 2 2 1584 71.00 F 1 2 3 1585 60.00 M 0 2 3 1586 74.00 M 0 2 3 1587 67.00 M 0 2 3 1588 75.00 M 1 2 3 1589 52.00 F 1 2 2 1590 45.00 M 1 2 2 1591 63.00 M 0 2 3 1592 65.00 M 0 2 3 1593 48.00 M 0 2 2 1594 59.00 M 0 2 2 1595 26.00 F 1 2 2 1596 54.00 M 2 2 2 1597 21.00 M 0 2 2 1598 59.00 M 1 2 2 1599 54.00 M 9 2 2 1600 65.00 F 0 2 3 1601 80.00 F 0 2 3 1602 68.00 M 3 2 3 1603 65.00 M 0 2 3 1604 65.00 F 0 2 3 1605 67.00 M 1 2 3 1606 52.00 F 4 2 2 1607 32.00 M 3 2 2 1608 65.00 F 0 2 3 1609 71.00 M 0 2 3 1610 59.00 F 0 2 2 1611 58.00 M 8 2 2 1612 83.00 M 9 2 3 1613 47.00 F 0 2 2 1614 80.00 F 4 2 3 1615 80.00 M 9 2 3 1616 76.00 F 5 2 3 1617 71.00 F 0 2 3 1618 66.00 M 4 2 3 1619 60.00 M 3 2 3 1620 65.00 M 7 2 3 1621 47.00 M 1 2 2 1622 60.00 M 7 2 3 1623 65.00 M 0 2 3 1624 72.00 M 6 2 3 1625 40.00 M 7 2 2 1626 75.00 M 0 2 3 1627 55.00 F 6 2 2 1628 64.00 F 5 2 3 1629 66.00 F 2 2 3 1630 40.00 M 1 2 2 1631 48.00 M 2 2 2 1632 59.00 M 8 2 2 1633 54.00 F 5 2 2 1634 41.00 M 10 2 2 1635 52.00 M 1 2 2 1636 50.00 F 0 2 2 1637 25.00 F 1 2 2 1638 42.00 M 0 2 2 1639 60.00 M 0 2 3 1640 67.00 M 30 2 3 1641 68.00 M 3 2 3 1642 72.00 M 6 2 3 1643 74.00 M 1 2 3 1644 76.00 M 2 2 3 1645 56.00 M 4 2 2 1646 37.00 M 0 2 2 1647 73.00 M 1 2 3 1648 63.00 M 1 2 3 1649 28.00 F 1 2 2 1650 49.00 F 1 2 2 1651 65.00 F 0 2 3 1652 70.00 F 0 2 3 1653 75.00 M 1 2 3 1654 81.00 M 2 2 3 1655 46.00 F 0 2 2 1656 65.00 M 0 2 3 1657 50.00 F 0 2 2 1658 68.00 M 1 2 3 1659 30.00 M 0 2 2 1660 58.00 M 0 2 2 1661 70.00 M 0 2 3 1662 65.00 F 1 2 3 1663 48.00 F 0 2 2 1664 66.00 M 0 2 3 1665 62.00 M 1 2 3 1666 67.00 M 0 2 3 1667 47.00 F 0 2 2 1668 53.00 M 0 2 2 1669 50.00 M 0 2 2 1670 44.00 M 0 2 2 1671 69.00 M 1 2 3 1672 60.00 F 0 2 3 1673 70.00 F 1 2 3 1674 49.00 M 1 2 2 1675 40.00 M 1 2 2 1676 46.00 M 0 2 2 1677 75.00 F 1 2 3 1678 55.00 F 1 2 2 1679 78.00 M 0 2 3 1680 70.00 F 17 2 3 1681 65.00 F 6 2 3 1682 34.00 M 1 2 2 1683 59.00 M 1 2 2 1684 61.00 M 2 2 3 1685 48.00 M 11 2 2 1686 65.00 M 11 2 3 1687 60.00 M 7 2 3 1688 60.00 M 0 2 3 1689 60.00 F 8 2 3 1690 76.00 M 9 2 3 1691 55.00 M 1 2 2 1692 57.00 M 7 2 2 1693 49.00 F 10 2 2 1694 34.00 M 5 2 2 1695 58.00 M 0 2 2 1696 58.00 F 2 2 2 1697 45.00 M 9 2 2 1698 31.00 M 6 2 2 1699 78.00 M 0 2 3 1700 64.00 M 6 2 3 1701 44.00 M 1 2 2 1702 60.00 M 4 2 3 1703 78.00 F 1 2 3 1704 47.00 F 2 2 2 1705 66.00 F 7 2 3 1706 55.00 M 3 2 2 1707 50.00 F 1 2 2 1708 65.00 M 7 2 3 1709 72.00 M 4 2 3 1710 63.00 M 4 2 3 1711 25.00 M 3 2 2 1712 48.00 F 1 2 2 1713 70.00 M 3 2 3 1714 70.00 M 2 2 3 1715 55.00 F 0 2 2 1716 57.00 M 1 2 2 1717 45.00 F 4 2 2 1718 64.00 M 5 2 3 1719 54.00 M 0 2 2 1720 47.00 M 5 2 2 1721 21.00 M 1 2 2 1722 79.00 M 1 2 3 1723 65.00 F 2 2 3 1724 76.00 M 4 2 3 1725 58.00 M 0 2 2 1726 45.00 F 0 2 2 1727 68.00 M 0 2 3 1728 58.00 M 4 2 2 1729 64.00 M 3 2 3 1730 78.00 M 0 2 3 1731 67.00 M 1 2 3 1732 81.00 F 1 2 3 1733 55.00 M 3 2 2 1734 55.00 M 3 2 2 1735 55.00 F 1 2 2 1736 52.00 M 0 2 2 1737 63.00 M 1 2 3 1738 55.00 M 0 2 2 1739 65.00 M 0 2 3 1740 66.00 M 0 2 3 1741 65.00 M 0 2 3 1742 70.00 F 1 2 3 1743 49.00 M 1 2 2 1744 59.00 F 1 2 2 1745 64.00 F 5 2 3 1746 57.00 M 1 2 2 1747 66.00 M 0 2 3 1748 48.00 M 3 2 2 1749 70.00 M 2 2 3 1750 82.00 M 0 2 3 1751 76.00 M 0 2 3 1752 73.00 M 4 2 3 1753 40.00 F 1 2 2 1754 45.00 M 4 2 2 1755 73.00 M 2 2 3 1756 53.00 M 0 2 2 1757 80.00 F 1 2 3 1758 69.00 M 1 2 3 1759 41.00 M 1 2 2 1760 75.00 F 0 2 3 1761 70.00 M 0 2 3 1762 72.00 M 16 2 3 1763 41.00 F 4 2 2 1764 38.00 F 2 2 2 1765 72.00 M 14 2 3 1766 45.00 M 0 2 2 1767 65.00 F 7 2 3 1768 58.00 M 13 2 2 1769 56.00 M 9 2 2 1770 59.00 F 7 2 2 1771 75.00 M 10 2 3 1772 80.00 M 0 2 3 1773 65.00 F 12 2 3 1774 73.00 M 7 2 3 1775 36.00 M 12 2 2 1776 47.00 M 3 2 2 1777 88.00 M 13 2 3 1778 53.00 F 9 2 2 1779 75.00 F 1 2 3 1780 50.00 M 5 2 2 1781 60.00 M 4 2 3 1782 65.00 M 8 2 3 1783 70.00 M 4 2 3 1784 93.00 M 8 2 3 1785 70.00 M 0 2 3 1786 70.00 F 6 2 3 1787 72.00 M 3 2 3 1788 75.00 M 6 2 3 1789 68.00 M 6 2 3 1790 54.00 M 6 2 2 1791 55.00 M 3 2 2 1792 71.00 M 4 2 3 1793 75.00 F 0 2 3 1794 55.00 M 1 2 2 1795 48.00 M 3 2 2 1796 76.00 F 3 2 3 1797 60.00 M 3 2 3 1798 71.00 F 3 2 3 1799 75.00 M 0 2 3 1800 63.00 F 1 2 3 1801 83.00 M 0 2 3 1802 76.00 M 0 2 3 1803 82.00 M 1 2 3 1804 65.00 F 5 2 3 1805 70.00 M 2 2 3 1806 60.00 M 1 2 3 1807 51.00 M 0 2 2 1808 65.00 F 1 2 3 1809 61.00 F 2 2 3 1810 64.00 M 3 2 3 1811 60.00 F 1 2 3 1812 65.00 M 0 2 3 1813 41.00 M 0 2 2 1814 35.00 M 0 2 2 1815 43.00 M 1 2 2 1816 63.00 M 1 2 3 1817 74.00 F 0 2 3 1818 60.00 M 3 2 3 1819 61.00 M 0 2 3 1820 75.00 M 7 2 3 1821 75.00 M 0 2 3 1822 35.00 M 0 2 2 1823 50.00 F 0 2 2 1824 73.00 M 0 2 3 1825 48.00 M 4 2 2 1826 75.00 F 1 2 3 1827 52.00 M 2 2 2 1828 63.00 M 0 2 3 1829 65.00 M 1 2 3 1830 65.00 M 0 2 3 1831 67.00 M 0 2 3 1832 65.00 M 3 2 3 1833 50.00 M 0 2 2 1834 55.00 M 0 2 2 1835 51.00 M 1 2 2 1836 39.00 M 0 2 2 1837 89.00 M 12 2 3 1838 46.00 M 16 2 2 1839 56.00 M 19 2 2 1840 52.00 F 1 2 2 1841 62.00 M 2 2 3 1842 58.00 M 10 2 2 1843 65.00 F 10 2 3 1844 63.00 M 10 2 3 1845 63.00 F 1 2 3 1846 67.00 M 0 2 3 1847 55.00 M 1 2 2 1848 38.00 M 2 2 2 1849 65.00 M 0 2 3 1850 60.00 M 11 2 3 1851 60.00 F 6 2 3 1852 75.00 F 6 2 3 1853 46.00 M 0 2 2 1854 74.00 M 0 2 3 1855 72.00 M 8 2 3 1856 68.00 M 2 2 3 1857 62.00 M 9 2 3 1858 51.00 M 0 2 2 1859 55.00 F 0 2 2 1860 60.00 F 6 2 3 1861 65.00 F 2 2 3 1862 66.00 F 2 2 3 1863 43.00 M 6 2 2 1864 58.00 F 5 2 2 1865 82.00 M 2 2 3 1866 63.00 M 7 2 3 1867 84.00 M 6 2 3 1868 65.00 F 7 2 3 1869 65.00 M 8 2 3 1870 68.00 M 0 2 3 1871 64.00 M 7 2 3 1872 46.00 M 6 2 2 1873 60.00 F 8 2 3 1874 48.00 M 5 2 2 1875 44.00 M 3 2 2 1876 61.00 F 0 2 3 1877 78.00 F 10 2 3 1878 55.00 M 5 2 2 1879 72.00 M 1 2 3 1880 58.00 M 11 2 2 1881 70.00 M 9 2 3 1882 56.00 M 12 2 2 1883 47.00 M 1 2 2 1884 52.00 M 0 2 2 1885 62.00 F 1 2 3 1886 74.00 F 1 2 3 1887 59.00 F 3 2 2 1888 38.00 F 0 2 2 1889 60.00 M 5 2 3 1890 68.00 F 3 2 3 1891 75.00 M 1 2 3 1892 70.00 M 2 2 3 1893 55.00 M 1 2 2 1894 50.00 M 2 2 2 1895 72.00 F 1 2 3 1896 64.00 F 2 2 3 1897 62.00 F 2 2 3 1898 58.00 F 1 2 2 1899 58.00 F 0 2 2 1900 69.00 M 20 2 3 1901 60.00 F 1 2 3 1902 76.00 F 6 2 3 1903 31.00 F 5 2 2 1904 40.00 F 0 2 2 1905 56.00 M 3 2 2 1906 59.00 F 5 2 2 1907 55.00 M 1 2 2 1908 71.00 F 2 2 3 1909 45.00 M 4 2 2 1910 53.00 M 0 2 2 1911 60.00 M 0 2 3 1912 50.00 M 2 2 2 1913 31.00 M 1 2 2 1914 50.00 F 2 2 2 1915 46.00 M 0 2 2 1916 60.00 M 1 2 3 1917 40.00 M 0 2 2 1918 62.00 F 2 2 3 1919 57.00 M 4 2 2 1920 60.00 F 1 2 3 1921 66.00 M 0 2 3 1922 55.00 F 1 2 2 1923 65.00 M 0 2 3 1924 63.00 M 20 2 3 1925 56.00 F 0 2 2 1926 60.00 M 0 2 3 1927 40.00 M 0 2 2 1928 50.00 F 0 2 2 1929 38.00 F 0 2 2 1930 65.00 M 0 2 3 1931 80.00 M 0 2 3 1932 55.00 M 0 2 2 1933 72.00 F 2 2 3 1934 50.00 M 7 2 2 1935 47.00 M 0 2 2 1936 47.00 M 2 2 2 1937 54.00 M 2 2 2 1938 65.00 F 0 2 3 1939 67.00 F 19 2 3 1940 60.00 M 0 2 3 1941 60.00 F 0 2 3 1942 50.00 F 0 2 2 1943 49.00 M 0 2 2 1944 50.00 M 9 2 2 1945 65.00 M 3 2 3 1946 54.00 M 2 2 2 1947 62.00 M 8 2 3 1948 45.00 M 2 2 2 1949 66.00 M 11 2 3 1950 59.00 M 5 2 2 1951 58.00 M 2 2 2 1952 60.00 M 25 2 3 1953 58.00 M 5 2 2 1954 60.00 F 3 2 3 1955 75.00 M 3 2 3 1956 50.00 F 9 2 2 1957 60.00 M 9 2 3 1958 55.00 F 1 2 2 1959 54.00 F 1 2 2 1960 26.00 F 3 2 2 1961 60.00 M 9 2 3 1962 53.00 F 7 2 2 1963 35.00 F 0 2 2 1964 59.00 M 8 2 2 1965 62.00 M 3 2 3 1966 55.00 M 8 2 2 1967 60.00 M 8 2 3 1968 63.00 F 2 2 3 1969 98.00 M 4 2 3 1970 68.00 F 1 2 3 1971 68.00 F 5 2 3 1972 72.00 M 4 2 3 1973 80.00 M 1 2 3 1974 72.00 M 2 2 3 1975 68.00 F 1 2 3 1976 60.00 F 5 2 3 1977 48.00 M 4 2 2 1978 50.00 M 6 2 2 1979 56.00 M 1 2 2 1980 56.00 M 4 2 2 1981 52.00 M 2 2 2 1982 60.00 M 1 2 3 1983 78.00 M 0 2 3 1984 48.00 M 2 2 2 1985 62.00 M 2 2 3 1986 62.00 M 4 2 3 1987 70.00 F 1 2 3 1988 75.00 M 2 2 3 1989 44.00 F 3 2 2 1990 62.00 M 2 2 3 1991 78.00 M 3 2 3 1992 52.00 M 0 2 2 1993 55.00 M 0 2 2 1994 75.00 F 17 2 3 1995 80.00 M 0 2 3 1996 43.00 M 1 2 2 1997 36.00 M 0 2 2 1998 65.00 M 5 2 3 1999 51.00 M 1 2 2 2000 34.00 M 1 2 2 2001 60.00 F 0 2 3 2002 47.00 M 1 2 2 2003 64.00 M 10 2 3 2004 51.00 M 3 2 2 2005 62.00 M 2 2 3 2006 82.00 M 1 2 3 2007 82.00 F 0 2 3 2008 72.00 M 0 2 3 2009 59.00 F 5 2 2 2010 65.00 F 0 2 3 2011 74.00 M 0 2 3 2012 86.00 F 0 2 3 2013 44.00 M 1 2 2 2014 70.00 F 1 2 3 2015 62.00 M 0 2 3 2016 46.00 F 2 2 2 2017 44.00 M 0 2 2 2018 50.00 F 1 2 2 2019 71.00 M 0 2 3 2020 30.00 F 1 2 2 2021 69.00 M 1 2 3 2022 65.00 F 2 2 3 2023 65.00 F 1 2 3 2024 75.00 M 0 2 3 2025 51.00 M 0 2 2 2026 58.00 M 0 2 2 2027 34.00 M 0 2 2 2028 56.00 M 0 2 2 2029 72.00 F 0 2 3 2030 65.00 M 1 2 3 2031 70.00 F 1 2 3 2032 66.00 M 16 2 3 2033 73.00 M 3 2 3 2034 68.00 F 0 2 3 2035 46.00 M 1 2 2 2036 60.00 F 0 2 3 2037 55.00 M 0 2 2 2038 59.00 M 10 2 2 2039 46.00 M 10 2 2 2040 72.00 F 5 2 3 2041 84.00 F 4 2 3 2042 74.00 F 7 2 3 2043 58.00 F 0 2 2 2044 70.00 F 14 2 3 2045 46.00 F 10 2 2 2046 71.00 M 8 2 3 2047 88.00 M 7 2 3 2048 68.00 M 0 2 3 2049 75.00 M 6 2 3 2050 52.00 M 1 2 2 2051 68.00 M 6 2 3 2052 60.00 M 7 2 3 2053 64.00 F 2 2 3 2054 67.00 M 1 2 3 2055 64.00 M 7 2 3 2056 58.00 M 4 2 2 2057 67.00 M 5 2 3 2058 52.00 M 0 2 2 2059 68.00 M 2 2 3 2060 50.00 M 5 2 2 2061 56.00 M 0 2 2 2062 85.00 F 4 2 3 2063 60.00 F 12 2 3 2064 66.00 M 5 2 3 2065 80.00 M 2 2 3 2066 65.00 F 0 2 3 2067 62.00 M 2 2 3 2068 87.00 M 2 2 3 2069 82.00 M 1 2 3 2070 66.00 M 2 2 3 2071 80.00 F 3 2 3 2072 85.00 F 3 2 3 2073 50.00 F 1 2 2 2074 54.00 M 4 2 2 2075 50.00 M 2 2 2 2076 56.00 F 1 2 2 2077 80.00 M 0 2 3 2078 80.00 F 0 2 3 2079 68.00 M 3 2 3 2080 65.00 F 0 2 3 2081 58.00 M 4 2 2 2082 55.00 M 6 2 2 2083 35.00 M 0 2 2 2084 55.00 M 1 2 2 2085 65.00 F 3 2 3 2086 58.00 M 0 2 2 2087 40.00 F 0 2 2 2088 67.00 M 3 2 3 2089 24.00 M 0 2 2 2090 36.00 F 4 2 2 2091 40.00 M 1 2 2 2092 39.00 M 3 2 2 2093 52.00 M 0 2 2 2094 66.00 F 2 2 3 2095 36.00 M 0 2 2 2096 55.00 M 3 2 2 2097 65.00 F 0 2 3 2098 42.00 M 0 2 2 2099 47.00 F 9 2 2 2100 55.00 M 1 2 2 2101 55.00 F 8 2 2 2102 73.00 F 2 2 3 2103 80.00 F 13 2 3 2104 39.00 M 0 2 2 2105 56.00 M 1 2 2 2106 52.00 M 0 2 2 2107 26.00 F 1 2 2 2108 63.00 F 5 2 3 2109 76.00 M 1 2 3 2110 50.00 M 0 2 2 2111 55.00 F 0 2 2 2112 58.00 F 1 2 2 2113 72.00 M 0 2 3 2114 62.00 F 23 2 3 2115 30.00 F 0 2 2 2116 72.00 M 12 2 3 2117 91.00 M 11 2 3 2118 59.00 M 12 2 2 2119 22.00 M 3 2 2 2120 81.00 F 10 2 3 2121 73.00 F 2 2 3 2122 53.00 M 0 2 2 2123 65.00 M 8 2 3 2124 67.00 M 15 2 3 2125 70.00 M 15 2 3 2126 87.00 F 11 2 3 2127 50.00 F 7 2 2 2128 60.00 M 12 2 3 2129 65.00 M 3 2 3 2130 30.00 M 1 2 2 2131 54.00 F 13 2 2 2132 72.00 F 22 2 3 2133 71.00 F 14 2 3 2134 52.00 F 7 2 2 2135 8.00 F 0 2 1 2136 64.00 F 3 2 3 2137 86.00 F 5 2 3 2138 86.00 M 4 2 3 2139 65.00 F 0 2 3 2140 77.00 M 1 2 3 2141 69.00 M 4 2 3 2142 54.00 F 0 2 2 2143 70.00 M 7 2 3 2144 60.00 M 1 2 3 2145 52.00 M 0 2 2 2146 70.00 M 5 2 3 2147 50.00 M 0 2 2 2148 80.00 F 2 2 3 2149 88.00 M 21 2 3 2150 76.00 M 1 2 3 2151 60.00 F 1 2 3 2152 41.00 M 3 2 2 2153 58.00 M 5 2 2 2154 54.00 M 5 2 2 2155 45.00 F 3 2 2 2156 60.00 M 1 2 3 2157 48.00 F 3 2 2 2158 63.00 M 3 2 3 2159 60.00 M 2 2 3 2160 92.00 M 3 2 3 2161 46.00 M 1 2 2 2162 65.00 F 2 2 3 2163 85.00 M 1 2 3 2164 55.00 F 2 2 2 2165 85.00 M 3 2 3 2166 64.00 F 0 2 3 2167 65.00 F 2 2 3 2168 38.00 M 1 2 2 2169 64.00 M 0 2 3 2170 69.00 M 1 2 3 2171 65.00 F 1 2 3 2172 51.00 F 3 2 2 2173 84.00 F 0 2 3 2174 57.00 F 0 2 2 2175 57.00 M 2 2 2 2176 49.00 M 4 2 2 2177 60.00 F 0 2 3 2178 63.00 F 0 2 3 2179 58.00 F 0 2 2 2180 56.00 M 0 2 2 2181 62.00 F 0 2 3 2182 83.00 F 1 2 3 2183 63.00 F 1 2 3 2184 55.00 M 0 2 2 2185 74.00 M 3 2 3 2186 56.00 F 18 2 2 2187 52.00 M 1 2 2 2188 78.00 M 1 2 3 2189 54.00 F 1 2 2 2190 53.00 M 2 2 2 2191 45.00 M 1 2 2 2192 19.00 M 1 2 2 2193 82.00 M 0 2 3 2194 58.00 M 0 2 2 2195 47.00 M 0 2 2 2196 65.00 M 1 2 3 2197 40.00 F 1 2 2 2198 60.00 F 1 2 3 2199 78.00 F 11 2 3 2200 66.00 M 10 2 3 2201 73.00 M 10 2 3 2202 60.00 F 12 2 3 2203 52.00 M 11 2 2 2204 74.00 M 3 2 3 2205 62.00 M 8 2 3 2206 65.00 M 4 2 3 2207 63.00 M 2 2 3 2208 60.00 M 2 2 3 2209 55.00 M 3 2 2 2210 52.00 M 3 2 2 2211 76.00 M 15 2 3 2212 73.00 M 5 2 3 2213 68.00 M 6 2 3 2214 62.00 M 6 2 3 2215 65.00 F 0 2 3 2216 72.00 M 4 2 3 2217 65.00 M 5 2 3 2218 52.00 M 6 2 2 2219 72.00 M 5 2 3 2220 62.00 M 5 2 3 2221 34.00 M 2 2 2 2222 72.00 M 2 2 3 2223 61.00 M 4 2 3 2224 36.00 M 4 2 2 2225 53.00 M 1 2 2 2226 39.00 M 6 2 2 2227 52.00 M 1 2 2 2228 96.00 M 1 2 3 2229 65.00 F 6 2 3 2230 45.00 M 6 2 2 2231 55.00 M 7 2 2 2232 56.00 M 0 2 2 2233 70.00 M 0 2 3 2234 81.00 F 2 2 3 2235 75.00 M 0 2 3 2236 61.00 M 0 2 3 2237 45.00 M 0 2 2 2238 57.00 M 3 2 2 2239 55.00 F 1 2 2 2240 56.00 M 0 2 2 2241 40.00 M 3 2 2 2242 66.00 M 1 2 3 2243 65.00 F 0 2 3 2244 70.00 M 0 2 3 2245 42.00 F 1 2 2 2246 50.00 M 1 2 2 2247 60.00 M 1 2 3 2248 63.00 M 0 2 3 2249 56.00 M 1 2 2 2250 56.00 M 4 2 2 2251 63.00 M 0 2 3 2252 60.00 F 0 2 3 2253 36.00 F 1 2 2 2254 59.00 M 1 2 2 2255 70.00 M 1 2 3 2256 58.00 F 0 2 2 2257 75.00 F 2 2 3 2258 90.00 M 3 2 3 2259 70.00 F 1 2 3 2260 49.00 F 0 2 2 2261 84.00 M 5 2 3 2262 60.00 M 4 2 3 2263 80.00 F 0 2 3 2264 72.00 M 0 2 3 2265 53.00 M 0 2 2 2266 69.00 M 0 2 3 2267 55.00 F 2 2 2 2268 87.00 M 2 2 3 2269 63.00 M 1 2 3 2270 56.00 M 3 2 2 2271 67.00 F 3 2 3 2272 65.00 F 0 2 3 2273 62.00 F 2 2 3 2274 51.00 M 4 2 2 2275 31.00 M 1 2 2 2276 65.00 M 2 2 3 2277 64.00 M 0 2 3 2278 94.00 M 1 2 3 2279 62.00 M 1 2 3 2280 35.00 M 0 2 2 2281 75.00 M 1 2 3 2282 70.00 F 0 2 3 2283 65.00 M 1 2 3 2284 60.00 F 0 2 3 2285 60.00 F 0 2 3 2286 59.00 M 0 2 2 2287 61.00 M 1 2 3 2288 65.00 M 0 2 3 2289 72.00 M 0 2 3 2290 60.00 F 1 2 3 2291 32.00 M 0 2 2 2292 78.00 F 0 2 3 2293 40.00 F 0 2 2 2294 55.00 F 0 2 2 2295 59.00 M 10 2 2 2296 80.00 M 19 2 3 2297 80.00 F 16 2 3 2298 67.00 M 21 2 3 2299 72.00 M 0 2 3 2300 87.00 M 3 2 3 2301 69.00 F 0 2 3 2302 65.00 M 2 2 3 2303 52.00 M 5 2 2 2304 65.00 M 8 2 3 2305 28.00 M 9 2 2 2306 61.00 M 2 2 3 2307 80.00 M 6 2 3 2308 68.00 M 9 2 3 2309 55.00 F 9 2 2 2310 65.00 M 10 2 3 2311 57.00 M 6 2 2 2312 65.00 F 11 2 3 2313 80.00 M 0 2 3 2314 50.00 M 0 2 2 2315 73.00 F 2 2 3 2316 78.00 M 3 2 3 2317 74.00 M 5 2 3 2318 82.00 M 1 2 3 2319 83.00 M 1 2 3 2320 72.00 M 22 2 3 2321 46.00 M 1 2 2 2322 36.00 M 0 2 2 2323 70.00 M 1 2 3 2324 75.00 M 3 2 3 2325 85.00 F 4 2 3 2326 85.00 M 2 2 3 2327 69.00 M 2 2 3 2328 70.00 M 6 2 3 2329 47.00 M 7 2 2 2330 66.00 M 0 2 3 2331 69.00 M 11 2 3 2332 70.00 F 3 2 3 2333 78.00 M 0 2 3 2334 56.00 M 1 2 2 2335 45.00 F 2 2 2 2336 61.00 M 1 2 3 2337 70.00 M 4 2 3 2338 51.00 M 3 2 2 2339 52.00 M 1 2 2 2340 42.00 F 0 2 2 2341 67.00 M 2 2 3 2342 77.00 F 2 2 3 2343 68.00 M 5 2 3 2344 45.00 F 1 2 2 2345 40.00 M 8 2 2 2346 68.00 M 0 2 3 2347 54.00 M 1 2 2 2348 67.00 M 3 2 3 2349 66.00 M 2 2 3 2350 66.00 M 0 2 3 2351 72.00 M 0 2 3 2352 75.00 M 0 2 3 2353 62.00 F 0 2 3 2354 57.00 M 1 2 2 2355 62.00 M 0 2 3 2356 72.00 F 3 2 3 2357 85.00 F 0 2 3 2358 58.00 M 1 2 2 2359 55.00 F 0 2 2 2360 57.00 F 8 2 2 2361 58.00 M 0 2 2 2362 75.00 M 0 2 3 2363 80.00 M 1 2 3 2364 84.00 M 0 2 3 2365 70.00 F 0 2 3 2366 66.00 M 2 2 3 2367 50.00 F 0 2 2 2368 54.00 F 0 2 2 2369 60.00 M 0 2 3 2370 80.00 M 2 2 3 2371 31.00 M 4 2 2 2372 80.00 M 5 2 3 2373 20.00 F 0 2 2 2374 40.00 M 0 2 2 2375 55.00 M 1 2 2 2376 81.00 M 0 2 3 2377 78.00 F 1 2 3 2378 62.00 M 2 2 3 2379 68.00 F 14 2 3 2380 73.00 M 16 2 3 2381 50.00 M 13 2 2 2382 31.00 F 4 2 2 2383 72.00 M 11 2 3 2384 54.00 M 5 2 2 2385 26.00 F 5 2 2 2386 35.00 M 10 2 2 2387 52.00 M 2 2 2 2388 58.00 M 0 2 2 2389 66.00 M 5 2 3 2390 70.00 F 8 2 3 2391 72.00 F 11 2 3 2392 64.00 M 0 2 3 2393 45.00 M 6 2 2 2394 86.00 M 9 2 3 2395 75.00 M 1 2 3 2396 60.00 M 9 2 3 2397 70.00 M 7 2 3 2398 75.00 M 0 2 3 2399 48.00 M 7 2 2 2400 50.00 M 9 2 2 2401 60.00 F 2 2 3 2402 80.00 F 6 2 3 2403 60.00 M 6 2 3 2404 33.00 M 0 2 2 2405 77.00 F 6 2 3 2406 54.00 M 6 2 2 2407 58.00 F 32 2 2 2408 55.00 F 0 2 2 2409 83.00 F 6 2 3 2410 64.00 M 6 2 3 2411 50.00 M 2 2 2 2412 58.00 M 1 2 2 2413 51.00 F 1 2 2 2414 74.00 F 6 2 3 2415 71.00 M 2 2 3 2416 36.00 M 6 2 2 2417 54.00 M 1 2 2 2418 58.00 M 4 2 2 2419 65.00 F 4 2 3 2420 61.00 F 2 2 3 2421 29.00 M 0 2 2 2422 62.00 F 1 2 3 2423 81.00 F 0 2 3 2424 47.00 F 6 2 2 2425 51.00 F 4 2 2 2426 64.00 M 4 2 3 2427 53.00 F 0 2 2 2428 47.00 M 3 2 2 2429 70.00 M 3 2 3 2430 76.00 F 4 2 3 2431 70.00 M 5 2 3 2432 76.00 M 0 2 3 2433 46.00 F 0 2 2 2434 51.00 M 3 2 2 2435 35.00 F 0 2 2 2436 56.00 M 6 2 2 2437 48.00 F 0 2 2 2438 40.00 M 1 2 2 2439 85.00 F 0 2 3 2440 53.00 F 4 2 2 2441 55.00 M 2 2 2 2442 85.00 M 3 2 3 2443 78.00 M 4 2 3 2444 54.00 F 2 2 2 2445 75.00 M 2 2 3 2446 59.00 M 0 2 2 2447 51.00 F 8 2 2 2448 70.00 M 2 2 3 2449 70.00 M 2 2 3 2450 65.00 M 0 2 3 2451 68.00 M 2 2 3 2452 70.00 F 2 2 3 2453 74.00 F 0 2 3 2454 70.00 M 0 2 3 2455 54.00 M 1 2 2 2456 66.00 M 2 2 3 2457 70.00 M 1 2 3 2458 70.00 M 0 2 3 2459 75.00 M 2 2 3 2460 79.00 M 0 2 3 2461 50.00 M 3 2 2 2462 68.00 F 5 2 3 2463 49.00 M 0 2 2 2464 60.00 M 2 2 3 2465 70.00 F 1 2 3 2466 55.00 F 1 2 2 2467 69.00 F 17 2 3 2468 70.00 F 0 2 3 2469 58.00 M 2 2 2 2470 86.00 M 2 2 3 2471 50.00 M 0 2 2 2472 70.00 M 0 2 3 2473 56.00 M 0 2 2 2474 51.00 M 2 2 2 2475 65.00 M 0 2 3 2476 68.00 M 1 2 3 2477 82.00 M 17 2 3 2478 62.00 M 5 2 3 2479 66.00 M 8 2 3 2480 62.00 M 2 2 3 2481 70.00 M 9 2 3 2482 49.00 F 16 2 2 2483 50.00 M 8 2 2 2484 55.00 F 2 2 2 2485 73.00 M 5 2 3 2486 70.00 F 4 2 3 2487 60.00 M 2 2 3 2488 62.00 M 0 2 3 2489 64.00 M 15 2 3 2490 55.00 F 0 2 2 2491 79.00 M 2 2 3 2492 65.00 M 8 2 3 2493 56.00 M 11 2 2 2494 67.00 M 11 2 3 2495 65.00 M 14 2 3 2496 55.00 F 2 2 2 2497 60.00 M 8 2 3 2498 58.00 M 2 2 2 2499 68.00 M 0 2 3 2500 52.00 M 10 2 2 2501 58.00 M 1 2 2 2502 80.00 F 9 2 3 2503 67.00 M 7 2 3 2504 57.00 M 7 2 2 2505 63.00 F 6 2 3 2506 68.00 M 7 2 3 2507 68.00 F 8 2 3 2508 38.00 M 0 2 2 2509 40.00 M 0 2 2 2510 54.00 M 0 2 2 2511 70.00 M 6 2 3 2512 45.00 M 1 2 2 2513 68.00 F 1 2 3 2514 65.00 M 2 2 3 2515 19.00 F 7 2 2 2516 40.00 F 4 2 2 2517 63.00 M 2 2 3 2518 56.00 F 7 2 2 2519 58.00 M 10 2 2 2520 61.00 M 1 2 3 2521 40.00 M 4 2 2 2522 52.00 F 6 2 2 2523 74.00 M 5 2 3 2524 78.00 F 5 2 3 2525 45.00 F 3 2 2 2526 55.00 F 3 2 2 2527 80.00 F 0 2 3 2528 55.00 F 5 2 2 2529 39.00 M 0 2 2 2530 74.00 M 2 2 3 2531 60.00 F 0 2 3 2532 81.00 F 2 2 3 2533 52.00 M 0 2 2 2534 60.00 F 0 2 3 2535 57.00 M 0 2 2 2536 54.00 M 1 2 2 2537 38.00 M 1 2 2 2538 45.00 M 1 2 2 2539 55.00 M 4 2 2 2540 84.00 M 1 2 3 2541 41.00 M 6 2 2 2542 68.00 F 2 2 3 2543 42.00 M 2 2 2 2544 40.00 M 3 2 2 2545 62.00 M 11 2 3 2546 65.00 M 3 2 3 2547 45.00 M 4 2 2 2548 35.00 F 0 2 2 2549 48.00 M 0 2 2 2550 62.00 M 0 2 3 2551 69.00 M 0 2 3 2552 70.00 M 3 2 3 2553 85.00 F 9 2 3 2554 60.00 F 2 2 3 2555 64.00 M 0 2 3 2556 45.00 F 1 2 2 2557 54.00 M 0 2 2 2558 67.00 M 1 2 3 2559 69.00 M 16 2 3 2560 62.00 F 2 2 3 2561 45.00 F 2 2 2 2562 65.00 M 1 2 3 2563 85.00 M 2 2 3 2564 68.00 F 1 2 3 2565 72.00 M 0 2 3 2566 44.00 M 1 2 2 2567 60.00 F 2 2 3 2568 57.00 F 1 2 2 2569 40.00 M 0 2 2 2570 76.00 F 1 2 3 2571 58.00 M 0 2 2 2572 60.00 M 2 2 3 2573 60.00 F 2 2 3 2574 69.00 M 0 2 3 2575 79.00 M 0 2 3 2576 68.00 F 9 2 3 2577 54.00 M 1 2 2 2578 60.00 M 1 2 3 2579 58.00 M 1 2 2 2580 70.00 M 0 2 3 2581 46.00 M 0 2 2 2582 60.00 M 2 2 3 2583 3.00 F 0 2 1 2584 23.00 F 0 2 2 2585 52.00 F 0 2 2 2586 55.00 F 4 2 2 2587 65.00 M 18 2 3 2588 40.00 M 20 2 2 2589 70.00 M 12 2 3 2590 39.00 M 14 2 2 2591 75.00 F 2 2 3 2592 62.00 F 1 2 3 2593 69.00 M 0 2 3 2594 70.00 M 13 2 3 2595 45.00 F 0 2 2 2596 54.00 M 0 2 2 2597 77.00 M 9 2 3 2598 58.00 F 3 2 2 2599 85.00 F 4 2 3 2600 48.00 F 4 2 2 2601 48.00 M 6 2 2 2602 35.00 M 3 2 2 2603 77.00 M 9 2 3 2604 75.00 M 7 2 3 2605 56.00 M 12 2 2 2606 73.00 M 0 2 3 2607 65.00 M 7 2 3 2608 58.00 M 1 2 2 2609 88.00 M 1 2 3 2610 63.00 M 1 2 3 2611 76.00 F 5 2 3 2612 80.00 F 1 2 3 2613 64.00 F 9 2 3 2614 72.00 M 7 2 3 2615 30.00 F 8 2 2 2616 30.00 M 10 2 2 2617 73.00 F 8 2 3 2618 62.00 F 8 2 3 2619 46.00 M 1 2 2 2620 66.00 F 0 2 3 2621 74.00 F 8 2 3 2622 55.00 F 7 2 2 2623 65.00 M 10 2 3 2624 65.00 M 2 2 3 2625 50.00 M 0 2 2 2626 60.00 F 6 2 3 2627 75.00 F 4 2 3 2628 68.00 M 6 2 3 2629 62.00 M 5 2 3 2630 65.00 M 5 2 3 2631 58.00 F 0 2 2 2632 53.00 F 6 2 2 2633 60.00 F 4 2 3 2634 23.00 F 0 2 2 2635 38.00 M 6 2 2 2636 53.00 M 0 2 2 2637 36.00 F 4 2 2 2638 49.00 M 3 2 2 2639 82.00 M 0 2 3 2640 70.00 M 3 2 3 2641 43.00 M 1 2 2 2642 67.00 M 1 2 3 2643 38.00 F 0 2 2 2644 62.00 M 3 2 3 2645 70.00 M 3 2 3 2646 42.00 M 0 2 2 2647 70.00 M 3 2 3 2648 68.00 M 1 2 3 2649 73.00 M 2 2 3 2650 40.00 M 2 2 2 2651 83.00 M 0 2 3 2652 58.00 F 2 2 2 2653 48.00 F 0 2 2 2654 75.00 M 2 2 3 2655 80.00 M 3 2 3 2656 65.00 M 1 2 3 2657 40.00 M 0 2 2 2658 67.00 M 1 2 3 2659 50.00 F 3 2 2 2660 71.00 F 0 2 3 2661 61.00 M 4 2 3 2662 58.00 M 1 2 2 2663 46.00 M 0 2 2 2664 64.00 F 1 2 3 2665 44.00 M 2 2 2 2666 65.00 F 0 2 3 2667 93.00 M 0 2 3 2668 50.00 M 0 2 2 2669 52.00 F 1 2 2 2670 60.00 M 0 2 3 2671 90.00 M 1 2 3 2672 72.00 F 1 2 3 2673 74.00 F 1 2 3 2674 90.00 M 3 2 3 2675 63.00 M 1 2 3 2676 70.00 F 1 2 3 2677 82.00 F 2 2 3 2678 67.00 M 2 2 3 2679 65.00 F 0 2 3 2680 79.00 M 0 2 3 2681 70.00 M 2 2 3 2682 65.00 M 0 2 3 2683 65.00 M 32 2 3 2684 70.00 M 2 2 3 2685 70.00 F 0 2 3 2686 64.00 M 1 2 3 2687 73.00 F 13 2 3 2688 50.00 M 1 2 2 2689 66.00 F 1 2 3 2690 87.00 F 14 2 3 2691 70.00 M 12 2 3 2692 50.00 M 0 2 2 2693 62.00 F 1 2 3 2694 65.00 F 13 2 3 2695 70.00 F 17 2 3 2696 59.00 M 10 2 2 2697 73.00 M 13 2 3 2698 78.00 F 8 2 3 2699 38.00 M 11 2 2 2700 62.00 F 1 2 3 2701 82.00 M 12 2 3 2702 82.00 M 11 2 3 2703 45.00 F 6 2 2 2704 65.00 M 9 2 3 2705 55.00 F 0 2 2 2706 40.00 M 7 2 2 2707 41.00 F 1 2 2 2708 55.00 M 8 2 2 2709 70.00 F 7 2 3 2710 70.00 F 8 2 3 2711 45.00 M 0 2 2 2712 46.00 F 8 2 2 2713 60.00 M 0 2 3 2714 72.00 M 7 2 3 2715 62.00 M 2 2 3 2716 67.00 F 9 2 3 2717 70.00 M 6 2 3 2718 65.00 M 2 2 3 2719 70.00 F 1 2 3 2720 86.00 M 6 2 3 2721 70.00 M 6 2 3 2722 62.00 M 5 2 3 2723 43.00 M 12 2 2 2724 78.00 M 6 2 3 2725 36.00 M 4 2 2 2726 62.00 M 8 2 3 2727 60.00 M 4 2 3 2728 59.00 M 1 2 2 2729 65.00 M 3 2 3 2730 56.00 M 5 2 2 2731 62.00 M 4 2 3 2732 45.00 F 1 2 2 2733 63.00 M 3 2 3 2734 46.00 M 5 2 2 2735 68.00 M 4 2 3 2736 40.00 M 0 2 2 2737 68.00 F 0 2 3 2738 62.00 F 1 2 3 2739 45.00 M 0 2 2 2740 62.00 M 4 2 3 2741 69.00 M 2 2 3 2742 65.00 M 4 2 3 2743 65.00 M 0 2 3 2744 62.00 M 0 2 3 2745 75.00 M 2 2 3 2746 60.00 M 4 2 3 2747 74.00 M 0 2 3 2748 67.00 M 0 2 3 2749 60.00 M 0 2 3 2750 36.00 M 0 2 2 2751 75.00 M 0 2 3 2752 80.00 M 0 2 3 2753 62.00 M 1 2 3 2754 60.00 M 8 2 3 2755 77.00 M 1 2 3 2756 59.00 M 2 2 2 2757 60.00 M 1 2 3 2758 43.00 M 0 2 2 2759 70.00 M 2 2 3 2760 72.00 M 1 2 3 2761 49.00 F 1 2 2 2762 80.00 F 0 2 3 2763 60.00 M 1 2 3 2764 52.00 M 2 2 2 2765 67.00 M 1 2 3 2766 67.00 M 0 2 3 2767 48.00 F 1 2 2 2768 56.00 F 0 2 2 2769 65.00 F 1 2 3 2770 52.00 M 0 2 2 2771 43.00 M 0 2 2 2772 70.00 F 1 2 3 2773 55.00 M 0 2 2 2774 58.00 F 0 2 2 2775 69.00 M 0 2 3 2776 80.00 F 0 2 3 2777 52.00 M 1 2 2 2778 65.00 M 0 2 3 2779 66.00 M 20 2 3 2780 25.00 F 1 2 2 2781 42.00 M 0 2 2 2782 63.00 F 4 2 3 2783 23.00 M 0 2 2 2784 78.00 M 1 2 3 2785 60.00 M 4 2 3 2786 53.00 M 12 2 2 2787 58.00 M 10 2 2 2788 64.00 M 1 2 3 2789 50.00 M 2 2 2 2790 48.00 M 2 2 2 2791 65.00 M 3 2 3 2792 60.00 M 14 2 3 2793 73.00 F 8 2 3 2794 57.00 M 1 2 2 2795 77.00 M 14 2 3 2796 69.00 M 10 2 3 2797 67.00 M 1 2 3 2798 40.00 M 14 2 2 2799 65.00 M 10 2 3 2800 63.00 F 9 2 3 2801 45.00 M 4 2 2 2802 35.00 F 0 2 2 2803 50.00 M 1 2 2 2804 59.00 M 3 2 2 2805 53.00 M 9 2 2 2806 58.00 M 4 2 2 2807 78.00 F 9 2 3 2808 43.00 F 2 2 2 2809 21.00 M 7 2 2 2810 46.00 M 4 2 2 2811 70.00 M 11 2 3 2812 73.00 M 2 2 3 2813 67.00 M 10 2 3 2814 74.00 M 3 2 3 2815 75.00 M 5 2 3 2816 27.00 M 2 2 2 2817 70.00 F 1 2 3 2818 46.00 F 3 2 2 2819 49.00 M 17 2 2 2820 66.00 M 0 2 3 2821 58.00 M 11 2 2 2822 52.00 F 0 2 2 2823 75.00 M 6 2 3 2824 59.00 M 0 2 2 2825 58.00 M 6 2 2 2826 54.00 M 3 2 2 2827 74.00 M 5 2 3 2828 75.00 M 2 2 3 2829 70.00 F 4 2 3 2830 60.00 M 3 2 3 2831 60.00 F 0 2 3 2832 55.00 M 1 2 2 2833 69.00 M 1 2 3 2834 59.00 M 4 2 2 2835 50.00 M 0 2 2 2836 53.00 M 2 2 2 2837 65.00 F 3 2 3 2838 50.00 F 0 2 2 2839 51.00 M 3 2 2 2840 28.00 F 3 2 2 2841 56.00 M 0 2 2 2842 85.00 M 7 2 3 2843 52.00 M 1 2 2 2844 81.00 M 0 2 3 2845 59.00 F 3 2 2 2846 85.00 M 0 2 3 2847 68.00 M 0 2 3 2848 40.00 F 0 2 2 2849 65.00 F 11 2 3 2850 67.00 M 1 2 3 2851 54.00 F 1 2 2 2852 76.00 F 2 2 3 2853 56.00 M 3 2 2 2854 35.00 M 0 2 2 2855 46.00 F 2 2 2 2856 65.00 M 1 2 3 2857 70.00 M 0 2 3 2858 30.00 M 0 2 2 2859 22.00 M 0 2 2 2860 75.00 M 3 2 3 2861 37.00 F 0 2 2 2862 60.00 M 1 2 3 2863 40.00 M 2 2 2 2864 60.00 M 1 2 3 2865 65.00 M 1 2 3 2866 55.00 M 1 2 2 2867 58.00 F 0 2 2 2868 29.00 M 3 2 2 2869 65.00 M 0 2 3 2870 75.00 M 0 2 3 2871 35.00 F 2 2 2 2872 35.00 F 0 2 2 2873 65.00 F 0 2 3 2874 44.00 M 2 2 2 2875 61.00 M 0 2 3 2876 85.00 F 1 2 3 2877 72.00 F 8 2 3 2878 72.00 F 0 2 3 2879 55.00 M 0 2 2 2880 55.00 M 18 2 2 2881 49.00 M 1 2 2 2882 66.00 M 15 2 3 2883 58.00 M 9 2 2 2884 74.00 M 12 2 3 2885 67.00 M 7 2 3 2886 63.00 M 8 2 3 2887 51.00 M 7 2 2 2888 72.00 M 30 2 3 2889 38.00 M 17 2 2 2890 60.00 F 18 2 3 2891 80.00 F 12 2 3 2892 54.00 F 5 2 2 2893 59.00 M 5 2 2 2894 82.00 M 14 2 3 2895 54.00 M 0 2 2 2896 53.00 F 3 2 2 2897 64.00 M 7 2 3 2898 59.00 M 3 2 2 2899 46.00 M 7 2 2 2900 65.00 M 5 2 3 2901 78.00 F 7 2 3 2902 50.00 M 21 2 2 2903 70.00 M 10 2 3 2904 55.00 F 11 2 2 2905 50.00 M 9 2 2 2906 65.00 M 11 2 3 2907 81.00 M 9 2 3 2908 60.00 M 8 2 3 2909 65.00 F 0 2 3 2910 39.00 M 2 2 2 2911 62.00 M 10 2 3 2912 80.00 F 9 2 3 2913 50.00 F 10 2 2 2914 51.00 M 16 2 2 2915 21.00 M 3 2 2 2916 58.00 F 8 2 2 2917 41.00 F 9 2 2 2918 45.00 M 0 2 2 2919 72.00 F 3 2 3 2920 46.00 M 1 2 2 2921 51.00 M 5 2 2 2922 57.00 M 1 2 2 2923 36.00 M 6 2 2 2924 65.00 M 0 2 3 2925 91.00 M 1 2 3 2926 83.00 M 6 2 3 2927 82.00 F 5 2 3 2928 65.00 M 4 2 3 2929 60.00 M 4 2 3 2930 70.00 M 6 2 3 2931 67.00 F 7 2 3 2932 60.00 F 1 2 3 2933 51.00 F 1 2 2 2934 69.00 M 3 2 3 2935 45.00 F 0 2 2 2936 49.00 M 4 2 2 2937 65.00 F 4 2 3 2938 55.00 F 9 2 2 2939 72.00 M 1 2 3 2940 77.00 M 4 2 3 2941 55.00 M 2 2 2 2942 73.00 M 0 2 3 2943 90.00 M 1 2 3 2944 39.00 M 4 2 2 2945 56.00 M 4 2 2 2946 75.00 F 2 2 3 2947 60.00 F 4 2 3 2948 74.00 M 3 2 3 2949 49.00 M 4 2 2 2950 58.00 M 2 2 2 2951 40.00 F 3 2 2 2952 54.00 M 1 2 2 2953 78.00 M 2 2 3 2954 65.00 M 2 2 3 2955 60.00 M 2 2 3 2956 48.00 M 2 2 2 2957 44.00 M 7 2 2 2958 55.00 M 0 2 2 2959 76.00 M 0 2 3 2960 55.00 M 1 2 2 2961 75.00 M 1 2 3 2962 82.00 M 2 2 3 2963 70.00 F 3 2 3 2964 50.00 M 5 2 2 2965 52.00 M 2 2 2 2966 55.00 M 2 2 2 2967 58.00 F 0 2 2 2968 50.00 F 1 2 2 2969 38.00 M 1 2 2 2970 75.00 M 2 2 3 2971 70.00 M 0 2 3 2972 75.00 F 4 2 3 2973 64.00 M 8 2 3 2974 58.00 F 11 2 2 2975 63.00 M 0 2 3 2976 80.00 F 9 2 3 2977 64.00 F 2 2 3 2978 71.00 M 6 2 3 2979 67.00 M 3 2 3 2980 42.00 M 7 2 2 2981 37.00 M 7 2 2 2982 85.00 M 5 2 3 2983 50.00 M 0 2 2 2984 61.00 F 16 2 3 2985 40.00 M 14 2 2 2986 51.00 M 16 2 2 2987 60.00 M 13 2 3 2988 74.00 F 14 2 3 2989 58.00 F 15 2 2 2990 65.00 M 13 2 3 2991 52.00 M 10 2 2 2992 69.00 M 11 2 3 2993 61.00 M 12 2 3 2994 80.00 M 11 2 3 2995 61.00 F 11 2 3 2996 46.00 F 0 2 2 2997 50.00 F 8 2 2 2998 65.00 M 12 2 3 2999 49.00 M 3 2 2 3000 53.00 M 7 2 2 3001 65.00 F 3 2 3 3002 72.00 F 7 2 3 3003 89.00 M 1 2 3 3004 65.00 M 1 2 3 3005 38.00 M 5 2 2 3006 45.00 M 1 2 2 3007 50.00 F 0 2 2 3008 62.00 F 9 2 3 3009 48.00 M 4 2 2 3010 40.00 M 7 2 2 3011 62.00 M 0 2 3 3012 67.00 F 9 2 3 3013 65.00 F 9 2 3 3014 62.00 M 2 2 3 3015 35.00 M 7 2 2 3016 65.00 M 0 2 3 3017 71.00 F 0 2 3 3018 47.00 M 7 2 2 3019 57.00 M 7 2 2 3020 62.00 F 0 2 3 3021 75.00 F 6 2 3 3022 48.00 M 1 2 2 3023 55.00 M 1 2 2 3024 49.00 M 6 2 2 3025 57.00 M 2 2 2 3026 43.00 F 1 2 2 3027 77.00 M 5 2 3 3028 76.00 M 5 2 3 3029 50.00 M 4 2 2 3030 82.00 F 1 2 3 3031 64.00 M 0 2 3 3032 74.00 F 3 2 3 3033 59.00 M 4 2 2 3034 55.00 F 1 2 2 3035 54.00 M 1 2 2 3036 33.00 M 5 2 2 3037 78.00 F 10 2 3 3038 57.00 M 1 2 2 3039 63.00 M 4 2 3 3040 50.00 F 0 2 2 3041 63.00 M 1 2 3 3042 80.00 M 3 2 3 3043 58.00 M 0 2 2 3044 55.00 M 1 2 2 3045 60.00 M 1 2 3 3046 45.00 F 0 2 2 3047 66.00 M 5 2 3 3048 68.00 M 0 2 3 3049 48.00 M 3 2 2 3050 75.00 F 14 2 3 3051 27.00 M 0 2 2 3052 57.00 M 1 2 2 3053 73.00 M 1 2 3 3054 55.00 M 0 2 2 3055 80.00 M 0 2 3 3056 70.00 M 1 2 3 3057 55.00 M 0 2 2 3058 71.00 M 2 2 3 3059 60.00 F 1 2 3 3060 32.00 M 5 2 2 3061 70.00 F 0 2 3 3062 60.00 F 2 2 3 3063 55.00 F 0 2 2 3064 23.00 F 1 2 2 3065 55.00 F 2 2 2 3066 40.00 M 14 2 2 3067 75.00 M 0 2 3 3068 38.00 M 2 2 2 3069 30.00 M 0 2 2 3070 49.00 M 0 2 2 3071 75.00 M 3 2 3 3072 56.00 M 2 2 2 3073 55.00 F 1 2 2 3074 75.00 M 0 2 3 3075 54.00 M 0 2 2 3076 55.00 M 1 2 2 3077 65.00 M 2 2 3 3078 55.00 M 1 2 2 3079 70.00 F 0 2 3 3080 46.00 F 19 2 2 3081 80.00 M 8 2 3 3082 73.00 M 0 2 3 3083 77.00 M 2 2 3 3084 77.00 M 1 2 3 3085 54.00 F 5 2 2 3086 58.00 M 11 2 2 3087 56.00 F 8 2 2 3088 57.00 M 5 2 2 3089 62.00 M 0 2 3 3090 86.00 F 15 2 3 3091 50.00 F 0 2 2 3092 46.00 M 2 2 2 3093 56.00 M 6 2 2 3094 54.00 F 2 2 2 3095 76.00 F 5 2 3 3096 56.00 M 2 2 2 3097 61.00 M 4 2 3 3098 77.00 M 4 2 3 3099 53.00 F 0 2 2 3100 70.00 M 2 2 3 3101 73.00 F 6 2 3 3102 63.00 F 1 2 3 3103 59.00 M 15 2 2 3104 72.00 F 16 2 3 3105 78.00 M 2 2 3 3106 52.00 F 12 2 2 3107 53.00 M 15 2 2 3108 64.00 M 1 2 3 3109 70.00 F 0 2 3 3110 64.00 M 8 2 3 3111 66.00 M 7 2 3 3112 70.00 M 1 2 3 3113 70.00 F 1 2 3 3114 60.00 M 9 2 3 3115 21.00 M 6 2 2 3116 61.00 M 3 2 3 3117 82.00 M 8 2 3 3118 50.00 M 4 2 2 3119 49.00 M 8 2 2 3120 67.00 M 9 2 3 3121 79.00 M 10 2 3 3122 69.00 M 13 2 3 3123 70.00 M 4 2 3 3124 67.00 M 7 2 3 3125 58.00 M 10 2 2 3126 52.00 M 0 2 2 3127 64.00 M 5 2 3 3128 72.00 M 9 2 3 3129 65.00 M 5 2 3 3130 70.00 F 5 2 3 3131 45.00 F 5 2 2 3132 49.00 M 5 2 2 3133 46.00 M 4 2 2 3134 68.00 F 1 2 3 3135 54.00 M 8 2 2 3136 39.00 M 4 2 2 3137 67.00 M 3 2 3 3138 77.00 M 5 2 3 3139 41.00 M 2 2 2 3140 48.00 M 2 2 2 3141 46.00 M 1 2 2 3142 71.00 F 12 2 3 3143 44.00 M 5 2 2 3144 68.00 M 5 2 3 3145 78.00 F 4 2 3 3146 38.00 M 0 2 2 3147 68.00 M 6 2 3 3148 67.00 M 2 2 3 3149 65.00 M 2 2 3 3150 92.00 M 3 2 3 3151 52.00 F 0 2 2 3152 56.00 M 0 2 2 3153 70.00 M 0 2 3 3154 68.00 M 4 2 3 3155 45.00 F 3 2 2 3156 67.00 F 1 2 3 3157 50.00 M 2 2 2 3158 58.00 F 3 2 2 3159 65.00 M 4 2 3 3160 57.00 M 2 2 2 3161 51.00 M 1 2 2 3162 62.00 M 1 2 3 3163 87.00 M 3 2 3 3164 45.00 F 0 2 2 3165 48.00 F 1 2 2 3166 65.00 M 0 2 3 3167 55.00 M 2 2 2 3168 66.00 M 0 2 3 3169 76.00 F 5 2 3 3170 69.00 M 1 2 3 3171 62.00 M 0 2 3 3172 60.00 M 0 2 3 3173 75.00 M 1 2 3 3174 102.00 M 0 2 3 3175 65.00 F 1 2 3 3176 89.00 F 2 2 3 3177 62.00 M 1 2 3 3178 32.00 F 3 2 2 3179 36.00 M 16 2 2 3180 40.00 F 0 2 2 3181 41.00 M 0 2 2 3182 14.00 M 2 2 1 3183 41.00 M 1 2 2 3184 60.00 M 1 2 3 3185 55.00 M 0 2 2 3186 60.00 M 0 2 3 3187 57.00 M 4 2 2 3188 63.00 M 6 2 3 3189 63.00 F 1 2 3 3190 58.00 M 0 2 2 3191 45.00 F 0 2 2 3192 45.00 F 1 2 2 3193 65.00 M 1 2 3 3194 76.00 M 0 2 3 3195 63.00 M 1 2 3 3196 83.00 F 8 2 3 3197 64.00 F 16 2 3 3198 89.00 M 5 2 3 3199 40.00 M 0 2 2 3200 89.00 M 1 2 3 3201 55.00 M 13 2 2 3202 43.00 F 9 2 2 3203 73.00 M 10 2 3 3204 43.00 F 1 2 2 3205 49.00 M 5 2 2 3206 70.00 M 10 2 3 3207 80.00 M 2 2 3 3208 55.00 M 0 2 2 3209 38.00 M 8 2 2 3210 75.00 M 1 2 3 3211 65.00 F 0 2 3 3212 48.00 M 7 2 2 3213 52.00 F 13 2 2 3214 64.00 M 12 2 3 3215 74.00 M 19 2 3 3216 62.00 F 2 2 3 3217 72.00 M 10 2 3 3218 71.00 M 12 2 3 3219 50.00 M 10 2 2 3220 52.00 M 5 2 2 3221 70.00 M 10 2 3 3222 53.00 M 10 2 2 3223 80.00 M 9 2 3 3224 70.00 F 7 2 3 3225 35.00 M 9 2 2 3226 72.00 M 1 2 3 3227 75.00 M 9 2 3 3228 73.00 M 1 2 3 3229 50.00 F 4 2 2 3230 64.00 F 0 2 3 3231 60.00 F 0 2 3 3232 42.00 F 7 2 2 3233 74.00 F 2 2 3 3234 85.00 F 7 2 3 3235 72.00 F 3 2 3 3236 75.00 F 5 2 3 3237 80.00 M 6 2 3 3238 50.00 F 3 2 2 3239 76.00 M 4 2 3 3240 69.00 M 7 2 3 3241 48.00 M 5 2 2 3242 73.00 F 3 2 3 3243 66.00 M 5 2 3 3244 53.00 M 5 2 2 3245 55.00 F 6 2 2 3246 38.00 M 4 2 2 3247 72.00 F 3 2 3 3248 55.00 M 14 2 2 3249 82.00 M 4 2 3 3250 54.00 M 0 2 2 3251 75.00 F 2 2 3 3252 50.00 M 0 2 2 3253 55.00 M 1 2 2 3254 63.00 M 2 2 3 3255 88.00 F 4 2 3 3256 71.00 F 1 2 3 3257 75.00 F 1 2 3 3258 65.00 F 0 2 3 3259 80.00 M 1 2 3 3260 70.00 F 1 2 3 3261 55.00 M 1 2 2 3262 50.00 M 2 2 2 3263 40.00 M 4 2 2 3264 57.00 F 0 2 2 3265 55.00 M 5 2 2 3266 56.00 M 0 2 2 3267 65.00 M 0 2 3 3268 45.00 F 1 2 2 3269 80.00 F 1 2 3 3270 40.00 F 3 2 2 3271 83.00 M 0 2 3 3272 38.00 M 0 2 2 3273 49.00 F 0 2 2 3274 70.00 F 1 2 3 3275 71.00 M 1 2 3 3276 42.00 M 0 2 2 3277 70.00 F 0 2 3 3278 65.00 M 0 2 3 3279 72.00 F 0 2 3 3280 65.00 M 1 2 3 3281 35.00 M 21 2 2 3282 67.00 M 10 2 3 3283 23.00 M 1 2 2 3284 66.00 F 7 2 3 3285 28.00 M 12 2 2 3286 68.00 F 1 2 3 3287 61.00 F 0 2 3 3288 63.00 F 12 2 3 3289 57.00 F 0 2 2 3290 53.00 M 11 2 2 3291 65.00 F 9 2 3 3292 53.00 M 7 2 2 3293 66.00 M 12 2 3 3294 52.00 F 1 2 2 3295 60.00 M 13 2 3 3296 77.00 M 7 2 3 3297 43.00 F 1 2 2 3298 61.00 F 0 2 3 3299 56.00 M 6 2 2 3300 46.00 F 4 2 2 3301 72.00 M 8 2 3 3302 75.00 M 11 2 3 3303 65.00 F 1 2 3 3304 18.00 M 15 2 2 3305 81.00 M 12 2 3 3306 70.00 M 7 2 3 3307 33.00 M 11 2 2 3308 62.00 M 6 2 3 3309 50.00 M 2 2 2 3310 55.00 F 1 2 2 3311 77.00 F 8 2 3 3312 66.00 M 5 2 3 3313 31.00 M 11 2 2 3314 71.00 M 7 2 3 3315 67.00 M 3 2 3 3316 66.00 M 4 2 3 3317 65.00 M 11 2 3 3318 50.00 M 0 2 2 3319 65.00 F 9 2 3 3320 78.00 M 4 2 3 3321 80.00 M 7 2 3 3322 45.00 F 1 2 2 3323 73.00 F 3 2 3 3324 56.00 M 1 2 2 3325 55.00 M 5 2 2 3326 48.00 M 6 2 2 3327 52.00 F 5 2 2 3328 37.00 M 7 2 2 3329 92.00 M 8 2 3 3330 75.00 F 1 2 3 3331 65.00 F 0 2 3 3332 53.00 M 6 2 2 3333 75.00 M 6 2 3 3334 74.00 M 0 2 3 3335 23.00 M 7 2 2 3336 61.00 M 1 2 3 3337 70.00 M 7 2 3 3338 78.00 M 4 2 3 3339 58.00 F 37 2 2 3340 60.00 M 11 2 3 3341 72.00 M 3 2 3 3342 72.00 M 1 2 3 3343 75.00 M 6 2 3 3344 68.00 M 9 2 3 3345 82.00 M 4 2 3 3346 68.00 F 17 2 3 3347 66.00 M 4 2 3 3348 40.00 M 0 2 2 3349 11.00 M 5 2 1 3350 55.00 F 0 2 2 3351 86.00 M 5 2 3 3352 37.00 M 2 2 2 3353 69.00 M 2 2 3 3354 34.00 M 1 2 2 3355 65.00 M 3 2 3 3356 52.00 M 7 2 2 3357 70.00 F 4 2 3 3358 66.00 M 3 2 3 3359 65.00 F 14 2 3 3360 57.00 M 1 2 2 3361 65.00 M 1 2 3 3362 74.00 M 2 2 3 3363 49.00 M 0 2 2 3364 23.00 M 1 2 2 3365 56.00 M 2 2 2 3366 63.00 M 2 2 3 3367 75.00 M 0 2 3 3368 69.00 M 4 2 3 3369 82.00 M 0 2 3 3370 64.00 M 0 2 3 3371 43.00 F 1 2 2 3372 75.00 M 2 2 3 3373 67.00 M 0 2 3 3374 90.00 M 3 2 3 3375 67.00 M 0 2 3 3376 70.00 M 1 2 3 3377 63.00 M 1 2 3 3378 60.00 M 0 2 3 3379 67.00 M 0 2 3 3380 85.00 F 2 2 3 3381 45.00 M 0 2 2 3382 70.00 M 1 2 3 3383 82.00 M 1 2 3 3384 67.00 M 0 2 3 3385 55.00 M 2 2 2 3386 60.00 M 2 2 3 3387 65.00 M 0 2 3 3388 67.00 F 0 2 3 3389 49.00 F 8 2 2 3390 90.00 F 1 2 3 3391 61.00 M 2 2 3 3392 45.00 F 1 2 2 3393 90.00 M 7 2 3 3394 56.00 F 1 2 2 3395 65.00 F 4 2 3 3396 67.00 M 10 2 3 3397 68.00 M 2 2 3 3398 68.00 M 17 2 3 3399 65.00 M 3 2 3 3400 68.00 M 0 2 3 3401 58.00 M 13 2 2 3402 58.00 F 2 2 2 3403 60.00 F 6 2 3 3404 67.00 F 13 2 3 3405 51.00 F 19 2 2 3406 76.00 F 1 2 3 3407 51.00 M 3 2 2 3408 83.00 M 9 2 3 3409 76.00 M 1 2 3 3410 74.00 F 6 2 3 3411 87.00 F 19 2 3 3412 79.00 F 16 2 3 3413 76.00 M 6 2 3 3414 76.00 M 1 2 3 3415 70.00 M 3 2 3 3416 88.00 M 2 2 3 3417 22.00 F 16 2 2 3418 65.00 M 6 2 3 3419 54.00 M 6 2 2 3420 74.00 M 13 2 3 3421 57.00 M 6 2 2 3422 70.00 M 13 2 3 3423 60.00 F 0 2 3 3424 56.00 M 14 2 2 3425 68.00 M 2 2 3 3426 65.00 F 10 2 3 3427 45.00 M 1 2 2 3428 75.00 M 6 2 3 3429 61.00 M 8 2 3 3430 71.00 M 5 2 3 3431 47.00 M 6 2 2 3432 35.00 M 8 2 2 3433 67.00 F 8 2 3 3434 45.00 M 8 2 2 3435 80.00 F 9 2 3 3436 54.00 M 25 2 2 3437 58.00 M 3 2 2 3438 52.00 F 0 2 2 3439 87.00 M 6 2 3 3440 80.00 M 6 2 3 3441 75.00 M 7 2 3 3442 64.00 M 8 2 3 3443 43.00 M 0 2 2 3444 34.00 M 2 2 2 3445 35.00 F 0 2 2 3446 50.00 M 6 2 2 3447 56.00 M 7 2 2 3448 48.00 M 6 2 2 3449 68.00 F 1 2 3 3450 70.00 M 4 2 3 3451 83.00 M 5 2 3 3452 50.00 M 4 2 2 3453 75.00 M 2 2 3 3454 34.00 M 12 2 2 3455 58.00 M 3 2 2 3456 53.00 F 4 2 2 3457 65.00 F 6 2 3 3458 78.00 F 0 2 3 3459 70.00 F 3 2 3 3460 65.00 M 5 2 3 3461 77.00 M 0 2 3 3462 80.00 F 4 2 3 3463 65.00 M 3 2 3 3464 82.00 M 2 2 3 3465 58.00 M 5 2 2 3466 57.00 M 31 2 2 3467 60.00 M 2 2 3 3468 35.00 F 4 2 2 3469 52.00 M 2 2 2 3470 58.00 F 6 2 2 3471 45.00 M 0 2 2 3472 80.00 M 1 2 3 3473 56.00 M 5 2 2 3474 80.00 M 2 2 3 3475 70.00 F 1 2 3 3476 95.00 F 0 2 3 3477 39.00 M 0 2 2 3478 70.00 M 0 2 3 3479 59.00 M 2 2 2 3480 60.00 M 2 2 3 3481 48.00 M 2 2 2 3482 57.00 M 2 2 2 3483 58.00 F 3 2 2 3484 70.00 M 1 2 3 3485 65.00 M 2 2 3 3486 77.00 M 21 2 3 3487 70.00 M 0 2 3 3488 65.00 M 1 2 3 3489 24.00 M 1 2 2 3490 50.00 M 1 2 2 3491 70.00 M 0 2 3 3492 62.00 M 1 2 3 3493 80.00 M 1 2 3 3494 80.00 M 0 2 3 3495 78.00 M 0 2 3 3496 55.00 M 1 2 2 3497 58.00 M 0 2 2 3498 42.00 M 3 2 2 3499 74.00 F 0 2 3 3500 54.00 F 0 2 2 3501 53.00 F 16 2 2 3502 58.00 M 2 2 2 3503 69.00 M 7 2 3 3504 58.00 M 3 2 2 3505 34.00 M 0 2 2 3506 73.00 M 0 2 3 3507 86.00 F 8 2 3 3508 46.00 M 1 2 2 3509 79.00 M 5 2 3 3510 62.00 F 3 2 3 3511 59.00 F 4 2 2 3512 75.00 M 0 2 3 3513 80.00 M 4 2 3 3514 65.00 F 7 2 3 3515 60.00 F 0 2 3 3516 76.00 F 18 2 3 3517 65.00 M 3 2 3 3518 70.00 F 0 2 3 3519 84.00 M 8 2 3 3520 46.00 F 0 2 2 3521 55.00 F 1 2 2 3522 57.00 M 3 2 2 3523 55.00 M 0 2 2 3524 66.00 M 15 2 3 3525 72.00 M 18 2 3 3526 70.00 F 3 2 3 3527 63.00 M 14 2 3 3528 66.00 M 14 2 3 3529 64.00 F 7 2 3 3530 60.00 M 0 2 3 3531 73.00 M 4 2 3 3532 55.00 M 15 2 2 3533 65.00 M 2 2 3 3534 86.00 M 0 2 3 3535 88.00 F 13 2 3 3536 68.00 M 13 2 3 3537 58.00 M 11 2 2 3538 58.00 F 12 2 2 3539 82.00 M 10 2 3 3540 64.00 M 6 2 3 3541 67.00 M 11 2 3 3542 64.00 F 0 2 3 3543 72.00 M 10 2 3 3544 64.00 M 11 2 3 3545 55.00 F 2 2 2 3546 44.00 M 9 2 2 3547 73.00 M 7 2 3 3548 68.00 M 0 2 3 3549 40.00 F 0 2 2 3550 70.00 M 1 2 3 3551 80.00 M 4 2 3 3552 65.00 M 3 2 3 3553 52.00 M 1 2 2 3554 72.00 M 16 2 3 3555 70.00 M 1 2 3 3556 75.00 M 0 2 3 3557 48.00 M 6 2 2 3558 60.00 F 6 2 3 3559 72.00 M 9 2 3 3560 33.00 F 10 2 2 3561 53.00 M 7 2 2 3562 30.00 M 2 2 2 3563 52.00 M 0 2 2 3564 62.00 M 4 2 3 3565 76.00 M 5 2 3 3566 87.00 M 9 2 3 3567 80.00 M 6 2 3 3568 53.00 F 2 2 2 3569 86.00 M 5 2 3 3570 67.00 M 0 2 3 3571 33.00 M 8 2 2 3572 52.00 F 1 2 2 3573 48.00 F 2 2 2 3574 78.00 F 4 2 3 3575 80.00 M 3 2 3 3576 67.00 M 0 2 3 3577 58.00 M 3 2 2 3578 61.00 F 5 2 3 3579 73.00 M 2 2 3 3580 52.00 F 2 2 2 3581 50.00 M 0 2 2 3582 85.00 M 2 2 3 3583 70.00 M 2 2 3 3584 60.00 M 4 2 3 3585 55.00 F 0 2 2 3586 69.00 M 0 2 3 3587 80.00 F 2 2 3 3588 50.00 M 3 2 2 3589 64.00 F 0 2 3 3590 65.00 M 1 2 3 3591 70.00 M 1 2 3 3592 82.00 M 3 2 3 3593 61.00 M 0 2 3 3594 72.00 M 6 2 3 3595 68.00 M 0 2 3 3596 60.00 F 0 2 3 3597 68.00 M 1 2 3 3598 62.00 F 0 2 3 3599 50.00 M 0 2 2 3600 71.00 M 9 2 3 3601 45.00 M 0 2 2 3602 45.00 M 0 2 2 3603 70.00 F 0 2 3 3604 54.00 M 1 2 2 3605 53.00 F 4 2 2 3606 49.00 M 4 2 2 3607 49.00 M 6 2 2 3608 65.00 F 4 2 3 3609 62.00 M 17 2 3 3610 70.00 M 22 2 3 3611 50.00 F 7 2 2 3612 56.00 F 18 2 2 3613 46.00 F 20 2 2 3614 49.00 M 8 2 2 3615 58.00 M 1 2 2 3616 60.00 M 2 2 3 3617 72.00 M 7 2 3 3618 60.00 F 19 2 3 3619 45.00 F 1 2 2 3620 40.00 M 10 2 2 3621 75.00 M 3 2 3 3622 65.00 M 2 2 3 3623 55.00 M 9 2 2 3624 43.00 M 11 2 2 3625 42.00 M 14 2 2 3626 53.00 M 13 2 2 3627 32.00 M 16 2 2 3628 66.00 M 11 2 3 3629 66.00 F 12 2 3 3630 38.00 M 11 2 2 3631 68.00 F 10 2 3 3632 70.00 M 11 2 3 3633 62.00 F 11 2 3 3634 55.00 M 6 2 2 3635 68.00 M 12 2 3 3636 72.00 F 12 2 3 3637 70.00 M 0 2 3 3638 85.00 F 9 2 3 3639 48.00 M 7 2 2 3640 50.00 M 4 2 2 3641 70.00 M 1 2 3 3642 63.00 M 2 2 3 3643 76.00 M 6 2 3 3644 71.00 M 9 2 3 3645 80.00 M 9 2 3 3646 92.00 M 0 2 3 3647 68.00 M 0 2 3 3648 64.00 M 6 2 3 3649 66.00 M 26 2 3 3650 76.00 M 4 2 3 3651 60.00 F 0 2 3 3652 67.00 M 6 2 3 3653 68.00 M 33 2 3 3654 80.00 M 7 2 3 3655 78.00 M 4 2 3 3656 50.00 M 0 2 2 3657 25.00 F 1 2 2 3658 37.00 F 0 2 2 3659 55.00 M 6 2 2 3660 70.00 F 1 2 3 3661 77.00 M 7 2 3 3662 50.00 F 1 2 2 3663 65.00 M 1 2 3 3664 60.00 M 0 2 3 3665 72.00 M 5 2 3 3666 53.00 M 6 2 2 3667 74.00 M 0 2 3 3668 70.00 M 1 2 3 3669 49.00 M 0 2 2 3670 64.00 F 4 2 3 3671 78.00 M 5 2 3 3672 36.00 M 3 2 2 3673 58.00 M 1 2 2 3674 67.00 M 22 2 3 3675 65.00 M 3 2 3 3676 54.00 F 5 2 2 3677 62.00 F 0 2 3 3678 69.00 M 2 2 3 3679 80.00 M 21 2 3 3680 44.00 F 0 2 2 3681 39.00 M 3 2 2 3682 61.00 M 3 2 3 3683 73.00 M 2 2 3 3684 70.00 M 3 2 3 3685 34.00 M 10 2 2 3686 62.00 M 5 2 3 3687 48.00 M 2 2 2 3688 75.00 F 2 2 3 3689 38.00 F 0 2 2 3690 65.00 M 0 2 3 3691 87.00 F 0 2 3 3692 59.00 M 1 2 2 3693 55.00 M 1 2 2 3694 45.00 F 2 2 2 3695 48.00 F 0 2 2 3696 28.00 M 0 2 2 3697 52.00 M 5 2 2 3698 56.00 F 6 2 2 3699 60.00 M 11 2 3 3700 74.00 M 2 2 3 3701 65.00 F 2 2 3 3702 48.00 M 0 2 2 3703 65.00 M 1 2 3 3704 65.00 M 2 2 3 3705 60.00 M 0 2 3 3706 40.00 M 0 2 2 3707 70.00 F 1 2 3 3708 62.00 F 6 2 3 3709 39.00 M 1 2 2 3710 63.00 M 1 2 3 3711 70.00 M 1 2 3 3712 70.00 F 0 2 3 3713 86.00 M 0 2 3 3714 63.00 F 0 2 3 3715 48.00 M 0 2 2 3716 65.00 M 0 2 3 3717 69.00 M 0 2 3 3718 55.00 F 0 2 2 3719 71.00 M 0 2 3 3720 75.00 M 0 2 3 3721 58.00 F 0 2 2 3722 71.00 F 0 2 3 3723 78.00 M 0 2 3 3724 71.00 F 0 2 3 3725 67.00 F 0 2 3 3726 67.00 F 0 2 3 3727 70.00 M 0 2 3 3728 53.00 M 0 2 2 3729 72.00 M 0 2 3 3730 65.00 M 0 2 3 3731 58.00 M 0 2 2 3732 44.00 F 0 2 2 3733 58.00 F 0 2 2 3734 79.00 M 0 2 3 3735 40.00 M 0 2 2 3736 65.00 F 0 2 3 3737 80.00 F 0 2 3 3738 70.00 M 0 2 3 3739 40.00 F 0 2 2 3740 75.00 M 0 2 3 3741 63.00 M 0 2 3 3742 74.00 M 0 2 3 3743 70.00 M 0 2 3 3744 42.00 M 0 2 2 3745 78.00 M 0 2 3 3746 71.00 M 0 2 3 3747 46.00 F 0 2 2 3748 76.00 M 0 2 3 3749 63.00 M 0 2 3 3750 73.00 M 0 2 3 3751 80.00 M 0 2 3 3752 85.00 M 0 2 3 3753 62.00 M 0 2 3 3754 73.00 M 0 2 3 3755 46.00 M 0 2 2 3756 78.00 F 0 2 3 3757 55.00 M 0 2 2 3758 66.00 M 0 2 3 3759 60.00 F 0 2 3 3760 70.00 F 0 2 3 3761 68.00 F 0 2 3 3762 62.00 M 0 2 3 3763 75.00 F 0 2 3 3764 62.00 M 0 2 3 3765 71.00 M 0 2 3 3766 63.00 M 0 2 3 3767 23.00 M 0 2 2 3768 50.00 M 0 2 2 3769 60.00 M 0 2 3 3770 70.00 M 0 2 3 3771 76.00 M 0 2 3 3772 70.00 M 0 2 3 3773 68.00 M 0 2 3 3774 79.00 F 0 2 3 3775 67.00 M 0 2 3 3776 80.00 M 0 2 3 3777 26.00 F 0 2 2 3778 72.00 F 0 2 3 3779 82.00 M 0 2 3 3780 62.00 M 0 2 3 3781 48.00 M 0 2 2 3782 50.00 M 0 2 2 3783 72.00 F 0 2 3 3784 75.00 M 0 2 3 3785 63.00 M 0 2 3 3786 65.00 F 0 2 3 3787 57.00 M 0 2 2 3788 46.00 M 0 2 2 3789 42.00 F 0 2 2 3790 75.00 M 0 2 3 3791 56.00 F 0 2 2 3792 56.00 M 0 2 2 3793 61.00 F 0 2 3 3794 77.00 F 0 2 3 3795 35.00 M 0 2 2 3796 41.00 M 0 2 2 3797 72.00 M 0 2 3 3798 58.00 M 0 2 2 3799 65.00 M 0 2 3 3800 65.00 F 0 2 3 3801 60.00 M 0 2 3 3802 60.00 F 0 2 3 3803 64.00 M 0 2 3 3804 65.00 M 0 2 3 3805 62.00 M 0 2 3 3806 77.00 F 0 2 3 3807 62.00 F 0 2 3 3808 56.00 M 0 2 2 3809 50.00 M 0 2 2 3810 65.00 F 0 2 3 3811 80.00 F 0 2 3 3812 65.00 F 0 2 3 3813 56.00 M 0 2 2 3814 70.00 M 0 2 3 3815 73.00 M 0 2 3 3816 70.00 M 0 2 3 3817 77.00 M 0 2 3 3818 78.00 M 0 2 3 3819 80.00 M 0 2 3 3820 80.00 F 0 2 3 3821 60.00 F 0 2 3 3822 63.00 M 0 2 3 3823 46.00 M 0 2 2 3824 50.00 F 0 2 2 3825 40.00 M 0 2 2 3826 80.00 M 0 2 3 3827 38.00 M 0 2 2 3828 56.00 M 0 2 2 3829 51.00 F 0 2 2 3830 76.00 M 0 2 3 3831 67.00 F 0 2 3 3832 16.00 M 0 2 1 3833 68.00 M 0 2 3 3834 68.00 M 0 2 3 3835 66.00 M 0 2 3 3836 58.00 M 0 2 2 3837 50.00 M 0 2 2 3838 52.00 M 6 2 2 3839 52.00 F 9 2 2 3840 61.00 M 24 2 3 3841 77.00 M 7 2 3 3842 85.00 F 4 2 3 3843 44.00 F 1 2 2 3844 59.00 M 9 2 2 3845 57.00 M 3 2 2 3846 48.00 M 1 2 2 3847 48.00 M 3 2 2 3848 74.00 F 5 2 3 3849 50.00 M 24 2 2 3850 33.00 M 5 2 2 3851 49.00 M 12 2 2 3852 72.00 M 28 2 3 3853 65.00 M 7 2 3 3854 66.00 M 4 2 3 3855 70.00 M 11 2 3 3856 49.00 F 11 2 2 3857 78.00 M 21 2 3 3858 42.00 M 2 2 2 3859 55.00 M 4 2 2 3860 62.00 M 2 2 3 3861 70.00 M 48 2 3 3862 70.00 F 18 2 3 3863 73.00 M 4 2 3 3864 68.00 F 3 2 3 3865 56.00 F 9 2 2 3866 70.00 M 6 2 3 3867 85.00 M 2 2 3 3868 64.00 M 5 2 3 3869 52.00 M 18 2 2 3870 60.00 F 10 2 3 3871 33.00 M 11 2 2 3872 30.00 F 1 2 2 3873 65.00 M 14 2 3 3874 86.00 M 9 2 3 3875 51.00 M 11 2 2 3876 59.00 M 0 2 2 3877 57.00 M 12 2 2 3878 30.00 M 0 2 2 3879 58.00 M 17 2 2 3880 64.00 M 0 2 3 3881 55.00 M 9 2 2 3882 51.00 M 37 2 2 3883 69.00 M 1 2 3 3884 50.00 M 16 2 2 3885 41.00 M 8 2 2 3886 62.00 M 10 2 3 3887 81.00 M 7 2 3 3888 56.00 M 6 2 2 3889 67.00 M 5 2 3 3890 48.00 F 9 2 2 3891 50.00 M 6 2 2 3892 72.00 M 3 2 3 3893 90.00 F 8 2 3 3894 59.00 F 5 2 2 3895 60.00 M 5 2 3 3896 42.00 M 1 2 2 3897 56.00 M 5 2 2 3898 54.00 M 0 2 2 3899 55.00 M 6 2 2 3900 45.00 M 4 2 2 3901 65.00 M 1 2 3 3902 78.00 M 6 2 3 3903 82.00 M 11 2 3 3904 70.00 M 2 2 3 3905 72.00 M 2 2 3 3906 45.00 F 2 2 2 3907 65.00 M 1 2 3 3908 49.00 F 5 2 2 3909 50.00 M 3 2 2 3910 35.00 M 0 2 2 3911 72.00 M 6 2 3 3912 38.00 M 1 2 2 3913 60.00 M 1 2 3 3914 63.00 M 1 2 3 3915 42.00 M 4 2 2 3916 29.00 F 6 2 2 3917 68.00 M 4 2 3 3918 75.00 M 1 2 3 3919 72.00 F 0 2 3 3920 55.00 M 0 2 2 3921 87.00 M 1 2 3 3922 72.00 M 1 2 3 3923 80.00 F 1 2 3 3924 58.00 F 2 2 2 3925 70.00 M 3 2 3 3926 60.00 F 0 2 3 3927 85.00 F 3 2 3 3928 38.00 F 2 2 2 3929 86.00 F 4 2 3 3930 60.00 M 2 2 3 3931 67.00 F 1 2 3 3932 80.00 F 8 2 3 3933 74.00 M 0 2 3 3934 42.00 M 3 2 2 3935 43.00 F 4 2 2 3936 35.00 F 0 2 2 3937 73.00 M 1 2 3 3938 50.00 F 0 2 2 3939 50.00 M 0 2 2 3940 69.00 M 2 2 3 3941 57.00 F 0 2 2 3942 50.00 M 0 2 2 3943 51.00 M 0 2 2 3944 62.00 M 0 2 3 3945 47.00 F 2 2 2 3946 53.00 M 1 2 2 3947 70.00 F 2 2 3 3948 76.00 M 2 2 3 3949 75.00 M 0 2 3 3950 40.00 M 4 2 2 3951 50.00 M 0 2 2 3952 65.00 M 0 2 3 3953 66.00 M 4 2 3 3954 37.00 F 3 2 2 3955 42.00 F 6 2 2 3956 58.00 M 14 2 2 3957 51.00 M 10 2 2 3958 73.00 M 1 2 3 3959 92.00 M 0 2 3 3960 62.00 F 0 2 3 3961 38.00 F 10 2 2 3962 67.00 M 20 2 3 3963 65.00 F 0 2 3 3964 67.00 M 20 2 3 3965 73.00 M 23 2 3 3966 56.00 M 16 2 2 3967 80.00 M 13 2 3 3968 55.00 M 17 2 2 3969 63.00 F 6 2 3 3970 39.00 F 8 2 2 3971 55.00 M 12 2 2 3972 75.00 F 6 2 3 3973 42.00 M 2 2 2 3974 75.00 F 19 2 3 3975 87.00 M 7 2 3 3976 75.00 F 6 2 3 3977 26.00 M 7 2 2 3978 63.00 M 5 2 3 3979 60.00 M 18 2 3 3980 45.00 M 10 2 2 3981 68.00 M 18 2 3 3982 68.00 M 12 2 3 3983 62.00 F 1 2 3 3984 65.00 F 10 2 3 3985 57.00 M 19 2 2 3986 54.00 M 2 2 2 3987 62.00 M 7 2 3 3988 34.00 M 14 2 2 3989 41.00 M 16 2 2 3990 55.00 F 4 2 2 3991 60.00 M 2 2 3 3992 50.00 M 2 2 2 3993 74.00 M 6 2 3 3994 48.00 M 10 2 2 3995 56.00 M 10 2 2 3996 35.00 F 10 2 2 3997 75.00 M 0 2 3 3998 80.00 M 13 2 3 3999 72.00 M 11 2 3 4000 83.00 M 1 2 3 4001 48.00 M 8 2 2 4002 65.00 M 22 2 3 4003 84.00 M 0 2 3 4004 77.00 M 8 2 3 4005 56.00 M 8 2 2 4006 75.00 M 0 2 3 4007 38.00 M 0 2 2 4008 63.00 F 0 2 3 4009 72.00 M 4 2 3 4010 62.00 M 10 2 3 4011 54.00 F 0 2 2 4012 75.00 M 10 2 3 4013 67.00 F 2 2 3 4014 52.00 M 3 2 2 4015 75.00 F 3 2 3 4016 64.00 M 1 2 3 4017 72.00 F 11 2 3 4018 75.00 F 0 2 3 4019 57.00 M 11 2 2 4020 65.00 F 3 2 3 4021 94.00 M 3 2 3 4022 63.00 M 1 2 3 4023 60.00 M 8 2 3 4024 42.00 M 11 2 2 4025 56.00 F 7 2 2 4026 58.00 M 7 2 2 4027 68.00 M 5 2 3 4028 60.00 M 6 2 3 4029 65.00 F 31 2 3 4030 40.00 M 2 2 2 4031 67.00 M 5 2 3 4032 68.00 M 3 2 3 4033 48.00 M 3 2 2 4034 38.00 M 4 2 2 4035 37.00 M 8 2 2 4036 67.00 M 1 2 3 4037 62.00 F 1 2 3 4038 52.00 M 2 2 2 4039 53.00 M 4 2 2 4040 67.00 F 1 2 3 4041 48.00 M 7 2 2 4042 75.00 M 3 2 3 4043 80.00 M 1 2 3 4044 40.00 M 0 2 2 4045 41.00 M 0 2 2 4046 65.00 M 1 2 3 4047 63.00 M 0 2 3 4048 45.00 M 5 2 2 4049 49.00 M 0 2 2 4050 55.00 F 5 2 2 4051 62.00 M 4 2 3 4052 45.00 M 4 2 2 4053 60.00 F 1 2 3 4054 60.00 M 0 2 3 4055 80.00 M 3 2 3 4056 50.00 M 0 2 2 4057 55.00 M 2 2 2 4058 78.00 M 0 2 3 4059 67.00 F 0 2 3 4060 45.00 M 0 2 2 4061 90.00 F 0 2 3 4062 62.00 M 0 2 3 4063 53.00 M 0 2 2 4064 60.00 M 0 2 3 4065 64.00 F 0 2 3 4066 37.00 F 0 2 2 4067 24.00 F 2 2 2 4068 75.00 M 0 2 3 4069 22.00 F 4 2 2 4070 75.00 F 0 2 3 4071 54.00 F 1 2 2 4072 34.00 F 2 2 2 4073 64.00 M 2 2 3 4074 0.00 M 0 2 1 4075 44.00 F 0 2 2 4076 65.00 M 1 2 3 4077 64.00 M 4 2 3 4078 60.00 M 3 2 3 4079 65.00 F 1 2 3 4080 56.00 M 0 2 2 4081 47.00 M 0 2 2 4082 65.00 M 2 2 3 4083 51.00 M 2 2 2 4084 65.00 F 0 2 3 4085 80.00 M 0 2 3 4086 55.00 M 1 2 2 4087 60.00 M 0 2 3 4088 65.00 F 1 2 3 4089 32.00 M 0 2 2 4090 59.00 F 0 2 2 4091 24.00 M 1 2 2 4092 74.00 F 9 2 3 4093 63.00 M 20 2 3 4094 72.00 M 21 2 3 4095 85.00 F 20 2 3 4096 42.00 M 9 2 2 4097 79.00 M 14 2 3 4098 65.00 M 5 2 3 4099 49.00 M 17 2 2 4100 70.00 M 22 2 3 4101 46.00 M 5 2 2 4102 70.00 F 7 2 3 4103 84.00 M 4 2 3 4104 67.00 F 5 2 3 4105 45.00 M 6 2 2 4106 48.00 M 1 2 2 4107 47.00 M 13 2 2 4108 82.00 M 7 2 3 4109 65.00 M 1 2 3 4110 78.00 M 7 2 3 4111 70.00 M 0 2 3 4112 38.00 M 0 2 2 4113 45.00 M 0 2 2 4114 80.00 M 5 2 3 4115 57.00 M 6 2 2 4116 50.00 M 0 2 2 4117 80.00 M 4 2 3 4118 76.00 M 4 2 3 4119 45.00 M 1 2 2 4120 73.00 M 1 2 3 4121 72.00 M 5 2 3 4122 65.00 M 3 2 3 4123 65.00 M 0 2 3 4124 68.00 M 13 2 3 4125 52.00 M 9 2 2 4126 45.00 F 1 2 2 4127 52.00 M 4 2 2 4128 64.00 M 9 2 3 4129 76.00 M 3 2 3 4130 84.00 M 4 2 3 4131 36.00 M 11 2 2 4132 46.00 F 2 2 2 4133 64.00 M 9 2 3 4134 53.00 M 9 2 2 4135 75.00 F 0 2 3 4136 82.00 M 5 2 3 4137 56.00 F 8 2 2 4138 58.00 M 9 2 2 4139 73.00 F 4 2 3 4140 62.00 M 7 2 3 4141 45.00 M 5 2 2 4142 55.00 F 7 2 2 4143 55.00 F 4 2 2 4144 55.00 M 8 2 2 4145 53.00 F 6 2 2 4146 42.00 M 0 2 2 4147 78.00 M 6 2 3 4148 60.00 M 8 2 3 4149 62.00 M 0 2 3 4150 71.00 M 7 2 3 4151 27.00 M 6 2 2 4152 60.00 F 7 2 3 4153 66.00 F 9 2 3 4154 61.00 F 4 2 3 4155 55.00 M 5 2 2 4156 65.00 M 0 2 3 4157 73.00 M 4 2 3 4158 75.00 M 4 2 3 4159 64.00 F 5 2 3 4160 52.00 F 6 2 2 4161 85.00 M 0 2 3 4162 40.00 F 1 2 2 4163 52.00 F 4 2 2 4164 31.00 M 0 2 2 4165 65.00 M 3 2 3 4166 50.00 M 3 2 2 4167 67.00 M 1 2 3 4168 58.00 M 2 2 2 4169 60.00 F 0 2 3 4170 56.00 M 29 2 2 4171 55.00 M 2 2 2 4172 65.00 M 3 2 3 4173 53.00 M 0 2 2 4174 60.00 M 3 2 3 4175 50.00 F 1 2 2 4176 55.00 M 0 2 2 4177 72.00 F 2 2 3 4178 85.00 F 1 2 3 4179 64.00 M 4 2 3 4180 67.00 F 0 2 3 4181 42.00 M 4 2 2 4182 38.00 M 4 2 2 4183 58.00 M 3 2 2 4184 56.00 M 0 2 2 4185 61.00 M 3 2 3 4186 65.00 F 0 2 3 4187 20.00 M 1 2 2 4188 89.00 M 1 2 3 4189 70.00 M 3 2 3 4190 65.00 F 2 2 3 4191 47.00 M 1 2 2 4192 71.00 F 0 2 3 4193 70.00 M 1 2 3 4194 47.00 M 0 2 2 4195 88.00 M 1 2 3 4196 46.00 M 0 2 2 4197 71.00 M 9 2 3 4198 45.00 M 0 2 2 4199 70.00 F 22 2 3 4200 75.00 M 0 2 3 4201 70.00 M 0 2 3 4202 58.00 M 2 2 2 4203 55.00 F 2 2 2 4204 59.00 M 0 2 2 4205 55.00 F 0 2 2 4206 50.00 F 0 2 2 4207 75.00 M 1 2 3 4208 46.00 M 0 2 2 4209 33.00 M 0 2 2 4210 60.00 M 3 2 3 4211 78.00 M 0 2 3 4212 73.00 F 10 2 3 4213 65.00 M 0 2 3 4214 70.00 F 0 2 3 4215 60.00 M 0 2 3 4216 50.00 F 1 2 2 4217 48.00 M 2 2 2 4218 75.00 M 16 2 3 4219 72.00 F 9 2 3 4220 52.00 F 6 2 2 4221 10.00 F 1 2 1 4222 55.00 F 5 2 2 4223 67.00 M 15 2 3 4224 61.00 M 2 2 3 4225 53.00 F 4 2 2 4226 60.00 M 8 2 3 4227 68.00 F 9 2 3 4228 62.00 M 15 2 3 4229 50.00 F 4 2 2 4230 71.00 M 2 2 3 4231 72.00 F 0 2 3 4232 53.00 M 4 2 2 4233 36.00 M 11 2 2 4234 75.00 F 8 2 3 4235 70.00 M 2 2 3 4236 55.00 M 6 2 2 4237 52.00 F 9 2 2 4238 62.00 M 4 2 3 4239 70.00 M 11 2 3 4240 42.00 F 3 2 2 4241 68.00 F 11 2 3 4242 56.00 M 11 2 2 4243 56.00 F 9 2 2 4244 59.00 M 6 2 2 4245 60.00 F 10 2 3 4246 63.00 M 8 2 3 4247 75.00 F 8 2 3 4248 64.00 M 9 2 3 4249 75.00 M 0 2 3 4250 34.00 F 2 2 2 4251 61.00 F 6 2 3 4252 40.00 M 13 2 2 4253 70.00 M 8 2 3 4254 55.00 F 9 2 2 4255 74.00 M 1 2 3 4256 36.00 M 6 2 2 4257 68.00 F 3 2 3 4258 40.00 M 6 2 2 4259 45.00 F 2 2 2 4260 68.00 M 6 2 3 4261 64.00 M 3 2 3 4262 63.00 M 4 2 3 4263 62.00 M 4 2 3 4264 65.00 M 5 2 3 4265 43.00 M 5 2 2 4266 50.00 M 2 2 2 4267 62.00 M 6 2 3 4268 42.00 M 2 2 2 4269 71.00 M 5 2 3 4270 64.00 M 3 2 3 4271 40.00 M 3 2 2 4272 55.00 F 3 2 2 4273 68.00 M 5 2 3 4274 60.00 F 4 2 3 4275 68.00 M 1 2 3 4276 60.00 M 4 2 3 4277 45.00 F 3 2 2 4278 84.00 M 4 2 3 4279 60.00 F 5 2 3 4280 55.00 M 1 2 2 4281 45.00 M 1 2 2 4282 82.00 M 4 2 3 4283 57.00 F 3 2 2 4284 30.00 M 2 2 2 4285 0.00 F 3 2 1 4286 58.00 F 1 2 2 4287 45.00 M 8 2 2 4288 55.00 M 0 2 2 4289 42.00 M 3 2 2 4290 65.00 F 1 2 3 4291 65.00 F 0 2 3 4292 46.00 F 3 2 2 4293 53.00 M 1 2 2 4294 75.00 F 2 2 3 4295 65.00 M 0 2 3 4296 65.00 M 2 2 3 4297 51.00 F 0 2 2 4298 69.00 F 1 2 3 4299 52.00 M 1 2 2 4300 55.00 M 3 2 2 4301 68.00 F 1 2 3 4302 51.00 M 4 2 2 4303 27.00 M 2 2 2 4304 40.00 F 2 2 2 4305 52.00 M 4 2 2 4306 30.00 M 9 2 2 4307 25.00 F 1 2 2 4308 65.00 F 0 2 3 4309 57.00 M 0 2 2 4310 63.00 M 1 2 3 4311 70.00 M 5 2 3 4312 65.00 M 0 2 3 4313 71.00 M 1 2 3 4314 65.00 M 1 2 3 4315 50.00 F 1 2 2 4316 52.00 M 0 2 2 4317 63.00 M 1 2 3 4318 55.00 M 0 2 2 4319 60.00 M 1 2 3 4320 52.00 F 1 2 2 4321 75.00 F 2 2 3 4322 38.00 M 6 2 2 4323 55.00 F 4 2 2 4324 73.00 M 3 2 3 4325 60.00 F 42 2 3 4326 88.00 F 6 2 3 4327 70.00 F 2 2 3 4328 75.00 M 18 2 3 4329 56.00 M 8 2 2 4330 52.00 M 7 2 2 4331 55.00 F 4 2 2 4332 65.00 F 10 2 3 4333 60.00 M 11 2 3 4334 66.00 M 11 2 3 4335 75.00 M 3 2 3 4336 76.00 M 11 2 3 4337 65.00 M 10 2 3 4338 63.00 M 5 2 3 4339 70.00 M 1 2 3 4340 65.00 M 12 2 3 4341 71.00 M 11 2 3 4342 85.00 F 1 2 3 4343 41.00 F 8 2 2 4344 49.00 M 10 2 2 4345 7.00 F 0 2 1 4346 69.00 M 9 2 3 4347 41.00 M 6 2 2 4348 53.00 M 10 2 2 4349 62.00 F 7 2 3 4350 58.00 M 0 2 2 4351 61.00 M 0 2 3 4352 53.00 M 2 2 2 4353 65.00 F 0 2 3 4354 68.00 F 3 2 3 4355 92.00 M 0 2 3 4356 60.00 M 6 2 3 4357 75.00 F 5 2 3 4358 78.00 M 6 2 3 4359 58.00 M 9 2 2 4360 76.00 F 9 2 3 4361 77.00 M 4 2 3 4362 78.00 M 4 2 3 4363 52.00 M 4 2 2 4364 60.00 M 1 2 3 4365 60.00 F 4 2 3 4366 57.00 M 7 2 2 4367 55.00 F 2 2 2 4368 64.00 M 6 2 3 4369 65.00 M 4 2 3 4370 72.00 M 6 2 3 4371 60.00 M 4 2 3 4372 50.00 M 2 2 2 4373 65.00 F 6 2 3 4374 60.00 M 5 2 3 4375 68.00 F 4 2 3 4376 60.00 F 1 2 3 4377 62.00 M 3 2 3 4378 50.00 M 0 2 2 4379 65.00 F 3 2 3 4380 73.00 M 1 2 3 4381 48.00 F 6 2 2 4382 59.00 M 2 2 2 4383 65.00 F 1 2 3 4384 68.00 M 0 2 3 4385 53.00 M 0 2 2 4386 77.00 M 0 2 3 4387 35.00 M 3 2 2 4388 68.00 M 4 2 3 4389 59.00 F 0 2 2 4390 38.00 M 0 2 2 4391 60.00 F 7 2 3 4392 82.00 M 3 2 3 4393 95.00 M 10 2 3 4394 60.00 M 0 2 3 4395 92.00 F 0 2 3 4396 70.00 M 0 2 3 4397 76.00 M 1 2 3 4398 29.00 M 1 2 2 4399 20.00 M 0 2 2 4400 85.00 M 0 2 3 4401 55.00 M 0 2 2 4402 75.00 F 0 2 3 4403 75.00 M 0 2 3 4404 48.00 M 6 2 2 4405 74.00 F 1 2 3 4406 61.00 M 6 2 3 4407 35.00 M 1 2 2 4408 60.00 F 1 2 3 4409 64.00 M 7 2 3 4410 30.00 M 0 2 2 4411 74.00 F 0 2 3 4412 58.00 F 0 2 2 4413 62.00 M 0 2 3 4414 86.00 M 1 2 3 4415 58.00 M 7 2 2 4416 80.00 M 1 2 3 4417 66.00 M 12 2 3 4418 80.00 M 3 2 3 4419 91.00 F 14 2 3 4420 57.00 M 13 2 2 4421 68.00 F 1 2 3 4422 75.00 M 12 2 3 4423 72.00 M 7 2 3 4424 76.00 M 6 2 3 4425 70.00 M 12 2 3 4426 70.00 M 11 2 3 4427 75.00 M 10 2 3 4428 56.00 F 9 2 2 4429 68.00 M 10 2 3 4430 70.00 M 8 2 3 4431 59.00 M 9 2 2 4432 52.00 M 6 2 2 4433 54.00 F 0 2 2 4434 75.00 M 7 2 3 4435 63.00 M 10 2 3 4436 60.00 M 1 2 3 4437 45.00 M 8 2 2 4438 75.00 M 5 2 3 4439 69.00 M 6 2 3 4440 70.00 M 9 2 3 4441 77.00 F 7 2 3 4442 62.00 M 6 2 3 4443 65.00 M 4 2 3 4444 64.00 M 2 2 3 4445 58.00 M 8 2 2 4446 56.00 M 4 2 2 4447 70.00 M 9 2 3 4448 49.00 M 3 2 2 4449 33.00 M 6 2 2 4450 84.00 M 5 2 3 4451 82.00 M 6 2 3 4452 43.00 M 5 2 2 4453 66.00 F 4 2 3 4454 60.00 M 5 2 3 4455 67.00 M 2 2 3 4456 82.00 M 2 2 3 4457 40.00 F 3 2 2 4458 70.00 F 3 2 3 4459 78.00 F 4 2 3 4460 60.00 F 2 2 3 4461 41.00 M 0 2 2 4462 78.00 M 3 2 3 4463 67.00 M 1 2 3 4464 42.00 M 0 2 2 4465 58.00 F 1 2 2 4466 60.00 M 0 2 3 4467 75.00 F 0 2 3 4468 55.00 F 0 2 2 4469 85.00 M 3 2 3 4470 64.00 F 4 2 3 4471 56.00 M 1 2 2 4472 38.00 M 2 2 2 4473 68.00 F 3 2 3 4474 65.00 M 0 2 3 4475 78.00 F 2 2 3 4476 74.00 F 1 2 3 4477 78.00 M 1 2 3 4478 67.00 M 1 2 3 4479 50.00 M 1 2 2 4480 84.00 F 1 2 3 4481 57.00 M 5 2 2 4482 45.00 M 0 2 2 4483 69.00 M 0 2 3 4484 55.00 F 2 2 2 4485 83.00 M 0 2 3 4486 48.00 M 1 2 2 4487 44.00 M 0 2 2 4488 63.00 M 0 2 3 4489 48.00 M 2 2 2 4490 80.00 M 0 2 3 4491 58.00 M 1 2 2 4492 72.00 M 18 2 3 4493 52.00 M 1 2 2 4494 47.00 M 2 2 2 4495 85.00 M 3 2 3 4496 65.00 M 4 2 3 4497 45.00 M 1 2 2 4498 49.00 F 2 2 2 4499 45.00 F 2 2 2 4500 43.00 M 1 2 2 4501 40.00 M 0 2 2 4502 65.00 M 0 2 3 4503 65.00 M 1 2 3 4504 63.00 F 3 2 3 4505 55.00 M 1 2 2 4506 65.00 F 2 2 3 4507 60.00 M 16 2 3 4508 54.00 M 2 2 2 4509 28.00 F 15 2 2 4510 68.00 F 5 2 3 4511 45.00 M 3 2 2 4512 55.00 M 0 2 2 4513 50.00 M 10 2 2 4514 55.00 M 10 2 2 4515 76.00 F 9 2 3 4516 60.00 M 2 2 3 4517 96.00 M 10 2 3 4518 72.00 M 1 2 3 4519 49.00 M 5 2 2 4520 56.00 M 13 2 2 4521 65.00 F 7 2 3 4522 70.00 F 8 2 3 4523 61.00 M 4 2 3 4524 35.00 M 10 2 2 4525 70.00 M 9 2 3 4526 65.00 F 3 2 3 4527 80.00 M 9 2 3 4528 32.00 M 10 2 2 4529 70.00 M 4 2 3 4530 76.00 M 4 2 3 4531 42.00 M 1 2 2 4532 55.00 F 4 2 2 4533 55.00 F 2 2 2 4534 55.00 M 1 2 2 4535 61.00 F 3 2 3 4536 48.00 M 1 2 2 4537 64.00 M 5 2 3 4538 74.00 M 5 2 3 4539 60.00 M 4 2 3 4540 80.00 F 2 2 3 4541 65.00 F 0 2 3 4542 60.00 M 6 2 3 4543 50.00 F 3 2 2 4544 54.00 M 1 2 2 4545 80.00 M 5 2 3 4546 55.00 M 4 2 2 4547 60.00 F 3 2 3 4548 66.00 M 3 2 3 4549 44.00 M 1 2 2 4550 86.00 F 1 2 3 4551 45.00 M 0 2 2 4552 73.00 M 1 2 3 4553 60.00 M 1 2 3 4554 38.00 F 0 2 2 4555 51.00 F 0 2 2 4556 52.00 F 17 2 2 4557 72.00 M 2 2 3 4558 70.00 M 1 2 3 4559 55.00 M 0 2 2 4560 60.00 F 0 2 3 4561 65.00 F 0 2 3 4562 60.00 M 0 2 3 4563 45.00 F 5 2 2 4564 74.00 M 0 2 3 4565 75.00 M 2 2 3 4566 63.00 M 0 2 3 4567 70.00 M 0 2 3 4568 58.00 M 1 2 2 4569 39.00 M 0 2 2 4570 60.00 M 1 2 3 4571 60.00 M 1 2 3 4572 89.00 F 1 2 3 4573 58.00 M 1 2 2 4574 77.00 F 3 2 3 4575 35.00 M 11 2 2 4576 65.00 M 0 2 3 4577 74.00 M 13 2 3 4578 56.00 M 11 2 2 4579 80.00 M 1 2 3 4580 51.00 M 2 2 2 4581 82.00 M 16 2 3 4582 76.00 F 1 2 3 4583 82.00 M 13 2 3 4584 31.00 M 11 2 2 4585 60.00 F 9 2 3 4586 78.00 F 10 2 3 4587 55.00 M 6 2 2 4588 76.00 M 8 2 3 4589 75.00 M 5 2 3 4590 60.00 M 0 2 3 4591 65.00 M 2 2 3 4592 45.00 M 10 2 2 4593 57.00 M 10 2 2 4594 74.00 M 6 2 3 4595 72.00 F 10 2 3 4596 40.00 M 10 2 2 4597 48.00 F 5 2 2 4598 60.00 M 4 2 3 4599 40.00 M 7 2 2 4600 65.00 F 10 2 3 4601 59.00 M 3 2 2 4602 32.00 M 1 2 2 4603 25.00 M 0 2 2 4604 70.00 M 7 2 3 4605 71.00 F 3 2 3 4606 57.00 M 1 2 2 4607 60.00 F 5 2 3 4608 65.00 M 19 2 3 4609 60.00 F 13 2 3 4610 92.00 F 8 2 3 4611 68.00 F 7 2 3 4612 50.00 M 7 2 2 4613 56.00 M 1 2 2 4614 47.00 M 5 2 2 4615 71.00 F 9 2 3 4616 54.00 F 8 2 2 4617 45.00 M 1 2 2 4618 38.00 M 9 2 2 4619 66.00 M 2 2 3 4620 72.00 M 6 2 3 4621 72.00 F 0 2 3 4622 65.00 F 3 2 3 4623 69.00 M 7 2 3 4624 68.00 M 4 2 3 4625 55.00 M 1 2 2 4626 78.00 M 6 2 3 4627 60.00 M 3 2 3 4628 61.00 F 6 2 3 4629 40.00 M 3 2 2 4630 67.00 M 0 2 3 4631 60.00 M 1 2 3 4632 40.00 F 7 2 2 4633 73.00 M 6 2 3 4634 88.00 F 5 2 3 4635 40.00 F 9 2 2 4636 35.00 F 4 2 2 4637 55.00 F 1 2 2 4638 75.00 F 1 2 3 4639 62.00 F 5 2 3 4640 65.00 F 7 2 3 4641 65.00 M 4 2 3 4642 73.00 M 2 2 3 4643 55.00 M 1 2 2 4644 57.00 M 7 2 2 4645 75.00 M 6 2 3 4646 58.00 M 7 2 2 4647 70.00 M 2 2 3 4648 46.00 M 2 2 2 4649 57.00 F 9 2 2 4650 49.00 F 8 2 2 4651 55.00 M 6 2 2 4652 51.00 F 4 2 2 4653 37.00 M 3 2 2 4654 46.00 M 0 2 2 4655 39.00 M 3 2 2 4656 55.00 M 1 2 2 4657 65.00 F 4 2 3 4658 40.00 F 0 2 2 4659 53.00 F 1 2 2 4660 38.00 F 1 2 2 4661 50.00 F 1 2 2 4662 85.00 M 1 2 3 4663 55.00 M 0 2 2 4664 60.00 F 1 2 3 4665 57.00 M 2 2 2 4666 50.00 F 2 2 2 4667 55.00 M 0 2 2 4668 58.00 F 3 2 2 4669 57.00 M 5 2 2 4670 58.00 F 0 2 2 4671 61.00 M 8 2 3 4672 63.00 F 2 2 3 4673 85.00 F 2 2 3 4674 77.00 F 2 2 3 4675 61.00 F 2 2 3 4676 55.00 M 0 2 2 4677 65.00 M 2 2 3 4678 42.00 M 3 2 2 4679 75.00 F 2 2 3 4680 60.00 F 3 2 3 4681 64.00 F 5 2 3 4682 65.00 M 0 2 3 4683 58.00 F 4 2 2 4684 65.00 M 0 2 3 4685 44.00 M 0 2 2 4686 85.00 M 0 2 3 4687 55.00 F 4 2 2 4688 26.00 M 1 2 2 4689 50.00 M 0 2 2 4690 54.00 M 0 2 2 4691 45.00 M 1 2 2 4692 62.00 M 0 2 3 4693 85.00 M 0 2 3 4694 85.00 F 0 2 3 4695 72.00 F 1 2 3 4696 72.00 M 1 2 3 4697 40.00 F 0 2 2 4698 70.00 F 0 2 3 4699 64.00 M 0 2 3 4700 60.00 F 0 2 3 4701 70.00 M 0 2 3 4702 75.00 M 1 2 3 4703 73.00 M 0 2 3 4704 54.00 M 14 2 2 4705 55.00 M 17 2 2 4706 69.00 F 4 2 3 4707 34.00 M 23 2 2 4708 38.00 F 19 2 2 4709 58.00 M 9 2 2 4710 61.00 M 17 2 3 4711 64.00 M 6 2 3 4712 63.00 F 2 2 3 4713 50.00 M 8 2 2 4714 64.00 M 13 2 3 4715 54.00 F 32 2 2 4716 86.00 M 7 2 3 4717 64.00 F 3 2 3 4718 71.00 M 1 2 3 4719 60.00 M 12 2 3 4720 70.00 M 1 2 3 4721 45.00 F 13 2 2 4722 35.00 M 13 2 2 4723 70.00 M 20 2 3 4724 72.00 M 1 2 3 4725 64.00 M 3 2 3 4726 53.00 M 0 2 2 4727 57.00 F 1 2 2 4728 58.00 M 1 2 2 4729 62.00 M 1 2 3 4730 71.00 M 5 2 3 4731 57.00 M 11 2 2 4732 50.00 F 8 2 2 4733 72.00 M 6 2 3 4734 65.00 M 6 2 3 4735 55.00 M 13 2 2 4736 50.00 M 10 2 2 4737 57.00 M 5 2 2 4738 54.00 F 7 2 2 4739 80.00 M 7 2 3 4740 40.00 M 5 2 2 4741 79.00 M 4 2 3 4742 56.00 M 0 2 2 4743 49.00 F 3 2 2 4744 46.00 M 0 2 2 4745 62.00 M 7 2 3 4746 58.00 F 7 2 2 4747 53.00 M 0 2 2 4748 45.00 M 7 2 2 4749 69.00 M 32 2 3 4750 65.00 F 8 2 3 4751 52.00 M 9 2 2 4752 67.00 M 10 2 3 4753 46.00 F 0 2 2 4754 76.00 F 2 2 3 4755 50.00 F 8 2 2 4756 60.00 F 1 2 3 4757 80.00 M 1 2 3 4758 45.00 M 0 2 2 4759 78.00 M 1 2 3 4760 72.00 M 0 2 3 4761 82.00 F 0 2 3 4762 45.00 M 0 2 2 4763 62.00 M 0 2 3 4764 55.00 F 4 2 2 4765 60.00 F 0 2 3 4766 73.00 M 10 2 3 4767 48.00 F 13 2 2 4768 42.00 M 8 2 2 4769 65.00 M 3 2 3 4770 49.00 M 0 2 2 4771 73.00 F 1 2 3 4772 78.00 M 7 2 3 4773 83.00 F 1 2 3 4774 47.00 M 0 2 2 4775 74.00 M 4 2 3 4776 42.00 M 3 2 2 4777 58.00 M 10 2 2 4778 75.00 F 0 2 3 4779 43.00 F 3 2 2 4780 61.00 M 1 2 3 4781 35.00 M 0 2 2 4782 94.00 M 5 2 3 4783 62.00 M 3 2 3 4784 50.00 M 6 2 2 4785 68.00 M 6 2 3 4786 48.00 M 8 2 2 4787 53.00 M 4 2 2 4788 60.00 F 8 2 3 4789 50.00 M 6 2 2 4790 56.00 M 2 2 2 4791 72.00 M 5 2 3 4792 60.00 F 5 2 3 4793 52.00 M 4 2 2 4794 58.00 F 6 2 2 4795 73.00 F 3 2 3 4796 53.00 F 2 2 2 4797 65.00 M 4 2 3 4798 92.00 M 1 2 3 4799 59.00 M 0 2 2 4800 61.00 M 6 2 3 4801 63.00 M 5 2 3 4802 50.00 M 6 2 2 4803 63.00 M 0 2 3 4804 84.00 M 3 2 3 4805 75.00 F 5 2 3 4806 65.00 M 3 2 3 4807 52.00 M 5 2 2 4808 42.00 M 3 2 2 4809 48.00 M 2 2 2 4810 70.00 M 5 2 3 4811 61.00 F 1 2 3 4812 56.00 M 1 2 2 4813 75.00 F 2 2 3 4814 65.00 M 1 2 3 4815 30.00 F 1 2 2 4816 78.00 M 3 2 3 4817 78.00 F 9 2 3 4818 69.00 M 1 2 3 4819 30.00 F 3 2 2 4820 62.00 F 2 2 3 4821 52.00 M 2 2 2 4822 55.00 F 6 2 2 4823 73.00 M 6 2 3 4824 95.00 M 1 2 3 4825 72.00 M 3 2 3 4826 74.00 M 0 2 3 4827 75.00 M 1 2 3 4828 55.00 M 1 2 2 4829 76.00 M 0 2 3 4830 44.00 F 0 2 2 4831 64.00 M 2 2 3 4832 58.00 M 0 2 2 4833 50.00 M 0 2 2 4834 59.00 F 1 2 2 4835 45.00 F 0 2 2 4836 60.00 F 0 2 3 4837 67.00 M 0 2 3 4838 70.00 M 1 2 3 4839 67.00 M 3 2 3 4840 80.00 M 3 2 3 4841 66.00 M 2 2 3 4842 87.00 M 1 2 3 4843 50.00 M 1 2 2 4844 64.00 M 0 2 3 4845 61.00 M 0 2 3 4846 58.00 M 0 2 2 4847 80.00 F 0 2 3 4848 56.00 M 1 2 2 4849 38.00 M 2 2 2 4850 96.00 F 0 2 3 4851 52.00 M 0 2 2 4852 60.00 M 4 2 3 4853 56.00 M 8 2 2 4854 55.00 F 0 2 2 4855 75.00 F 11 2 3 4856 45.00 F 9 2 2 4857 81.00 M 8 2 3 4858 55.00 M 20 2 2 4859 56.00 M 7 2 2 4860 56.00 F 6 2 2 4861 33.00 M 16 2 2 4862 60.00 M 12 2 3 4863 92.00 F 14 2 3 4864 66.00 M 3 2 3 4865 58.00 F 11 2 2 4866 44.00 M 12 2 2 4867 78.00 M 11 2 3 4868 65.00 F 4 2 3 4869 32.00 M 14 2 2 4870 65.00 M 6 2 3 4871 70.00 F 3 2 3 4872 73.00 M 6 2 3 4873 60.00 F 6 2 3 4874 37.00 M 8 2 2 4875 56.00 M 12 2 2 4876 53.00 F 4 2 2 4877 88.00 M 13 2 3 4878 55.00 M 10 2 2 4879 41.00 F 0 2 2 4880 70.00 M 9 2 3 4881 31.00 M 5 2 2 4882 60.00 M 6 2 3 4883 46.00 M 11 2 2 4884 65.00 M 7 2 3 4885 60.00 F 11 2 3 4886 51.00 F 2 2 2 4887 79.00 M 10 2 3 4888 62.00 M 4 2 3 4889 72.00 M 12 2 3 4890 70.00 M 9 2 3 4891 67.00 F 4 2 3 4892 42.00 M 4 2 2 4893 65.00 F 3 2 3 4894 40.00 M 7 2 2 4895 81.00 F 7 2 3 4896 69.00 F 10 2 3 4897 50.00 F 7 2 2 4898 84.00 M 6 2 3 4899 65.00 M 6 2 3 4900 66.00 M 6 2 3 4901 31.00 M 7 2 2 4902 46.00 M 8 2 2 4903 60.00 M 5 2 3 4904 63.00 F 2 2 3 4905 58.00 F 5 2 2 4906 70.00 F 1 2 3 4907 50.00 F 0 2 2 4908 49.00 M 8 2 2 4909 62.00 M 0 2 3 4910 36.00 M 0 2 2 4911 78.00 F 7 2 3 4912 66.00 M 5 2 3 4913 67.00 M 3 2 3 4914 63.00 M 7 2 3 4915 75.00 M 6 2 3 4916 58.00 M 2 2 2 4917 76.00 M 4 2 3 4918 70.00 F 1 2 3 4919 72.00 M 3 2 3 4920 73.00 M 7 2 3 4921 61.00 M 5 2 3 4922 57.00 M 4 2 2 4923 64.00 M 1 2 3 4924 64.00 F 1 2 3 4925 58.00 M 6 2 2 4926 65.00 M 0 2 3 4927 60.00 M 0 2 3 4928 58.00 M 4 2 2 4929 70.00 M 5 2 3 4930 88.00 F 1 2 3 4931 67.00 M 12 2 3 4932 60.00 M 0 2 3 4933 78.00 F 1 2 3 4934 75.00 F 1 2 3 4935 65.00 M 2 2 3 4936 24.00 M 5 2 2 4937 67.00 M 1 2 3 4938 65.00 F 0 2 3 4939 55.00 M 0 2 2 4940 40.00 M 0 2 2 4941 65.00 M 1 2 3 4942 55.00 M 3 2 2 4943 58.00 M 3 2 2 4944 62.00 M 1 2 3 4945 49.00 M 0 2 2 4946 71.00 M 1 2 3 4947 70.00 M 0 2 3 4948 57.00 M 0 2 2 4949 65.00 F 2 2 3 4950 55.00 M 1 2 2 4951 85.00 M 1 2 3 4952 60.00 M 4 2 3 4953 60.00 F 2 2 3 4954 60.00 M 7 2 3 4955 58.00 M 1 2 2 4956 57.00 M 0 2 2 4957 65.00 M 6 2 3 4958 75.00 F 2 2 3 4959 55.00 M 1 2 2 4960 65.00 F 3 2 3 4961 65.00 F 0 2 3 4962 50.00 M 0 2 2 4963 75.00 F 1 2 3 4964 45.00 F 1 2 2 4965 56.00 M 0 2 2 4966 46.00 M 1 2 2 4967 65.00 F 3 2 3 4968 54.00 M 5 2 2 4969 32.00 F 1 2 2 4970 60.00 F 1 2 3 4971 68.00 M 6 2 3 4972 70.00 M 1 2 3 4973 35.00 F 0 2 2 4974 68.00 M 2 2 3 4975 62.00 F 0 2 3 4976 75.00 M 1 2 3 4977 40.00 M 0 2 2 4978 73.00 M 0 2 3 4979 60.00 F 0 2 3 4980 52.00 F 0 2 2 4981 55.00 F 0 2 2 4982 36.00 M 0 2 2 4983 30.00 M 2 2 2 4984 70.00 M 1 2 3 4985 59.00 M 8 2 2 4986 77.00 M 0 2 3 4987 69.00 M 5 2 3 4988 60.00 M 14 2 3 4989 53.00 F 2 2 2 4990 54.00 F 24 2 2 4991 82.00 M 5 2 3 4992 44.00 M 7 2 2 4993 55.00 F 6 2 2 4994 54.00 F 4 2 2 4995 45.00 F 3 2 2 4996 75.00 M 8 2 3 4997 45.00 F 8 2 2 4998 76.00 F 3 2 3 4999 66.00 M 14 2 3 5000 75.00 M 3 2 3 5001 48.00 M 14 2 2 5002 54.00 M 10 2 2 5003 63.00 F 0 2 3 5004 55.00 F 6 2 2 5005 69.00 F 5 2 3 5006 85.00 M 15 2 3 5007 64.00 M 8 2 3 5008 63.00 M 0 2 3 5009 40.00 M 20 2 2 5010 57.00 M 23 2 2 5011 26.00 F 0 2 2 5012 57.00 M 8 2 2 5013 54.00 M 3 2 2 5014 73.00 F 12 2 3 5015 60.00 M 3 2 3 5016 68.00 M 4 2 3 5017 55.00 M 7 2 2 5018 34.00 M 8 2 2 5019 48.00 M 0 2 2 5020 70.00 M 5 2 3 5021 58.00 M 0 2 2 5022 66.00 F 5 2 3 5023 70.00 M 2 2 3 5024 34.00 M 17 2 2 5025 74.00 F 17 2 3 5026 67.00 M 16 2 3 5027 76.00 M 0 2 3 5028 67.00 F 13 2 3 5029 68.00 M 12 2 3 5030 56.00 M 19 2 2 5031 75.00 F 15 2 3 5032 90.00 M 14 2 3 5033 51.00 M 12 2 2 5034 33.00 F 1 2 2 5035 72.00 M 11 2 3 5036 58.00 M 12 2 2 5037 55.00 M 10 2 2 5038 75.00 F 2 2 3 5039 61.00 M 12 2 3 5040 55.00 F 1 2 2 5041 20.00 F 0 2 2 5042 56.00 F 2 2 2 5043 72.00 M 11 2 3 5044 63.00 M 4 2 3 5045 55.00 F 6 2 2 5046 78.00 M 12 2 3 5047 65.00 M 1 2 3 5048 60.00 M 11 2 3 5049 58.00 F 4 2 2 5050 70.00 M 3 2 3 5051 65.00 M 8 2 3 5052 67.00 F 9 2 3 5053 65.00 M 1 2 3 5054 86.00 M 10 2 3 5055 40.00 M 0 2 2 5056 43.00 M 0 2 2 5057 70.00 M 3 2 3 5058 65.00 F 0 2 3 5059 85.00 F 7 2 3 5060 70.00 M 1 2 3 5061 52.00 F 5 2 2 5062 80.00 F 2 2 3 5063 39.00 M 1 2 2 5064 37.00 M 5 2 2 5065 67.00 M 1 2 3 5066 70.00 M 1 2 3 5067 57.00 F 5 2 2 5068 80.00 F 6 2 3 5069 74.00 F 7 2 3 5070 24.00 M 4 2 2 5071 50.00 F 7 2 2 5072 57.00 M 6 2 2 5073 46.00 M 3 2 2 5074 68.00 M 3 2 3 5075 68.00 M 1 2 3 5076 32.00 M 8 2 2 5077 75.00 M 3 2 3 5078 28.00 F 4 2 2 5079 44.00 M 3 2 2 5080 57.00 M 0 2 2 5081 53.00 F 5 2 2 5082 55.00 F 5 2 2 5083 67.00 M 0 2 3 5084 71.00 M 3 2 3 5085 50.00 M 4 2 2 5086 60.00 M 0 2 3 5087 76.00 M 0 2 3 5088 70.00 F 0 2 3 5089 64.00 F 1 2 3 5090 74.00 F 4 2 3 5091 55.00 M 2 2 2 5092 47.00 M 1 2 2 5093 72.00 M 1 2 3 5094 63.00 M 1 2 3 5095 50.00 M 5 2 2 5096 55.00 F 3 2 2 5097 57.00 M 1 2 2 5098 50.00 M 0 2 2 5099 64.00 M 0 2 3 5100 61.00 M 5 2 3 5101 60.00 M 3 2 3 5102 50.00 M 2 2 2 5103 58.00 F 0 2 2 5104 73.00 F 2 2 3 5105 73.00 M 1 2 3 5106 80.00 F 2 2 3 5107 75.00 F 0 2 3 5108 60.00 F 1 2 3 5109 58.00 M 0 2 2 5110 52.00 M 1 2 2 5111 32.00 M 10 2 2 5112 39.00 F 0 2 2 5113 60.00 M 0 2 3 5114 73.00 F 0 2 3 5115 68.00 M 0 2 3 5116 72.00 M 1 2 3 5117 74.00 F 1 2 3 5118 70.00 F 0 2 3 5119 62.00 M 0 2 3 5120 56.00 M 1 2 2 5121 99.00 M 1 2 3 5122 70.00 F 0 2 3 5123 70.00 M 1 2 3 5124 82.00 M 0 2 3 5125 70.00 F 0 2 3 5126 66.00 M 0 2 3 5127 49.00 M 5 2 2 5128 49.00 M 8 2 2 5129 68.00 F 1 2 3 5130 41.00 M 0 2 2 5131 50.00 M 3 2 2 5132 70.00 M 17 2 3 5133 42.00 F 4 2 2 5134 54.00 F 16 2 2 5135 85.00 M 14 2 3 5136 85.00 M 17 2 3 5137 44.00 M 16 2 2 5138 63.00 F 15 2 3 5139 61.00 M 2 2 3 5140 72.00 M 6 2 3 5141 46.00 F 15 2 2 5142 68.00 M 11 2 3 5143 65.00 F 14 2 3 5144 65.00 M 3 2 3 5145 66.00 M 15 2 3 5146 88.00 F 7 2 3 5147 50.00 F 9 2 2 5148 40.00 M 10 2 2 5149 45.00 F 11 2 2 5150 55.00 M 5 2 2 5151 53.00 F 0 2 2 5152 81.00 M 0 2 3 5153 63.00 M 9 2 3 5154 53.00 M 5 2 2 5155 65.00 M 1 2 3 5156 66.00 M 10 2 3 5157 35.00 M 10 2 2 5158 55.00 M 8 2 2 5159 70.00 F 6 2 3 5160 74.00 M 6 2 3 5161 70.00 M 10 2 3 5162 50.00 F 9 2 2 5163 55.00 M 9 2 2 5164 69.00 M 9 2 3 5165 74.00 M 7 2 3 5166 73.00 M 11 2 3 5167 60.00 F 10 2 3 5168 62.00 M 4 2 3 5169 73.00 M 7 2 3 5170 75.00 M 2 2 3 5171 53.00 M 7 2 2 5172 54.00 M 2 2 2 5173 67.00 M 8 2 3 5174 35.00 M 6 2 2 5175 61.00 M 12 2 3 5176 77.00 M 0 2 3 5177 47.00 M 3 2 2 5178 67.00 M 8 2 3 5179 62.00 M 8 2 3 5180 61.00 M 7 2 3 5181 70.00 M 6 2 3 5182 53.00 M 8 2 2 5183 61.00 M 6 2 3 5184 65.00 M 2 2 3 5185 59.00 M 1 2 2 5186 66.00 M 5 2 3 5187 89.00 F 5 2 3 5188 80.00 F 5 2 3 5189 49.00 F 6 2 2 5190 73.00 M 8 2 3 5191 55.00 M 3 2 2 5192 75.00 M 6 2 3 5193 46.00 M 7 2 2 5194 60.00 F 8 2 3 5195 67.00 M 6 2 3 5196 90.00 M 0 2 3 5197 40.00 F 9 2 2 5198 83.00 F 5 2 3 5199 44.00 M 6 2 2 5200 60.00 F 7 2 3 5201 66.00 F 1 2 3 5202 57.00 M 7 2 2 5203 59.00 M 4 2 2 5204 60.00 M 1 2 3 5205 85.00 M 7 2 3 5206 70.00 M 5 2 3 5207 36.00 M 6 2 2 5208 37.00 M 1 2 2 5209 74.00 F 4 2 3 5210 79.00 F 6 2 3 5211 68.00 M 4 2 3 5212 55.00 F 1 2 2 5213 78.00 M 1 2 3 5214 62.00 F 15 2 3 5215 86.00 M 0 2 3 5216 43.00 M 10 2 2 5217 58.00 M 1 2 2 5218 62.00 M 0 2 3 5219 64.00 F 0 2 3 5220 74.00 M 0 2 3 5221 62.00 M 3 2 3 5222 31.00 M 6 2 2 5223 59.00 M 5 2 2 5224 76.00 M 0 2 3 5225 65.00 M 1 2 3 5226 48.00 F 4 2 2 5227 45.00 F 4 2 2 5228 68.00 F 3 2 3 5229 65.00 M 2 2 3 5230 45.00 F 3 2 2 5231 70.00 M 1 2 3 5232 44.00 M 1 2 2 5233 56.00 M 2 2 2 5234 65.00 M 5 2 3 5235 65.00 M 3 2 3 5236 68.00 F 2 2 3 5237 55.00 M 2 2 2 5238 70.00 M 1 2 3 5239 68.00 M 0 2 3 5240 58.00 F 1 2 2 5241 48.00 M 1 2 2 5242 68.00 F 2 2 3 5243 36.00 M 3 2 2 5244 66.00 M 13 2 3 5245 58.00 F 1 2 2 5246 63.00 M 1 2 3 5247 75.00 M 0 2 3 5248 59.00 F 1 2 2 5249 65.00 F 1 2 3 5250 55.00 M 2 2 2 5251 45.00 F 2 2 2 5252 75.00 M 1 2 3 5253 58.00 M 1 2 2 5254 63.00 F 3 2 3 5255 73.00 F 2 2 3 5256 80.00 F 0 2 3 5257 63.00 M 0 2 3 5258 63.00 F 3 2 3 5259 44.00 M 0 2 2 5260 63.00 M 1 2 3 5261 58.00 M 1 2 2 5262 54.00 M 2 2 2 5263 70.00 F 0 2 3 5264 60.00 M 27 2 3 5265 57.00 M 4 2 2 5266 63.00 M 23 2 3 5267 78.00 M 18 2 3 5268 58.00 M 16 2 2 5269 70.00 M 15 2 3 5270 55.00 F 15 2 2 5271 56.00 M 4 2 2 5272 80.00 M 5 2 3 5273 55.00 M 15 2 2 5274 60.00 M 9 2 3 5275 44.00 M 14 2 2 5276 55.00 M 10 2 2 5277 78.00 M 11 2 3 5278 47.00 M 15 2 2 5279 70.00 M 0 2 3 5280 63.00 M 9 2 3 5281 72.00 F 2 2 3 5282 65.00 M 2 2 3 5283 65.00 M 11 2 3 5284 74.00 F 1 2 3 5285 63.00 M 13 2 3 5286 50.00 M 8 2 2 5287 52.00 M 8 2 2 5288 84.00 M 8 2 3 5289 59.00 M 3 2 2 5290 78.00 F 7 2 3 5291 64.00 F 8 2 3 5292 68.00 F 11 2 3 5293 68.00 F 6 2 3 5294 60.00 F 7 2 3 5295 65.00 M 9 2 3 5296 47.00 M 8 2 2 5297 60.00 F 6 2 3 5298 42.00 F 10 2 2 5299 64.00 F 7 2 3 5300 47.00 F 3 2 2 5301 72.00 M 9 2 3 5302 70.00 M 6 2 3 5303 68.00 M 11 2 3 5304 64.00 F 7 2 3 5305 59.00 M 3 2 2 5306 72.00 M 5 2 3 5307 75.00 M 2 2 3 5308 59.00 F 1 2 2 5309 50.00 M 10 2 2 5310 51.00 M 5 2 2 5311 65.00 M 12 2 3 5312 81.00 M 3 2 3 5313 50.00 F 1 2 2 5314 70.00 M 4 2 3 5315 70.00 M 5 2 3 5316 36.00 M 6 2 2 5317 66.00 M 4 2 3 5318 62.00 M 7 2 3 5319 63.00 M 0 2 3 5320 74.00 M 5 2 3 5321 65.00 M 1 2 3 5322 67.00 M 1 2 3 5323 57.00 M 0 2 2 5324 65.00 M 8 2 3 5325 70.00 M 4 2 3 5326 70.00 M 2 2 3 5327 50.00 F 1 2 2 5328 75.00 M 3 2 3 5329 75.00 F 0 2 3 5330 76.00 M 5 2 3 5331 75.00 M 2 2 3 5332 39.00 F 3 2 2 5333 64.00 M 23 2 3 5334 71.00 M 0 2 3 5335 44.00 F 4 2 2 5336 80.00 M 1 2 3 5337 70.00 M 1 2 3 5338 45.00 M 0 2 2 5339 53.00 M 3 2 2 5340 60.00 M 0 2 3 5341 72.00 F 4 2 3 5342 61.00 M 3 2 3 5343 75.00 F 0 2 3 5344 76.00 M 1 2 3 5345 62.00 F 1 2 3 5346 69.00 M 1 2 3 5347 37.00 M 1 2 2 5348 47.00 M 0 2 2 5349 80.00 M 0 2 3 5350 32.00 M 1 2 2 5351 80.00 M 5 2 3 5352 42.00 M 1 2 2 5353 63.00 M 2 2 3 5354 55.00 M 0 2 2 5355 70.00 M 1 2 3 5356 56.00 M 0 2 2 5357 70.00 M 0 2 3 5358 69.00 M 0 2 3 5359 78.00 F 2 2 3 5360 74.00 F 2 2 3 5361 80.00 M 0 2 3 5362 39.00 M 1 2 2 5363 60.00 F 13 2 3 5364 70.00 F 2 2 3 5365 70.00 M 2 2 3 5366 48.00 F 2 2 2 5367 50.00 M 9 2 2 5368 14.00 M 0 2 1 5369 17.00 F 0 2 1 5370 70.00 M 1 2 3 5371 44.00 F 1 2 2 5372 66.00 M 0 2 3 5373 34.00 M 0 2 2 5374 72.00 M 1 2 3 5375 50.00 M 0 2 2 5376 60.00 M 0 2 3 5377 70.00 F 1 2 3 5378 60.00 M 15 2 3 5379 43.00 M 10 2 2 5380 60.00 F 17 2 3 5381 68.00 M 20 2 3 5382 65.00 M 11 2 3 5383 59.00 M 8 2 2 5384 85.00 M 3 2 3 5385 56.00 M 22 2 2 5386 54.00 F 17 2 2 5387 58.00 F 6 2 2 5388 50.00 M 2 2 2 5389 60.00 M 13 2 3 5390 68.00 M 13 2 3 5391 60.00 F 2 2 3 5392 69.00 F 0 2 3 5393 50.00 M 15 2 2 5394 50.00 M 0 2 2 5395 84.00 M 18 2 3 5396 54.00 M 3 2 2 5397 73.00 M 3 2 3 5398 60.00 M 12 2 3 5399 94.00 F 17 2 3 5400 63.00 F 19 2 3 5401 65.00 F 12 2 3 5402 75.00 F 1 2 3 5403 60.00 M 14 2 3 5404 58.00 F 1 2 2 5405 75.00 M 1 2 3 5406 76.00 M 8 2 3 5407 55.00 F 2 2 2 5408 68.00 F 0 2 3 5409 60.00 M 4 2 3 5410 65.00 M 11 2 3 5411 50.00 F 0 2 2 5412 62.00 M 11 2 3 5413 65.00 F 2 2 3 5414 69.00 M 0 2 3 5415 37.00 M 6 2 2 5416 60.00 M 10 2 3 5417 48.00 F 16 2 2 5418 44.00 M 3 2 2 5419 80.00 F 6 2 3 5420 49.00 F 9 2 2 5421 62.00 F 7 2 3 5422 79.00 M 1 2 3 5423 49.00 M 10 2 2 5424 53.00 F 0 2 2 5425 91.00 F 6 2 3 5426 52.00 F 5 2 2 5427 75.00 M 4 2 3 5428 59.00 F 6 2 2 5429 65.00 M 0 2 3 5430 35.00 F 2 2 2 5431 43.00 M 5 2 2 5432 48.00 M 6 2 2 5433 59.00 F 0 2 2 5434 40.00 F 4 2 2 5435 60.00 M 0 2 3 5436 60.00 M 10 2 3 5437 65.00 F 5 2 3 5438 73.00 M 5 2 3 5439 48.00 M 2 2 2 5440 35.00 M 5 2 2 5441 70.00 F 4 2 3 5442 63.00 M 3 2 3 5443 62.00 F 2 2 3 5444 68.00 M 2 2 3 5445 70.00 F 4 2 3 5446 45.00 M 4 2 2 5447 72.00 F 4 2 3 5448 65.00 M 3 2 3 5449 73.00 M 3 2 3 5450 60.00 F 1 2 3 5451 44.00 M 4 2 2 5452 55.00 M 3 2 2 5453 63.00 M 0 2 3 5454 70.00 M 3 2 3 5455 60.00 M 2 2 3 5456 39.00 M 3 2 2 5457 31.00 M 0 2 2 5458 49.00 M 0 2 2 5459 58.00 M 2 2 2 5460 69.00 M 2 2 3 5461 48.00 M 0 2 2 5462 60.00 F 2 2 3 5463 75.00 M 5 2 3 5464 58.00 M 9 2 2 5465 51.00 M 3 2 2 5466 78.00 M 3 2 3 5467 55.00 F 1 2 2 5468 64.00 M 0 2 3 5469 88.00 F 1 2 3 5470 64.00 M 1 2 3 5471 60.00 M 0 2 3 5472 50.00 M 1 2 2 5473 60.00 F 0 2 3 5474 38.00 M 1 2 2 5475 63.00 M 1 2 3 5476 50.00 M 1 2 2 5477 50.00 F 1 2 2 5478 68.00 M 2 2 3 5479 80.00 M 1 2 3 5480 35.00 M 1 2 2 5481 73.00 M 1 2 3 5482 82.00 M 2 2 3 5483 48.00 M 27 2 2 5484 60.00 M 17 2 3 5485 69.00 M 14 2 3 5486 62.00 M 10 2 3 5487 58.00 M 18 2 2 5488 76.00 M 9 2 3 5489 63.00 M 15 2 3 5490 35.00 F 22 2 2 5491 39.00 F 16 2 2 5492 75.00 M 10 2 3 5493 55.00 F 17 2 2 5494 60.00 F 12 2 3 5495 67.00 F 13 2 3 5496 60.00 F 3 2 3 5497 58.00 F 6 2 2 5498 70.00 M 3 2 3 5499 65.00 M 0 2 3 5500 80.00 M 11 2 3 5501 67.00 M 12 2 3 5502 48.00 M 15 2 2 5503 55.00 F 5 2 2 5504 63.00 F 4 2 3 5505 55.00 M 10 2 2 5506 68.00 F 7 2 3 5507 40.00 F 10 2 2 5508 90.00 F 8 2 3 5509 73.00 M 8 2 3 5510 72.00 M 8 2 3 5511 62.00 F 12 2 3 5512 84.00 M 8 2 3 5513 74.00 M 14 2 3 5514 60.00 M 6 2 3 5515 48.00 F 7 2 2 5516 58.00 M 5 2 2 5517 70.00 F 10 2 3 5518 80.00 M 6 2 3 5519 65.00 M 6 2 3 5520 41.00 F 7 2 2 5521 52.00 M 2 2 2 5522 84.00 M 6 2 3 5523 48.00 M 0 2 2 5524 56.00 F 5 2 2 5525 61.00 F 3 2 3 5526 60.00 M 2 2 3 5527 55.00 M 6 2 2 5528 65.00 M 4 2 3 5529 58.00 F 3 2 2 5530 65.00 M 5 2 3 5531 73.00 F 5 2 3 5532 60.00 M 4 2 3 5533 68.00 F 2 2 3 5534 49.00 F 0 2 2 5535 77.00 M 15 2 3 5536 65.00 F 6 2 3 5537 25.00 M 11 2 2 5538 70.00 F 1 2 3 5539 63.00 F 1 2 3 5540 70.00 F 2 2 3 5541 60.00 M 2 2 3 5542 47.00 M 7 2 2 5543 89.00 M 7 2 3 5544 68.00 F 2 2 3 5545 68.00 M 4 2 3 5546 53.00 M 9 2 2 5547 75.00 M 4 2 3 5548 41.00 M 0 2 2 5549 74.00 M 0 2 3 5550 65.00 M 5 2 3 5551 70.00 M 0 2 3 5552 40.00 M 2 2 2 5553 47.00 M 2 2 2 5554 55.00 M 2 2 2 5555 65.00 M 2 2 3 5556 66.00 M 4 2 3 5557 53.00 F 0 2 2 5558 61.00 M 2 2 3 5559 80.00 F 2 2 3 5560 75.00 M 2 2 3 5561 52.00 F 2 2 2 5562 87.00 M 3 2 3 5563 64.00 M 0 2 3 5564 58.00 M 1 2 2 5565 67.00 F 1 2 3 5566 50.00 F 4 2 2 5567 47.00 F 1 2 2 5568 55.00 F 0 2 2 5569 69.00 F 0 2 3 5570 60.00 M 0 2 3 5571 71.00 M 1 2 3 5572 48.00 M 4 2 2 5573 85.00 M 0 2 3 5574 87.00 M 0 2 3 5575 92.00 M 3 2 3 5576 82.00 M 2 2 3 5577 80.00 F 0 2 3 5578 60.00 F 2 2 3 5579 43.00 M 1 2 2 5580 72.00 M 2 2 3 5581 79.00 F 1 2 3 5582 82.00 M 0 2 3 5583 65.00 M 1 2 3 5584 67.00 M 2 2 3 5585 54.00 M 0 2 2 5586 63.00 M 1 2 3 5587 65.00 F 1 2 3 5588 56.00 M 0 2 2 5589 35.00 M 0 2 2 5590 84.00 M 4 2 3 5591 52.00 M 2 2 2 5592 50.00 F 0 2 2 5593 62.00 F 1 2 3 5594 73.00 M 0 2 3 5595 69.00 M 1 2 3 5596 40.00 F 3 2 2 5597 44.00 M 3 2 2 5598 62.00 M 1 2 3 5599 76.00 F 18 2 3 5600 46.00 M 17 2 2 5601 63.00 F 19 2 3 5602 38.00 F 4 2 2 5603 70.00 M 0 2 3 5604 45.00 M 0 2 2 5605 59.00 M 50 2 2 5606 75.00 M 11 2 3 5607 60.00 F 18 2 3 5608 78.00 F 41 2 3 5609 70.00 M 4 2 3 5610 60.00 M 1 2 3 5611 60.00 M 0 2 3 5612 80.00 M 0 2 3 5613 50.00 F 22 2 2 5614 53.00 M 1 2 2 5615 57.00 M 21 2 2 5616 45.00 F 1 2 2 5617 61.00 M 5 2 3 5618 60.00 M 4 2 3 5619 70.00 M 3 2 3 5620 87.00 F 7 2 3 5621 50.00 M 8 2 2 5622 64.00 M 21 2 3 5623 52.00 M 0 2 2 5624 56.00 M 9 2 2 5625 68.00 M 1 2 3 5626 75.00 F 9 2 3 5627 27.00 M 10 2 2 5628 64.00 M 7 2 3 5629 75.00 F 5 2 3 5630 68.00 M 17 2 3 5631 51.00 M 13 2 2 5632 58.00 M 16 2 2 5633 39.00 F 10 2 2 5634 58.00 M 11 2 2 5635 58.00 M 2 2 2 5636 63.00 M 14 2 3 5637 46.00 F 30 2 2 5638 61.00 M 14 2 3 5639 45.00 M 13 2 2 5640 62.00 F 6 2 3 5641 52.00 F 0 2 2 5642 65.00 M 0 2 3 5643 75.00 M 0 2 3 5644 59.00 F 10 2 2 5645 60.00 M 11 2 3 5646 55.00 M 1 2 2 5647 70.00 F 10 2 3 5648 60.00 F 5 2 3 5649 69.00 M 17 2 3 5650 68.00 F 8 2 3 5651 78.00 F 0 2 3 5652 78.00 M 8 2 3 5653 65.00 F 13 2 3 5654 75.00 M 8 2 3 5655 30.00 F 11 2 2 5656 85.00 F 2 2 3 5657 72.00 F 7 2 3 5658 89.00 M 3 2 3 5659 48.00 M 14 2 2 5660 65.00 M 0 2 3 5661 42.00 M 0 2 2 5662 82.00 M 7 2 3 5663 55.00 M 0 2 2 5664 28.00 F 1 2 2 5665 60.00 M 2 2 3 5666 65.00 F 5 2 3 5667 45.00 M 3 2 2 5668 73.00 F 5 2 3 5669 70.00 M 8 2 3 5670 70.00 M 9 2 3 5671 60.00 M 7 2 3 5672 66.00 F 2 2 3 5673 82.00 F 7 2 3 5674 79.00 F 10 2 3 5675 67.00 M 3 2 3 5676 65.00 M 1 2 3 5677 62.00 M 3 2 3 5678 78.00 M 7 2 3 5679 73.00 M 4 2 3 5680 66.00 M 4 2 3 5681 42.00 M 4 2 2 5682 58.00 M 2 2 2 5683 65.00 M 6 2 3 5684 84.00 M 0 2 3 5685 60.00 M 4 2 3 5686 45.00 M 0 2 2 5687 65.00 M 7 2 3 5688 89.00 M 4 2 3 5689 40.00 F 1 2 2 5690 53.00 M 2 2 2 5691 60.00 M 3 2 3 5692 75.00 M 4 2 3 5693 60.00 M 4 2 3 5694 86.00 M 2 2 3 5695 30.00 M 3 2 2 5696 65.00 F 3 2 3 5697 75.00 F 1 2 3 5698 70.00 M 5 2 3 5699 50.00 M 0 2 2 5700 35.00 M 2 2 2 5701 48.00 F 2 2 2 5702 75.00 M 1 2 3 5703 72.00 M 2 2 3 5704 72.00 M 3 2 3 5705 36.00 M 2 2 2 5706 74.00 M 3 2 3 5707 90.00 F 1 2 3 5708 60.00 M 2 2 3 5709 45.00 M 3 2 2 5710 83.00 M 3 2 3 5711 58.00 M 0 2 2 5712 49.00 M 0 2 2 5713 50.00 M 0 2 2 5714 83.00 M 0 2 3 5715 48.00 F 0 2 2 5716 40.00 M 0 2 2 5717 40.00 F 0 2 2 5718 85.00 M 1 2 3 5719 75.00 M 2 2 3 5720 55.00 F 0 2 2 5721 62.00 F 1 2 3 5722 68.00 M 1 2 3 5723 70.00 M 3 2 3 5724 70.00 M 1 2 3 5725 35.00 F 0 2 2 5726 80.00 M 3 2 3 5727 71.00 M 0 2 3 5728 53.00 M 0 2 2 5729 46.00 M 1 2 2 5730 53.00 M 2 2 2 5731 50.00 M 3 2 2 5732 60.00 M 1 2 3 5733 52.00 M 0 2 2 5734 77.00 F 24 2 3 5735 70.00 M 6 2 3 5736 12.00 F 1 2 1 5737 81.00 M 2 2 3 5738 84.00 M 13 2 3 5739 51.00 M 1 2 2 5740 69.00 M 14 2 3 5741 68.00 F 6 2 3 5742 60.00 M 19 2 3 5743 66.00 F 15 2 3 5744 32.00 M 16 2 2 5745 65.00 M 14 2 3 5746 48.00 M 13 2 2 5747 13.00 M 3 2 1 5748 58.00 M 0 2 2 5749 82.00 M 0 2 3 5750 45.00 M 12 2 2 5751 72.00 M 13 2 3 5752 66.00 M 15 2 3 5753 78.00 M 2 2 3 5754 79.00 M 3 2 3 5755 67.00 M 11 2 3 5756 42.00 F 2 2 2 5757 74.00 F 7 2 3 5758 44.00 M 10 2 2 5759 70.00 M 2 2 3 5760 60.00 M 24 2 3 5761 80.00 M 6 2 3 5762 85.00 M 1 2 3 5763 75.00 M 9 2 3 5764 58.00 F 1 2 2 5765 72.00 M 8 2 3 5766 51.00 M 7 2 2 5767 70.00 M 7 2 3 5768 71.00 M 0 2 3 5769 85.00 M 5 2 3 5770 56.00 M 7 2 2 5771 71.00 M 8 2 3 5772 30.00 F 8 2 2 5773 69.00 F 1 2 3 5774 83.00 M 6 2 3 5775 69.00 M 6 2 3 5776 70.00 M 1 2 3 5777 53.00 M 1 2 2 5778 55.00 M 7 2 2 5779 29.00 M 4 2 2 5780 65.00 M 3 2 3 5781 48.00 M 8 2 2 5782 70.00 F 5 2 3 5783 78.00 F 6 2 3 5784 62.00 F 3 2 3 5785 70.00 M 9 2 3 5786 70.00 F 9 2 3 5787 49.00 M 5 2 2 5788 60.00 M 5 2 3 5789 75.00 M 5 2 3 5790 62.00 M 4 2 3 5791 72.00 M 2 2 3 5792 32.00 M 9 2 2 5793 70.00 M 5 2 3 5794 65.00 M 5 2 3 5795 87.00 M 2 2 3 5796 60.00 F 6 2 3 5797 45.00 F 5 2 2 5798 70.00 M 4 2 3 5799 55.00 M 6 2 2 5800 73.00 M 5 2 3 5801 40.00 F 2 2 2 5802 80.00 M 6 2 3 5803 46.00 F 0 2 2 5804 65.00 F 3 2 3 5805 44.00 F 3 2 2 5806 45.00 M 3 2 2 5807 55.00 M 3 2 2 5808 69.00 F 6 2 3 5809 45.00 F 4 2 2 5810 55.00 M 4 2 2 5811 29.00 M 3 2 2 5812 65.00 M 3 2 3 5813 60.00 M 5 2 3 5814 53.00 M 4 2 2 5815 60.00 F 1 2 3 5816 85.00 M 1 2 3 5817 59.00 M 2 2 2 5818 70.00 M 5 2 3 5819 50.00 M 0 2 2 5820 66.00 F 5 2 3 5821 62.00 M 2 2 3 5822 82.00 M 4 2 3 5823 84.00 M 1 2 3 5824 70.00 F 3 2 3 5825 73.00 F 4 2 3 5826 55.00 M 1 2 2 5827 65.00 F 2 2 3 5828 86.00 F 1 2 3 5829 38.00 M 0 2 2 5830 45.00 F 3 2 2 5831 57.00 M 0 2 2 5832 49.00 M 1 2 2 5833 62.00 F 1 2 3 5834 85.00 M 0 2 3 5835 81.00 M 0 2 3 5836 70.00 M 2 2 3 5837 70.00 M 1 2 3 5838 90.00 M 0 2 3 5839 50.00 M 0 2 2 5840 28.00 F 0 2 2 5841 80.00 M 0 2 3 5842 75.00 M 4 2 3 5843 40.00 F 0 2 2 5844 78.00 F 19 2 3 5845 76.00 M 0 2 3 5846 60.00 F 0 2 3 5847 61.00 M 19 2 3 5848 70.00 F 19 2 3 5849 60.00 M 1 2 3 5850 50.00 M 1 2 2 5851 68.00 F 19 2 3 5852 38.00 M 18 2 2 5853 55.00 M 16 2 2 5854 45.00 F 31 2 2 5855 60.00 M 2 2 3 5856 47.00 M 13 2 2 5857 62.00 M 13 2 3 5858 65.00 M 3 2 3 5859 57.00 F 13 2 2 5860 60.00 M 11 2 3 5861 55.00 M 4 2 2 5862 60.00 F 9 2 3 5863 75.00 F 8 2 3 5864 68.00 M 0 2 3 5865 60.00 M 2 2 3 5866 70.00 M 3 2 3 5867 45.00 F 1 2 2 5868 65.00 M 1 2 3 5869 70.00 M 10 2 3 5870 75.00 M 1 2 3 5871 65.00 M 8 2 3 5872 54.00 M 9 2 2 5873 45.00 M 10 2 2 5874 52.00 M 11 2 2 5875 64.00 M 9 2 3 5876 64.00 M 10 2 3 5877 59.00 M 5 2 2 5878 56.00 F 4 2 2 5879 65.00 M 8 2 3 5880 75.00 F 5 2 3 5881 54.00 F 5 2 2 5882 76.00 M 8 2 3 5883 59.00 M 10 2 2 5884 79.00 M 4 2 3 5885 45.00 M 7 2 2 5886 69.00 M 7 2 3 5887 35.00 M 0 2 2 5888 72.00 M 2 2 3 5889 70.00 M 0 2 3 5890 33.00 M 8 2 2 5891 48.00 M 5 2 2 5892 65.00 M 4 2 3 5893 42.00 F 3 2 2 5894 53.00 M 7 2 2 5895 65.00 M 5 2 3 5896 85.00 M 4 2 3 5897 55.00 M 13 2 2 5898 67.00 F 5 2 3 5899 49.00 F 4 2 2 5900 75.00 M 2 2 3 5901 48.00 M 4 2 2 5902 65.00 M 0 2 3 5903 57.00 F 4 2 2 5904 73.00 M 6 2 3 5905 72.00 M 2 2 3 5906 70.00 F 4 2 3 5907 46.00 M 5 2 2 5908 74.00 F 0 2 3 5909 61.00 F 4 2 3 5910 50.00 F 0 2 2 5911 65.00 F 5 2 3 5912 32.00 F 1 2 2 5913 47.00 F 3 2 2 5914 65.00 M 4 2 3 5915 68.00 M 1 2 3 5916 57.00 F 2 2 2 5917 58.00 M 7 2 2 5918 63.00 M 2 2 3 5919 65.00 M 3 2 3 5920 48.00 F 2 2 2 5921 50.00 F 1 2 2 5922 63.00 F 1 2 3 5923 56.00 F 1 2 2 5924 63.00 F 13 2 3 5925 60.00 M 1 2 3 5926 60.00 M 0 2 3 5927 78.00 M 0 2 3 5928 71.00 M 5 2 3 5929 65.00 M 2 2 3 5930 58.00 M 5 2 2 5931 50.00 F 5 2 2 5932 75.00 F 0 2 3 5933 80.00 M 0 2 3 5934 55.00 M 2 2 2 5935 68.00 F 2 2 3 5936 52.00 F 2 2 2 5937 50.00 M 0 2 2 5938 84.00 M 2 2 3 5939 45.00 M 0 2 2 5940 55.00 M 1 2 2 5941 75.00 F 0 2 3 5942 68.00 M 0 2 3 5943 70.00 M 0 2 3 5944 46.00 M 0 2 2 5945 90.00 M 0 2 3 5946 78.00 M 0 2 3 5947 70.00 F 0 2 3 5948 60.00 M 2 2 3 5949 67.00 M 20 2 3 5950 47.00 F 1 2 2 5951 55.00 M 2 2 2 5952 44.00 M 24 2 2 5953 73.00 M 24 2 3 5954 60.00 M 2 2 3 5955 62.00 M 16 2 3 5956 61.00 M 9 2 3 5957 56.00 F 1 2 2 5958 62.00 M 17 2 3 5959 62.00 M 16 2 3 5960 61.00 F 16 2 3 5961 83.00 M 8 2 3 5962 60.00 F 0 2 3 5963 74.00 M 4 2 3 5964 50.00 M 5 2 2 5965 25.00 F 13 2 2 5966 68.00 M 11 2 3 5967 68.00 F 13 2 3 5968 75.00 M 5 2 3 5969 70.00 M 10 2 3 5970 65.00 M 12 2 3 5971 60.00 M 14 2 3 5972 59.00 M 13 2 2 5973 62.00 M 8 2 3 5974 72.00 M 5 2 3 5975 42.00 F 5 2 2 5976 29.00 F 3 2 2 5977 74.00 M 1 2 3 5978 70.00 M 2 2 3 5979 42.00 M 10 2 2 5980 65.00 F 10 2 3 5981 73.00 M 2 2 3 5982 58.00 M 9 2 2 5983 72.00 F 9 2 3 5984 52.00 F 10 2 2 5985 66.00 M 10 2 3 5986 45.00 M 7 2 2 5987 45.00 M 1 2 2 5988 69.00 M 0 2 3 5989 84.00 M 7 2 3 5990 75.00 M 3 2 3 5991 65.00 M 5 2 3 5992 68.00 F 10 2 3 5993 68.00 M 7 2 3 5994 66.00 M 0 2 3 5995 62.00 F 7 2 3 5996 65.00 F 5 2 3 5997 70.00 F 0 2 3 5998 92.00 M 5 2 3 5999 70.00 M 0 2 3 6000 75.00 F 3 2 3 6001 69.00 M 12 2 3 6002 43.00 M 6 2 2 6003 58.00 M 5 2 2 6004 81.00 F 0 2 3 6005 65.00 F 0 2 3 6006 59.00 M 0 2 2 6007 91.00 M 0 2 3 6008 65.00 M 3 2 3 6009 75.00 F 2 2 3 6010 65.00 M 5 2 3 6011 77.00 M 2 2 3 6012 23.00 M 2 2 2 6013 63.00 M 0 2 3 6014 62.00 M 3 2 3 6015 79.00 M 1 2 3 6016 49.00 M 5 2 2 6017 72.00 M 0 2 3 6018 75.00 M 5 2 3 6019 70.00 F 0 2 3 6020 70.00 M 5 2 3 6021 62.00 F 3 2 3 6022 61.00 F 1 2 3 6023 45.00 F 2 2 2 6024 68.00 M 1 2 3 6025 72.00 M 2 2 3 6026 73.00 M 3 2 3 6027 58.00 M 0 2 2 6028 74.00 M 3 2 3 6029 78.00 F 5 2 3 6030 85.00 M 2 2 3 6031 71.00 M 2 2 3 6032 60.00 F 2 2 3 6033 74.00 F 3 2 3 6034 29.00 M 1 2 2 6035 64.00 F 3 2 3 6036 39.00 M 1 2 2 6037 43.00 F 2 2 2 6038 76.00 M 2 2 3 6039 60.00 M 0 2 3 6040 67.00 M 2 2 3 6041 70.00 F 1 2 3 6042 67.00 M 0 2 3 6043 50.00 M 0 2 2 6044 45.00 M 0 2 2 6045 75.00 M 3 2 3 6046 46.00 F 0 2 2 6047 61.00 F 1 2 3 6048 61.00 M 1 2 3 6049 56.00 M 0 2 2 6050 58.00 M 2 2 2 6051 65.00 F 6 2 3 6052 86.00 M 0 2 3 6053 35.00 M 1 2 2 6054 85.00 M 2 2 3 6055 55.00 F 0 2 2 6056 47.00 M 0 2 2 6057 57.00 M 0 2 2 6058 84.00 M 1 2 3 6059 79.00 M 1 2 3 6060 65.00 F 1 2 3 6061 65.00 M 0 2 3 6062 68.00 M 0 2 3 6063 60.00 F 2 2 3 6064 30.00 M 7 2 2 6065 34.00 M 0 2 2 6066 60.00 M 23 2 3 6067 29.00 M 18 2 2 6068 68.00 F 4 2 3 6069 54.00 M 19 2 2 6070 49.00 M 14 2 2 6071 70.00 M 1 2 3 6072 53.00 M 15 2 2 6073 75.00 M 5 2 3 6074 78.00 F 14 2 3 6075 70.00 M 15 2 3 6076 79.00 M 14 2 3 6077 51.00 M 11 2 2 6078 67.00 M 0 2 3 6079 49.00 M 12 2 2 6080 85.00 M 13 2 3 6081 84.00 M 0 2 3 6082 58.00 F 8 2 2 6083 50.00 F 0 2 2 6084 60.00 M 0 2 3 6085 85.00 F 7 2 3 6086 48.00 M 0 2 2 6087 70.00 M 10 2 3 6088 65.00 M 5 2 3 6089 70.00 M 11 2 3 6090 35.00 M 9 2 2 6091 45.00 M 4 2 2 6092 80.00 M 3 2 3 6093 58.00 F 12 2 2 6094 80.00 M 6 2 3 6095 78.00 M 3 2 3 6096 62.00 M 5 2 3 6097 66.00 M 5 2 3 6098 82.00 M 8 2 3 6099 58.00 M 1 2 2 6100 58.00 M 9 2 2 6101 68.00 M 7 2 3 6102 86.00 M 0 2 3 6103 17.00 M 6 2 1 6104 68.00 M 5 2 3 6105 64.00 M 4 2 3 6106 58.00 F 10 2 2 6107 62.00 M 7 2 3 6108 60.00 M 9 2 3 6109 82.00 F 3 2 3 6110 60.00 F 0 2 3 6111 55.00 F 2 2 2 6112 41.00 M 3 2 2 6113 62.00 M 1 2 3 6114 54.00 M 8 2 2 6115 66.00 F 2 2 3 6116 57.00 F 7 2 2 6117 70.00 M 6 2 3 6118 79.00 F 6 2 3 6119 70.00 F 5 2 3 6120 70.00 F 0 2 3 6121 78.00 M 7 2 3 6122 72.00 M 6 2 3 6123 52.00 F 4 2 2 6124 74.00 M 6 2 3 6125 65.00 F 10 2 3 6126 70.00 M 6 2 3 6127 68.00 F 7 2 3 6128 75.00 F 0 2 3 6129 41.00 F 3 2 2 6130 52.00 M 3 2 2 6131 65.00 M 0 2 3 6132 84.00 F 4 2 3 6133 50.00 F 5 2 2 6134 55.00 M 3 2 2 6135 57.00 M 5 2 2 6136 28.00 M 1 2 2 6137 69.00 M 6 2 3 6138 90.00 M 2 2 3 6139 61.00 M 4 2 3 6140 49.00 M 4 2 2 6141 75.00 M 4 2 3 6142 70.00 M 4 2 3 6143 60.00 M 6 2 3 6144 68.00 F 5 2 3 6145 61.00 M 2 2 3 6146 45.00 M 4 2 2 6147 62.00 M 3 2 3 6148 70.00 M 3 2 3 6149 79.00 M 3 2 3 6150 38.00 F 5 2 2 6151 60.00 M 1 2 3 6152 83.00 F 12 2 3 6153 76.00 M 0 2 3 6154 47.00 F 0 2 2 6155 67.00 M 5 2 3 6156 40.00 M 0 2 2 6157 92.00 M 2 2 3 6158 67.00 M 0 2 3 6159 55.00 F 1 2 2 6160 65.00 F 3 2 3 6161 49.00 M 1 2 2 6162 25.00 M 11 2 2 6163 51.00 F 1 2 2 6164 72.00 M 16 2 3 6165 60.00 F 1 2 3 6166 65.00 M 2 2 3 6167 34.00 M 2 2 2 6168 81.00 M 7 2 3 6169 87.00 M 0 2 3 6170 46.00 F 0 2 2 6171 80.00 F 2 2 3 6172 65.00 F 2 2 3 6173 70.00 M 3 2 3 6174 58.00 M 0 2 2 6175 65.00 M 2 2 3 6176 75.00 M 3 2 3 6177 35.00 M 1 2 2 6178 44.00 M 3 2 2 6179 38.00 M 8 2 2 6180 86.00 F 0 2 3 6181 83.00 M 1 2 3 6182 52.00 M 1 2 2 6183 68.00 F 2 2 3 6184 50.00 F 2 2 2 6185 83.00 M 2 2 3 6186 35.00 M 1 2 2 6187 65.00 M 1 2 3 6188 60.00 M 0 2 3 6189 66.00 F 1 2 3 6190 52.00 M 0 2 2 6191 82.00 M 2 2 3 6192 71.00 M 27 2 3 6193 26.00 M 3 2 2 6194 65.00 M 1 2 3 6195 72.00 M 1 2 3 6196 66.00 M 20 2 3 6197 50.00 F 10 2 2 6198 48.00 F 1 2 2 6199 71.00 M 14 2 3 6200 66.00 M 2 2 3 6201 65.00 M 2 2 3 6202 51.00 M 12 2 2 6203 82.00 F 7 2 3 6204 50.00 F 1 2 2 6205 87.00 M 7 2 3 6206 39.00 M 3 2 2 6207 75.00 M 1 2 3 6208 68.00 M 5 2 3 6209 65.00 F 15 2 3 6210 68.00 M 3 2 3 6211 79.00 F 6 2 3 6212 59.00 M 4 2 2 6213 50.00 M 1 2 2 6214 50.00 M 12 2 2 6215 74.00 M 0 2 3 6216 70.00 M 0 2 3 6217 58.00 M 7 2 2 6218 46.00 M 13 2 2 6219 55.00 F 0 2 2 6220 65.00 F 0 2 3 6221 45.00 M 3 2 2 6222 45.00 F 0 2 2 6223 69.00 M 0 2 3 6224 73.00 F 1 2 3 6225 25.00 M 6 2 2 6226 72.00 M 2 2 3 6227 64.00 M 9 2 3 6228 43.00 M 4 2 2 6229 72.00 M 6 2 3 6230 39.00 F 6 2 2 6231 40.00 M 8 2 2 6232 51.00 F 11 2 2 6233 65.00 M 4 2 3 6234 51.00 M 6 2 2 6235 92.00 M 4 2 3 6236 70.00 M 5 2 3 6237 79.00 M 7 2 3 6238 73.00 M 1 2 3 6239 55.00 M 6 2 2 6240 64.00 M 2 2 3 6241 60.00 F 1 2 3 6242 52.00 M 6 2 2 6243 61.00 M 4 2 3 6244 55.00 M 1 2 2 6245 65.00 F 5 2 3 6246 52.00 M 0 2 2 6247 50.00 M 27 2 2 6248 63.00 M 3 2 3 6249 75.00 F 1 2 3 6250 45.00 F 3 2 2 6251 46.00 M 1 2 2 6252 73.00 M 3 2 3 6253 72.00 M 1 2 3 6254 56.00 M 2 2 2 6255 40.00 M 1 2 2 6256 51.00 M 6 2 2 6257 65.00 M 5 2 3 6258 40.00 M 3 2 2 6259 52.00 M 0 2 2 6260 63.00 M 5 2 3 6261 65.00 F 1 2 3 6262 69.00 F 1 2 3 6263 60.00 M 1 2 3 6264 45.00 F 1 2 2 6265 40.00 M 1 2 2 6266 68.00 M 3 2 3 6267 67.00 M 2 2 3 6268 70.00 F 0 2 3 6269 50.00 F 3 2 2 6270 65.00 M 2 2 3 6271 63.00 F 1 2 3 6272 63.00 M 5 2 3 6273 45.00 M 0 2 2 6274 70.00 M 0 2 3 6275 60.00 M 1 2 3 6276 86.00 M 1 2 3 6277 65.00 F 1 2 3 6278 75.00 F 2 2 3 6279 32.00 M 1 2 2 6280 66.00 M 1 2 3 6281 65.00 F 2 2 3 6282 82.00 M 2 2 3 6283 52.00 M 1 2 2 6284 78.00 F 1 2 3 6285 79.00 M 0 2 3 6286 75.00 M 1 2 3 6287 73.00 M 7 2 3 6288 65.00 M 13 2 3 6289 55.00 M 4 2 2 6290 74.00 M 3 2 3 6291 60.00 F 8 2 3 6292 64.00 M 13 2 3 6293 69.00 F 7 2 3 6294 39.00 M 0 2 2 6295 47.00 M 6 2 2 6296 24.00 M 0 2 2 6297 80.00 F 15 2 3 6298 54.00 F 0 2 2 6299 84.00 F 17 2 3 6300 60.00 M 2 2 3 6301 58.00 M 0 2 2 6302 78.00 F 9 2 3 6303 68.00 F 0 2 3 6304 70.00 M 24 2 3 6305 66.00 M 2 2 3 6306 75.00 M 6 2 3 6307 76.00 M 11 2 3 6308 84.00 F 0 2 3 6309 58.00 M 1 2 2 6310 52.00 M 6 2 2 6311 90.00 M 5 2 3 6312 22.00 M 11 2 2 6313 57.00 M 18 2 2 6314 76.00 F 1 2 3 6315 86.00 M 8 2 3 6316 71.00 M 4 2 3 6317 63.00 M 7 2 3 6318 68.00 M 12 2 3 6319 88.00 M 14 2 3 6320 56.00 F 2 2 2 6321 47.00 M 6 2 2 6322 7.00 M 2 2 1 6323 81.00 M 4 2 3 6324 53.00 F 7 2 2 6325 19.00 M 0 2 2 6326 70.00 M 0 2 3 6327 81.00 M 2 2 3 6328 8.00 M 1 2 1 6329 65.00 F 20 2 3 6330 74.00 M 0 2 3 6331 73.00 M 7 2 3 6332 60.00 M 2 2 3 6333 63.00 M 8 2 3 6334 75.00 F 5 2 3 6335 75.00 M 1 2 3 6336 73.00 F 7 2 3 6337 58.00 F 2 2 2 6338 57.00 F 1 2 2 6339 80.00 F 5 2 3 6340 65.00 M 1 2 3 6341 80.00 M 4 2 3 6342 70.00 F 6 2 3 6343 55.00 F 5 2 2 6344 45.00 F 15 2 2 6345 49.00 M 8 2 2 6346 75.00 M 1 2 3 6347 45.00 M 0 2 2 6348 58.00 F 12 2 2 6349 60.00 F 3 2 3 6350 59.00 M 3 2 2 6351 75.00 F 0 2 3 6352 61.00 M 4 2 3 6353 79.00 M 2 2 3 6354 49.00 F 7 2 2 6355 85.00 M 12 2 3 6356 65.00 F 0 2 3 6357 70.00 M 2 2 3 6358 90.00 M 0 2 3 6359 61.00 M 5 2 3 6360 53.00 M 7 2 2 6361 60.00 F 8 2 3 6362 53.00 F 9 2 2 6363 62.00 M 12 2 3 6364 50.00 M 5 2 2 6365 67.00 M 0 2 3 6366 65.00 M 0 2 3 6367 77.00 F 2 2 3 6368 65.00 M 3 2 3 6369 38.00 M 11 2 2 6370 48.00 M 8 2 2 6371 64.00 M 9 2 3 6372 72.00 M 3 2 3 6373 72.00 M 6 2 3 6374 78.00 M 4 2 3 6375 55.00 F 8 2 2 6376 65.00 M 6 2 3 6377 64.00 M 0 2 3 6378 21.00 M 8 2 2 6379 35.00 F 2 2 2 6380 58.00 M 7 2 2 6381 55.00 M 5 2 2 6382 55.00 M 4 2 2 6383 77.00 F 3 2 3 6384 57.00 M 5 2 2 6385 57.00 M 2 2 2 6386 54.00 M 4 2 2 6387 55.00 M 12 2 2 6388 45.00 M 6 2 2 6389 95.00 M 0 2 3 6390 52.00 F 3 2 2 6391 71.00 M 4 2 3 6392 72.00 F 5 2 3 6393 70.00 M 1 2 3 6394 53.00 F 5 2 2 6395 42.00 F 4 2 2 6396 84.00 M 5 2 3 6397 50.00 F 2 2 2 6398 80.00 M 0 2 3 6399 36.00 M 8 2 2 6400 33.00 M 2 2 2 6401 65.00 M 1 2 3 6402 52.00 F 0 2 2 6403 86.00 M 1 2 3 6404 76.00 F 2 2 3 6405 68.00 M 1 2 3 6406 41.00 M 2 2 2 6407 67.00 M 2 2 3 6408 64.00 F 3 2 3 6409 54.00 F 1 2 2 6410 58.00 M 1 2 2 6411 52.00 M 2 2 2 6412 48.00 M 1 2 2 6413 55.00 M 5 2 2 6414 67.00 M 4 2 3 6415 70.00 M 1 2 3 6416 65.00 M 2 2 3 6417 88.00 F 1 2 3 6418 30.00 M 0 2 2 6419 60.00 M 0 2 3 6420 50.00 M 1 2 2 6421 50.00 M 1 2 2 6422 66.00 F 1 2 3 6423 52.00 F 1 2 2 6424 62.00 M 5 2 3 6425 45.00 F 3 2 2 6426 56.00 M 2 2 2 6427 75.00 F 0 2 3 6428 64.00 M 24 2 3 6429 63.00 M 22 2 3 6430 54.00 M 10 2 2 6431 60.00 M 7 2 3 6432 51.00 F 3 2 2 6433 47.00 F 4 2 2 6434 78.00 M 19 2 3 6435 60.00 M 16 2 3 6436 66.00 M 15 2 3 6437 80.00 M 18 2 3 6438 65.00 F 2 2 3 6439 49.00 M 19 2 2 6440 55.00 M 18 2 2 6441 80.00 F 15 2 3 6442 82.00 F 16 2 3 6443 34.00 F 13 2 2 6444 30.00 F 13 2 2 6445 65.00 F 5 2 3 6446 67.00 M 1 2 3 6447 58.00 F 11 2 2 6448 75.00 F 3 2 3 6449 32.00 F 2 2 2 6450 70.00 F 13 2 3 6451 56.00 M 10 2 2 6452 76.00 F 11 2 3 6453 78.00 M 9 2 3 6454 56.00 M 13 2 2 6455 60.00 F 1 2 3 6456 65.00 F 15 2 3 6457 80.00 M 12 2 3 6458 60.00 F 9 2 3 6459 42.00 M 5 2 2 6460 81.00 F 10 2 3 6461 65.00 M 5 2 3 6462 88.00 M 10 2 3 6463 65.00 M 7 2 3 6464 56.00 F 0 2 2 6465 85.00 M 12 2 3 6466 58.00 M 8 2 2 6467 53.00 M 6 2 2 6468 55.00 M 8 2 2 6469 50.00 M 11 2 2 6470 50.00 F 3 2 2 6471 62.00 M 1 2 3 6472 65.00 F 12 2 3 6473 68.00 M 6 2 3 6474 65.00 M 3 2 3 6475 60.00 M 2 2 3 6476 53.00 M 31 2 2 6477 55.00 F 4 2 2 6478 54.00 M 7 2 2 6479 46.00 M 0 2 2 6480 42.00 F 6 2 2 6481 70.00 F 9 2 3 6482 65.00 M 7 2 3 6483 47.00 M 2 2 2 6484 55.00 F 3 2 2 6485 60.00 F 0 2 3 6486 65.00 M 8 2 3 6487 71.00 M 6 2 3 6488 63.00 M 7 2 3 6489 75.00 F 7 2 3 6490 66.00 M 8 2 3 6491 68.00 M 1 2 3 6492 55.00 M 7 2 2 6493 55.00 M 6 2 2 6494 42.00 M 4 2 2 6495 60.00 F 10 2 3 6496 67.00 M 2 2 3 6497 62.00 M 5 2 3 6498 61.00 M 3 2 3 6499 64.00 M 0 2 3 6500 45.00 F 4 2 2 6501 77.00 F 5 2 3 6502 48.00 F 6 2 2 6503 51.00 M 5 2 2 6504 48.00 M 1 2 2 6505 70.00 M 0 2 3 6506 48.00 M 2 2 2 6507 54.00 M 5 2 2 6508 68.00 F 3 2 3 6509 62.00 M 0 2 3 6510 46.00 M 4 2 2 6511 79.00 M 5 2 3 6512 61.00 M 4 2 3 6513 80.00 F 4 2 3 6514 73.00 M 4 2 3 6515 40.00 M 0 2 2 6516 69.00 F 4 2 3 6517 58.00 M 6 2 2 6518 62.00 F 2 2 3 6519 77.00 M 1 2 3 6520 63.00 F 2 2 3 6521 75.00 M 1 2 3 6522 35.00 M 0 2 2 6523 45.00 M 1 2 2 6524 66.00 M 3 2 3 6525 54.00 M 2 2 2 6526 67.00 M 2 2 3 6527 62.00 M 4 2 3 6528 59.00 M 0 2 2 6529 57.00 M 3 2 2 6530 64.00 F 3 2 3 6531 52.00 M 0 2 2 6532 87.00 F 0 2 3 6533 55.00 M 0 2 2 6534 60.00 M 1 2 3 6535 75.00 M 3 2 3 6536 73.00 M 5 2 3 6537 63.00 M 0 2 3 6538 88.00 M 0 2 3 6539 55.00 F 0 2 2 6540 47.00 M 5 2 2 6541 50.00 M 4 2 2 6542 92.00 F 2 2 3 6543 63.00 F 2 2 3 6544 77.00 M 3 2 3 6545 36.00 M 0 2 2 6546 75.00 M 3 2 3 6547 35.00 M 3 2 2 6548 70.00 F 0 2 3 6549 74.00 F 3 2 3 6550 54.00 F 0 2 2 6551 58.00 M 2 2 2 6552 84.00 M 0 2 3 6553 78.00 M 0 2 3 6554 42.00 M 2 2 2 6555 66.00 M 3 2 3 6556 65.00 M 10 2 3 6557 59.00 F 0 2 2 6558 50.00 M 1 2 2 6559 65.00 M 0 2 3 6560 57.00 M 2 2 2 6561 55.00 F 0 2 2 6562 76.00 M 0 2 3 6563 65.00 F 3 2 3 6564 49.00 M 0 2 2 6565 47.00 F 2 2 2 6566 59.00 F 1 2 2 6567 58.00 M 0 2 2 6568 75.00 M 0 2 3 6569 82.00 F 1 2 3 6570 57.00 M 1 2 2 6571 45.00 M 0 2 2 6572 60.00 M 0 2 3 6573 42.00 M 0 2 2 6574 65.00 M 3 2 3 6575 64.00 M 0 2 3 6576 59.00 M 24 2 2 6577 50.00 M 3 2 2 6578 55.00 M 10 2 2 6579 67.00 M 22 2 3 6580 53.00 M 16 2 2 6581 45.00 M 16 2 2 6582 70.00 M 16 2 3 6583 78.00 M 0 2 3 6584 49.00 M 15 2 2 6585 67.00 F 12 2 3 6586 47.00 M 10 2 2 6587 50.00 M 8 2 2 6588 59.00 M 5 2 2 6589 84.00 M 13 2 3 6590 52.00 M 7 2 2 6591 44.00 M 9 2 2 6592 54.00 F 9 2 2 6593 64.00 M 0 2 3 6594 75.00 F 34 2 3 6595 74.00 M 2 2 3 6596 34.00 M 6 2 2 6597 80.00 F 12 2 3 6598 68.00 F 0 2 3 6599 68.00 M 9 2 3 6600 45.00 M 3 2 2 6601 52.00 F 1 2 2 6602 45.00 F 0 2 2 6603 85.00 M 4 2 3 6604 80.00 F 3 2 3 6605 64.00 M 2 2 3 6606 35.00 M 0 2 2 6607 60.00 F 1 2 3 6608 70.00 F 35 2 3 6609 68.00 F 7 2 3 6610 70.00 M 5 2 3 6611 75.00 M 7 2 3 6612 70.00 F 9 2 3 6613 35.00 M 10 2 2 6614 84.00 F 11 2 3 6615 66.00 F 0 2 3 6616 47.00 M 0 2 2 6617 55.00 F 8 2 2 6618 70.00 M 0 2 3 6619 62.00 M 35 2 3 6620 68.00 M 7 2 3 6621 68.00 F 4 2 3 6622 74.00 M 8 2 3 6623 31.00 M 7 2 2 6624 60.00 M 7 2 3 6625 63.00 M 8 2 3 6626 80.00 M 6 2 3 6627 47.00 F 9 2 2 6628 78.00 M 7 2 3 6629 53.00 M 7 2 2 6630 84.00 M 5 2 3 6631 26.00 F 4 2 2 6632 54.00 M 10 2 2 6633 56.00 M 5 2 2 6634 75.00 M 1 2 3 6635 72.00 M 8 2 3 6636 98.00 M 7 2 3 6637 27.00 M 1 2 2 6638 73.00 M 2 2 3 6639 76.00 M 7 2 3 6640 80.00 M 5 2 3 6641 55.00 F 4 2 2 6642 69.00 M 4 2 3 6643 61.00 M 34 2 3 6644 32.00 M 0 2 2 6645 44.00 M 4 2 2 6646 45.00 M 4 2 2 6647 60.00 M 2 2 3 6648 64.00 M 6 2 3 6649 61.00 M 1 2 3 6650 33.00 F 4 2 2 6651 70.00 F 6 2 3 6652 100.00 M 3 2 3 6653 70.00 M 7 2 3 6654 59.00 M 4 2 2 6655 45.00 M 5 2 2 6656 81.00 F 2 2 3 6657 90.00 F 5 2 3 6658 60.00 M 2 2 3 6659 52.00 M 14 2 2 6660 50.00 M 5 2 2 6661 62.00 F 5 2 3 6662 48.00 M 4 2 2 6663 55.00 F 4 2 2 6664 68.00 F 0 2 3 6665 78.00 M 19 2 3 6666 77.00 F 2 2 3 6667 74.00 M 5 2 3 6668 80.00 M 3 2 3 6669 60.00 F 1 2 3 6670 45.00 M 3 2 2 6671 60.00 F 9 2 3 6672 70.00 F 2 2 3 6673 55.00 F 1 2 2 6674 74.00 M 2 2 3 6675 64.00 M 4 2 3 6676 44.00 F 2 2 2 6677 40.00 M 1 2 2 6678 73.00 M 33 2 3 6679 48.00 M 1 2 2 6680 64.00 M 0 2 3 6681 64.00 M 1 2 3 6682 42.00 M 1 2 2 6683 61.00 M 0 2 3 6684 77.00 M 2 2 3 6685 40.00 M 0 2 2 6686 17.00 M 0 2 1 6687 56.00 F 1 2 2 6688 60.00 M 2 2 3 6689 72.00 F 0 2 3 6690 80.00 M 0 2 3 6691 35.00 F 0 2 2 6692 60.00 F 0 2 3 6693 62.00 M 0 2 3 6694 53.00 F 1 2 2 6695 83.00 M 1 2 3 6696 70.00 M 0 2 3 6697 37.00 M 1 2 2 6698 73.00 M 1 2 3 6699 72.00 F 0 2 3 6700 48.00 M 4 2 2 6701 78.00 F 0 2 3 6702 65.00 M 12 2 3 6703 50.00 M 4 2 2 6704 65.00 F 1 2 3 6705 48.00 M 1 2 2 6706 65.00 M 4 2 3 6707 49.00 F 21 2 2 6708 55.00 M 23 2 2 6709 65.00 M 33 2 3 6710 65.00 M 8 2 3 6711 22.00 F 14 2 2 6712 62.00 F 16 2 3 6713 80.00 M 2 2 3 6714 85.00 F 5 2 3 6715 74.00 F 10 2 3 6716 70.00 M 2 2 3 6717 48.00 M 13 2 2 6718 65.00 F 5 2 3 6719 65.00 M 2 2 3 6720 76.00 M 2 2 3 6721 54.00 M 2 2 2 6722 87.00 M 11 2 3 6723 89.00 M 4 2 3 6724 55.00 F 7 2 2 6725 70.00 M 5 2 3 6726 70.00 M 2 2 3 6727 67.00 M 0 2 3 6728 61.00 F 5 2 3 6729 69.00 M 2 2 3 6730 62.00 F 5 2 3 6731 65.00 F 6 2 3 6732 78.00 M 6 2 3 6733 78.00 F 5 2 3 6734 65.00 M 9 2 3 6735 42.00 M 7 2 2 6736 67.00 M 6 2 3 6737 63.00 F 4 2 3 6738 56.00 M 7 2 2 6739 29.00 M 9 2 2 6740 79.00 M 8 2 3 6741 69.00 M 3 2 3 6742 86.00 M 9 2 3 6743 55.00 F 7 2 2 6744 76.00 F 4 2 3 6745 75.00 M 6 2 3 6746 75.00 F 5 2 3 6747 76.00 F 5 2 3 6748 70.00 M 7 2 3 6749 80.00 F 5 2 3 6750 73.00 F 7 2 3 6751 38.00 F 0 2 2 6752 83.00 M 7 2 3 6753 55.00 F 2 2 2 6754 58.00 M 5 2 2 6755 45.00 M 4 2 2 6756 65.00 M 8 2 3 6757 70.00 M 3 2 3 6758 33.00 M 5 2 2 6759 70.00 M 0 2 3 6760 68.00 M 3 2 3 6761 75.00 M 7 2 3 6762 59.00 M 5 2 2 6763 79.00 M 7 2 3 6764 59.00 M 5 2 2 6765 58.00 M 4 2 2 6766 42.00 F 4 2 2 6767 59.00 M 4 2 2 6768 59.00 F 6 2 2 6769 74.00 M 2 2 3 6770 79.00 M 1 2 3 6771 67.00 M 4 2 3 6772 60.00 F 6 2 3 6773 72.00 M 4 2 3 6774 83.00 M 6 2 3 6775 78.00 M 2 2 3 6776 55.00 M 0 2 2 6777 41.00 F 5 2 2 6778 76.00 M 5 2 3 6779 49.00 M 0 2 2 6780 52.00 F 23 2 2 6781 84.00 M 2 2 3 6782 65.00 M 1 2 3 6783 47.00 F 3 2 2 6784 65.00 M 1 2 3 6785 58.00 M 34 2 2 6786 80.00 M 2 2 3 6787 60.00 F 3 2 3 6788 83.00 M 0 2 3 6789 84.00 M 3 2 3 6790 65.00 M 3 2 3 6791 58.00 F 3 2 2 6792 60.00 M 3 2 3 6793 60.00 F 1 2 3 6794 68.00 F 3 2 3 6795 70.00 F 6 2 3 6796 66.00 M 0 2 3 6797 80.00 M 0 2 3 6798 59.00 F 2 2 2 6799 65.00 F 1 2 3 6800 60.00 M 0 2 3 6801 32.00 F 2 2 2 6802 56.00 M 2 2 2 6803 55.00 F 1 2 2 6804 45.00 M 1 2 2 6805 60.00 M 4 2 3 6806 40.00 F 2 2 2 6807 56.00 M 0 2 2 6808 55.00 F 1 2 2 6809 42.00 M 0 2 2 6810 0.00 M 1 2 1 6811 50.00 M 1 2 2 6812 59.00 M 1 2 2 6813 56.00 M 1 2 2 6814 52.00 F 4 2 2 6815 35.00 M 0 2 2 6816 50.00 M 2 2 2 6817 60.00 M 1 2 3 6818 73.00 M 1 2 3 6819 54.00 M 4 2 2 6820 60.00 M 2 2 3 6821 75.00 M 1 2 3 6822 64.00 M 0 2 3 6823 48.00 M 1 2 2 6824 80.00 F 3 2 3 6825 58.00 F 1 2 2 6826 25.00 M 1 2 2 6827 55.00 F 0 2 2 6828 72.00 M 0 2 3 6829 68.00 M 2 2 3 6830 49.00 F 0 2 2 6831 70.00 M 7 2 3 6832 70.00 F 0 2 3 6833 60.00 M 8 2 3 6834 52.00 F 7 2 2 6835 81.00 M 2 2 3 6836 71.00 M 11 2 3 6837 69.00 M 7 2 3 6838 77.00 M 15 2 3 6839 48.00 F 11 2 2 6840 68.00 M 6 2 3 6841 64.00 F 13 2 3 6842 55.00 M 1 2 2 6843 63.00 M 12 2 3 6844 63.00 M 6 2 3 6845 55.00 M 5 2 2 6846 64.00 M 3 2 3 6847 57.00 F 7 2 2 6848 52.00 M 4 2 2 6849 74.00 M 2 2 3 6850 75.00 M 3 2 3 6851 66.00 M 12 2 3 6852 59.00 M 5 2 2 6853 70.00 M 7 2 3 6854 69.00 F 0 2 3 6855 80.00 M 0 2 3 6856 46.00 M 11 2 2 6857 60.00 M 12 2 3 6858 65.00 M 12 2 3 6859 60.00 M 0 2 3 6860 68.00 M 13 2 3 6861 74.00 M 4 2 3 6862 60.00 F 8 2 3 6863 40.00 M 4 2 2 6864 50.00 M 7 2 2 6865 66.00 M 8 2 3 6866 75.00 M 4 2 3 6867 65.00 M 2 2 3 6868 73.00 M 9 2 3 6869 55.00 M 1 2 2 6870 70.00 M 6 2 3 6871 80.00 F 4 2 3 6872 70.00 F 5 2 3 6873 42.00 M 9 2 2 6874 60.00 M 3 2 3 6875 67.00 F 8 2 3 6876 72.00 M 3 2 3 6877 53.00 M 6 2 2 6878 70.00 M 2 2 3 6879 70.00 F 8 2 3 6880 65.00 M 2 2 3 6881 54.00 M 1 2 2 6882 51.00 M 9 2 2 6883 22.00 F 1 2 2 6884 56.00 F 8 2 2 6885 59.00 M 4 2 2 6886 68.00 M 2 2 3 6887 43.00 F 3 2 2 6888 54.00 M 11 2 2 6889 48.00 M 2 2 2 6890 76.00 M 6 2 3 6891 63.00 M 5 2 3 6892 90.00 M 9 2 3 6893 72.00 M 5 2 3 6894 57.00 M 10 2 2 6895 67.00 M 4 2 3 6896 73.00 M 7 2 3 6897 74.00 M 1 2 3 6898 70.00 M 4 2 3 6899 35.00 F 4 2 2 6900 48.00 F 5 2 2 6901 40.00 M 4 2 2 6902 73.00 M 6 2 3 6903 65.00 F 3 2 3 6904 60.00 M 2 2 3 6905 46.00 M 4 2 2 6906 71.00 M 6 2 3 6907 66.00 M 7 2 3 6908 69.00 M 0 2 3 6909 64.00 M 4 2 3 6910 65.00 F 1 2 3 6911 63.00 M 3 2 3 6912 67.00 M 5 2 3 6913 70.00 F 35 2 3 6914 55.00 F 0 2 2 6915 54.00 F 1 2 2 6916 75.00 F 5 2 3 6917 70.00 M 6 2 3 6918 58.00 M 5 2 2 6919 69.00 M 1 2 3 6920 52.00 M 2 2 2 6921 48.00 F 2 2 2 6922 90.00 M 1 2 3 6923 50.00 F 3 2 2 6924 60.00 F 6 2 3 6925 47.00 F 2 2 2 6926 52.00 M 1 2 2 6927 58.00 F 3 2 2 6928 52.00 M 5 2 2 6929 74.00 M 3 2 3 6930 55.00 M 1 2 2 6931 40.00 M 0 2 2 6932 85.00 M 2 2 3 6933 66.00 F 0 2 3 6934 38.00 M 6 2 2 6935 60.00 M 2 2 3 6936 26.00 M 2 2 2 6937 50.00 M 2 2 2 6938 59.00 F 0 2 2 6939 50.00 F 3 2 2 6940 45.00 M 1 2 2 6941 74.00 M 0 2 3 6942 83.00 F 4 2 3 6943 72.00 F 2 2 3 6944 55.00 F 3 2 2 6945 60.00 F 2 2 3 6946 75.00 M 2 2 3 6947 72.00 F 1 2 3 6948 64.00 M 0 2 3 6949 73.00 M 2 2 3 6950 63.00 F 1 2 3 6951 54.00 M 2 2 2 6952 70.00 M 2 2 3 6953 85.00 M 1 2 3 6954 70.00 F 1 2 3 6955 40.00 M 2 2 2 6956 72.00 M 0 2 3 6957 59.00 M 0 2 2 6958 53.00 M 34 2 2 6959 50.00 M 0 2 2 6960 52.00 F 1 2 2 6961 87.00 M 7 2 3 6962 54.00 F 5 2 2 6963 67.00 F 21 2 3 6964 43.00 M 8 2 2 6965 71.00 M 2 2 3 6966 48.00 F 15 2 2 6967 70.00 M 21 2 3 6968 32.00 M 0 2 2 6969 56.00 M 20 2 2 6970 75.00 M 12 2 3 6971 79.00 M 6 2 3 6972 67.00 M 5 2 3 6973 42.00 F 8 2 2 6974 75.00 M 8 2 3 6975 75.00 M 5 2 3 6976 69.00 M 5 2 3 6977 86.00 M 18 2 3 6978 51.00 M 5 2 2 6979 61.00 M 8 2 3 6980 67.00 F 5 2 3 6981 84.00 M 5 2 3 6982 76.00 M 10 2 3 6983 22.00 F 11 2 2 6984 75.00 M 11 2 3 6985 85.00 M 3 2 3 6986 55.00 M 4 2 2 6987 61.00 M 4 2 3 6988 55.00 M 4 2 2 6989 78.00 M 4 2 3 6990 89.00 F 9 2 3 6991 70.00 M 3 2 3 6992 47.00 M 14 2 2 6993 43.00 F 10 2 2 6994 80.00 M 8 2 3 6995 57.00 M 7 2 2 6996 38.00 M 33 2 2 6997 65.00 F 8 2 3 6998 60.00 M 9 2 3 6999 80.00 F 9 2 3 7000 65.00 M 0 2 3 7001 82.00 M 8 2 3 7002 65.00 F 3 2 3 7003 75.00 M 36 2 3 7004 58.00 M 0 2 2 7005 59.00 M 2 2 2 7006 57.00 M 7 2 2 7007 65.00 F 8 2 3 7008 65.00 M 4 2 3 7009 45.00 M 5 2 2 7010 84.00 F 1 2 3 7011 40.00 M 3 2 2 7012 41.00 M 3 2 2 7013 60.00 M 2 2 3 7014 46.00 M 1 2 2 7015 63.00 F 15 2 3 7016 87.00 F 6 2 3 7017 68.00 F 6 2 3 7018 80.00 F 3 2 3 7019 75.00 M 1 2 3 7020 65.00 M 11 2 3 7021 27.00 F 6 2 2 7022 70.00 F 7 2 3 7023 7.00 M 1 2 1 7024 73.00 M 0 2 3 7025 65.00 M 3 2 3 7026 50.00 M 3 2 2 7027 56.00 M 0 2 2 7028 71.00 M 5 2 3 7029 55.00 M 2 2 2 7030 83.00 M 5 2 3 7031 65.00 M 1 2 3 7032 67.00 M 0 2 3 7033 42.00 M 3 2 2 7034 83.00 F 0 2 3 7035 72.00 M 4 2 3 7036 65.00 M 3 2 3 7037 66.00 M 1 2 3 7038 70.00 F 2 2 3 7039 58.00 F 7 2 2 7040 35.00 F 3 2 2 7041 56.00 F 3 2 2 7042 57.00 F 4 2 2 7043 70.00 F 1 2 3 7044 80.00 M 3 2 3 7045 82.00 M 0 2 3 7046 55.00 M 1 2 2 7047 78.00 M 0 2 3 7048 56.00 M 1 2 2 7049 70.00 M 9 2 3 7050 60.00 F 0 2 3 7051 40.00 M 0 2 2 7052 73.00 M 1 2 3 7053 75.00 M 0 2 3 7054 37.00 M 1 2 2 7055 36.00 F 2 2 2 7056 32.00 F 5 2 2 7057 23.00 F 2 2 2 7058 72.00 F 45 2 3 7059 56.00 F 8 2 2 7060 33.00 F 4 2 2 7061 72.00 M 2 2 3 7062 67.00 F 22 2 3 7063 80.00 F 0 2 3 7064 56.00 M 7 2 2 7065 75.00 F 20 2 3 7066 58.00 M 7 2 2 7067 59.00 M 15 2 2 7068 59.00 M 0 2 2 7069 65.00 F 7 2 3 7070 64.00 F 6 2 3 7071 48.00 M 15 2 2 7072 58.00 F 14 2 2 7073 73.00 F 11 2 3 7074 68.00 F 6 2 3 7075 48.00 M 7 2 2 7076 72.00 M 13 2 3 7077 60.00 M 8 2 3 7078 45.00 M 9 2 2 7079 50.00 M 4 2 2 7080 70.00 M 9 2 3 7081 55.00 M 2 2 2 7082 55.00 F 1 2 2 7083 55.00 M 2 2 2 7084 63.00 F 6 2 3 7085 90.00 F 8 2 3 7086 79.00 M 11 2 3 7087 57.00 M 10 2 2 7088 64.00 M 10 2 3 7089 36.00 M 8 2 2 7090 66.00 M 8 2 3 7091 61.00 M 11 2 3 7092 61.00 M 6 2 3 7093 65.00 F 7 2 3 7094 65.00 M 6 2 3 7095 70.00 M 7 2 3 7096 60.00 F 2 2 3 7097 65.00 M 3 2 3 7098 52.00 F 2 2 2 7099 44.00 F 10 2 2 7100 96.00 M 13 2 3 7101 74.00 M 3 2 3 7102 63.00 F 4 2 3 7103 61.00 M 1 2 3 7104 65.00 F 6 2 3 7105 21.00 M 8 2 2 7106 52.00 M 3 2 2 7107 70.00 M 3 2 3 7108 63.00 F 4 2 3 7109 68.00 M 2 2 3 7110 33.00 M 3 2 2 7111 52.00 M 8 2 2 7112 69.00 M 9 2 3 7113 64.00 M 8 2 3 7114 70.00 F 1 2 3 7115 68.00 M 10 2 3 7116 74.00 F 6 2 3 7117 72.00 M 3 2 3 7118 50.00 F 6 2 2 7119 73.00 M 6 2 3 7120 70.00 M 4 2 3 7121 68.00 M 5 2 3 7122 59.00 M 7 2 2 7123 62.00 M 1 2 3 7124 87.00 M 5 2 3 7125 48.00 F 6 2 2 7126 58.00 F 4 2 2 7127 43.00 M 3 2 2 7128 73.00 F 5 2 3 7129 60.00 M 5 2 3 7130 49.00 F 5 2 2 7131 59.00 M 1 2 2 7132 68.00 F 1 2 3 7133 43.00 M 4 2 2 7134 70.00 F 4 2 3 7135 77.00 F 4 2 3 7136 74.00 F 3 2 3 7137 50.00 M 1 2 2 7138 40.00 F 0 2 2 7139 52.00 M 4 2 2 7140 35.00 M 0 2 2 7141 58.00 F 1 2 2 7142 40.00 F 0 2 2 7143 62.00 M 2 2 3 7144 75.00 M 5 2 3 7145 65.00 F 3 2 3 7146 78.00 F 3 2 3 7147 74.00 F 1 2 3 7148 60.00 F 0 2 3 7149 70.00 F 1 2 3 7150 69.00 M 0 2 3 7151 56.00 F 3 2 2 7152 83.00 M 1 2 3 7153 82.00 F 0 2 3 7154 39.00 M 7 2 2 7155 55.00 M 1 2 2 7156 73.00 M 1 2 3 7157 60.00 M 11 2 3 7158 70.00 F 0 2 3 7159 70.00 M 23 2 3 7160 85.00 M 4 2 3 7161 60.00 M 0 2 3 7162 65.00 F 0 2 3 7163 70.00 F 4 2 3 7164 44.00 M 1 2 2 7165 65.00 M 2 2 3 7166 57.00 M 4 2 2 7167 65.00 M 13 2 3 7168 55.00 M 2 2 2 7169 66.00 M 10 2 3 7170 71.00 M 6 2 3 7171 75.00 M 13 2 3 7172 56.00 M 15 2 2 7173 32.00 F 9 2 2 7174 42.00 M 3 2 2 7175 88.00 M 12 2 3 7176 74.00 M 6 2 3 7177 65.00 F 5 2 3 7178 54.00 M 13 2 2 7179 76.00 M 13 2 3 7180 86.00 M 4 2 3 7181 78.00 M 7 2 3 7182 54.00 M 1 2 2 7183 53.00 M 4 2 2 7184 64.00 M 7 2 3 7185 90.00 M 8 2 3 7186 40.00 F 1 2 2 7187 55.00 M 4 2 2 7188 65.00 F 6 2 3 7189 62.00 M 1 2 3 7190 72.00 M 3 2 3 7191 65.00 F 0 2 3 7192 51.00 M 5 2 2 7193 60.00 M 5 2 3 7194 60.00 M 1 2 3 7195 55.00 M 8 2 2 7196 71.00 M 3 2 3 7197 70.00 M 5 2 3 7198 71.00 F 4 2 3 7199 38.00 M 2 2 2 7200 29.00 M 7 2 2 7201 70.00 F 9 2 3 7202 55.00 M 7 2 2 7203 62.00 M 3 2 3 7204 64.00 M 4 2 3 7205 45.00 M 1 2 2 7206 76.00 M 7 2 3 7207 70.00 M 2 2 3 7208 42.00 M 6 2 2 7209 72.00 M 8 2 3 7210 58.00 M 1 2 2 7211 55.00 F 4 2 2 7212 55.00 M 1 2 2 7213 63.00 M 5 2 3 7214 65.00 M 8 2 3 7215 72.00 M 2 2 3 7216 42.00 F 3 2 2 7217 26.00 F 6 2 2 7218 69.00 M 7 2 3 7219 72.00 M 4 2 3 7220 75.00 M 8 2 3 7221 80.00 M 2 2 3 7222 56.00 M 7 2 2 7223 71.00 F 1 2 3 7224 55.00 M 2 2 2 7225 70.00 F 1 2 3 7226 75.00 M 5 2 3 7227 54.00 M 6 2 2 7228 58.00 F 0 2 2 7229 50.00 M 2 2 2 7230 65.00 F 2 2 3 7231 61.00 M 1 2 3 7232 46.00 F 1 2 2 7233 69.00 M 0 2 3 7234 69.00 M 0 2 3 7235 84.00 M 7 2 3 7236 73.00 M 2 2 3 7237 57.00 M 2 2 2 7238 63.00 F 10 2 3 7239 82.00 M 3 2 3 7240 43.00 M 1 2 2 7241 47.00 M 3 2 2 7242 52.00 M 5 2 2 7243 60.00 F 2 2 3 7244 65.00 M 0 2 3 7245 77.00 F 0 2 3 7246 60.00 M 4 2 3 7247 39.00 F 0 2 2 7248 47.00 M 0 2 2 7249 70.00 F 1 2 3 7250 71.00 F 0 2 3 7251 65.00 M 5 2 3 7252 50.00 M 1 2 2 7253 60.00 F 1 2 3 7254 76.00 M 0 2 3 7255 65.00 M 2 2 3 7256 65.00 F 1 2 3 7257 60.00 M 2 2 3 7258 70.00 F 3 2 3 7259 45.00 M 0 2 2 7260 54.00 M 1 2 2 7261 63.00 F 0 2 3 7262 62.00 F 2 2 3 7263 70.00 M 8 2 3 7264 53.00 M 11 2 2 7265 70.00 M 1 2 3 7266 63.00 M 2 2 3 7267 78.00 M 2 2 3 7268 52.00 M 3 2 2 7269 54.00 F 5 2 2 7270 62.00 M 4 2 3 7271 67.00 M 0 2 3 7272 61.00 M 0 2 3 7273 43.00 F 0 2 2 7274 65.00 M 0 2 3 7275 35.00 M 1 2 2 7276 72.00 M 0 2 3 7277 45.00 M 1 2 2 7278 76.00 M 12 2 3 7279 71.00 F 10 2 3 7280 48.00 M 3 2 2 7281 60.00 M 5 2 3 7282 35.00 M 1 2 2 7283 69.00 M 6 2 3 7284 67.00 M 18 2 3 7285 62.00 M 4 2 3 7286 65.00 F 0 2 3 7287 66.00 F 1 2 3 7288 63.00 M 25 2 3 7289 67.00 F 15 2 3 7290 50.00 M 11 2 2 7291 67.00 M 11 2 3 7292 67.00 M 2 2 3 7293 85.00 M 0 2 3 7294 45.00 M 1 2 2 7295 71.00 F 0 2 3 7296 49.00 M 7 2 2 7297 20.00 M 11 2 2 7298 77.00 F 11 2 3 7299 48.00 M 2 2 2 7300 73.00 F 14 2 3 7301 62.00 F 0 2 3 7302 45.00 M 12 2 2 7303 60.00 M 5 2 3 7304 45.00 M 1 2 2 7305 57.00 F 1 2 2 7306 83.00 M 0 2 3 7307 70.00 M 1 2 3 7308 60.00 F 14 2 3 7309 74.00 M 3 2 3 7310 26.00 M 10 2 2 7311 66.00 M 10 2 3 7312 50.00 M 12 2 2 7313 49.00 M 10 2 2 7314 53.00 F 0 2 2 7315 32.00 M 3 2 2 7316 57.00 M 3 2 2 7317 56.00 M 0 2 2 7318 65.00 M 1 2 3 7319 65.00 F 0 2 3 7320 45.00 F 7 2 2 7321 70.00 F 3 2 3 7322 42.00 M 9 2 2 7323 63.00 M 0 2 3 7324 66.00 M 5 2 3 7325 60.00 M 2 2 3 7326 65.00 M 5 2 3 7327 65.00 F 5 2 3 7328 54.00 M 0 2 2 7329 59.00 M 4 2 2 7330 58.00 M 2 2 2 7331 60.00 F 2 2 3 7332 54.00 M 2 2 2 7333 30.00 M 11 2 2 7334 50.00 F 5 2 2 7335 70.00 M 3 2 3 7336 58.00 M 6 2 2 7337 49.00 M 5 2 2 7338 68.00 M 2 2 3 7339 80.00 M 7 2 3 7340 58.00 M 8 2 2 7341 93.00 M 2 2 3 7342 60.00 M 5 2 3 7343 70.00 M 3 2 3 7344 65.00 M 1 2 3 7345 55.00 M 2 2 2 7346 42.00 M 3 2 2 7347 26.00 M 0 2 2 7348 46.00 F 3 2 2 7349 48.00 M 2 2 2 7350 55.00 F 1 2 2 7351 60.00 M 6 2 3 7352 49.00 M 2 2 2 7353 62.00 M 2 2 3 7354 66.00 M 2 2 3 7355 84.00 F 3 2 3 7356 73.00 F 0 2 3 7357 32.00 M 2 2 2 7358 59.00 M 0 2 2 7359 65.00 M 7 2 3 7360 77.00 M 4 2 3 7361 60.00 M 3 2 3 7362 58.00 M 0 2 2 7363 62.00 F 0 2 3 7364 68.00 F 1 2 3 7365 55.00 F 2 2 2 7366 52.00 F 2 2 2 7367 55.00 M 5 2 2 7368 41.00 M 0 2 2 7369 54.00 F 2 2 2 7370 65.00 F 0 2 3 7371 52.00 M 0 2 2 7372 57.00 M 2 2 2 7373 40.00 F 0 2 2 7374 63.00 M 0 2 3 7375 55.00 M 0 2 2 7376 41.00 M 0 2 2 7377 45.00 M 1 2 2 7378 50.00 M 23 2 2 7379 35.00 M 5 2 2 7380 80.00 M 16 2 3 7381 39.00 M 13 2 2 7382 65.00 M 16 2 3 7383 60.00 M 3 2 3 7384 76.00 M 15 2 3 7385 55.00 M 5 2 2 7386 70.00 M 0 2 3 7387 55.00 F 6 2 2 7388 55.00 F 3 2 2 7389 46.00 M 6 2 2 7390 37.00 M 9 2 2 7391 67.00 M 9 2 3 7392 45.00 F 10 2 2 7393 72.00 M 9 2 3 7394 80.00 M 9 2 3 7395 72.00 F 7 2 3 7396 59.00 F 8 2 2 7397 57.00 F 8 2 2 7398 50.00 F 7 2 2 7399 56.00 F 7 2 2 7400 70.00 M 10 2 3 7401 60.00 M 5 2 3 7402 75.00 M 2 2 3 7403 74.00 M 6 2 3 7404 65.00 F 7 2 3 7405 79.00 F 5 2 3 7406 72.00 M 5 2 3 7407 65.00 F 5 2 3 7408 63.00 F 6 2 3 7409 65.00 M 2 2 3 7410 43.00 M 1 2 2 7411 46.00 M 5 2 2 7412 51.00 M 0 2 2 7413 71.00 F 8 2 3 7414 69.00 F 4 2 3 7415 80.00 M 2 2 3 7416 70.00 M 2 2 3 7417 69.00 M 3 2 3 7418 74.00 M 1 2 3 7419 40.00 M 2 2 2 7420 35.00 M 2 2 2 7421 77.00 F 7 2 3 7422 91.00 F 1 2 3 7423 70.00 M 6 2 3 7424 42.00 M 0 2 2 7425 65.00 F 3 2 3 7426 70.00 M 2 2 3 7427 67.00 M 8 2 3 7428 56.00 M 1 2 2 7429 36.00 M 0 2 2 7430 63.00 M 2 2 3 7431 54.00 M 2 2 2 7432 60.00 M 4 2 3 7433 66.00 F 2 2 3 7434 56.00 M 0 2 2 7435 27.00 M 2 2 2 7436 60.00 M 0 2 3 7437 55.00 M 1 2 2 7438 73.00 M 1 2 3 7439 54.00 F 0 2 2 7440 60.00 M 1 2 3 7441 54.00 M 0 2 2 7442 40.00 M 0 2 2 7443 60.00 M 1 2 3 7444 62.00 M 1 2 3 7445 68.00 M 7 2 3 7446 97.00 M 29 2 3 7447 75.00 M 19 2 3 7448 62.00 M 15 2 3 7449 80.00 M 11 2 3 7450 40.00 M 15 2 2 7451 71.00 M 9 2 3 7452 59.00 M 3 2 2 7453 62.00 M 14 2 3 7454 75.00 F 15 2 3 7455 65.00 M 12 2 3 7456 86.00 M 4 2 3 7457 80.00 F 3 2 3 7458 62.00 M 7 2 3 7459 80.00 M 7 2 3 7460 83.00 M 0 2 3 7461 65.00 F 5 2 3 7462 53.00 M 11 2 2 7463 64.00 M 2 2 3 7464 52.00 F 11 2 2 7465 72.00 M 8 2 3 7466 66.00 F 6 2 3 7467 63.00 M 15 2 3 7468 0.00 M 10 2 1 7469 68.00 M 1 2 3 7470 82.00 F 2 2 3 7471 62.00 M 4 2 3 7472 70.00 F 8 2 3 7473 62.00 M 7 2 3 7474 89.00 M 8 2 3 7475 69.00 M 9 2 3 7476 80.00 M 8 2 3 7477 50.00 M 4 2 2 7478 80.00 M 9 2 3 7479 42.00 M 10 2 2 7480 56.00 F 6 2 2 7481 85.00 F 8 2 3 7482 85.00 M 3 2 3 7483 69.00 M 6 2 3 7484 61.00 F 9 2 3 7485 78.00 F 9 2 3 7486 81.00 M 2 2 3 7487 71.00 M 4 2 3 7488 58.00 M 0 2 2 7489 54.00 F 5 2 2 7490 62.00 M 7 2 3 7491 69.00 M 5 2 3 7492 93.00 M 0 2 3 7493 64.00 F 4 2 3 7494 50.00 M 3 2 2 7495 52.00 M 9 2 2 7496 65.00 M 2 2 3 7497 74.00 M 7 2 3 7498 68.00 M 2 2 3 7499 30.00 M 5 2 2 7500 77.00 M 7 2 3 7501 64.00 M 5 2 3 7502 66.00 M 6 2 3 7503 70.00 F 1 2 3 7504 65.00 M 6 2 3 7505 80.00 M 4 2 3 7506 70.00 F 1 2 3 7507 66.00 M 6 2 3 7508 68.00 M 3 2 3 7509 80.00 F 1 2 3 7510 45.00 F 0 2 2 7511 64.00 F 15 2 3 7512 86.00 M 0 2 3 7513 66.00 M 5 2 3 7514 65.00 F 3 2 3 7515 72.00 M 8 2 3 7516 70.00 M 1 2 3 7517 53.00 M 3 2 2 7518 73.00 F 5 2 3 7519 47.00 M 0 2 2 7520 48.00 M 4 2 2 7521 45.00 F 12 2 2 7522 62.00 M 2 2 3 7523 56.00 M 1 2 2 7524 55.00 M 2 2 2 7525 71.00 F 3 2 3 7526 70.00 F 2 2 3 7527 70.00 M 2 2 3 7528 60.00 M 1 2 3 7529 54.00 F 1 2 2 7530 73.00 F 0 2 3 7531 30.00 M 0 2 2 7532 52.00 F 0 2 2 7533 19.00 M 0 2 2 7534 65.00 M 0 2 3 7535 62.00 M 2 2 3 7536 36.00 F 1 2 2 7537 42.00 M 0 2 2 7538 61.00 M 0 2 3 7539 45.00 M 0 2 2 7540 72.00 M 0 2 3 7541 56.00 M 0 2 2 7542 54.00 M 0 2 2 7543 74.00 M 23 2 3 7544 68.00 M 25 2 3 7545 50.00 F 4 2 2 7546 60.00 F 6 2 3 7547 50.00 M 4 2 2 7548 68.00 F 19 2 3 7549 68.00 F 1 2 3 7550 58.00 F 19 2 2 7551 68.00 F 16 2 3 7552 51.00 M 13 2 2 7553 50.00 F 11 2 2 7554 66.00 F 2 2 3 7555 51.00 M 14 2 2 7556 75.00 M 9 2 3 7557 67.00 M 1 2 3 7558 68.00 M 7 2 3 7559 61.00 F 1 2 3 7560 74.00 F 1 2 3 7561 52.00 F 7 2 2 7562 92.00 M 1 2 3 7563 66.00 M 3 2 3 7564 67.00 F 6 2 3 7565 50.00 F 3 2 2 7566 67.00 M 10 2 3 7567 35.00 F 1 2 2 7568 65.00 M 2 2 3 7569 65.00 M 0 2 3 7570 72.00 M 12 2 3 7571 45.00 F 1 2 2 7572 62.00 M 4 2 3 7573 66.00 M 3 2 3 7574 52.00 F 12 2 2 7575 56.00 F 8 2 2 7576 53.00 M 12 2 2 7577 66.00 M 9 2 3 7578 43.00 M 0 2 2 7579 79.00 M 5 2 3 7580 60.00 M 6 2 3 7581 57.00 M 12 2 2 7582 88.00 M 5 2 3 7583 66.00 M 11 2 3 7584 70.00 M 2 2 3 7585 45.00 M 6 2 2 7586 65.00 M 5 2 3 7587 80.00 M 1 2 3 7588 65.00 M 5 2 3 7589 74.00 M 12 2 3 7590 76.00 M 0 2 3 7591 36.00 M 6 2 2 7592 65.00 F 0 2 3 7593 47.00 M 1 2 2 7594 85.00 M 38 2 3 7595 40.00 M 0 2 2 7596 73.00 M 10 2 3 7597 60.00 M 5 2 3 7598 54.00 M 5 2 2 7599 56.00 M 1 2 2 7600 74.00 M 1 2 3 7601 65.00 M 4 2 3 7602 53.00 M 1 2 2 7603 67.00 M 9 2 3 7604 77.00 F 1 2 3 7605 68.00 M 1 2 3 7606 78.00 M 4 2 3 7607 72.00 M 4 2 3 7608 85.00 F 10 2 3 7609 75.00 F 5 2 3 7610 56.00 M 2 2 2 7611 54.00 F 1 2 2 7612 60.00 F 5 2 3 7613 68.00 M 10 2 3 7614 47.00 F 3 2 2 7615 50.00 M 4 2 2 7616 83.00 M 9 2 3 7617 85.00 M 8 2 3 7618 75.00 F 9 2 3 7619 64.00 M 10 2 3 7620 65.00 M 6 2 3 7621 78.00 F 4 2 3 7622 67.00 F 4 2 3 7623 58.00 M 2 2 2 7624 58.00 F 2 2 2 7625 65.00 M 1 2 3 7626 70.00 M 31 2 3 7627 65.00 M 0 2 3 7628 70.00 F 4 2 3 7629 59.00 M 7 2 2 7630 64.00 F 5 2 3 7631 60.00 M 2 2 3 7632 70.00 M 4 2 3 7633 57.00 M 5 2 2 7634 72.00 M 6 2 3 7635 42.00 M 0 2 2 7636 74.00 M 3 2 3 7637 68.00 F 3 2 3 7638 45.00 M 3 2 2 7639 59.00 M 6 2 2 7640 55.00 M 5 2 2 7641 70.00 F 8 2 3 7642 52.00 M 5 2 2 7643 32.00 F 1 2 2 7644 43.00 F 1 2 2 7645 55.00 F 3 2 2 7646 42.00 M 5 2 2 7647 49.00 M 2 2 2 7648 68.00 F 0 2 3 7649 68.00 F 2 2 3 7650 87.00 M 6 2 3 7651 20.00 F 1 2 2 7652 49.00 M 14 2 2 7653 50.00 M 0 2 2 7654 55.00 F 3 2 2 7655 57.00 M 4 2 2 7656 45.00 M 5 2 2 7657 63.00 M 3 2 3 7658 34.00 F 1 2 2 7659 70.00 F 1 2 3 7660 62.00 M 0 2 3 7661 66.00 M 2 2 3 7662 54.00 M 3 2 2 7663 65.00 F 5 2 3 7664 84.00 F 1 2 3 7665 70.00 M 1 2 3 7666 69.00 M 3 2 3 7667 85.00 M 2 2 3 7668 62.00 M 1 2 3 7669 72.00 M 1 2 3 7670 50.00 M 0 2 2 7671 70.00 M 0 2 3 7672 60.00 F 0 2 3 7673 70.00 F 4 2 3 7674 76.00 M 9 2 3 7675 71.00 F 4 2 3 7676 60.00 M 0 2 3 7677 64.00 M 3 2 3 7678 68.00 M 1 2 3 7679 68.00 F 5 2 3 7680 67.00 M 5 2 3 7681 52.00 F 0 2 2 7682 85.00 F 7 2 3 7683 56.00 M 3 2 2 7684 70.00 M 0 2 3 7685 45.00 M 7 2 2 7686 63.00 F 3 2 3 7687 64.00 M 5 2 3 7688 87.00 M 2 2 3 7689 40.00 M 3 2 2 7690 86.00 F 1 2 3 7691 45.00 F 3 2 2 7692 67.00 M 1 2 3 7693 50.00 M 2 2 2 7694 58.00 M 3 2 2 7695 55.00 M 1 2 2 7696 75.00 M 3 2 3 7697 58.00 M 0 2 2 7698 21.00 M 0 2 2 7699 54.00 M 2 2 2 7700 56.00 M 3 2 2 7701 70.00 M 2 2 3 7702 73.00 M 0 2 3 7703 84.00 M 1 2 3 7704 75.00 M 1 2 3 7705 48.00 M 1 2 2 7706 50.00 F 1 2 2 7707 56.00 M 0 2 2 7708 80.00 M 3 2 3 7709 75.00 M 2 2 3 7710 46.00 F 2 2 2 7711 62.00 M 1 2 3 7712 65.00 F 2 2 3 7713 65.00 M 2 2 3 7714 69.00 M 1 2 3 7715 96.00 F 3 2 3 7716 79.00 F 6 2 3 7717 70.00 F 34 2 3 7718 73.00 M 23 2 3 7719 86.00 M 13 2 3 7720 59.00 M 8 2 2 7721 75.00 M 16 2 3 7722 70.00 M 17 2 3 7723 82.00 M 19 2 3 7724 34.00 M 17 2 2 7725 60.00 M 3 2 3 7726 65.00 M 14 2 3 7727 62.00 M 13 2 3 7728 59.00 M 6 2 2 7729 65.00 M 0 2 3 7730 78.00 F 0 2 3 7731 50.00 F 0 2 2 7732 63.00 F 5 2 3 7733 65.00 M 6 2 3 7734 21.00 F 3 2 2 7735 57.00 F 8 2 2 7736 67.00 M 18 2 3 7737 51.00 F 0 2 2 7738 71.00 F 0 2 3 7739 78.00 M 0 2 3 7740 69.00 M 17 2 3 7741 60.00 M 4 2 3 7742 84.00 F 0 2 3 7743 63.00 M 0 2 3 7744 70.00 M 1 2 3 7745 52.00 M 8 2 2 7746 36.00 M 2 2 2 7747 65.00 F 0 2 3 7748 72.00 M 2 2 3 7749 30.00 F 7 2 2 7750 74.00 M 0 2 3 7751 49.00 M 0 2 2 7752 75.00 M 1 2 3 7753 60.00 M 13 2 3 7754 49.00 M 2 2 2 7755 73.00 M 25 2 3 7756 57.00 M 1 2 2 7757 82.00 M 1 2 3 7758 75.00 M 6 2 3 7759 68.00 M 9 2 3 7760 50.00 M 4 2 2 7761 51.00 F 5 2 2 7762 84.00 M 2 2 3 7763 72.00 M 0 2 3 7764 66.00 M 5 2 3 7765 60.00 F 0 2 3 7766 72.00 M 7 2 3 7767 72.00 M 7 2 3 7768 59.00 M 6 2 2 7769 62.00 M 13 2 3 7770 68.00 M 3 2 3 7771 35.00 F 0 2 2 7772 85.00 F 2 2 3 7773 59.00 F 3 2 2 7774 85.00 M 2 2 3 7775 57.00 F 5 2 2 7776 39.00 M 4 2 2 7777 62.00 F 1 2 3 7778 55.00 M 5 2 2 7779 64.00 M 7 2 3 7780 61.00 F 2 2 3 7781 65.00 M 1 2 3 7782 51.00 M 6 2 2 7783 75.00 M 2 2 3 7784 72.00 M 4 2 3 7785 75.00 M 5 2 3 7786 62.00 M 0 2 3 7787 70.00 F 0 2 3 7788 65.00 F 2 2 3 7789 60.00 F 4 2 3 7790 70.00 F 5 2 3 7791 44.00 M 5 2 2 7792 58.00 M 0 2 2 7793 62.00 M 5 2 3 7794 50.00 M 14 2 2 7795 81.00 M 18 2 3 7796 64.00 M 2 2 3 7797 31.00 M 1 2 2 7798 73.00 M 0 2 3 7799 60.00 F 5 2 3 7800 64.00 M 1 2 3 7801 83.00 M 0 2 3 7802 48.00 M 0 2 2 7803 54.00 M 2 2 2 7804 65.00 M 2 2 3 7805 60.00 M 0 2 3 7806 68.00 M 0 2 3 7807 53.00 M 0 2 2 7808 38.00 M 1 2 2 7809 63.00 M 1 2 3 7810 61.00 M 1 2 3 7811 65.00 F 3 2 3 7812 73.00 M 0 2 3 7813 71.00 M 1 2 3 7814 62.00 F 1 2 3 7815 44.00 M 1 2 2 7816 53.00 M 1 2 2 7817 70.00 M 0 2 3 7818 63.00 M 1 2 3 7819 55.00 F 2 2 2 7820 42.00 M 1 2 2 7821 52.00 M 10 2 2 7822 73.00 M 0 2 3 7823 69.00 M 2 2 3 7824 88.00 M 0 2 3 7825 69.00 M 0 2 3 7826 65.00 F 1 2 3 7827 72.00 M 1 2 3 7828 55.00 F 1 2 2 7829 46.00 F 2 2 2 7830 56.00 M 0 2 2 7831 65.00 M 17 2 3 7832 67.00 M 0 2 3 7833 64.00 M 0 2 3 7834 60.00 F 13 2 3 7835 52.00 M 0 2 2 7836 63.00 M 5 2 3 7837 72.00 M 13 2 3 7838 52.00 M 13 2 2 7839 50.00 F 16 2 2 7840 68.00 M 10 2 3 7841 68.00 M 8 2 3 7842 57.00 M 2 2 2 7843 50.00 F 1 2 2 7844 60.00 M 6 2 3 7845 62.00 M 10 2 3 7846 59.00 F 0 2 2 7847 68.00 F 3 2 3 7848 96.00 M 5 2 3 7849 80.00 M 12 2 3 7850 80.00 M 7 2 3 7851 65.00 F 3 2 3 7852 64.00 F 2 2 3 7853 40.00 F 9 2 2 7854 72.00 M 6 2 3 7855 50.00 M 7 2 2 7856 51.00 F 5 2 2 7857 65.00 F 6 2 3 7858 75.00 M 7 2 3 7859 80.00 M 1 2 3 7860 49.00 M 0 2 2 7861 66.00 F 7 2 3 7862 12.00 M 0 2 1 7863 85.00 M 8 2 3 7864 76.00 M 4 2 3 7865 60.00 F 1 2 3 7866 80.00 F 4 2 3 7867 75.00 M 8 2 3 7868 33.00 M 9 2 2 7869 73.00 F 6 2 3 7870 80.00 F 2 2 3 7871 19.00 F 1 2 2 7872 54.00 M 8 2 2 7873 66.00 M 5 2 3 7874 57.00 M 4 2 2 7875 62.00 M 2 2 3 7876 83.00 M 1 2 3 7877 65.00 M 0 2 3 7878 50.00 F 4 2 2 7879 50.00 F 6 2 2 7880 32.00 M 2 2 2 7881 77.00 F 1 2 3 7882 55.00 F 3 2 2 7883 76.00 M 1 2 3 7884 61.00 M 0 2 3 7885 47.00 M 5 2 2 7886 50.00 M 5 2 2 7887 55.00 M 4 2 2 7888 73.00 F 6 2 3 7889 64.00 M 1 2 3 7890 85.00 F 6 2 3 7891 35.00 M 4 2 2 7892 55.00 F 2 2 2 7893 68.00 M 3 2 3 7894 50.00 F 2 2 2 7895 75.00 M 0 2 3 7896 76.00 F 1 2 3 7897 56.00 M 3 2 2 7898 48.00 F 13 2 2 7899 80.00 M 1 2 3 7900 72.00 M 3 2 3 7901 81.00 F 1 2 3 7902 1.00 F 0 2 1 7903 40.00 F 4 2 2 7904 69.00 M 4 2 3 7905 64.00 M 2 2 3 7906 72.00 M 7 2 3 7907 93.00 M 1 2 3 7908 97.00 M 5 2 3 7909 32.00 M 2 2 2 7910 75.00 F 2 2 3 7911 54.00 M 1 2 2 7912 38.00 F 1 2 2 7913 64.00 M 1 2 3 7914 60.00 F 1 2 3 7915 61.00 M 10 2 3 7916 60.00 M 0 2 3 7917 78.00 F 0 2 3 7918 65.00 F 2 2 3 7919 59.00 M 0 2 2 7920 58.00 M 2 2 2 7921 85.00 M 2 2 3 7922 55.00 M 0 2 2 7923 73.00 M 3 2 3 7924 48.00 F 4 2 2 7925 43.00 F 4 2 2 7926 84.00 M 1 2 3 7927 85.00 M 0 2 3 7928 38.00 M 0 2 2 7929 51.00 M 1 2 2 7930 60.00 M 0 2 3 7931 70.00 M 0 2 3 7932 85.00 M 15 2 3 7933 61.00 M 16 2 3 7934 75.00 M 21 2 3 7935 62.00 M 11 2 3 7936 75.00 M 17 2 3 7937 75.00 F 11 2 3 7938 70.00 M 1 2 3 7939 60.00 F 14 2 3 7940 50.00 M 1 2 2 7941 75.00 M 14 2 3 7942 63.00 F 13 2 3 7943 35.00 M 10 2 2 7944 56.00 M 7 2 2 7945 75.00 M 0 2 3 7946 69.00 M 6 2 3 7947 68.00 M 3 2 3 7948 70.00 M 5 2 3 7949 50.00 M 11 2 2 7950 65.00 F 4 2 3 7951 62.00 F 1 2 3 7952 72.00 M 0 2 3 7953 63.00 M 8 2 3 7954 75.00 F 6 2 3 7955 80.00 M 2 2 3 7956 72.00 F 5 2 3 7957 60.00 F 9 2 3 7958 75.00 M 0 2 3 7959 63.00 M 10 2 3 7960 65.00 F 2 2 3 7961 70.00 M 2 2 3 7962 84.00 M 9 2 3 7963 70.00 F 8 2 3 7964 65.00 M 8 2 3 7965 85.00 M 10 2 3 7966 58.00 M 2 2 2 7967 85.00 M 1 2 3 7968 61.00 M 4 2 3 7969 66.00 F 7 2 3 7970 80.00 F 8 2 3 7971 58.00 F 6 2 2 7972 66.00 M 10 2 3 7973 71.00 M 7 2 3 7974 59.00 M 8 2 2 7975 65.00 F 7 2 3 7976 78.00 M 4 2 3 7977 80.00 M 3 2 3 7978 82.00 M 3 2 3 7979 62.00 F 4 2 3 7980 82.00 M 2 2 3 7981 48.00 M 5 2 2 7982 62.00 M 3 2 3 7983 60.00 M 3 2 3 7984 77.00 M 5 2 3 7985 40.00 M 6 2 2 7986 50.00 M 5 2 2 7987 73.00 M 5 2 3 7988 65.00 F 7 2 3 7989 48.00 F 5 2 2 7990 64.00 M 3 2 3 7991 67.00 M 2 2 3 7992 65.00 F 4 2 3 7993 65.00 M 0 2 3 7994 53.00 M 3 2 2 7995 65.00 M 4 2 3 7996 66.00 M 5 2 3 7997 71.00 M 3 2 3 7998 52.00 M 0 2 2 7999 71.00 F 6 2 3 8000 75.00 M 6 2 3 8001 72.00 M 3 2 3 8002 66.00 M 2 2 3 8003 42.00 M 2 2 2 8004 67.00 M 3 2 3 8005 53.00 F 1 2 2 8006 49.00 M 2 2 2 8007 62.00 M 10 2 3 8008 63.00 M 2 2 3 8009 69.00 M 1 2 3 8010 65.00 F 1 2 3 8011 58.00 M 2 2 2 8012 72.00 M 2 2 3 8013 43.00 M 1 2 2 8014 70.00 M 2 2 3 8015 42.00 M 0 2 2 8016 65.00 M 4 2 3 8017 66.00 M 4 2 3 8018 70.00 F 0 2 3 8019 50.00 M 1 2 2 8020 70.00 M 1 2 3 8021 35.00 M 0 2 2 8022 65.00 M 3 2 3 8023 65.00 M 2 2 3 8024 59.00 M 15 2 2 8025 60.00 M 0 2 3 8026 65.00 M 1 2 3 8027 72.00 F 0 2 3 8028 60.00 M 1 2 3 8029 48.00 M 1 2 2 8030 58.00 F 2 2 2 8031 58.00 M 0 2 2 8032 49.00 M 2 2 2 8033 66.00 M 3 2 3 8034 70.00 M 2 2 3 8035 61.00 M 4 2 3 8036 60.00 F 3 2 3 8037 65.00 M 2 2 3 8038 80.00 M 23 2 3 8039 85.00 M 2 2 3 8040 70.00 M 1 2 3 8041 50.00 F 0 2 2 8042 25.00 M 1 2 2 8043 62.00 M 1 2 3 8044 52.00 M 1 2 2 8045 68.00 M 2 2 3 8046 59.00 F 2 2 2 8047 55.00 M 0 2 2 8048 65.00 M 0 2 3 8049 60.00 M 0 2 3 8050 65.00 F 0 2 3 8051 45.00 F 1 2 2 8052 42.00 M 2 2 2 8053 52.00 F 1 2 2 8054 65.00 F 19 2 3 8055 65.00 M 22 2 3 8056 26.00 M 24 2 2 8057 58.00 F 3 2 2 8058 56.00 M 17 2 2 8059 65.00 F 14 2 3 8060 76.00 M 22 2 3 8061 77.00 F 17 2 3 8062 40.00 M 1 2 2 8063 71.00 M 0 2 3 8064 68.00 M 6 2 3 8065 49.00 M 6 2 2 8066 74.00 M 7 2 3 8067 75.00 F 14 2 3 8068 71.00 F 0 2 3 8069 75.00 F 1 2 3 8070 60.00 M 0 2 3 8071 58.00 M 1 2 2 8072 72.00 M 5 2 3 8073 74.00 M 7 2 3 8074 93.00 M 2 2 3 8075 73.00 M 3 2 3 8076 45.00 M 11 2 2 8077 70.00 M 1 2 3 8078 79.00 M 7 2 3 8079 70.00 M 0 2 3 8080 65.00 M 7 2 3 8081 89.00 M 4 2 3 8082 68.00 M 6 2 3 8083 68.00 M 0 2 3 8084 73.00 M 3 2 3 8085 65.00 M 5 2 3 8086 57.00 F 1 2 2 8087 41.00 F 11 2 2 8088 72.00 M 0 2 3 8089 48.00 M 7 2 2 8090 40.00 M 0 2 2 8091 60.00 M 6 2 3 8092 38.00 M 6 2 2 8093 55.00 M 0 2 2 8094 71.00 F 6 2 3 8095 64.00 F 6 2 3 8096 65.00 M 8 2 3 8097 63.00 M 3 2 3 8098 65.00 F 3 2 3 8099 60.00 M 1 2 3 8100 65.00 M 4 2 3 8101 70.00 M 3 2 3 8102 64.00 M 4 2 3 8103 62.00 M 3 2 3 8104 58.00 M 4 2 2 8105 23.00 M 5 2 2 8106 95.00 M 5 2 3 8107 45.00 M 0 2 2 8108 57.00 M 4 2 2 8109 52.00 F 6 2 2 8110 43.00 M 7 2 2 8111 52.00 M 3 2 2 8112 82.00 M 3 2 3 8113 67.00 M 1 2 3 8114 58.00 M 2 2 2 8115 55.00 F 2 2 2 8116 56.00 F 3 2 2 8117 46.00 M 1 2 2 8118 95.00 M 2 2 3 8119 52.00 M 2 2 2 8120 71.00 M 5 2 3 8121 40.00 F 2 2 2 8122 83.00 M 0 2 3 8123 50.00 M 2 2 2 8124 74.00 M 3 2 3 8125 65.00 F 1 2 3 8126 52.00 M 4 2 2 8127 84.00 F 0 2 3 8128 72.00 M 3 2 3 8129 86.00 M 3 2 3 8130 67.00 F 0 2 3 8131 1.00 M 0 2 1 8132 60.00 M 4 2 3 8133 60.00 F 3 2 3 8134 58.00 M 2 2 2 8135 88.00 M 0 2 3 8136 74.00 M 0 2 3 8137 65.00 M 27 2 3 8138 76.00 M 15 2 3 8139 58.00 M 0 2 2 8140 67.00 M 8 2 3 8141 49.00 M 0 2 2 8142 70.00 M 2 2 3 8143 44.00 M 12 2 2 8144 64.00 M 2 2 3 8145 67.00 F 6 2 3 8146 58.00 F 7 2 2 8147 70.00 F 7 2 3 8148 50.00 M 6 2 2 8149 56.00 M 5 2 2 8150 83.00 M 1 2 3 8151 67.00 M 3 2 3 8152 77.00 M 17 2 3 8153 76.00 M 7 2 3 8154 75.00 F 1 2 3 8155 54.00 F 0 2 2 8156 70.00 M 2 2 3 8157 68.00 M 3 2 3 8158 46.00 M 1 2 2 8159 79.00 F 2 2 3 8160 82.00 M 6 2 3 8161 69.00 M 5 2 3 8162 83.00 F 8 2 3 8163 65.00 M 3 2 3 8164 78.00 M 2 2 3 8165 65.00 M 2 2 3 8166 48.00 F 4 2 2 8167 48.00 F 2 2 2 8168 89.00 F 2 2 3 8169 68.00 F 6 2 3 8170 75.00 M 3 2 3 8171 54.00 F 1 2 2 8172 41.00 M 0 2 2 8173 65.00 M 0 2 3 8174 60.00 F 1 2 3 8175 72.00 M 34 2 3 8176 64.00 M 23 2 3 8177 82.00 M 13 2 3 8178 52.00 M 17 2 2 8179 65.00 M 3 2 3 8180 85.00 M 12 2 3 8181 74.00 M 10 2 3 8182 67.00 F 12 2 3 8183 62.00 F 2 2 3 8184 78.00 M 13 2 3 8185 58.00 F 9 2 2 8186 50.00 M 14 2 2 8187 62.00 F 0 2 3 8188 85.00 M 2 2 3 8189 65.00 M 2 2 3 8190 69.00 M 10 2 3 8191 56.00 F 3 2 2 8192 67.00 M 3 2 3 8193 52.00 M 9 2 2 8194 81.00 M 11 2 3 8195 71.00 M 8 2 3 8196 74.00 M 3 2 3 8197 67.00 M 7 2 3 8198 45.00 F 7 2 2 8199 62.00 M 11 2 3 8200 54.00 M 0 2 2 8201 86.00 M 7 2 3 8202 32.00 M 0 2 2 8203 63.00 M 9 2 3 8204 65.00 M 7 2 3 8205 58.00 M 5 2 2 8206 50.00 M 0 2 2 8207 80.00 M 0 2 3 8208 59.00 F 4 2 2 8209 30.00 F 3 2 2 8210 72.00 F 3 2 3 8211 73.00 M 5 2 3 8212 95.00 M 3 2 3 8213 67.00 M 3 2 3 8214 53.00 M 4 2 2 8215 60.00 F 0 2 3 8216 80.00 F 4 2 3 8217 62.00 M 1 2 3 8218 54.00 M 0 2 2 8219 75.00 M 2 2 3 8220 85.00 F 3 2 3 8221 71.00 F 7 2 3 8222 71.00 F 2 2 3 8223 40.00 M 0 2 2 8224 72.00 M 1 2 3 8225 54.00 M 1 2 2 8226 97.00 M 1 2 3 8227 60.00 M 1 2 3 8228 52.00 M 0 2 2 8229 76.00 M 0 2 3 8230 88.00 M 0 2 3 8231 82.00 M 1 2 3 8232 70.00 M 2 2 3 8233 54.00 F 1 2 2 8234 73.00 M 0 2 3 8235 70.00 M 0 2 3 8236 67.00 M 4 2 3 8237 50.00 M 0 2 2 8238 70.00 F 1 2 3 8239 60.00 M 0 2 3 8240 33.00 F 2 2 2 8241 60.00 F 5 2 3 8242 79.00 M 4 2 3 8243 74.00 M 21 2 3 8244 59.00 M 14 2 2 8245 60.00 F 11 2 3 8246 81.00 M 8 2 3 8247 65.00 F 7 2 3 8248 65.00 M 12 2 3 8249 50.00 M 17 2 2 8250 65.00 M 12 2 3 8251 84.00 M 17 2 3 8252 60.00 M 13 2 3 8253 69.00 M 18 2 3 8254 75.00 M 17 2 3 8255 87.00 F 12 2 3 8256 68.00 M 11 2 3 8257 46.00 F 8 2 2 8258 67.00 M 17 2 3 8259 56.00 M 9 2 2 8260 60.00 M 10 2 3 8261 61.00 M 8 2 3 8262 68.00 F 8 2 3 8263 76.00 M 8 2 3 8264 63.00 M 12 2 3 8265 79.00 M 7 2 3 8266 45.00 M 10 2 2 8267 73.00 M 12 2 3 8268 62.00 M 2 2 3 8269 45.00 M 8 2 2 8270 61.00 M 5 2 3 8271 66.00 M 23 2 3 8272 85.00 M 10 2 3 8273 47.00 M 3 2 2 8274 74.00 M 10 2 3 8275 51.00 M 4 2 2 8276 60.00 M 4 2 3 8277 65.00 F 1 2 3 8278 75.00 M 0 2 3 8279 67.00 M 5 2 3 8280 50.00 M 1 2 2 8281 70.00 M 0 2 3 8282 60.00 M 1 2 3 8283 57.00 M 1 2 2 8284 29.00 M 1 2 2 8285 64.00 M 4 2 3 8286 55.00 M 3 2 2 8287 50.00 M 0 2 2 8288 66.00 F 0 2 3 8289 52.00 M 2 2 2 8290 73.00 M 9 2 3 8291 54.00 M 9 2 2 8292 80.00 F 0 2 3 8293 57.00 F 8 2 2 8294 58.00 M 1 2 2 8295 65.00 F 2 2 3 8296 56.00 M 6 2 2 8297 67.00 M 2 2 3 8298 64.00 M 1 2 3 8299 40.00 M 23 2 2 8300 52.00 F 2 2 2 8301 59.00 M 1 2 2 8302 76.00 M 2 2 3 8303 73.00 F 4 2 3 8304 60.00 M 0 2 3 8305 70.00 F 1 2 3 8306 31.00 M 0 2 2 8307 60.00 F 0 2 3 8308 53.00 M 0 2 2 8309 74.00 M 1 2 3 8310 85.00 M 0 2 3 8311 60.00 M 1 2 3 8312 80.00 M 0 2 3 8313 60.00 M 1 2 3 8314 67.00 M 2 2 3 8315 40.00 M 3 2 2 8316 64.00 M 4 2 3 8317 35.00 M 1 2 2 8318 85.00 M 1 2 3 8319 45.00 M 0 2 2 8320 65.00 F 4 2 3 8321 70.00 M 0 2 3 8322 70.00 M 0 2 3 8323 65.00 M 1 2 3 8324 70.00 M 0 2 3 8325 56.00 M 3 2 2 8326 71.00 M 28 2 3 8327 45.00 M 18 2 2 8328 75.00 M 16 2 3 8329 72.00 F 21 2 3 8330 74.00 M 9 2 3 8331 69.00 M 16 2 3 8332 65.00 M 9 2 3 8333 83.00 F 6 2 3 8334 65.00 M 14 2 3 8335 40.00 M 12 2 2 8336 58.00 M 11 2 2 8337 56.00 M 11 2 2 8338 60.00 M 8 2 3 8339 83.00 M 5 2 3 8340 75.00 M 1 2 3 8341 63.00 M 8 2 3 8342 45.00 M 12 2 2 8343 65.00 F 10 2 3 8344 60.00 M 9 2 3 8345 50.00 M 10 2 2 8346 85.00 M 2 2 3 8347 80.00 M 4 2 3 8348 70.00 F 9 2 3 8349 76.00 F 10 2 3 8350 63.00 M 7 2 3 8351 65.00 M 11 2 3 8352 62.00 F 3 2 3 8353 47.00 M 1 2 2 8354 66.00 M 10 2 3 8355 62.00 M 9 2 3 8356 57.00 M 3 2 2 8357 65.00 M 2 2 3 8358 75.00 M 9 2 3 8359 78.00 M 4 2 3 8360 85.00 M 3 2 3 8361 48.00 M 4 2 2 8362 42.00 M 10 2 2 8363 35.00 M 8 2 2 8364 82.00 F 5 2 3 8365 43.00 M 2 2 2 8366 72.00 F 2 2 3 8367 55.00 M 4 2 2 8368 60.00 M 2 2 3 8369 65.00 F 8 2 3 8370 72.00 F 3 2 3 8371 74.00 M 2 2 3 8372 56.00 M 3 2 2 8373 66.00 F 1 2 3 8374 62.00 F 10 2 3 8375 58.00 F 0 2 2 8376 65.00 M 6 2 3 8377 75.00 F 6 2 3 8378 60.00 M 2 2 3 8379 62.00 M 0 2 3 8380 65.00 M 3 2 3 8381 66.00 F 3 2 3 8382 74.00 M 2 2 3 8383 72.00 F 3 2 3 8384 66.00 M 2 2 3 8385 76.00 M 7 2 3 8386 24.00 M 1 2 2 8387 62.00 M 1 2 3 8388 59.00 F 4 2 2 8389 50.00 M 6 2 2 8390 75.00 M 5 2 3 8391 60.00 M 1 2 3 8392 55.00 F 1 2 2 8393 61.00 M 17 2 3 8394 34.00 M 0 2 2 8395 74.00 M 3 2 3 8396 67.00 F 0 2 3 8397 62.00 F 3 2 3 8398 79.00 M 5 2 3 8399 65.00 F 2 2 3 8400 68.00 M 1 2 3 8401 57.00 M 0 2 2 8402 40.00 F 2 2 2 8403 65.00 M 1 2 3 8404 70.00 F 0 2 3 8405 40.00 F 3 2 2 8406 45.00 F 1 2 2 8407 38.00 M 1 2 2 8408 70.00 F 2 2 3 8409 40.00 M 1 2 2 8410 58.00 M 0 2 2 8411 65.00 F 0 2 3 8412 50.00 M 0 2 2 8413 68.00 M 16 2 3 8414 56.00 M 12 2 2 8415 68.00 M 8 2 3 8416 79.00 M 12 2 3 8417 84.00 F 13 2 3 8418 43.00 M 15 2 2 8419 80.00 F 7 2 3 8420 60.00 M 5 2 3 8421 52.00 M 13 2 2 8422 68.00 M 2 2 3 8423 82.00 M 3 2 3 8424 68.00 F 8 2 3 8425 57.00 M 8 2 2 8426 70.00 M 10 2 3 8427 48.00 M 10 2 2 8428 65.00 M 8 2 3 8429 50.00 F 3 2 2 8430 60.00 F 5 2 3 8431 72.00 M 7 2 3 8432 78.00 M 13 2 3 8433 62.00 M 8 2 3 8434 61.00 M 7 2 3 8435 62.00 F 6 2 3 8436 75.00 M 3 2 3 8437 56.00 F 7 2 2 8438 60.00 F 2 2 3 8439 28.00 M 13 2 2 8440 62.00 M 4 2 3 8441 40.00 F 4 2 2 8442 74.00 M 9 2 3 8443 67.00 F 0 2 3 8444 56.00 M 5 2 2 8445 55.00 M 6 2 2 8446 78.00 M 1 2 3 8447 80.00 M 5 2 3 8448 46.00 M 5 2 2 8449 90.00 M 3 2 3 8450 46.00 M 4 2 2 8451 45.00 M 5 2 2 8452 48.00 F 2 2 2 8453 72.00 F 6 2 3 8454 65.00 M 1 2 3 8455 66.00 F 3 2 3 8456 70.00 M 0 2 3 8457 48.00 F 11 2 2 8458 84.00 F 5 2 3 8459 94.00 F 2 2 3 8460 65.00 M 1 2 3 8461 40.00 M 0 2 2 8462 76.00 M 7 2 3 8463 47.00 M 7 2 2 8464 76.00 F 4 2 3 8465 71.00 M 4 2 3 8466 34.00 M 0 2 2 8467 80.00 F 2 2 3 8468 52.00 F 2 2 2 8469 88.00 F 0 2 3 8470 65.00 M 1 2 3 8471 55.00 M 1 2 2 8472 30.00 F 3 2 2 8473 60.00 F 3 2 3 8474 61.00 M 1 2 3 8475 73.00 M 1 2 3 8476 75.00 M 0 2 3 8477 73.00 M 2 2 3 8478 62.00 M 1 2 3 8479 59.00 F 1 2 2 8480 76.00 M 1 2 3 8481 68.00 M 3 2 3 8482 70.00 M 0 2 3 8483 80.00 M 10 2 3 8484 45.00 F 0 2 2 8485 37.00 M 2 2 2 8486 80.00 M 2 2 3 8487 55.00 M 1 2 2 8488 72.00 F 1 2 3 8489 75.00 M 0 2 3 8490 46.00 F 1 2 2 8491 72.00 F 0 2 3 8492 80.00 M 9 2 3 8493 83.00 M 19 2 3 8494 36.00 M 13 2 2 8495 55.00 M 0 2 2 8496 62.00 M 18 2 3 8497 58.00 F 7 2 2 8498 68.00 M 8 2 3 8499 72.00 F 10 2 3 8500 65.00 M 2 2 3 8501 55.00 M 8 2 2 8502 72.00 M 9 2 3 8503 63.00 M 10 2 3 8504 56.00 M 1 2 2 8505 70.00 F 12 2 3 8506 40.00 M 0 2 2 8507 62.00 M 11 2 3 8508 70.00 M 0 2 3 8509 72.00 M 7 2 3 8510 85.00 F 9 2 3 8511 65.00 M 1 2 3 8512 60.00 F 9 2 3 8513 45.00 F 7 2 2 8514 56.00 F 9 2 2 8515 63.00 M 2 2 3 8516 72.00 M 4 2 3 8517 41.00 F 0 2 2 8518 57.00 M 4 2 2 8519 70.00 M 0 2 3 8520 57.00 F 0 2 2 8521 91.00 M 9 2 3 8522 75.00 M 0 2 3 8523 58.00 M 4 2 2 8524 70.00 F 0 2 3 8525 46.00 M 5 2 2 8526 63.00 M 4 2 3 8527 71.00 F 3 2 3 8528 35.00 F 3 2 2 8529 55.00 M 1 2 2 8530 46.00 M 3 2 2 8531 65.00 M 6 2 3 8532 67.00 M 5 2 3 8533 52.00 F 4 2 2 8534 62.00 M 2 2 3 8535 50.00 F 2 2 2 8536 58.00 F 0 2 2 8537 54.00 M 2 2 2 8538 65.00 M 1 2 3 8539 81.00 F 4 2 3 8540 80.00 M 1 2 3 8541 35.00 M 1 2 2 8542 50.00 M 19 2 2 8543 88.00 M 0 2 3 8544 52.00 F 1 2 2 8545 65.00 M 1 2 3 8546 46.00 M 1 2 2 8547 60.00 M 0 2 3 8548 56.00 M 0 2 2 8549 55.00 F 1 2 2 8550 84.00 F 1 2 3 8551 41.00 M 0 2 2 8552 51.00 M 0 2 2 8553 23.00 F 0 2 2 8554 71.00 F 1 2 3 8555 60.00 F 8 2 3 8556 52.00 M 4 2 2 8557 56.00 M 0 2 2 8558 61.00 M 1 2 3 8559 50.00 M 1 2 2 8560 52.00 M 0 2 2 8561 59.00 M 0 2 2 8562 71.00 M 3 2 3 8563 88.00 F 5 2 3 8564 52.00 F 0 2 2 8565 54.00 F 1 2 2 8566 48.00 M 0 2 2 8567 40.00 F 1 2 2 8568 58.00 F 0 2 2 8569 59.00 M 0 2 2 8570 37.00 M 1 2 2 8571 47.00 M 1 2 2 8572 63.00 M 3 2 3 8573 63.00 F 0 2 3 8574 46.00 M 0 2 2 8575 64.00 M 2 2 3 8576 54.00 M 0 2 2 8577 71.00 M 0 2 3 8578 64.00 M 4 2 3 8579 44.00 M 2 2 2 8580 74.00 F 2 2 3 8581 83.00 M 0 2 3 8582 65.00 F 2 2 3 8583 70.00 F 0 2 3 8584 58.00 F 2 2 2 8585 45.00 M 0 2 2 8586 62.00 M 10 2 3 8587 54.00 M 0 2 2 8588 40.00 M 0 2 2 8589 45.00 M 26 2 2 8590 52.00 M 23 2 2 8591 47.00 M 1 2 2 8592 58.00 M 1 2 2 8593 66.00 M 4 2 3 8594 79.00 F 7 2 3 8595 52.00 M 8 2 2 8596 59.00 M 4 2 2 8597 60.00 F 0 2 3 8598 45.00 F 20 2 2 8599 62.00 F 6 2 3 8600 84.00 M 9 2 3 8601 56.00 F 0 2 2 8602 77.00 F 2 2 3 8603 63.00 M 8 2 3 8604 68.00 F 4 2 3 8605 60.00 M 14 2 3 8606 69.00 F 16 2 3 8607 85.00 F 12 2 3 8608 45.00 M 14 2 2 8609 55.00 M 0 2 2 8610 66.00 M 9 2 3 8611 60.00 F 0 2 3 8612 55.00 M 0 2 2 8613 81.00 M 11 2 3 8614 62.00 M 8 2 3 8615 42.00 M 15 2 2 8616 69.00 M 19 2 3 8617 75.00 M 5 2 3 8618 68.00 F 4 2 3 8619 64.00 M 4 2 3 8620 60.00 M 0 2 3 8621 40.00 M 16 2 2 8622 40.00 F 5 2 2 8623 61.00 M 9 2 3 8624 23.00 M 1 2 2 8625 65.00 M 3 2 3 8626 69.00 M 9 2 3 8627 62.00 M 10 2 3 8628 60.00 M 1 2 3 8629 74.00 M 0 2 3 8630 85.00 M 3 2 3 8631 65.00 M 6 2 3 8632 61.00 M 8 2 3 8633 66.00 M 4 2 3 8634 55.00 M 8 2 2 8635 65.00 F 7 2 3 8636 69.00 M 9 2 3 8637 65.00 F 12 2 3 8638 62.00 M 7 2 3 8639 55.00 M 3 2 2 8640 75.00 M 9 2 3 8641 53.00 F 15 2 2 8642 78.00 M 6 2 3 8643 76.00 F 8 2 3 8644 42.00 M 7 2 2 8645 70.00 M 0 2 3 8646 50.00 M 2 2 2 8647 56.00 M 5 2 2 8648 70.00 M 4 2 3 8649 47.00 F 1 2 2 8650 65.00 M 1 2 3 8651 78.00 F 5 2 3 8652 74.00 M 0 2 3 8653 5.00 M 4 2 1 8654 92.00 M 1 2 3 8655 76.00 M 5 2 3 8656 69.00 F 4 2 3 8657 67.00 M 4 2 3 8658 78.00 M 1 2 3 8659 60.00 F 6 2 3 8660 55.00 M 4 2 2 8661 65.00 M 4 2 3 8662 47.00 M 3 2 2 8663 60.00 M 2 2 3 8664 82.00 M 0 2 3 8665 58.00 M 2 2 2 8666 71.00 M 3 2 3 8667 84.00 M 2 2 3 8668 59.00 M 0 2 2 8669 72.00 M 1 2 3 8670 42.00 M 1 2 2 8671 60.00 M 1 2 3 8672 82.00 F 1 2 3 8673 48.00 F 2 2 2 8674 68.00 M 3 2 3 8675 86.00 M 2 2 3 8676 75.00 F 1 2 3 8677 23.00 M 0 2 2 8678 68.00 F 2 2 3 8679 90.00 M 1 2 3 8680 70.00 F 1 2 3 8681 50.00 M 4 2 2 8682 45.00 F 4 2 2 8683 68.00 M 4 2 3 8684 73.00 M 1 2 3 8685 81.00 M 18 2 3 8686 84.00 F 7 2 3 8687 73.00 M 22 2 3 8688 67.00 M 10 2 3 8689 80.00 F 20 2 3 8690 52.00 F 16 2 2 8691 62.00 M 2 2 3 8692 73.00 F 7 2 3 8693 66.00 M 0 2 3 8694 70.00 F 11 2 3 8695 42.00 M 1 2 2 8696 66.00 M 6 2 3 8697 65.00 M 11 2 3 8698 67.00 M 7 2 3 8699 55.00 F 8 2 2 8700 65.00 M 0 2 3 8701 40.00 M 1 2 2 8702 55.00 M 9 2 2 8703 66.00 M 0 2 3 8704 62.00 M 2 2 3 8705 78.00 F 7 2 3 8706 78.00 M 0 2 3 8707 70.00 M 7 2 3 8708 75.00 M 10 2 3 8709 50.00 M 0 2 2 8710 45.00 F 2 2 2 8711 68.00 F 4 2 3 8712 53.00 M 7 2 2 8713 59.00 M 5 2 2 8714 68.00 M 0 2 3 8715 75.00 M 7 2 3 8716 70.00 M 7 2 3 8717 63.00 M 9 2 3 8718 90.00 M 6 2 3 8719 78.00 M 8 2 3 8720 82.00 F 6 2 3 8721 56.00 M 4 2 2 8722 40.00 M 1 2 2 8723 48.00 M 3 2 2 8724 73.00 M 3 2 3 8725 76.00 M 6 2 3 8726 59.00 M 5 2 2 8727 35.00 M 7 2 2 8728 59.00 M 4 2 2 8729 48.00 M 0 2 2 8730 52.00 M 3 2 2 8731 55.00 M 7 2 2 8732 65.00 F 3 2 3 8733 82.00 F 2 2 3 8734 72.00 M 2 2 3 8735 76.00 M 4 2 3 8736 60.00 F 9 2 3 8737 70.00 M 8 2 3 8738 53.00 F 0 2 2 8739 67.00 F 4 2 3 8740 74.00 M 5 2 3 8741 74.00 M 1 2 3 8742 75.00 M 3 2 3 8743 42.00 M 2 2 2 8744 82.00 M 0 2 3 8745 58.00 M 3 2 2 8746 63.00 M 0 2 3 8747 79.00 M 32 2 3 8748 85.00 F 2 2 3 8749 79.00 M 5 2 3 8750 69.00 M 2 2 3 8751 47.00 F 5 2 2 8752 65.00 M 1 2 3 8753 80.00 M 0 2 3 8754 72.00 M 2 2 3 8755 60.00 M 3 2 3 8756 36.00 M 2 2 2 8757 62.00 M 4 2 3 8758 50.00 M 0 2 2 8759 67.00 F 0 2 3 8760 62.00 M 3 2 3 8761 68.00 M 3 2 3 8762 70.00 F 2 2 3 8763 85.00 M 2 2 3 8764 74.00 F 1 2 3 8765 51.00 M 2 2 2 8766 54.00 M 1 2 2 8767 52.00 M 0 2 2 8768 86.00 M 2 2 3 8769 77.00 M 2 2 3 8770 45.00 M 0 2 2 8771 51.00 M 1 2 2 8772 70.00 F 3 2 3 8773 58.00 M 23 2 2 8774 28.00 M 9 2 2 8775 58.00 M 0 2 2 8776 48.00 M 1 2 2 8777 48.00 M 7 2 2 8778 59.00 M 5 2 2 8779 90.00 M 2 2 3 8780 60.00 F 8 2 3 8781 74.00 M 4 2 3 8782 72.00 F 1 2 3 8783 65.00 F 2 2 3 8784 70.00 M 14 2 3 8785 77.00 M 0 2 3 8786 52.00 M 10 2 2 8787 77.00 M 3 2 3 8788 66.00 M 18 2 3 8789 64.00 M 24 2 3 8790 79.00 M 12 2 3 8791 85.00 M 9 2 3 8792 81.00 M 12 2 3 8793 70.00 M 16 2 3 8794 51.00 M 4 2 2 8795 54.00 M 10 2 2 8796 52.00 M 0 2 2 8797 46.00 M 18 2 2 8798 80.00 F 16 2 3 8799 58.00 M 8 2 2 8800 65.00 M 5 2 3 8801 87.00 F 8 2 3 8802 74.00 M 2 2 3 8803 2.00 F 3 2 1 8804 88.00 F 4 2 3 8805 56.00 M 6 2 2 8806 42.00 M 10 2 2 8807 68.00 M 13 2 3 8808 45.00 M 0 2 2 8809 62.00 M 14 2 3 8810 59.00 F 5 2 2 8811 65.00 M 5 2 3 8812 70.00 M 10 2 3 8813 68.00 F 0 2 3 8814 70.00 M 13 2 3 8815 57.00 F 3 2 2 8816 64.00 M 9 2 3 8817 79.00 F 0 2 3 8818 63.00 F 9 2 3 8819 70.00 F 1 2 3 8820 55.00 M 12 2 2 8821 90.00 M 11 2 3 8822 52.00 F 10 2 2 8823 27.00 M 7 2 2 8824 84.00 F 6 2 3 8825 64.00 F 2 2 3 8826 75.00 M 8 2 3 8827 70.00 M 9 2 3 8828 45.00 M 8 2 2 8829 72.00 M 4 2 3 8830 55.00 M 6 2 2 8831 40.00 M 0 2 2 8832 78.00 M 10 2 3 8833 65.00 F 2 2 3 8834 78.00 M 1 2 3 8835 57.00 F 8 2 2 8836 68.00 F 5 2 3 8837 60.00 M 1 2 3 8838 36.00 M 4 2 2 8839 80.00 M 1 2 3 8840 60.00 F 8 2 3 8841 55.00 F 8 2 2 8842 50.00 M 0 2 2 8843 59.00 M 3 2 2 8844 68.00 M 8 2 3 8845 63.00 M 1 2 3 8846 52.00 M 6 2 2 8847 50.00 F 5 2 2 8848 58.00 F 2 2 2 8849 71.00 F 7 2 3 8850 48.00 M 1 2 2 8851 52.00 M 6 2 2 8852 70.00 M 1 2 3 8853 58.00 F 0 2 2 8854 65.00 M 5 2 3 8855 40.00 M 7 2 2 8856 75.00 M 4 2 3 8857 86.00 M 6 2 3 8858 58.00 M 6 2 2 8859 65.00 F 2 2 3 8860 56.00 M 0 2 2 8861 55.00 M 5 2 2 8862 72.00 M 6 2 3 8863 60.00 F 6 2 3 8864 64.00 M 5 2 3 8865 54.00 M 2 2 2 8866 96.00 F 3 2 3 8867 58.00 M 5 2 2 8868 46.00 M 1 2 2 8869 58.00 M 0 2 2 8870 60.00 F 5 2 3 8871 83.00 F 0 2 3 8872 53.00 M 6 2 2 8873 67.00 M 4 2 3 8874 55.00 M 4 2 2 8875 85.00 M 1 2 3 8876 25.00 F 1 2 2 8877 69.00 M 2 2 3 8878 48.00 M 4 2 2 8879 80.00 M 1 2 3 8880 75.00 M 4 2 3 8881 80.00 F 2 2 3 8882 70.00 M 5 2 3 8883 86.00 M 4 2 3 8884 67.00 F 4 2 3 8885 85.00 F 10 2 3 8886 65.00 F 0 2 3 8887 63.00 M 3 2 3 8888 52.00 M 0 2 2 8889 94.00 F 2 2 3 8890 75.00 M 3 2 3 8891 46.00 M 0 2 2 8892 58.00 M 2 2 2 8893 61.00 M 3 2 3 8894 55.00 M 3 2 2 8895 55.00 F 2 2 2 8896 63.00 F 1 2 3 8897 59.00 F 2 2 2 8898 56.00 M 0 2 2 8899 74.00 M 1 2 3 8900 33.00 M 0 2 2 8901 40.00 F 0 2 2 8902 78.00 M 26 2 3 8903 50.00 M 25 2 2 8904 58.00 F 0 2 2 8905 72.00 M 17 2 3 8906 82.00 M 9 2 3 8907 72.00 M 12 2 3 8908 50.00 M 4 2 2 8909 75.00 M 20 2 3 8910 71.00 M 16 2 3 8911 67.00 F 7 2 3 8912 76.00 M 16 2 3 8913 41.00 M 16 2 2 8914 67.00 M 16 2 3 8915 69.00 F 14 2 3 8916 56.00 M 17 2 2 8917 55.00 M 2 2 2 8918 36.00 M 1 2 2 8919 71.00 F 8 2 3 8920 36.00 M 13 2 2 8921 76.00 F 9 2 3 8922 56.00 M 9 2 2 8923 87.00 F 14 2 3 8924 72.00 M 11 2 3 8925 55.00 M 5 2 2 8926 57.00 F 13 2 2 8927 75.00 M 9 2 3 8928 52.00 M 11 2 2 8929 76.00 M 11 2 3 8930 68.00 M 6 2 3 8931 70.00 M 10 2 3 8932 62.00 M 10 2 3 8933 66.00 M 10 2 3 8934 53.00 F 5 2 2 8935 78.00 M 6 2 3 8936 54.00 M 3 2 2 8937 65.00 M 7 2 3 8938 39.00 M 7 2 2 8939 64.00 M 5 2 3 8940 44.00 M 8 2 2 8941 65.00 M 8 2 3 8942 64.00 M 1 2 3 8943 67.00 M 1 2 3 8944 54.00 F 6 2 2 8945 77.00 F 0 2 3 8946 65.00 F 6 2 3 8947 49.00 M 1 2 2 8948 48.00 M 6 2 2 8949 45.00 M 7 2 2 8950 39.00 M 2 2 2 8951 50.00 M 8 2 2 8952 62.00 F 6 2 3 8953 56.00 M 3 2 2 8954 59.00 M 5 2 2 8955 58.00 M 6 2 2 8956 83.00 M 10 2 3 8957 65.00 M 2 2 3 8958 72.00 M 1 2 3 8959 87.00 F 3 2 3 8960 70.00 M 8 2 3 8961 72.00 M 3 2 3 8962 70.00 M 3 2 3 8963 51.00 M 7 2 2 8964 72.00 M 3 2 3 8965 65.00 F 5 2 3 8966 37.00 M 6 2 2 8967 70.00 M 0 2 3 8968 35.00 M 5 2 2 8969 57.00 M 6 2 2 8970 82.00 F 6 2 3 8971 66.00 F 1 2 3 8972 24.00 M 2 2 2 8973 70.00 M 3 2 3 8974 63.00 M 3 2 3 8975 64.00 M 6 2 3 8976 68.00 M 4 2 3 8977 70.00 F 9 2 3 8978 78.00 M 0 2 3 8979 60.00 M 0 2 3 8980 40.00 M 0 2 2 8981 65.00 M 5 2 3 8982 74.00 M 3 2 3 8983 47.00 F 4 2 2 8984 75.00 M 6 2 3 8985 47.00 F 3 2 2 8986 45.00 M 4 2 2 8987 72.00 M 4 2 3 8988 58.00 M 4 2 2 8989 81.00 F 2 2 3 8990 20.00 M 2 2 2 8991 78.00 M 3 2 3 8992 73.00 M 2 2 3 8993 80.00 M 0 2 3 8994 54.00 M 2 2 2 8995 61.00 M 5 2 3 8996 55.00 M 3 2 2 8997 46.00 M 3 2 2 8998 47.00 M 1 2 2 8999 45.00 F 2 2 2 9000 73.00 M 7 2 3 9001 89.00 F 2 2 3 9002 53.00 M 7 2 2 9003 57.00 F 2 2 2 9004 65.00 M 0 2 3 9005 42.00 M 0 2 2 9006 55.00 M 1 2 2 9007 34.00 M 2 2 2 9008 50.00 M 2 2 2 9009 61.00 F 4 2 3 9010 77.00 F 4 2 3 9011 85.00 M 0 2 3 9012 80.00 F 0 2 3 9013 32.00 F 2 2 2 9014 75.00 F 1 2 3 9015 62.00 M 1 2 3 9016 37.00 F 2 2 2 9017 35.00 F 0 2 2 9018 33.00 M 1 2 2 9019 67.00 M 1 2 3 9020 57.00 M 0 2 2 9021 82.00 M 1 2 3 9022 70.00 M 0 2 3 9023 36.00 M 7 2 2 9024 42.00 F 3 2 2 9025 55.00 F 3 2 2 9026 82.00 F 1 2 3 9027 58.00 M 1 2 2 9028 38.00 F 23 2 2 9029 78.00 M 16 2 3 9030 75.00 M 18 2 3 9031 79.00 F 17 2 3 9032 66.00 F 20 2 3 9033 60.00 M 3 2 3 9034 65.00 M 8 2 3 9035 50.00 M 5 2 2 9036 62.00 M 5 2 3 9037 65.00 M 0 2 3 9038 61.00 F 12 2 3 9039 82.00 M 5 2 3 9040 72.00 M 7 2 3 9041 62.00 M 6 2 3 9042 81.00 M 8 2 3 9043 68.00 M 8 2 3 9044 57.00 M 3 2 2 9045 89.00 F 13 2 3 9046 75.00 M 20 2 3 9047 72.00 M 11 2 3 9048 50.00 F 10 2 2 9049 60.00 M 4 2 3 9050 40.00 M 1 2 2 9051 62.00 F 0 2 3 9052 64.00 F 9 2 3 9053 73.00 M 10 2 3 9054 83.00 M 2 2 3 9055 85.00 M 8 2 3 9056 70.00 M 10 2 3 9057 76.00 F 8 2 3 9058 68.00 M 8 2 3 9059 50.00 F 4 2 2 9060 72.00 M 2 2 3 9061 55.00 M 11 2 2 9062 75.00 M 10 2 3 9063 75.00 M 4 2 3 9064 55.00 M 0 2 2 9065 43.00 M 2 2 2 9066 66.00 F 7 2 3 9067 91.00 M 5 2 3 9068 40.00 M 3 2 2 9069 55.00 M 4 2 2 9070 44.00 M 8 2 2 9071 55.00 F 7 2 2 9072 65.00 M 4 2 3 9073 54.00 M 0 2 2 9074 61.00 M 2 2 3 9075 85.00 M 5 2 3 9076 66.00 M 5 2 3 9077 61.00 M 7 2 3 9078 78.00 M 3 2 3 9079 57.00 M 1 2 2 9080 77.00 F 5 2 3 9081 57.00 M 5 2 2 9082 76.00 F 5 2 3 9083 62.00 M 3 2 3 9084 66.00 M 5 2 3 9085 63.00 M 4 2 3 9086 55.00 M 3 2 2 9087 61.00 F 4 2 3 9088 56.00 M 4 2 2 9089 80.00 F 4 2 3 9090 65.00 M 3 2 3 9091 46.00 M 0 2 2 9092 62.00 F 7 2 3 9093 74.00 M 5 2 3 9094 60.00 F 5 2 3 9095 52.00 M 8 2 2 9096 65.00 M 3 2 3 9097 82.00 M 0 2 3 9098 55.00 F 1 2 2 9099 74.00 M 1 2 3 9100 36.00 F 1 2 2 9101 67.00 M 3 2 3 9102 87.00 M 2 2 3 9103 89.00 M 2 2 3 9104 65.00 F 4 2 3 9105 38.00 M 4 2 2 9106 52.00 F 1 2 2 9107 74.00 M 1 2 3 9108 45.00 M 2 2 2 9109 65.00 M 5 2 3 9110 85.00 M 3 2 3 9111 50.00 M 0 2 2 9112 38.00 M 1 2 2 9113 50.00 M 3 2 2 9114 70.00 M 5 2 3 9115 39.00 M 5 2 2 9116 60.00 M 0 2 3 9117 38.00 M 5 2 2 9118 70.00 M 0 2 3 9119 70.00 M 3 2 3 9120 64.00 M 4 2 3 9121 80.00 F 1 2 3 9122 75.00 M 2 2 3 9123 73.00 M 0 2 3 9124 67.00 M 42 2 3 9125 65.00 M 0 2 3 9126 80.00 M 0 2 3 9127 62.00 M 49 2 3 9128 65.00 M 7 2 3 9129 70.00 M 16 2 3 9130 73.00 M 13 2 3 9131 23.00 M 2 2 2 9132 42.00 F 10 2 2 9133 75.00 F 18 2 3 9134 17.00 M 0 2 1 9135 55.00 M 8 2 2 9136 49.00 M 18 2 2 9137 49.00 M 0 2 2 9138 60.00 M 3 2 3 9139 73.00 F 4 2 3 9140 62.00 M 10 2 3 9141 87.00 F 0 2 3 9142 33.00 M 5 2 2 9143 60.00 F 5 2 3 9144 57.00 M 0 2 2 9145 47.00 M 11 2 2 9146 58.00 M 7 2 2 9147 73.00 F 2 2 3 9148 65.00 F 12 2 3 9149 78.00 M 5 2 3 9150 59.00 F 12 2 2 9151 75.00 M 11 2 3 9152 62.00 M 8 2 3 9153 38.00 F 0 2 2 9154 93.00 M 11 2 3 9155 70.00 F 7 2 3 9156 24.00 M 11 2 2 9157 50.00 M 6 2 2 9158 45.00 M 7 2 2 9159 86.00 M 8 2 3 9160 42.00 M 7 2 2 9161 60.00 M 5 2 3 9162 36.00 M 6 2 2 9163 50.00 F 9 2 2 9164 61.00 F 5 2 3 9165 65.00 M 6 2 3 9166 59.00 M 5 2 2 9167 62.00 M 5 2 3 9168 86.00 F 5 2 3 9169 75.00 M 8 2 3 9170 70.00 F 1 2 3 9171 70.00 M 5 2 3 9172 60.00 M 3 2 3 9173 75.00 F 3 2 3 9174 53.00 M 3 2 2 9175 83.00 M 4 2 3 9176 65.00 M 2 2 3 9177 51.00 M 0 2 2 9178 77.00 F 5 2 3 9179 78.00 M 1 2 3 9180 48.00 M 2 2 2 9181 78.00 M 3 2 3 9182 62.00 M 13 2 3 9183 85.00 M 2 2 3 9184 75.00 M 2 2 3 9185 52.00 F 0 2 2 9186 75.00 F 4 2 3 9187 70.00 M 0 2 3 9188 83.00 M 0 2 3 9189 70.00 M 1 2 3 9190 55.00 M 2 2 2 9191 53.00 M 1 2 2 9192 75.00 M 0 2 3 9193 60.00 F 0 2 3 9194 41.00 M 21 2 2 9195 96.00 F 20 2 3 9196 54.00 F 4 2 2 9197 53.00 M 15 2 2 9198 43.00 M 7 2 2 9199 66.00 M 11 2 3 9200 45.00 F 13 2 2 9201 55.00 F 15 2 2 9202 47.00 M 11 2 2 9203 65.00 M 1 2 3 9204 77.00 M 12 2 3 9205 84.00 F 13 2 3 9206 53.00 M 13 2 2 9207 45.00 M 9 2 2 9208 76.00 M 6 2 3 9209 80.00 F 3 2 3 9210 48.00 F 8 2 2 9211 35.00 M 10 2 2 9212 71.00 M 11 2 3 9213 56.00 M 10 2 2 9214 58.00 M 10 2 2 9215 50.00 M 3 2 2 9216 55.00 F 8 2 2 9217 70.00 F 4 2 3 9218 80.00 M 5 2 3 9219 45.00 M 7 2 2 9220 63.00 M 6 2 3 9221 64.00 M 9 2 3 9222 32.00 M 9 2 2 9223 43.00 M 7 2 2 9224 65.00 M 4 2 3 9225 55.00 F 6 2 2 9226 58.00 F 9 2 2 9227 36.00 M 6 2 2 9228 69.00 F 1 2 3 9229 45.00 M 4 2 2 9230 48.00 F 0 2 2 9231 60.00 M 8 2 3 9232 24.00 M 4 2 2 9233 55.00 M 5 2 2 9234 70.00 M 8 2 3 9235 93.00 M 4 2 3 9236 60.00 M 5 2 3 9237 85.00 M 8 2 3 9238 65.00 F 6 2 3 9239 54.00 M 6 2 2 9240 66.00 M 3 2 3 9241 70.00 M 4 2 3 9242 37.00 M 1 2 2 9243 35.00 M 6 2 2 9244 70.00 F 2 2 3 9245 35.00 M 6 2 2 9246 60.00 M 5 2 3 9247 86.00 F 0 2 3 9248 89.00 M 2 2 3 9249 55.00 F 2 2 2 9250 55.00 M 5 2 2 9251 48.00 M 3 2 2 9252 57.00 F 0 2 2 9253 62.00 M 3 2 3 9254 75.00 F 3 2 3 9255 83.00 M 2 2 3 9256 70.00 M 5 2 3 9257 73.00 M 0 2 3 9258 40.00 M 19 2 2 9259 72.00 F 4 2 3 9260 76.00 M 0 2 3 9261 75.00 M 0 2 3 9262 43.00 M 1 2 2 9263 32.00 M 1 2 2 9264 76.00 F 2 2 3 9265 95.00 M 0 2 3 9266 45.00 F 1 2 2 9267 62.00 F 0 2 3 9268 89.00 M 1 2 3 9269 74.00 M 0 2 3 9270 60.00 F 13 2 3 9271 55.00 M 7 2 2 9272 56.00 F 1 2 2 9273 63.00 M 0 2 3 9274 48.00 M 1 2 2 9275 68.00 F 0 2 3 9276 75.00 M 0 2 3 9277 81.00 M 0 2 3 9278 65.00 M 2 2 3 9279 54.00 F 0 2 2 9280 76.00 M 1 2 3 9281 70.00 M 0 2 3 9282 75.00 M 6 2 3 9283 35.00 M 16 2 2 9284 72.00 M 9 2 3 9285 62.00 F 7 2 3 9286 46.00 M 0 2 2 9287 48.00 M 14 2 2 9288 65.00 M 14 2 3 9289 81.00 M 8 2 3 9290 43.00 M 14 2 2 9291 63.00 F 2 2 3 9292 62.00 F 1 2 3 9293 77.00 F 10 2 3 9294 75.00 M 12 2 3 9295 70.00 M 3 2 3 9296 45.00 M 3 2 2 9297 73.00 M 3 2 3 9298 58.00 M 4 2 2 9299 80.00 M 7 2 3 9300 64.00 F 6 2 3 9301 72.00 M 12 2 3 9302 88.00 M 2 2 3 9303 58.00 M 4 2 2 9304 39.00 F 11 2 2 9305 84.00 M 4 2 3 9306 56.00 M 5 2 2 9307 36.00 M 9 2 2 9308 68.00 F 2 2 3 9309 63.00 F 10 2 3 9310 47.00 M 5 2 2 9311 73.00 M 5 2 3 9312 70.00 F 8 2 3 9313 72.00 M 8 2 3 9314 80.00 F 6 2 3 9315 72.00 M 8 2 3 9316 68.00 F 8 2 3 9317 85.00 F 8 2 3 9318 51.00 M 3 2 2 9319 58.00 M 9 2 2 9320 70.00 M 10 2 3 9321 70.00 M 7 2 3 9322 53.00 M 4 2 2 9323 74.00 M 3 2 3 9324 98.00 M 14 2 3 9325 74.00 M 6 2 3 9326 55.00 F 10 2 2 9327 45.00 M 14 2 2 9328 72.00 M 9 2 3 9329 64.00 F 11 2 3 9330 72.00 M 4 2 3 9331 50.00 F 3 2 2 9332 40.00 M 26 2 2 9333 84.00 M 16 2 3 9334 55.00 F 17 2 2 9335 66.00 M 12 2 3 9336 52.00 M 19 2 2 9337 54.00 F 23 2 2 9338 70.00 M 3 2 3 9339 78.00 M 24 2 3 9340 55.00 M 43 2 2 9341 85.00 M 1 2 3 9342 62.00 F 51 2 3 9343 50.00 M 3 2 2 9344 72.00 M 20 2 3 9345 80.00 M 4 2 3 9346 78.00 M 1 2 3 9347 56.00 F 1 2 2 9348 40.00 M 0 2 2 9349 50.00 F 4 2 2 9350 47.00 M 2 2 2 9351 65.00 M 1 2 3 9352 63.00 M 7 2 3 9353 73.00 M 4 2 3 9354 67.00 M 4 2 3 9355 65.00 F 3 2 3 9356 70.00 M 4 2 3 9357 62.00 M 2 2 3 9358 50.00 M 3 2 2 9359 72.00 M 4 2 3 9360 72.00 M 0 2 3 9361 58.00 M 1 2 2 9362 66.00 M 6 2 3 9363 29.00 M 3 2 2 9364 77.00 M 1 2 3 9365 48.00 F 0 2 2 9366 77.00 M 1 2 3 9367 55.00 F 31 2 2 9368 56.00 M 1 2 2 9369 64.00 M 0 2 3 9370 26.00 M 0 2 2 9371 58.00 M 0 2 2 9372 56.00 M 1 2 2 9373 51.00 F 5 2 2 9374 75.00 M 0 2 3 9375 48.00 M 5 2 2 9376 82.00 M 4 2 3 9377 64.00 M 0 2 3 9378 60.00 F 4 2 3 9379 53.00 F 7 2 2 9380 76.00 M 13 2 3 9381 28.00 M 10 2 2 9382 70.00 M 20 2 3 9383 68.00 M 20 2 3 9384 70.00 F 1 2 3 9385 72.00 M 5 2 3 9386 65.00 M 4 2 3 9387 60.00 F 4 2 3 9388 88.00 M 4 2 3 9389 56.00 M 3 2 2 9390 55.00 F 13 2 2 9391 73.00 M 3 2 3 9392 66.00 M 10 2 3 9393 72.00 M 11 2 3 9394 64.00 M 4 2 3 9395 52.00 M 0 2 2 9396 46.00 M 6 2 2 9397 72.00 M 0 2 3 9398 65.00 F 11 2 3 9399 68.00 M 11 2 3 9400 44.00 F 3 2 2 9401 73.00 M 3 2 3 9402 75.00 M 2 2 3 9403 66.00 M 7 2 3 9404 64.00 F 13 2 3 9405 72.00 M 11 2 3 9406 68.00 F 5 2 3 9407 87.00 M 2 2 3 9408 71.00 M 8 2 3 9409 63.00 M 11 2 3 9410 56.00 M 12 2 2 9411 55.00 F 13 2 2 9412 42.00 M 13 2 2 9413 72.00 M 9 2 3 9414 69.00 M 7 2 3 9415 71.00 F 1 2 3 9416 58.00 F 0 2 2 9417 57.00 M 9 2 2 9418 75.00 M 8 2 3 9419 85.00 M 7 2 3 9420 71.00 M 7 2 3 9421 62.00 M 9 2 3 9422 68.00 M 4 2 3 9423 67.00 M 15 2 3 9424 69.00 M 5 2 3 9425 75.00 M 8 2 3 9426 79.00 M 5 2 3 9427 57.00 M 7 2 2 9428 40.00 M 5 2 2 9429 86.00 M 0 2 3 9430 75.00 M 6 2 3 9431 64.00 M 6 2 3 9432 76.00 F 1 2 3 9433 82.00 M 6 2 3 9434 86.00 M 6 2 3 9435 59.00 M 10 2 2 9436 50.00 M 4 2 2 9437 40.00 M 7 2 2 9438 47.00 M 0 2 2 9439 89.00 M 5 2 3 9440 58.00 M 4 2 2 9441 52.00 M 7 2 2 9442 67.00 M 4 2 3 9443 48.00 M 5 2 2 9444 60.00 F 0 2 3 9445 58.00 M 7 2 2 9446 48.00 F 4 2 2 9447 75.00 M 1 2 3 9448 73.00 M 3 2 3 9449 57.00 F 4 2 2 9450 83.00 M 3 2 3 9451 42.00 M 2 2 2 9452 70.00 M 4 2 3 9453 80.00 M 3 2 3 9454 62.00 M 1 2 3 9455 85.00 M 4 2 3 9456 58.00 M 3 2 2 9457 70.00 F 3 2 3 9458 72.00 F 4 2 3 9459 51.00 M 3 2 2 9460 68.00 M 3 2 3 9461 30.00 F 1 2 2 9462 70.00 M 1 2 3 9463 60.00 M 3 2 3 9464 70.00 M 5 2 3 9465 72.00 M 1 2 3 9466 68.00 F 9 2 3 9467 51.00 F 0 2 2 9468 80.00 M 2 2 3 9469 60.00 M 0 2 3 9470 38.00 M 0 2 2 9471 84.00 F 4 2 3 9472 76.00 M 4 2 3 9473 50.00 F 3 2 2 9474 50.00 M 0 2 2 9475 30.00 M 1 2 2 9476 58.00 M 2 2 2 9477 65.00 F 1 2 3 9478 65.00 F 4 2 3 9479 40.00 M 1 2 2 9480 55.00 M 1 2 2 9481 72.00 M 8 2 3 9482 52.00 F 0 2 2 9483 42.00 M 0 2 2 9484 63.00 F 0 2 3 9485 58.00 M 23 2 2 9486 45.00 M 0 2 2 9487 40.00 F 4 2 2 9488 39.00 M 1 2 2 9489 57.00 M 12 2 2 9490 70.00 F 4 2 3 9491 68.00 M 3 2 3 9492 72.00 F 4 2 3 9493 71.00 M 14 2 3 9494 75.00 M 0 2 3 9495 64.00 M 15 2 3 9496 80.00 M 2 2 3 9497 65.00 M 0 2 3 9498 59.00 M 0 2 2 9499 47.00 M 0 2 2 9500 75.00 M 0 2 3 9501 60.00 M 0 2 3 9502 43.00 M 0 2 2 9503 71.00 M 1 2 3 9504 62.00 M 6 2 3 9505 70.00 M 1 2 3 9506 60.00 M 20 2 3 9507 65.00 M 2 2 3 9508 87.00 F 6 2 3 9509 49.00 M 4 2 2 9510 65.00 F 29 2 3 9511 34.00 M 12 2 2 9512 84.00 M 0 2 3 9513 59.00 M 9 2 2 9514 76.00 M 12 2 3 9515 65.00 M 9 2 3 9516 44.00 M 12 2 2 9517 52.00 M 6 2 2 9518 68.00 F 12 2 3 9519 72.00 M 0 2 3 9520 74.00 M 12 2 3 9521 68.00 M 12 2 3 9522 64.00 M 7 2 3 9523 60.00 M 6 2 3 9524 73.00 M 11 2 3 9525 71.00 M 9 2 3 9526 65.00 M 11 2 3 9527 73.00 M 10 2 3 9528 61.00 M 5 2 3 9529 76.00 M 12 2 3 9530 75.00 M 7 2 3 9531 52.00 M 8 2 2 9532 58.00 M 9 2 2 9533 75.00 M 3 2 3 9534 54.00 F 8 2 2 9535 68.00 F 8 2 3 9536 82.00 M 8 2 3 9537 46.00 M 3 2 2 9538 75.00 F 0 2 3 9539 50.00 M 11 2 2 9540 60.00 M 11 2 3 9541 62.00 M 0 2 3 9542 63.00 F 9 2 3 9543 71.00 F 8 2 3 9544 42.00 M 4 2 2 9545 84.00 F 3 2 3 9546 70.00 F 7 2 3 9547 73.00 M 0 2 3 9548 68.00 F 6 2 3 9549 52.00 M 1 2 2 9550 45.00 M 6 2 2 9551 59.00 M 7 2 2 9552 90.00 M 4 2 3 9553 69.00 F 4 2 3 9554 54.00 M 3 2 2 9555 77.00 M 9 2 3 9556 61.00 M 8 2 3 9557 70.00 F 5 2 3 9558 46.00 M 6 2 2 9559 82.00 M 6 2 3 9560 65.00 F 2 2 3 9561 55.00 M 4 2 2 9562 80.00 M 2 2 3 9563 40.00 M 3 2 2 9564 66.00 M 0 2 3 9565 54.00 M 0 2 2 9566 78.00 M 34 2 3 9567 66.00 M 0 2 3 9568 62.00 M 2 2 3 9569 40.00 F 3 2 2 9570 62.00 M 3 2 3 9571 54.00 M 1 2 2 9572 55.00 M 0 2 2 9573 60.00 F 3 2 3 9574 45.00 F 0 2 2 9575 60.00 F 1 2 3 9576 45.00 M 1 2 2 9577 65.00 F 4 2 3 9578 60.00 F 1 2 3 9579 47.00 M 1 2 2 9580 70.00 M 0 2 3 9581 55.00 F 0 2 2 9582 74.00 M 0 2 3 9583 50.00 M 17 2 2 9584 60.00 F 0 2 3 9585 70.00 M 13 2 3 9586 86.00 M 23 2 3 9587 60.00 M 1 2 3 9588 87.00 M 8 2 3 9589 70.00 M 9 2 3 9590 56.00 M 1 2 2 9591 65.00 M 8 2 3 9592 80.00 M 6 2 3 9593 75.00 F 5 2 3 9594 80.00 M 0 2 3 9595 60.00 M 7 2 3 9596 58.00 F 0 2 2 9597 40.00 M 0 2 2 9598 90.00 M 1 2 3 9599 72.00 M 10 2 3 9600 71.00 M 15 2 3 9601 55.00 M 11 2 2 9602 57.00 M 3 2 2 9603 70.00 M 3 2 3 9604 61.00 M 3 2 3 9605 60.00 M 12 2 3 9606 67.00 M 7 2 3 9607 58.00 F 11 2 2 9608 57.00 M 2 2 2 9609 67.00 M 0 2 3 9610 75.00 M 12 2 3 9611 35.00 F 10 2 2 9612 74.00 F 3 2 3 9613 65.00 M 8 2 3 9614 63.00 M 11 2 3 9615 80.00 F 1 2 3 9616 78.00 M 3 2 3 9617 57.00 M 6 2 2 9618 41.00 M 11 2 2 9619 48.00 M 11 2 2 9620 94.00 M 9 2 3 9621 29.00 F 6 2 2 9622 55.00 M 12 2 2 9623 86.00 M 10 2 3 9624 70.00 F 12 2 3 9625 24.00 M 10 2 2 9626 72.00 M 10 2 3 9627 64.00 M 12 2 3 9628 50.00 F 7 2 2 9629 82.00 F 10 2 3 9630 74.00 M 7 2 3 9631 55.00 M 0 2 2 9632 53.00 M 8 2 2 9633 60.00 F 2 2 3 9634 62.00 M 8 2 3 9635 68.00 M 9 2 3 9636 80.00 M 8 2 3 9637 75.00 M 10 2 3 9638 55.00 M 4 2 2 9639 53.00 M 11 2 2 9640 50.00 M 1 2 2 9641 52.00 M 6 2 2 9642 49.00 M 8 2 2 9643 70.00 M 2 2 3 9644 80.00 F 7 2 3 9645 68.00 M 8 2 3 9646 57.00 M 3 2 2 9647 60.00 M 9 2 3 9648 72.00 M 2 2 3 9649 76.00 M 9 2 3 9650 63.00 M 11 2 3 9651 60.00 M 5 2 3 9652 62.00 M 7 2 3 9653 47.00 M 4 2 2 9654 57.00 F 7 2 2 9655 86.00 M 0 2 3 9656 35.00 F 4 2 2 9657 67.00 F 4 2 3 9658 44.00 M 2 2 2 9659 44.00 M 4 2 2 9660 45.00 F 5 2 2 9661 73.00 M 3 2 3 9662 60.00 F 4 2 3 9663 68.00 M 3 2 3 9664 71.00 M 7 2 3 9665 80.00 F 4 2 3 9666 85.00 M 2 2 3 9667 56.00 F 2 2 2 9668 66.00 M 3 2 3 9669 69.00 M 4 2 3 9670 40.00 F 1 2 2 9671 76.00 F 3 2 3 9672 77.00 M 2 2 3 9673 30.00 M 1 2 2 9674 57.00 M 3 2 2 9675 65.00 M 3 2 3 9676 54.00 M 1 2 2 9677 70.00 M 1 2 3 9678 71.00 M 0 2 3 9679 73.00 M 3 2 3 9680 61.00 M 0 2 3 9681 65.00 F 1 2 3 9682 80.00 M 1 2 3 9683 67.00 M 0 2 3 9684 62.00 M 2 2 3 9685 34.00 M 1 2 2 9686 58.00 M 0 2 2 9687 60.00 F 1 2 3 9688 66.00 M 1 2 3 9689 71.00 M 1 2 3 9690 62.00 M 0 2 3 9691 64.00 M 1 2 3 9692 70.00 M 1 2 3 9693 58.00 M 1 2 2 9694 50.00 F 0 2 2 9695 63.00 M 0 2 3 9696 62.00 M 0 2 3 9697 74.00 M 0 2 3 9698 27.00 M 1 2 2 9699 43.00 M 20 2 2 9700 43.00 F 22 2 2 9701 65.00 F 19 2 3 9702 53.00 M 19 2 2 9703 50.00 F 9 2 2 9704 64.00 M 4 2 3 9705 50.00 M 7 2 2 9706 64.00 M 6 2 3 9707 85.00 M 0 2 3 9708 58.00 M 2 2 2 9709 67.00 M 3 2 3 9710 71.00 F 1 2 3 9711 74.00 M 5 2 3 9712 75.00 M 2 2 3 9713 24.00 F 3 2 2 9714 55.00 F 16 2 2 9715 76.00 F 11 2 3 9716 58.00 F 0 2 2 9717 74.00 M 3 2 3 9718 60.00 M 1 2 3 9719 67.00 M 12 2 3 9720 65.00 M 13 2 3 9721 80.00 M 6 2 3 9722 70.00 M 8 2 3 9723 65.00 M 2 2 3 9724 47.00 M 11 2 2 9725 45.00 F 1 2 2 9726 65.00 M 11 2 3 9727 50.00 F 2 2 2 9728 48.00 F 0 2 2 9729 70.00 F 10 2 3 9730 82.00 M 3 2 3 9731 75.00 F 12 2 3 9732 64.00 M 11 2 3 9733 55.00 M 12 2 2 9734 71.00 M 9 2 3 9735 55.00 M 4 2 2 9736 65.00 M 25 2 3 9737 57.00 M 11 2 2 9738 80.00 M 10 2 3 9739 40.00 M 1 2 2 9740 56.00 M 4 2 2 9741 56.00 M 1 2 2 9742 77.00 M 16 2 3 9743 70.00 F 2 2 3 9744 35.00 M 8 2 2 9745 64.00 M 8 2 3 9746 90.00 M 0 2 3 9747 52.00 M 10 2 2 9748 93.00 M 4 2 3 9749 55.00 M 5 2 2 9750 51.00 M 1 2 2 9751 57.00 M 7 2 2 9752 52.00 M 9 2 2 9753 75.00 F 6 2 3 9754 64.00 M 1 2 3 9755 66.00 M 2 2 3 9756 84.00 F 8 2 3 9757 71.00 F 7 2 3 9758 70.00 F 5 2 3 9759 55.00 F 4 2 2 9760 48.00 F 3 2 2 9761 46.00 F 5 2 2 9762 50.00 F 6 2 2 9763 56.00 M 6 2 2 9764 60.00 M 5 2 3 9765 86.00 F 4 2 3 9766 83.00 M 6 2 3 9767 82.00 F 4 2 3 9768 70.00 M 0 2 3 9769 85.00 M 3 2 3 9770 84.00 M 2 2 3 9771 75.00 M 4 2 3 9772 58.00 M 2 2 2 9773 51.00 M 2 2 2 9774 58.00 F 1 2 2 9775 60.00 M 2 2 3 9776 62.00 F 2 2 3 9777 73.00 M 3 2 3 9778 84.00 M 3 2 3 9779 65.00 F 3 2 3 9780 60.00 M 2 2 3 9781 84.00 M 3 2 3 9782 42.00 M 2 2 2 9783 70.00 M 6 2 3 9784 61.00 M 1 2 3 9785 65.00 F 1 2 3 9786 78.00 F 4 2 3 9787 36.00 M 9 2 2 9788 64.00 M 1 2 3 9789 48.00 M 1 2 2 9790 34.00 M 1 2 2 9791 55.00 F 1 2 2 9792 65.00 F 4 2 3 9793 46.00 M 0 2 2 9794 86.00 F 1 2 3 9795 75.00 F 2 2 3 9796 80.00 M 1 2 3 9797 25.00 F 30 2 2 9798 85.00 M 3 2 3 9799 60.00 M 20 2 3 9800 76.00 F 6 2 3 9801 70.00 M 4 2 3 9802 59.00 M 18 2 2 9803 72.00 M 15 2 3 9804 60.00 F 4 2 3 9805 85.00 M 13 2 3 9806 55.00 M 10 2 2 9807 72.00 M 12 2 3 9808 53.00 M 15 2 2 9809 70.00 M 13 2 3 9810 53.00 M 3 2 2 9811 60.00 M 7 2 3 9812 53.00 F 11 2 2 9813 76.00 M 13 2 3 9814 97.00 F 4 2 3 9815 60.00 F 0 2 3 9816 68.00 F 10 2 3 9817 70.00 F 5 2 3 9818 59.00 M 1 2 2 9819 60.00 M 0 2 3 9820 73.00 M 6 2 3 9821 71.00 F 9 2 3 9822 75.00 M 7 2 3 9823 83.00 M 9 2 3 9824 75.00 M 9 2 3 9825 52.00 F 4 2 2 9826 63.00 F 23 2 3 9827 63.00 M 26 2 3 9828 95.00 M 9 2 3 9829 70.00 F 8 2 3 9830 73.00 M 8 2 3 9831 52.00 M 8 2 2 9832 50.00 M 1 2 2 9833 55.00 F 0 2 2 9834 84.00 M 6 2 3 9835 80.00 F 9 2 3 9836 92.00 M 4 2 3 9837 74.00 M 7 2 3 9838 36.00 M 26 2 2 9839 60.00 M 6 2 3 9840 50.00 M 3 2 2 9841 74.00 F 4 2 3 9842 65.00 F 1 2 3 9843 78.00 M 2 2 3 9844 60.00 M 6 2 3 9845 65.00 M 3 2 3 9846 60.00 M 6 2 3 9847 68.00 M 5 2 3 9848 70.00 M 4 2 3 9849 40.00 M 4 2 2 9850 70.00 F 0 2 3 9851 75.00 M 1 2 3 9852 65.00 F 9 2 3 9853 55.00 M 7 2 2 9854 62.00 F 3 2 3 9855 63.00 M 3 2 3 9856 39.00 F 4 2 2 9857 55.00 F 3 2 2 9858 70.00 M 1 2 3 9859 64.00 M 1 2 3 9860 72.00 F 0 2 3 9861 60.00 F 1 2 3 9862 65.00 F 1 2 3 9863 56.00 M 3 2 2 9864 40.00 F 2 2 2 9865 82.00 M 10 2 3 9866 84.00 M 3 2 3 9867 53.00 F 2 2 2 9868 59.00 M 1 2 2 9869 76.00 M 3 2 3 9870 40.00 M 0 2 2 9871 67.00 M 32 2 3 9872 56.00 M 1 2 2 9873 47.00 M 0 2 2 9874 61.00 M 5 2 3 9875 65.00 M 5 2 3 9876 70.00 M 1 2 3 9877 53.00 M 11 2 2 9878 46.00 M 0 2 2 9879 55.00 M 4 2 2 9880 56.00 M 4 2 2 9881 79.00 M 15 2 3 9882 51.00 F 5 2 2 9883 56.00 F 6 2 2 9884 66.00 M 12 2 3 9885 51.00 M 4 2 2 9886 67.00 F 10 2 3 9887 65.00 M 9 2 3 9888 85.00 M 3 2 3 9889 72.00 M 8 2 3 9890 50.00 M 11 2 2 9891 65.00 M 1 2 3 9892 82.00 M 12 2 3 9893 57.00 M 10 2 2 9894 53.00 F 1 2 2 9895 80.00 F 12 2 3 9896 71.00 M 8 2 3 9897 53.00 M 8 2 2 9898 70.00 F 6 2 3 9899 46.00 F 7 2 2 9900 74.00 M 7 2 3 9901 55.00 F 8 2 2 9902 64.00 M 9 2 3 9903 47.00 M 10 2 2 9904 65.00 M 10 2 3 9905 76.00 F 3 2 3 9906 87.00 M 39 2 3 9907 70.00 F 5 2 3 9908 61.00 F 2 2 3 9909 80.00 M 3 2 3 9910 65.00 M 2 2 3 9911 48.00 M 2 2 2 9912 84.00 M 6 2 3 9913 82.00 M 1 2 3 9914 69.00 F 6 2 3 9915 61.00 F 12 2 3 9916 60.00 M 2 2 3 9917 64.00 F 1 2 3 9918 80.00 F 3 2 3 9919 86.00 F 4 2 3 9920 75.00 F 4 2 3 9921 65.00 F 6 2 3 9922 70.00 M 3 2 3 9923 75.00 F 6 2 3 9924 72.00 M 3 2 3 9925 78.00 F 16 2 3 9926 58.00 M 0 2 2 9927 73.00 M 5 2 3 9928 70.00 M 2 2 3 9929 65.00 F 15 2 3 9930 71.00 F 3 2 3 9931 76.00 M 2 2 3 9932 80.00 M 0 2 3 9933 80.00 M 0 2 3 9934 32.00 M 10 2 2 9935 58.00 M 5 2 2 9936 55.00 F 1 2 2 9937 50.00 M 0 2 2 9938 60.00 M 2 2 3 9939 70.00 M 1 2 3 9940 65.00 M 0 2 3 9941 50.00 F 2 2 2 9942 54.00 M 0 2 2 9943 57.00 M 0 2 2 9944 48.00 F 31 2 2 9945 58.00 F 5 2 2 9946 44.00 M 28 2 2 9947 71.00 M 10 2 3 9948 75.00 M 25 2 3 9949 62.00 F 2 2 3 9950 59.00 M 37 2 2 9951 60.00 M 1 2 3 9952 60.00 M 4 2 3 9953 65.00 M 7 2 3 9954 69.00 M 17 2 3 9955 70.00 M 3 2 3 9956 60.00 F 6 2 3 9957 74.00 M 0 2 3 9958 52.00 M 13 2 2 9959 54.00 F 0 2 2 9960 65.00 M 8 2 3 9961 71.00 M 10 2 3 9962 72.00 F 7 2 3 9963 65.00 F 8 2 3 9964 51.00 M 9 2 2 9965 71.00 M 4 2 3 9966 45.00 F 15 2 2 9967 75.00 M 2 2 3 9968 67.00 M 10 2 3 9969 77.00 M 8 2 3 9970 74.00 F 8 2 3 9971 51.00 M 10 2 2 9972 73.00 M 3 2 3 9973 45.00 M 7 2 2 9974 61.00 M 5 2 3 9975 49.00 M 0 2 2 9976 58.00 M 2 2 2 9977 60.00 M 7 2 3 9978 47.00 F 7 2 2 9979 45.00 F 4 2 2 9980 53.00 M 7 2 2 9981 83.00 M 7 2 3 9982 59.00 M 6 2 2 9983 36.00 F 6 2 2 9984 31.00 F 4 2 2 9985 65.00 M 7 2 3 9986 81.00 M 3 2 3 9987 46.00 F 5 2 2 9988 80.00 F 7 2 3 9989 70.00 M 1 2 3 9990 66.00 M 8 2 3 9991 53.00 F 0 2 2 9992 65.00 M 0 2 3 9993 83.00 M 11 2 3 9994 60.00 F 2 2 3 9995 76.00 F 5 2 3 9996 65.00 F 2 2 3 9997 70.00 F 5 2 3 9998 68.00 M 3 2 3 9999 75.00 M 5 2 3 10000 67.00 M 7 2 3 10001 67.00 M 6 2 3 10002 70.00 M 1 2 3 10003 59.00 M 5 2 2 10004 81.00 M 2 2 3 10005 53.00 M 4 2 2 10006 65.00 F 2 2 3 10007 55.00 F 0 2 2 10008 52.00 M 4 2 2 10009 40.00 M 1 2 2 10010 82.00 M 3 2 3 10011 67.00 M 3 2 3 10012 58.00 M 2 2 2 10013 52.00 F 2 2 2 10014 51.00 M 2 2 2 10015 62.00 M 4 2 3 10016 70.00 M 2 2 3 10017 54.00 M 2 2 2 10018 59.00 F 53 2 2 10019 70.00 M 2 2 3 10020 56.00 M 2 2 2 10021 71.00 M 2 2 3 10022 74.00 F 2 2 3 10023 70.00 M 2 2 3 10024 60.00 F 1 2 3 10025 42.00 F 1 2 2 10026 65.00 M 1 2 3 10027 64.00 M 1 2 3 10028 60.00 M 0 2 3 10029 65.00 F 6 2 3 10030 24.00 M 4 2 2 10031 63.00 M 11 2 3 10032 54.00 M 10 2 2 10033 71.00 M 6 2 3 10034 70.00 M 9 2 3 10035 61.00 M 23 2 3 10036 65.00 M 16 2 3 10037 82.00 M 16 2 3 10038 65.00 M 7 2 3 10039 52.00 F 18 2 2 10040 66.00 M 17 2 3 10041 60.00 F 1 2 3 10042 59.00 M 7 2 2 10043 53.00 M 11 2 2 10044 69.00 M 8 2 3 10045 58.00 M 10 2 2 10046 81.00 M 9 2 3 10047 62.00 M 11 2 3 10048 85.00 F 11 2 3 10049 65.00 M 8 2 3 10050 77.00 M 9 2 3 10051 72.00 F 9 2 3 10052 85.00 M 8 2 3 10053 76.00 M 6 2 3 10054 67.00 M 8 2 3 10055 58.00 M 0 2 2 10056 53.00 M 3 2 2 10057 84.00 M 8 2 3 10058 60.00 F 7 2 3 10059 70.00 M 7 2 3 10060 75.00 M 9 2 3 10061 53.00 M 3 2 2 10062 60.00 M 8 2 3 10063 54.00 M 7 2 2 10064 77.00 M 2 2 3 10065 74.00 F 8 2 3 10066 59.00 M 7 2 2 10067 80.00 M 7 2 3 10068 54.00 M 9 2 2 10069 50.00 M 5 2 2 10070 50.00 M 7 2 2 10071 74.00 M 8 2 3 10072 75.00 F 5 2 3 10073 65.00 M 3 2 3 10074 80.00 M 3 2 3 10075 65.00 M 6 2 3 10076 77.00 M 5 2 3 10077 70.00 M 3 2 3 10078 74.00 M 5 2 3 10079 62.00 M 6 2 3 10080 65.00 M 1 2 3 10081 67.00 M 3 2 3 10082 38.00 F 4 2 2 10083 72.00 M 5 2 3 10084 61.00 F 6 2 3 10085 60.00 M 4 2 3 10086 75.00 M 4 2 3 10087 58.00 M 1 2 2 10088 45.00 M 1 2 2 10089 42.00 M 1 2 2 10090 63.00 M 2 2 3 10091 68.00 M 0 2 3 10092 32.00 F 3 2 2 10093 61.00 F 4 2 3 10094 67.00 F 1 2 3 10095 68.00 M 1 2 3 10096 55.00 F 2 2 2 10097 20.00 F 2 2 2 10098 72.00 F 0 2 3 10099 68.00 M 1 2 3 10100 43.00 M 0 2 2 10101 67.00 M 2 2 3 10102 32.00 M 1 2 2 10103 70.00 F 2 2 3 10104 65.00 F 2 2 3 10105 35.00 F 1 2 2 10106 76.00 M 1 2 3 10107 64.00 M 20 2 3 10108 55.00 F 17 2 2 10109 80.00 M 15 2 3 10110 65.00 M 11 2 3 10111 60.00 F 1 2 3 10112 54.00 M 17 2 2 10113 58.00 M 1 2 2 10114 51.00 M 13 2 2 10115 76.00 M 13 2 3 10116 58.00 M 12 2 2 10117 62.00 F 18 2 3 10118 65.00 M 6 2 3 10119 80.00 F 6 2 3 10120 68.00 M 11 2 3 10121 82.00 M 8 2 3 10122 63.00 M 8 2 3 10123 67.00 M 7 2 3 10124 44.00 M 9 2 2 10125 46.00 M 8 2 2 10126 79.00 M 9 2 3 10127 52.00 F 6 2 2 10128 60.00 F 3 2 3 10129 60.00 M 7 2 3 10130 39.00 M 8 2 2 10131 46.00 F 4 2 2 10132 65.00 M 2 2 3 10133 55.00 F 7 2 2 10134 77.00 M 10 2 3 10135 73.00 M 8 2 3 10136 48.00 M 6 2 2 10137 65.00 M 36 2 3 10138 79.00 F 7 2 3 10139 76.00 M 6 2 3 10140 81.00 M 6 2 3 10141 61.00 F 8 2 3 10142 68.00 M 3 2 3 10143 75.00 M 7 2 3 10144 80.00 M 6 2 3 10145 65.00 F 6 2 3 10146 30.00 M 8 2 2 10147 32.00 F 8 2 2 10148 82.00 M 9 2 3 10149 92.00 F 8 2 3 10150 60.00 M 3 2 3 10151 58.00 F 5 2 2 10152 59.00 M 5 2 2 10153 56.00 M 6 2 2 10154 61.00 M 6 2 3 10155 33.00 M 24 2 2 10156 57.00 F 1 2 2 10157 62.00 M 7 2 3 10158 70.00 F 0 2 3 10159 90.00 M 12 2 3 10160 32.00 F 3 2 2 10161 82.00 M 16 2 3 10162 85.00 M 5 2 3 10163 39.00 M 2 2 2 10164 77.00 F 4 2 3 10165 58.00 M 4 2 2 10166 70.00 M 2 2 3 10167 75.00 F 1 2 3 10168 88.00 F 3 2 3 10169 76.00 F 3 2 3 10170 80.00 M 6 2 3 10171 90.00 M 16 2 3 10172 66.00 M 6 2 3 10173 72.00 M 1 2 3 10174 48.00 F 0 2 2 10175 68.00 F 23 2 3 10176 18.00 F 2 2 2 10177 52.00 M 6 2 2 10178 62.00 F 3 2 3 10179 48.00 M 1 2 2 10180 49.00 M 1 2 2 10181 62.00 F 0 2 3 10182 45.00 F 1 2 2 10183 60.00 F 0 2 3 10184 52.00 F 3 2 2 10185 56.00 F 2 2 2 10186 45.00 F 2 2 2 10187 53.00 M 0 2 2 10188 70.00 M 1 2 3 10189 78.00 F 0 2 3 10190 75.00 M 0 2 3 10191 68.00 M 8 2 3 10192 41.00 F 22 2 2 10193 86.00 M 15 2 3 10194 76.00 M 23 2 3 10195 60.00 M 11 2 3 10196 72.00 M 9 2 3 10197 61.00 M 14 2 3 10198 68.00 M 0 2 3 10199 84.00 M 12 2 3 10200 45.00 M 2 2 2 10201 52.00 M 4 2 2 10202 87.00 F 15 2 3 10203 70.00 F 12 2 3 10204 64.00 M 2 2 3 10205 80.00 M 11 2 3 10206 53.00 F 13 2 2 10207 62.00 M 11 2 3 10208 63.00 M 5 2 3 10209 58.00 M 16 2 2 10210 52.00 M 12 2 2 10211 75.00 M 0 2 3 10212 92.00 M 5 2 3 10213 66.00 M 9 2 3 10214 58.00 M 5 2 2 10215 80.00 M 11 2 3 10216 70.00 M 10 2 3 10217 65.00 M 11 2 3 10218 60.00 M 22 2 3 10219 75.00 M 10 2 3 10220 74.00 M 6 2 3 10221 81.00 M 7 2 3 10222 72.00 F 6 2 3 10223 78.00 M 7 2 3 10224 40.00 F 8 2 2 10225 71.00 M 5 2 3 10226 70.00 M 7 2 3 10227 43.00 M 8 2 2 10228 47.00 M 6 2 2 10229 78.00 M 1 2 3 10230 57.00 M 7 2 2 10231 82.00 F 7 2 3 10232 76.00 M 1 2 3 10233 71.00 M 7 2 3 10234 60.00 M 4 2 3 10235 60.00 M 2 2 3 10236 55.00 F 2 2 2 10237 75.00 F 3 2 3 10238 70.00 M 2 2 3 10239 65.00 F 2 2 3 10240 57.00 M 4 2 2 10241 89.00 M 1 2 3 10242 75.00 M 0 2 3 10243 48.00 M 33 2 2 10244 65.00 M 26 2 3 10245 62.00 F 5 2 3 10246 79.00 F 4 2 3 10247 45.00 F 8 2 2 10248 37.00 F 1 2 2 10249 75.00 F 1 2 3 10250 45.00 F 0 2 2 10251 46.00 M 2 2 2 10252 68.00 M 5 2 3 10253 75.00 M 4 2 3 10254 75.00 M 2 2 3 10255 83.00 M 2 2 3 10256 60.00 F 4 2 3 10257 60.00 M 4 2 3 10258 63.00 F 2 2 3 10259 64.00 M 2 2 3 10260 72.00 M 2 2 3 10261 72.00 M 3 2 3 10262 78.00 M 0 2 3 10263 78.00 M 2 2 3 10264 68.00 M 2 2 3 10265 77.00 M 8 2 3 10266 70.00 M 2 2 3 10267 56.00 M 15 2 2 10268 63.00 M 3 2 3 10269 64.00 M 4 2 3 10270 64.00 F 13 2 3 10271 60.00 M 16 2 3 10272 62.00 M 15 2 3 10273 72.00 M 11 2 3 10274 61.00 M 1 2 3 10275 60.00 M 13 2 3 10276 38.00 M 11 2 2 10277 70.00 M 9 2 3 10278 84.00 M 9 2 3 10279 74.00 F 11 2 3 10280 39.00 M 12 2 2 10281 70.00 F 8 2 3 10282 81.00 M 11 2 3 10283 61.00 F 10 2 3 10284 70.00 M 6 2 3 10285 64.00 M 11 2 3 10286 40.00 F 2 2 2 10287 62.00 F 12 2 3 10288 75.00 M 10 2 3 10289 61.00 M 2 2 3 10290 62.00 M 5 2 3 10291 55.00 F 7 2 2 10292 65.00 M 3 2 3 10293 26.00 M 9 2 2 10294 72.00 M 4 2 3 10295 56.00 M 7 2 2 10296 76.00 M 6 2 3 10297 57.00 F 8 2 2 10298 78.00 F 9 2 3 10299 64.00 M 7 2 3 10300 52.00 M 5 2 2 10301 72.00 M 4 2 3 10302 70.00 F 7 2 3 10303 70.00 M 8 2 3 10304 74.00 M 8 2 3 10305 58.00 M 5 2 2 10306 55.00 M 6 2 2 10307 94.00 M 6 2 3 10308 86.00 M 7 2 3 10309 75.00 M 5 2 3 10310 62.00 F 6 2 3 10311 75.00 M 6 2 3 10312 65.00 M 1 2 3 10313 46.00 M 0 2 2 10314 49.00 M 8 2 2 10315 72.00 M 1 2 3 10316 45.00 F 1 2 2 10317 67.00 F 1 2 3 10318 54.00 M 4 2 2 10319 68.00 M 5 2 3 10320 52.00 F 3 2 2 10321 55.00 F 5 2 2 10322 71.00 M 32 2 3 10323 52.00 F 3 2 2 10324 48.00 M 2 2 2 10325 25.00 F 1 2 2 10326 80.00 M 2 2 3 10327 87.00 F 2 2 3 10328 74.00 M 5 2 3 10329 60.00 M 1 2 3 10330 65.00 F 3 2 3 10331 80.00 M 1 2 3 10332 68.00 M 1 2 3 10333 65.00 F 0 2 3 10334 38.00 M 1 2 2 10335 55.00 F 2 2 2 10336 24.00 F 0 2 2 10337 57.00 M 2 2 2 10338 70.00 F 4 2 3 10339 51.00 F 18 2 2 10340 50.00 M 17 2 2 10341 39.00 F 16 2 2 10342 54.00 M 15 2 2 10343 65.00 F 6 2 3 10344 69.00 M 14 2 3 10345 84.00 M 9 2 3 10346 70.00 M 11 2 3 10347 49.00 F 2 2 2 10348 69.00 M 10 2 3 10349 60.00 M 9 2 3 10350 75.00 M 8 2 3 10351 72.00 M 8 2 3 10352 59.00 F 7 2 2 10353 52.00 M 6 2 2 10354 73.00 M 7 2 3 10355 74.00 M 4 2 3 10356 60.00 M 1 2 3 10357 75.00 M 13 2 3 10358 37.00 M 6 2 2 10359 65.00 M 13 2 3 10360 67.00 F 5 2 3 10361 71.00 M 3 2 3 10362 70.00 F 4 2 3 10363 57.00 F 2 2 2 10364 70.00 M 4 2 3 10365 75.00 F 3 2 3 10366 44.00 M 4 2 2 10367 53.00 M 2 2 2 10368 43.00 F 4 2 2 10369 75.00 M 5 2 3 10370 60.00 M 4 2 3 10371 73.00 M 2 2 3 10372 79.00 M 2 2 3 10373 72.00 M 1 2 3 10374 68.00 M 3 2 3 10375 60.00 F 1 2 3 10376 61.00 M 2 2 3 10377 36.00 M 1 2 2 10378 86.00 M 1 2 3 10379 78.00 M 0 2 3 10380 64.00 M 2 2 3 10381 66.00 M 1 2 3 10382 52.00 F 1 2 2 10383 48.00 M 11 2 2 10384 50.00 M 7 2 2 10385 60.00 M 1 2 3 10386 56.00 F 1 2 2 10387 65.00 M 5 2 3 10388 67.00 M 4 2 3 10389 52.00 M 4 2 2 10390 75.00 F 11 2 3 10391 46.00 F 16 2 2 10392 71.00 F 14 2 3 10393 62.00 M 13 2 3 10394 75.00 M 12 2 3 10395 52.00 F 15 2 2 10396 70.00 M 12 2 3 10397 52.00 M 0 2 2 10398 82.00 M 6 2 3 10399 80.00 F 14 2 3 10400 75.00 F 6 2 3 10401 60.00 F 12 2 3 10402 57.00 M 4 2 2 10403 90.00 M 0 2 3 10404 47.00 M 9 2 2 10405 75.00 M 8 2 3 10406 86.00 M 7 2 3 10407 71.00 M 0 2 3 10408 65.00 M 9 2 3 10409 35.00 M 4 2 2 10410 68.00 M 11 2 3 10411 69.00 F 5 2 3 10412 60.00 F 3 2 3 10413 62.00 F 8 2 3 10414 68.00 F 25 2 3 10415 62.00 M 0 2 3 10416 85.00 M 2 2 3 10417 46.00 M 11 2 2 10418 65.00 M 3 2 3 10419 65.00 M 6 2 3 10420 64.00 F 6 2 3 10421 83.00 M 0 2 3 10422 73.00 M 8 2 3 10423 52.00 F 6 2 2 10424 55.00 F 3 2 2 10425 49.00 M 1 2 2 10426 80.00 M 2 2 3 10427 58.00 F 3 2 2 10428 63.00 M 2 2 3 10429 52.00 F 5 2 2 10430 73.00 M 2 2 3 10431 35.00 F 3 2 2 10432 58.00 M 0 2 2 10433 61.00 M 4 2 3 10434 53.00 F 3 2 2 10435 85.00 M 3 2 3 10436 59.00 M 3 2 2 10437 35.00 M 0 2 2 10438 60.00 F 1 2 3 10439 50.00 M 1 2 2 10440 75.00 M 1 2 3 10441 75.00 F 3 2 3 10442 84.00 F 2 2 3 10443 26.00 M 0 2 2 10444 80.00 M 8 2 3 10445 45.00 M 4 2 2 10446 79.00 M 11 2 3 10447 56.00 M 15 2 2 10448 75.00 M 0 2 3 10449 70.00 M 5 2 3 10450 52.00 M 8 2 2 10451 73.00 M 0 2 3 10452 60.00 M 4 2 3 10453 71.00 M 16 2 3 10454 28.00 M 13 2 2 10455 38.00 M 10 2 2 10456 85.00 M 7 2 3 10457 60.00 F 12 2 3 10458 65.00 F 8 2 3 10459 61.00 F 4 2 3 10460 62.00 M 11 2 3 10461 70.00 F 8 2 3 10462 70.00 M 5 2 3 10463 67.00 M 8 2 3 10464 46.00 F 9 2 2 10465 76.00 M 9 2 3 10466 54.00 M 10 2 2 10467 85.00 M 7 2 3 10468 65.00 F 8 2 3 10469 62.00 F 10 2 3 10470 65.00 M 3 2 3 10471 80.00 F 10 2 3 10472 80.00 M 9 2 3 10473 75.00 F 8 2 3 10474 90.00 F 8 2 3 10475 84.00 M 7 2 3 10476 63.00 F 3 2 3 10477 70.00 F 7 2 3 10478 80.00 F 9 2 3 10479 77.00 M 6 2 3 10480 79.00 M 6 2 3 10481 60.00 M 6 2 3 10482 62.00 F 9 2 3 10483 70.00 M 6 2 3 10484 40.00 M 5 2 2 10485 68.00 M 0 2 3 10486 58.00 F 2 2 2 10487 65.00 F 5 2 3 10488 67.00 M 4 2 3 10489 72.00 M 7 2 3 10490 68.00 F 7 2 3 10491 25.00 M 0 2 2 10492 66.00 F 3 2 3 10493 30.00 M 4 2 2 10494 60.00 M 1 2 3 10495 85.00 M 4 2 3 10496 85.00 M 1 2 3 10497 64.00 M 5 2 3 10498 63.00 M 3 2 3 10499 56.00 M 1 2 2 10500 60.00 M 6 2 3 10501 52.00 F 0 2 2 10502 64.00 M 1 2 3 10503 45.00 F 11 2 2 10504 49.00 M 1 2 2 10505 50.00 F 0 2 2 10506 71.00 F 2 2 3 10507 53.00 F 1 2 2 10508 65.00 M 1 2 3 10509 46.00 M 0 2 2 10510 55.00 M 2 2 2 10511 70.00 M 0 2 3 10512 43.00 M 3 2 2 10513 75.00 F 1 2 3 10514 75.00 F 0 2 3 10515 70.00 F 2 2 3 10516 42.00 M 0 2 2 10517 65.00 F 5 2 3 10518 75.00 M 19 2 3 10519 37.00 M 18 2 2 10520 51.00 F 5 2 2 10521 60.00 M 1 2 3 10522 70.00 M 12 2 3 10523 65.00 M 14 2 3 10524 67.00 F 3 2 3 10525 56.00 F 13 2 2 10526 70.00 M 13 2 3 10527 85.00 M 15 2 3 10528 65.00 F 6 2 3 10529 64.00 M 4 2 3 10530 71.00 F 11 2 3 10531 38.00 M 5 2 2 10532 61.00 F 12 2 3 10533 69.00 M 18 2 3 10534 70.00 M 10 2 3 10535 89.00 M 7 2 3 10536 62.00 M 1 2 3 10537 55.00 F 1 2 2 10538 46.00 M 5 2 2 10539 65.00 M 10 2 3 10540 50.00 M 10 2 2 10541 79.00 M 8 2 3 10542 82.00 M 2 2 3 10543 60.00 M 4 2 3 10544 70.00 F 5 2 3 10545 59.00 F 9 2 2 10546 71.00 M 7 2 3 10547 48.00 F 3 2 2 10548 85.00 F 7 2 3 10549 64.00 M 3 2 3 10550 87.00 F 7 2 3 10551 62.00 M 7 2 3 10552 65.00 M 4 2 3 10553 76.00 M 3 2 3 10554 69.00 M 4 2 3 10555 55.00 F 8 2 2 10556 75.00 F 7 2 3 10557 65.00 M 5 2 3 10558 59.00 F 8 2 2 10559 70.00 M 5 2 3 10560 38.00 M 7 2 2 10561 66.00 M 7 2 3 10562 66.00 M 6 2 3 10563 41.00 M 7 2 2 10564 65.00 M 8 2 3 10565 63.00 M 6 2 3 10566 40.00 F 2 2 2 10567 50.00 F 1 2 2 10568 72.00 M 5 2 3 10569 64.00 M 8 2 3 10570 22.00 M 2 2 2 10571 65.00 M 2 2 3 10572 70.00 M 7 2 3 10573 58.00 F 0 2 2 10574 35.00 M 8 2 2 10575 42.00 F 4 2 2 10576 75.00 M 8 2 3 10577 60.00 F 5 2 3 10578 65.00 M 4 2 3 10579 70.00 F 3 2 3 10580 66.00 M 4 2 3 10581 60.00 F 4 2 3 10582 56.00 M 1 2 2 10583 55.00 F 2 2 2 10584 49.00 F 4 2 2 10585 61.00 M 4 2 3 10586 72.00 M 6 2 3 10587 51.00 M 3 2 2 10588 61.00 M 3 2 3 10589 62.00 F 5 2 3 10590 60.00 M 0 2 3 10591 74.00 F 1 2 3 10592 59.00 M 1 2 2 10593 75.00 F 5 2 3 10594 77.00 M 2 2 3 10595 67.00 F 2 2 3 10596 70.00 M 1 2 3 10597 70.00 M 2 2 3 10598 49.00 F 2 2 2 10599 55.00 M 4 2 2 10600 56.00 F 2 2 2 10601 60.00 F 4 2 3 10602 60.00 F 2 2 3 10603 72.00 M 8 2 3 10604 54.00 F 8 2 2 10605 59.00 M 33 2 2 10606 64.00 F 36 2 3 10607 53.00 F 3 2 2 10608 63.00 M 2 2 3 10609 72.00 F 6 2 3 10610 78.00 M 2 2 3 10611 73.00 M 14 2 3 10612 85.00 M 1 2 3 10613 42.00 M 7 2 2 10614 77.00 M 13 2 3 10615 89.00 M 14 2 3 10616 72.00 M 7 2 3 10617 37.00 M 7 2 2 10618 78.00 M 12 2 3 10619 69.00 M 14 2 3 10620 65.00 F 0 2 3 10621 51.00 M 3 2 2 10622 74.00 M 3 2 3 10623 32.00 F 0 2 2 10624 51.00 M 11 2 2 10625 74.00 M 9 2 3 10626 52.00 M 4 2 2 10627 68.00 F 11 2 3 10628 66.00 M 10 2 3 10629 71.00 M 11 2 3 10630 65.00 M 10 2 3 10631 43.00 M 7 2 2 10632 80.00 M 10 2 3 10633 65.00 M 4 2 3 10634 76.00 M 8 2 3 10635 56.00 M 3 2 2 10636 60.00 F 7 2 3 10637 51.00 M 14 2 2 10638 64.00 M 11 2 3 10639 75.00 M 1 2 3 10640 57.00 F 4 2 2 10641 80.00 M 2 2 3 10642 81.00 M 12 2 3 10643 75.00 F 11 2 3 10644 88.00 M 8 2 3 10645 75.00 M 8 2 3 10646 65.00 M 7 2 3 10647 86.00 M 7 2 3 10648 76.00 M 5 2 3 10649 67.00 M 6 2 3 10650 20.00 M 2 2 2 10651 70.00 F 5 2 3 10652 50.00 M 3 2 2 10653 70.00 M 6 2 3 10654 80.00 M 4 2 3 10655 72.00 M 3 2 3 10656 55.00 F 3 2 2 10657 60.00 F 2 2 3 10658 66.00 M 5 2 3 10659 50.00 M 4 2 2 10660 55.00 M 3 2 2 10661 75.00 M 4 2 3 10662 68.00 M 0 2 3 10663 69.00 F 1 2 3 10664 59.00 M 2 2 2 10665 75.00 F 4 2 3 10666 82.00 M 2 2 3 10667 68.00 M 2 2 3 10668 52.00 M 0 2 2 10669 58.00 F 3 2 2 10670 62.00 M 2 2 3 10671 55.00 F 0 2 2 10672 70.00 F 4 2 3 10673 53.00 M 3 2 2 10674 50.00 M 2 2 2 10675 54.00 M 3 2 2 10676 45.00 M 0 2 2 10677 87.00 M 0 2 3 10678 81.00 M 18 2 3 10679 85.00 M 4 2 3 10680 54.00 M 1 2 2 10681 55.00 F 15 2 2 10682 64.00 M 4 2 3 10683 58.00 F 18 2 2 10684 65.00 F 13 2 3 10685 60.00 F 14 2 3 10686 60.00 M 5 2 3 10687 60.00 M 0 2 3 10688 76.00 M 1 2 3 10689 63.00 F 11 2 3 10690 70.00 M 11 2 3 10691 55.00 M 4 2 2 10692 81.00 M 1 2 3 10693 73.00 F 2 2 3 10694 49.00 F 12 2 2 10695 80.00 F 7 2 3 10696 65.00 M 4 2 3 10697 71.00 M 11 2 3 10698 60.00 M 1 2 3 10699 55.00 M 8 2 2 10700 65.00 M 9 2 3 10701 56.00 M 7 2 2 10702 76.00 M 8 2 3 10703 68.00 F 7 2 3 10704 85.00 M 6 2 3 10705 62.00 M 17 2 3 10706 70.00 F 6 2 3 10707 66.00 M 6 2 3 10708 60.00 M 10 2 3 10709 50.00 M 4 2 2 10710 95.00 M 5 2 3 10711 65.00 M 5 2 3 10712 60.00 M 5 2 3 10713 51.00 M 6 2 2 10714 63.00 M 7 2 3 10715 34.00 M 4 2 2 10716 64.00 M 5 2 3 10717 52.00 M 0 2 2 10718 65.00 M 12 2 3 10719 85.00 M 2 2 3 10720 67.00 M 1 2 3 10721 57.00 F 1 2 2 10722 63.00 M 1 2 3 10723 82.00 F 5 2 3 10724 50.00 M 4 2 2 10725 63.00 M 3 2 3 10726 52.00 M 1 2 2 10727 58.00 M 0 2 2 10728 81.00 M 2 2 3 10729 55.00 M 16 2 2 10730 68.00 M 9 2 3 10731 77.00 F 16 2 3 10732 75.00 F 18 2 3 10733 89.00 M 14 2 3 10734 68.00 M 15 2 3 10735 65.00 M 8 2 3 10736 66.00 M 15 2 3 10737 28.00 M 4 2 2 10738 74.00 M 5 2 3 10739 59.00 F 13 2 2 10740 77.00 M 4 2 3 10741 79.00 F 13 2 3 10742 75.00 M 9 2 3 10743 82.00 M 8 2 3 10744 41.00 F 1 2 2 10745 56.00 M 7 2 2 10746 63.00 M 3 2 3 10747 70.00 M 10 2 3 10748 83.00 F 11 2 3 10749 68.00 M 13 2 3 10750 88.00 M 7 2 3 10751 60.00 M 0 2 3 10752 70.00 M 10 2 3 10753 51.00 M 2 2 2 10754 47.00 M 10 2 2 10755 60.00 M 1 2 3 10756 65.00 M 7 2 3 10757 57.00 M 7 2 2 10758 84.00 F 7 2 3 10759 60.00 F 6 2 3 10760 54.00 F 4 2 2 10761 73.00 M 5 2 3 10762 80.00 F 6 2 3 10763 68.00 F 2 2 3 10764 60.00 M 16 2 3 10765 54.00 F 2 2 2 10766 58.00 M 1 2 2 10767 83.00 M 4 2 3 10768 75.00 M 3 2 3 10769 62.00 F 3 2 3 10770 59.00 M 0 2 2 10771 78.00 F 0 2 3 10772 63.00 F 1 2 3 10773 55.00 F 3 2 2 10774 74.00 F 0 2 3 10775 84.00 M 10 2 3 10776 84.00 M 4 2 3 10777 81.00 M 1 2 3 10778 38.00 F 0 2 2 10779 60.00 M 6 2 3 10780 57.00 F 7 2 2 10781 72.00 M 21 2 3 10782 42.00 M 15 2 2 10783 72.00 M 17 2 3 10784 72.00 M 13 2 3 10785 58.00 F 13 2 2 10786 70.00 M 11 2 3 10787 68.00 M 0 2 3 10788 47.00 M 11 2 2 10789 81.00 F 41 2 3 10790 75.00 F 9 2 3 10791 87.00 M 10 2 3 10792 90.00 F 8 2 3 10793 78.00 M 9 2 3 10794 51.00 M 5 2 2 10795 70.00 M 8 2 3 10796 63.00 F 7 2 3 10797 70.00 F 8 2 3 10798 57.00 F 9 2 2 10799 70.00 M 7 2 3 10800 62.00 M 6 2 3 10801 82.00 F 1 2 3 10802 80.00 F 5 2 3 10803 68.00 M 5 2 3 10804 75.00 M 7 2 3 10805 80.00 F 0 2 3 10806 62.00 M 4 2 3 10807 67.00 F 5 2 3 10808 64.00 F 0 2 3 10809 56.00 M 3 2 2 10810 59.00 M 1 2 2 10811 63.00 M 0 2 3 10812 53.00 M 7 2 2 10813 59.00 M 4 2 2 10814 56.00 M 5 2 2 10815 65.00 M 5 2 3 10816 65.00 F 9 2 3 10817 32.00 M 0 2 2 10818 65.00 F 17 2 3 10819 54.00 M 7 2 2 10820 80.00 M 14 2 3 10821 64.00 M 12 2 3 10822 54.00 M 11 2 2 10823 82.00 M 9 2 3 10824 70.00 M 0 2 3 10825 66.00 F 3 2 3 10826 84.00 M 10 2 3 10827 71.00 M 15 2 3 10828 92.00 M 8 2 3 10829 60.00 M 11 2 3 10830 58.00 F 8 2 2 10831 80.00 M 8 2 3 10832 74.00 M 8 2 3 10833 83.00 F 10 2 3 10834 70.00 F 7 2 3 10835 86.00 M 10 2 3 10836 38.00 M 7 2 2 10837 70.00 F 8 2 3 10838 80.00 M 7 2 3 10839 70.00 F 5 2 3 10840 47.00 F 9 2 2 10841 75.00 M 4 2 3 10842 59.00 M 7 2 2 10843 68.00 M 3 2 3 10844 82.00 F 5 2 3 10845 73.00 M 2 2 3 10846 87.00 M 3 2 3 10847 70.00 M 14 2 3 10848 48.00 F 3 2 2 10849 78.00 M 11 2 3 10850 52.00 F 0 2 2 10851 47.00 M 4 2 2 10852 70.00 M 2 2 3 10853 60.00 F 4 2 3 10854 78.00 M 0 2 3 10855 70.00 F 2 2 3 10856 64.00 F 2 2 3 10857 57.00 M 0 2 2 10858 56.00 M 13 2 2 10859 55.00 M 14 2 2 10860 67.00 M 4 2 3 10861 58.00 M 14 2 2 10862 3.00 F 12 2 1 10863 63.00 F 14 2 3 10864 48.00 F 12 2 2 10865 44.00 M 6 2 2 10866 77.00 M 11 2 3 10867 71.00 F 7 2 3 10868 55.00 M 9 2 2 10869 65.00 M 4 2 3 10870 68.00 M 9 2 3 10871 80.00 F 11 2 3 10872 78.00 M 9 2 3 10873 84.00 M 8 2 3 10874 75.00 M 6 2 3 10875 55.00 M 7 2 2 10876 70.00 F 2 2 3 10877 80.00 F 9 2 3 10878 70.00 M 8 2 3 10879 80.00 F 6 2 3 10880 56.00 M 5 2 2 10881 58.00 M 3 2 2 10882 60.00 F 1 2 3 10883 65.00 M 4 2 3 10884 88.00 M 6 2 3 10885 70.00 F 5 2 3 10886 72.00 M 3 2 3 10887 66.00 M 5 2 3 10888 90.00 M 6 2 3 10889 54.00 M 2 2 2 10890 76.00 F 2 2 3 10891 63.00 F 3 2 3 10892 57.00 M 2 2 2 10893 58.00 F 7 2 2 10894 84.00 M 1 2 3 10895 35.00 F 2 2 2 10896 31.00 M 1 2 2 10897 19.00 M 9 2 2 10898 58.00 M 0 2 2 10899 72.00 M 12 2 3 10900 76.00 M 9 2 3 10901 57.00 F 12 2 2 10902 57.00 M 22 2 2 10903 66.00 M 18 2 3 10904 62.00 M 6 2 3 10905 72.00 M 21 2 3 10906 60.00 F 8 2 3 10907 55.00 M 2 2 2 10908 80.00 M 10 2 3 10909 65.00 M 12 2 3 10910 65.00 M 16 2 3 10911 60.00 F 4 2 3 10912 72.00 M 10 2 3 10913 75.00 M 12 2 3 10914 75.00 M 11 2 3 10915 80.00 M 8 2 3 10916 65.00 M 12 2 3 10917 63.00 M 10 2 3 10918 72.00 F 9 2 3 10919 69.00 M 11 2 3 10920 93.00 F 9 2 3 10921 40.00 M 11 2 2 10922 75.00 M 17 2 3 10923 57.00 M 3 2 2 10924 79.00 M 11 2 3 10925 58.00 M 11 2 2 10926 54.00 M 6 2 2 10927 75.00 M 2 2 3 10928 55.00 M 5 2 2 10929 68.00 M 7 2 3 10930 54.00 M 26 2 2 10931 65.00 F 0 2 3 10932 74.00 M 4 2 3 10933 52.00 M 5 2 2 10934 63.00 M 6 2 3 10935 80.00 F 0 2 3 10936 65.00 F 6 2 3 10937 76.00 M 6 2 3 10938 57.00 F 3 2 2 10939 64.00 M 2 2 3 10940 66.00 M 1 2 3 10941 60.00 M 2 2 3 10942 80.00 M 3 2 3 10943 76.00 M 5 2 3 10944 61.00 M 5 2 3 10945 82.00 M 3 2 3 10946 34.00 M 0 2 2 10947 89.00 M 2 2 3 10948 80.00 M 2 2 3 10949 80.00 F 2 2 3 10950 74.00 M 3 2 3 10951 53.00 F 2 2 2 10952 66.00 M 0 2 3 10953 78.00 M 3 2 3 10954 55.00 M 1 2 2 10955 52.00 M 3 2 2 10956 33.00 M 14 2 2 10957 65.00 F 0 2 3 10958 46.00 M 2 2 2 10959 46.00 F 12 2 2 10960 68.00 F 19 2 3 10961 29.00 M 12 2 2 10962 63.00 M 10 2 3 10963 69.00 M 11 2 3 10964 42.00 M 4 2 2 10965 70.00 M 1 2 3 10966 86.00 M 11 2 3 10967 77.00 F 4 2 3 10968 67.00 M 8 2 3 10969 68.00 M 7 2 3 10970 73.00 M 10 2 3 10971 41.00 M 11 2 2 10972 83.00 M 8 2 3 10973 68.00 M 6 2 3 10974 79.00 M 7 2 3 10975 65.00 M 3 2 3 10976 55.00 M 2 2 2 10977 60.00 M 5 2 3 10978 45.00 M 2 2 2 10979 25.00 F 0 2 2 10980 89.00 M 6 2 3 10981 57.00 F 6 2 2 10982 51.00 F 6 2 2 10983 85.00 F 2 2 3 10984 84.00 M 5 2 3 10985 78.00 M 7 2 3 10986 58.00 M 3 2 2 10987 78.00 F 3 2 3 10988 65.00 M 2 2 3 10989 68.00 M 9 2 3 10990 78.00 F 4 2 3 10991 75.00 F 0 2 3 10992 78.00 M 5 2 3 10993 67.00 F 2 2 3 10994 63.00 M 3 2 3 10995 83.00 M 2 2 3 10996 11.00 M 3 2 1 10997 68.00 F 0 2 3 10998 77.00 M 2 2 3 10999 24.00 M 8 2 2 11000 75.00 F 19 2 3 11001 56.00 F 25 2 2 11002 56.00 M 8 2 2 11003 24.00 F 16 2 2 11004 65.00 M 15 2 3 11005 70.00 M 15 2 3 11006 31.00 F 1 2 2 11007 76.00 M 7 2 3 11008 55.00 F 9 2 2 11009 65.00 M 14 2 3 11010 61.00 M 13 2 3 11011 65.00 M 0 2 3 11012 62.00 M 4 2 3 11013 74.00 M 1 2 3 11014 78.00 M 10 2 3 11015 58.00 M 3 2 2 11016 67.00 M 11 2 3 11017 62.00 M 9 2 3 11018 70.00 F 10 2 3 11019 65.00 F 2 2 3 11020 75.00 M 5 2 3 11021 55.00 M 9 2 2 11022 92.00 M 8 2 3 11023 74.00 M 1 2 3 11024 91.00 F 6 2 3 11025 29.00 M 4 2 2 11026 81.00 M 7 2 3 11027 82.00 M 7 2 3 11028 46.00 M 2 2 2 11029 76.00 M 6 2 3 11030 74.00 M 5 2 3 11031 60.00 F 36 2 3 11032 30.00 F 2 2 2 11033 48.00 F 1 2 2 11034 64.00 M 2 2 3 11035 75.00 M 1 2 3 11036 73.00 M 1 2 3 11037 71.00 M 1 2 3 11038 86.00 F 1 2 3 11039 59.00 M 2 2 2 11040 79.00 M 2 2 3 11041 70.00 M 2 2 3 11042 87.00 F 0 2 3 11043 56.00 F 1 2 2 11044 25.00 M 0 2 2 11045 66.00 M 11 2 3 11046 73.00 M 1 2 3 11047 58.00 F 1 2 2 11048 60.00 F 6 2 3 11049 75.00 M 7 2 3 11050 60.00 M 11 2 3 11051 75.00 M 11 2 3 11052 70.00 F 8 2 3 11053 93.00 M 7 2 3 11054 66.00 M 16 2 3 11055 48.00 M 10 2 2 11056 68.00 M 11 2 3 11057 37.00 M 13 2 2 11058 74.00 F 12 2 3 11059 65.00 M 9 2 3 11060 61.00 M 9 2 3 11061 62.00 F 8 2 3 11062 34.00 M 7 2 2 11063 70.00 F 4 2 3 11064 72.00 M 4 2 3 11065 82.00 M 6 2 3 11066 70.00 M 7 2 3 11067 60.00 F 6 2 3 11068 69.00 F 0 2 3 11069 79.00 M 8 2 3 11070 34.00 M 1 2 2 11071 90.00 M 1 2 3 11072 52.00 M 0 2 2 11073 25.00 M 0 2 2 11074 44.00 M 0 2 2 11075 73.00 M 0 2 3 11076 60.00 M 43 2 3 11077 56.00 M 4 2 2 11078 59.00 M 2 2 2 11079 60.00 F 13 2 3 11080 85.00 M 11 2 3 11081 65.00 M 7 2 3 11082 78.00 M 10 2 3 11083 92.00 M 8 2 3 11084 68.00 M 8 2 3 11085 63.00 M 5 2 3 11086 58.00 F 8 2 2 11087 65.00 M 9 2 3 11088 80.00 F 7 2 3 11089 100.00 F 3 2 3 11090 48.00 M 2 2 2 11091 45.00 M 5 2 2 11092 62.00 M 2 2 3 11093 69.00 M 1 2 3 11094 60.00 F 4 2 3 11095 80.00 F 3 2 3 11096 29.00 M 2 2 2 11097 78.00 M 14 2 3 11098 64.00 M 1 2 3 11099 52.00 M 0 2 2 11100 68.00 M 1 2 3 11101 74.00 F 16 2 3 11102 64.00 M 12 2 3 11103 92.00 F 6 2 3 11104 65.00 F 12 2 3 11105 56.00 M 21 2 2 11106 68.00 F 8 2 3 11107 73.00 M 9 2 3 11108 58.00 M 7 2 2 11109 85.00 M 9 2 3 11110 33.00 M 9 2 2 11111 63.00 M 8 2 3 11112 46.00 M 4 2 2 11113 74.00 M 6 2 3 11114 62.00 M 6 2 3 11115 55.00 F 6 2 2 11116 50.00 F 0 2 2 11117 65.00 M 5 2 3 11118 63.00 F 3 2 3 11119 84.00 M 1 2 3 11120 67.00 M 2 2 3 11121 48.00 F 1 2 2 11122 65.00 F 1 2 3 11123 76.00 F 2 2 3 11124 65.00 M 1 2 3 11125 65.00 F 21 2 3 11126 41.00 M 0 2 2 11127 30.00 M 3 2 2 11128 76.00 F 2 2 3 11129 65.00 F 2 2 3 11130 76.00 F 7 2 3 11131 30.00 M 0 2 2 11132 92.00 M 14 2 3 11133 65.00 F 11 2 3 11134 55.00 F 5 2 2 11135 75.00 F 9 2 3 11136 60.00 M 2 2 3 11137 93.00 F 9 2 3 11138 72.00 M 3 2 3 11139 84.00 M 0 2 3 11140 82.00 M 5 2 3 11141 64.00 F 2 2 3 11142 65.00 M 21 2 3 11143 78.00 M 4 2 3 11144 60.00 M 3 2 3 11145 58.00 M 4 2 2 11146 35.00 F 2 2 2 11147 67.00 M 4 2 3 11148 79.00 M 1 2 3 11149 74.00 M 8 2 3 11150 56.00 F 0 2 2 11151 55.00 M 0 2 2 11152 80.00 M 2 2 3 11153 67.00 M 3 2 3 11154 68.00 M 1 2 3 11155 67.00 M 7 2 3 11156 82.00 M 13 2 3 11157 77.00 M 4 2 3 11158 60.00 F 0 2 3 11159 70.00 M 1 2 3 11160 84.00 F 0 2 3 11161 57.00 M 2 2 2 11162 29.00 F 1 2 2 11163 84.00 M 11 2 3 11164 82.00 F 9 2 3 11165 57.00 F 11 2 2 11166 48.00 F 12 2 2 11167 61.00 M 11 2 3 11168 59.00 M 9 2 2 11169 62.00 F 8 2 3 11170 81.00 M 11 2 3 11171 72.00 F 7 2 3 11172 45.00 M 8 2 2 11173 63.00 M 0 2 3 11174 74.00 M 9 2 3 11175 32.00 F 8 2 2 11176 55.00 F 10 2 2 11177 58.00 F 2 2 2 11178 84.00 F 5 2 3 11179 63.00 M 5 2 3 11180 61.00 M 4 2 3 11181 68.00 M 5 2 3 11182 90.00 F 5 2 3 11183 71.00 M 2 2 3 11184 82.00 M 3 2 3 11185 60.00 F 14 2 3 11186 76.00 M 3 2 3 11187 74.00 M 2 2 3 11188 86.00 M 1 2 3 11189 56.00 F 6 2 2 11190 74.00 F 4 2 3 11191 7.00 M 23 2 1 11192 65.00 M 0 2 3 11193 56.00 M 3 2 2 11194 60.00 M 12 2 3 11195 40.00 M 14 2 2 11196 58.00 F 2 2 2 11197 52.00 M 11 2 2 11198 66.00 F 13 2 3 11199 56.00 M 5 2 2 11200 60.00 M 0 2 3 11201 67.00 M 2 2 3 11202 54.00 F 2 2 2 11203 66.00 F 6 2 3 11204 47.00 M 7 2 2 11205 67.00 F 2 2 3 11206 45.00 F 3 2 2 11207 35.00 F 2 2 2 11208 70.00 M 1 2 3 11209 79.00 M 3 2 3 11210 53.00 M 3 2 2 11211 50.00 F 3 2 2 11212 48.00 M 1 2 2 11213 65.00 F 4 2 3 11214 72.00 M 2 2 3 11215 70.00 F 1 2 3 11216 50.00 M 2 2 2 11217 57.00 M 1 2 2 11218 70.00 F 1 2 3 11219 38.00 M 1 2 2 11220 70.00 M 4 2 3 11221 56.00 M 17 2 2 11222 84.00 F 0 2 3 11223 88.00 M 17 2 3 11224 49.00 M 1 2 2 11225 58.00 M 6 2 2 11226 78.00 F 5 2 3 11227 70.00 M 12 2 3 11228 51.00 M 3 2 2 11229 75.00 M 9 2 3 11230 70.00 F 0 2 3 11231 54.00 M 9 2 2 11232 55.00 M 1 2 2 11233 78.00 M 8 2 3 11234 73.00 M 9 2 3 11235 72.00 M 12 2 3 11236 41.00 M 8 2 2 11237 75.00 F 5 2 3 11238 58.00 F 5 2 2 11239 78.00 M 6 2 3 11240 66.00 M 3 2 3 11241 68.00 M 5 2 3 11242 62.00 F 4 2 3 11243 73.00 M 0 2 3 11244 71.00 M 1 2 3 11245 75.00 M 3 2 3 11246 60.00 F 2 2 3 11247 34.00 F 3 2 2 11248 70.00 M 3 2 3 11249 54.00 M 1 2 2 11250 41.00 F 1 2 2 11251 53.00 M 0 2 2 11252 60.00 F 1 2 3 11253 68.00 M 0 2 3 11254 70.00 M 1 2 3 11255 54.00 M 19 2 2 11256 50.00 M 1 2 2 11257 65.00 F 0 2 3 11258 67.00 F 17 2 3 11259 59.00 M 17 2 2 11260 78.00 M 3 2 3 11261 62.00 F 0 2 3 11262 20.00 F 14 2 2 11263 77.00 M 4 2 3 11264 32.00 M 6 2 2 11265 75.00 M 0 2 3 11266 75.00 M 8 2 3 11267 61.00 M 6 2 3 11268 75.00 M 0 2 3 11269 65.00 M 2 2 3 11270 70.00 M 2 2 3 11271 44.00 M 4 2 2 11272 63.00 F 2 2 3 11273 81.00 M 2 2 3 11274 72.00 F 2 2 3 11275 66.00 M 2 2 3 11276 55.00 M 0 2 2 11277 62.00 M 0 2 3 11278 71.00 M 25 2 3 11279 50.00 F 10 2 2 11280 80.00 F 2 2 3 11281 65.00 M 0 2 3 11282 74.00 M 9 2 3 11283 48.00 M 12 2 2 11284 79.00 F 0 2 3 11285 79.00 M 9 2 3 11286 40.00 M 4 2 2 11287 83.00 M 6 2 3 11288 67.00 M 5 2 3 11289 65.00 F 3 2 3 11290 73.00 M 2 2 3 11291 60.00 M 1 2 3 11292 57.00 M 5 2 2 11293 65.00 F 0 2 3 11294 65.00 M 1 2 3 11295 70.00 F 2 2 3 11296 50.00 M 0 2 2 11297 89.00 M 5 2 3 11298 49.00 F 3 2 2 11299 88.00 M 10 2 3 11300 68.00 F 6 2 3 11301 67.00 M 23 2 3 11302 41.00 M 0 2 2 11303 65.00 M 8 2 3 11304 70.00 M 0 2 3 11305 51.00 M 9 2 2 11306 63.00 M 6 2 3 11307 70.00 M 10 2 3 11308 82.00 M 7 2 3 11309 30.00 F 8 2 2 11310 48.00 F 0 2 2 11311 73.00 F 8 2 3 11312 79.00 M 5 2 3 11313 68.00 F 1 2 3 11314 84.00 M 5 2 3 11315 58.00 M 3 2 2 11316 55.00 F 8 2 2 11317 58.00 M 1 2 2 11318 72.00 F 3 2 3 11319 32.00 M 7 2 2 11320 80.00 F 0 2 3 11321 68.00 M 0 2 3 11322 75.00 F 8 2 3 11323 71.00 M 12 2 3 11324 50.00 M 12 2 2 11325 58.00 M 7 2 2 11326 73.00 F 10 2 3 11327 75.00 F 8 2 3 11328 47.00 M 7 2 2 11329 68.00 M 0 2 3 11330 50.00 M 8 2 2 11331 48.00 F 8 2 2 11332 45.00 F 4 2 2 11333 49.00 M 3 2 2 11334 52.00 M 3 2 2 11335 51.00 M 3 2 2 11336 84.00 M 12 2 3 11337 29.00 M 1 2 2 11338 72.00 M 0 2 3 11339 41.00 F 5 2 2 11340 96.00 M 2 2 3 11341 58.00 M 8 2 2 11342 77.00 M 17 2 3 11343 50.00 M 0 2 2 11344 51.00 M 8 2 2 11345 90.00 F 8 2 3 11346 72.00 M 4 2 3 11347 44.00 M 5 2 2 11348 74.00 M 1 2 3 11349 60.00 M 7 2 3 11350 60.00 M 4 2 3 11351 66.00 M 5 2 3 11352 35.00 M 6 2 2 11353 59.00 M 4 2 2 11354 72.00 M 5 2 3 11355 65.00 F 4 2 3 11356 50.00 F 0 2 2 11357 72.00 M 2 2 3 11358 68.00 M 2 2 3 11359 65.00 F 0 2 3 11360 40.00 M 0 2 2 11361 54.00 M 2 2 2 11362 62.00 M 0 2 3 11363 78.00 F 4 2 3 11364 80.00 M 2 2 3 11365 48.00 M 0 2 2 11366 75.00 M 0 2 3 11367 58.00 M 1 2 2 11368 89.00 M 5 2 3 11369 27.00 M 18 2 2 11370 78.00 M 1 2 3 11371 60.00 F 9 2 3 11372 80.00 F 7 2 3 11373 40.00 M 1 2 2 11374 60.00 F 5 2 3 11375 52.00 M 4 2 2 11376 72.00 M 5 2 3 11377 61.00 M 5 2 3 11378 40.00 F 1 2 2 11379 41.00 M 4 2 2 11380 41.00 M 1 2 2 11381 65.00 M 0 2 3 11382 69.00 M 13 2 3 11383 40.00 M 5 2 2 11384 60.00 M 0 2 3 11385 53.00 F 0 2 2 11386 66.00 M 3 2 3 11387 66.00 M 12 2 3 11388 80.00 F 12 2 3 11389 65.00 M 11 2 3 11390 80.00 M 2 2 3 11391 60.00 F 3 2 3 11392 77.00 M 4 2 3 11393 48.00 M 4 2 2 11394 66.00 F 3 2 3 11395 45.00 M 3 2 2 11396 70.00 M 4 2 3 11397 45.00 F 1 2 2 11398 58.00 M 0 2 2 11399 78.00 F 19 2 3 11400 59.00 M 6 2 2 11401 70.00 M 4 2 3 11402 53.00 F 12 2 2 11403 56.00 M 4 2 2 11404 88.00 F 0 2 3 11405 49.00 F 0 2 2 11406 79.00 M 0 2 3 11407 70.00 M 1 2 3 11408 62.00 M 0 2 3 11409 85.00 M 9 2 3 11410 56.00 M 9 2 2 11411 64.00 M 2 2 3 11412 54.00 M 7 2 2 11413 17.00 F 6 2 1 11414 80.00 F 4 2 3 11415 65.00 M 2 2 3 11416 60.00 M 23 2 3 11417 73.00 M 6 2 3 11418 30.00 F 8 2 2 11419 52.00 M 5 2 2 11420 68.00 M 0 2 3 11421 74.00 M 7 2 3 11422 80.00 M 10 2 3 11423 65.00 M 8 2 3 11424 82.00 F 1 2 3 11425 65.00 F 6 2 3 11426 70.00 M 6 2 3 11427 36.00 M 2 2 2 11428 56.00 F 5 2 2 11429 17.00 M 1 2 1 11430 38.00 M 1 2 2 11431 68.00 M 3 2 3 11432 68.00 M 3 2 3 11433 76.00 M 3 2 3 11434 68.00 M 2 2 3 11435 38.00 F 0 2 2 11436 60.00 M 0 2 3 11437 65.00 F 0 2 3 11438 74.00 F 11 2 3 11439 75.00 M 7 2 3 11440 79.00 F 17 2 3 11441 65.00 M 11 2 3 11442 48.00 F 10 2 2 11443 81.00 M 1 2 3 11444 77.00 M 3 2 3 11445 70.00 M 0 2 3 11446 65.00 F 1 2 3 11447 89.00 M 1 2 3 11448 55.00 M 0 2 2 11449 68.00 M 4 2 3 11450 65.00 M 4 2 3 11451 70.00 M 10 2 3 11452 70.00 M 0 2 3 11453 82.00 M 11 2 3 11454 69.00 M 13 2 3 11455 60.00 M 2 2 3 11456 74.00 M 9 2 3 11457 48.00 F 3 2 2 11458 45.00 M 3 2 2 11459 67.00 M 6 2 3 11460 53.00 F 3 2 2 11461 73.00 M 4 2 3 11462 54.00 M 0 2 2 11463 60.00 M 2 2 3 11464 55.00 M 0 2 2 11465 48.00 M 3 2 2 11466 65.00 M 13 2 3 11467 65.00 F 11 2 3 11468 32.00 M 2 2 2 11469 60.00 M 5 2 3 11470 64.00 M 10 2 3 11471 87.00 F 9 2 3 11472 72.00 M 10 2 3 11473 62.00 M 10 2 3 11474 40.00 M 2 2 2 11475 71.00 M 4 2 3 11476 63.00 M 5 2 3 11477 82.00 M 6 2 3 11478 76.00 F 5 2 3 11479 78.00 M 5 2 3 11480 65.00 M 3 2 3 11481 75.00 M 3 2 3 11482 70.00 M 3 2 3 11483 52.00 F 5 2 2 11484 27.00 F 0 2 2 11485 75.00 M 20 2 3 11486 43.00 M 0 2 2 11487 60.00 M 20 2 3 11488 65.00 F 9 2 3 11489 70.00 F 4 2 3 11490 50.00 M 13 2 2 11491 48.00 M 3 2 2 11492 62.00 M 14 2 3 11493 70.00 M 5 2 3 11494 53.00 M 6 2 2 11495 49.00 M 12 2 2 11496 68.00 F 2 2 3 11497 45.00 M 8 2 2 11498 43.00 M 9 2 2 11499 85.00 M 9 2 3 11500 46.00 M 7 2 2 11501 35.00 M 9 2 2 11502 65.00 F 7 2 3 11503 91.00 F 6 2 3 11504 86.00 M 7 2 3 11505 94.00 M 1 2 3 11506 67.00 M 2 2 3 11507 55.00 F 2 2 2 11508 75.00 M 1 2 3 11509 36.00 M 1 2 2 11510 55.00 F 30 2 2 11511 41.00 M 18 1 2 11512 0.00 F 14 1 1 11513 13.00 F 17 1 1 11514 0.00 M 15 1 1 11515 26.00 M 7 1 2 11516 0.00 M 22 1 1 11517 32.00 M 14 1 2 11518 63.00 M 15 1 3 11519 20.00 F 15 1 2 11520 67.00 F 13 1 3 11521 25.00 M 13 1 2 11522 56.00 F 19 1 2 11523 35.00 M 18 1 2 11524 35.00 M 20 1 2 11525 53.00 F 22 1 2 11526 39.00 M 25 1 2 11527 21.00 M 24 1 2 11528 31.00 M 24 1 2 11529 35.00 M 17 1 2 11530 35.00 M 15 1 2 11531 64.00 F 16 1 3 11532 36.00 F 16 1 2 11533 27.00 M 15 1 2 11534 51.00 M 17 1 2 11535 22.00 M 14 1 2 11536 46.00 M 20 1 2 11537 38.00 M 15 1 2 11538 41.00 M 14 1 2 11539 30.00 F 22 1 2 11540 24.00 M 14 1 2 11541 60.00 M 27 1 3 11542 22.00 M 20 1 2 11543 32.00 M 14 1 2 11544 40.00 M 15 1 2 11545 65.00 M 15 1 3 11546 56.00 F 16 1 2 11547 56.00 F 24 1 2 11548 47.00 M 14 1 2 11549 70.00 F 20 1 3 11550 23.00 M 14 1 2 11551 37.00 F 12 1 2 11552 63.00 M 19 1 3 11553 59.00 F 19 1 2 11554 26.00 M 21 1 2 11555 26.00 M 19 1 2 11556 63.00 F 17 1 3 11557 69.00 M 17 1 3 11558 9.00 F 20 1 1 11559 7.00 F 20 1 1 11560 34.00 M 18 1 2 11561 35.00 M 16 1 2 11562 70.00 F 37 1 3 11563 64.00 M 23 1 3 11564 45.00 M 24 1 2 11565 0.80 M 16 1 1 11566 20.00 M 21 1 2 11567 25.00 F 21 1 2 11568 35.00 F 21 1 2 11569 33.00 F 18 1 2 11570 22.00 M 19 1 2 11571 18.00 M 13 1 2 11572 21.00 M 14 1 2 11573 54.00 F 18 1 2 11574 28.00 F 18 1 2 11575 23.00 F 18 1 2 11576 21.00 M 14 1 2 11577 23.00 M 15 1 2 11578 70.00 M 13 1 3 11579 32.00 F 15 1 2 11580 38.00 M 15 1 2 11581 18.00 M 15 1 2 11582 63.00 F 35 1 3 11583 20.00 M 9 1 2 11584 24.00 M 18 1 2 11585 39.00 M 20 1 2 11586 38.00 M 14 1 2 11587 21.00 M 14 1 2 11588 31.00 M 20 1 2 11589 42.00 M 14 1 2 11590 35.00 M 16 1 2 11591 29.00 M 21 1 2 11592 13.00 M 17 1 1 11593 32.00 M 13 1 2 11594 34.00 M 13 1 2 11595 21.00 M 15 1 2 11596 24.00 M 13 1 2 11597 52.00 M 23 1 2 11598 48.00 F 26 1 2 11599 26.00 F 23 1 2 11600 40.00 M 14 1 2 11601 19.00 M 17 1 2 11602 40.00 F 21 1 2 11603 35.00 M 13 1 2 11604 41.00 M 18 1 2 11605 34.00 M 14 1 2 11606 26.00 M 18 1 2 11607 60.00 F 16 1 3 11608 40.00 M 15 1 2 11609 62.00 F 50 1 3 11610 24.00 M 17 1 2 11611 37.00 M 25 1 2 11612 27.00 M 18 1 2 11613 33.00 M 13 1 2 11614 49.00 M 14 1 2 11615 26.00 M 12 1 2 11616 63.00 M 27 1 3 11617 63.00 M 17 1 3 11618 27.00 F 17 1 2 11619 24.00 M 23 1 2 11620 22.00 M 16 1 2 11621 14.00 M 41 1 1 11622 48.00 M 21 1 2 11623 30.00 M 21 1 2 11624 41.00 M 21 1 2 11625 66.00 M 21 1 3 11626 59.00 M 21 1 2 11627 39.00 M 21 1 2 11628 60.00 M 21 1 3 11629 63.00 M 30 1 3 11630 73.00 M 21 1 3 11631 45.00 M 21 1 2 11632 60.00 F 22 1 3 11633 70.00 M 18 1 3 11634 26.00 M 26 1 2 11635 20.00 M 18 1 2 11636 21.00 M 16 1 2 11637 57.00 M 24 1 2 11638 43.00 M 22 1 2 11639 78.00 M 13 1 3 11640 60.00 M 26 1 3 11641 38.00 M 17 1 2 11642 19.00 M 14 1 2 11643 39.00 M 17 1 2 11644 39.00 M 17 1 2 11645 54.00 M 14 1 2 11646 40.00 M 15 1 2 11647 34.00 M 24 1 2 11648 47.00 F 19 1 2 11649 63.00 F 14 1 3 11650 43.00 M 14 1 2 11651 52.00 M 14 1 2 11652 68.00 M 14 1 3 11653 62.00 F 14 1 3 11654 40.00 M 16 1 2 11655 67.00 F 27 1 3 11656 41.00 F 20 1 2 11657 41.00 M 21 1 2 11658 32.00 M 15 1 2 11659 62.00 F 22 1 3 11660 20.00 M 15 1 2 11661 37.00 M 12 1 2 11662 57.00 M 21 1 2 11663 22.00 M 16 1 2 11664 26.00 M 12 1 2 11665 32.00 F 22 1 2 11666 35.00 M 15 1 2 11667 56.00 F 15 1 2 11668 58.00 M 15 1 2 11669 43.00 M 15 1 2 11670 33.00 M 19 1 2 11671 41.00 F 19 1 2 11672 29.00 M 14 1 2 11673 50.00 M 14 1 2 11674 35.00 M 17 1 2 11675 68.00 M 17 1 3 11676 32.00 M 19 1 2 11677 36.00 M 19 1 2 11678 65.00 M 19 1 3 11679 28.00 F 17 1 2 11680 57.00 M 18 1 2 11681 26.00 F 16 1 2 11682 72.00 F 16 1 3 11683 35.00 M 26 1 2 11684 23.00 M 17 1 2 11685 27.00 F 18 1 2 11686 50.00 M 17 1 2 11687 55.00 M 21 1 2 11688 68.00 M 12 1 3 11689 32.00 M 17 1 2 11690 4.00 M 17 1 1 11691 13.00 M 17 1 1 11692 9.00 F 24 1 1 11693 19.00 F 17 1 2 11694 27.00 M 19 1 2 11695 48.00 F 14 1 2 11696 40.00 F 17 1 2 11697 22.00 M 25 1 2 11698 27.00 M 15 1 2 11699 42.00 M 17 1 2 11700 27.00 M 17 1 2 11701 48.00 M 16 1 2 11702 57.00 M 16 1 2 11703 8.00 M 11 1 1 11704 48.00 F 18 1 2 11705 33.00 M 12 1 2 11706 28.00 F 23 1 2 11707 48.00 F 34 1 2 11708 35.00 M 15 1 2 11709 11.00 F 15 1 1 11710 32.00 M 15 1 2 11711 46.00 M 15 1 2 11712 43.00 M 15 1 2 11713 50.00 F 21 1 2 11714 27.00 M 23 1 2 11715 31.00 M 17 1 2 11716 26.00 M 15 1 2 11717 32.00 M 16 1 2 11718 75.00 F 16 1 3 11719 58.00 M 16 1 2 11720 24.00 F 19 1 2 11721 60.00 F 15 1 3 11722 38.00 F 19 1 2 11723 19.00 M 37 1 2 11724 38.00 M 24 1 2 11725 55.00 M 24 1 2 11726 25.00 M 20 1 2 11727 2.00 M 19 1 1 11728 13.00 M 15 1 1 11729 12.00 F 15 1 1 11730 10.00 M 15 1 1 11731 49.00 M 15 1 2 11732 20.00 F 15 1 2 11733 5.00 M 21 1 1 11734 36.00 M 19 1 2 11735 7.00 F 19 1 1 11736 37.00 M 21 1 2 11737 60.00 F 23 1 3 11738 8.00 F 21 1 1 11739 18.00 M 21 1 2 11740 27.00 M 24 1 2 11741 16.00 F 24 1 1 11742 35.00 F 24 1 2 11743 20.00 M 23 1 2 11744 14.00 F 23 1 1 11745 45.00 F 23 1 2 11746 39.00 M 15 1 2 11747 62.00 M 20 1 3 11748 43.00 M 19 1 2 11749 32.00 F 19 1 2 11750 39.00 F 19 1 2 11751 26.00 M 18 1 2 11752 10.00 F 18 1 1 11753 51.00 M 18 1 2 11754 35.00 F 18 1 2 11755 33.00 M 26 1 2 11756 36.00 M 17 1 2 11757 59.00 M 15 1 2 11758 52.00 M 21 1 2 11759 39.00 M 21 1 2 11760 41.00 M 12 1 2 11761 30.00 M 18 1 2 11762 27.00 M 12 1 2 11763 35.00 M 18 1 2 11764 26.00 M 22 1 2 11765 23.00 M 12 1 2 11766 35.00 M 15 1 2 11767 28.00 M 12 1 2 11768 32.00 M 20 1 2 11769 72.00 M 14 1 3 11770 1.00 M 16 1 1 11771 38.00 F 37 1 2 11772 25.00 M 18 1 2 11773 32.00 F 15 1 2 11774 28.00 F 31 1 2 11775 13.00 M 14 1 1 11776 51.00 F 16 1 2 11777 42.00 M 16 1 2 11778 33.00 M 24 1 2 11779 16.00 F 16 1 1 11780 65.00 F 16 1 3 11781 30.00 F 24 1 2 11782 54.00 F 16 1 2 11783 58.00 F 20 1 2 11784 54.00 F 7 1 2 11785 43.00 M 14 1 2 11786 47.00 M 18 1 2 11787 25.00 M 20 1 2 11788 45.00 F 18 1 2 11789 30.00 M 18 1 2 11790 43.00 M 18 1 2 11791 50.00 M 20 1 2 11792 35.00 M 18 1 2 11793 25.00 M 24 1 2 11794 64.00 M 18 1 3 11795 23.00 F 14 1 2 11796 52.00 M 14 1 2 11797 59.00 F 15 1 2 11798 12.00 M 17 1 1 11799 65.00 M 15 1 3 11800 66.00 M 15 1 3 11801 37.00 M 15 1 2 11802 70.00 F 19 1 3 11803 1.50 F 15 1 1 11804 38.00 M 12 1 2 11805 26.00 F 12 1 2 11806 55.00 F 17 1 2 11807 32.00 M 16 1 2 11808 5.00 M 16 1 1 11809 55.00 M 14 1 2 11810 11.00 F 14 1 1 11811 50.00 F 12 1 2 11812 33.00 M 22 1 2 11813 33.00 M 16 1 2 11814 41.00 F 13 1 2 11815 25.00 M 19 1 2 11816 29.00 M 19 1 2 11817 45.00 M 22 1 2 11818 39.00 M 19 1 2 11819 6.00 M 14 1 1 11820 25.00 F 14 1 2 11821 18.00 M 20 1 2 11822 6.00 M 18 1 1 11823 28.00 F 18 1 2 11824 68.00 F 20 1 3 11825 21.00 M 14 1 2 11826 48.00 F 21 1 2 11827 10.00 F 21 1 1 11828 50.00 M 16 1 2 11829 24.00 M 14 1 2 11830 36.00 M 23 1 2 11831 20.00 M 23 1 2 11832 19.00 M 16 1 2 11833 38.00 M 12 1 2 11834 38.00 M 12 1 2 11835 26.00 M 16 1 2 11836 28.00 M 12 1 2 11837 22.00 M 12 1 2 11838 29.00 M 12 1 2 11839 26.00 M 12 1 2 11840 32.00 M 14 1 2 11841 23.00 M 14 1 2 11842 28.00 M 14 1 2 11843 21.00 M 14 1 2 11844 65.00 F 17 1 3 11845 34.00 M 17 1 2 11846 17.00 M 17 1 1 11847 37.00 M 17 1 2 11848 38.00 M 17 1 2 11849 34.00 M 16 1 2 11850 16.00 M 16 1 1 11851 60.00 M 13 1 3 11852 63.00 M 20 1 3 11853 30.00 M 12 1 2 11854 50.00 M 12 1 2 11855 65.00 M 17 1 3 11856 48.00 F 17 1 2 11857 65.00 M 12 1 3 11858 42.00 M 22 1 2 11859 39.00 M 18 1 2 11860 32.00 M 22 1 2 11861 32.00 M 18 1 2 11862 26.00 F 15 1 2 11863 55.00 F 16 1 2 11864 21.00 F 16 1 2 11865 43.00 M 18 1 2 11866 43.00 M 22 1 2 11867 47.00 M 17 1 2 11868 30.00 M 16 1 2 11869 36.00 M 13 1 2 11870 28.00 M 17 1 2 11871 46.00 M 25 1 2 11872 20.00 M 21 1 2 11873 39.00 M 16 1 2 11874 23.00 F 14 1 2 11875 30.00 F 25 1 2 11876 17.00 M 15 1 1 11877 13.00 F 12 1 1 11878 30.00 F 14 1 2 11879 50.00 M 16 1 2 11880 19.00 M 16 1 2 11881 24.00 M 20 1 2 11882 7.00 F 20 1 1 11883 36.00 M 38 1 2 11884 27.00 F 20 1 2 11885 25.00 F 14 1 2 11886 21.00 F 23 1 2 11887 28.00 M 20 1 2 11888 47.00 F 14 1 2 11889 10.00 M 14 1 1 11890 34.00 F 14 1 2 11891 38.00 F 17 1 2 11892 14.00 M 20 1 1 11893 27.00 M 23 1 2 11894 18.00 F 19 1 2 11895 30.00 F 37 1 2 11896 29.00 M 16 1 2 11897 61.00 M 16 1 3 11898 18.00 F 12 1 2 11899 26.00 M 12 1 2 11900 26.00 M 12 1 2 11901 25.00 F 27 1 2 11902 54.00 M 16 1 2 11903 28.00 F 15 1 2 11904 46.00 F 14 1 2 11905 35.00 F 17 1 2 11906 0.30 M 14 1 1 11907 26.00 F 14 1 2 11908 56.00 M 11 1 2 11909 32.00 M 13 1 2 11910 25.00 F 14 1 2 11911 30.00 F 27 1 2 11912 13.00 F 27 1 1 11913 30.00 M 29 1 2 11914 30.00 M 23 1 2 11915 22.00 M 23 1 2 11916 40.00 M 21 1 2 11917 30.00 M 15 1 2 11918 25.00 M 15 1 2 11919 37.00 M 15 1 2 11920 43.00 M 24 1 2 11921 24.00 M 15 1 2 11922 47.00 M 16 1 2 11923 28.00 F 16 1 2 11924 32.00 M 16 1 2 11925 49.00 M 13 1 2 11926 32.00 M 15 1 2 11927 10.00 F 24 1 1 11928 30.00 M 31 1 2 11929 22.00 M 23 1 2 11930 39.00 M 16 1 2 11931 35.00 M 22 1 2 11932 32.00 M 53 1 2 11933 23.00 M 22 1 2 11934 28.00 M 24 1 2 11935 46.00 M 18 1 2 11936 17.00 M 16 1 1 11937 26.00 M 31 1 2 11938 35.00 M 22 1 2 11939 31.00 M 22 1 2 11940 24.00 M 28 1 2 11941 60.00 M 27 1 3 11942 27.00 M 16 1 2 11943 14.00 M 16 1 1 11944 26.00 M 22 1 2 11945 20.00 M 22 1 2 11946 22.00 M 15 1 2 11947 58.00 M 19 1 2 11948 38.00 M 22 1 2 11949 44.00 M 22 1 2 11950 37.00 M 14 1 2 11951 21.00 M 7 1 2 11952 17.00 M 21 1 1 11953 19.00 F 31 1 2 11954 28.00 M 21 1 2 11955 37.00 M 25 1 2 11956 45.00 M 18 1 2 11957 38.00 M 27 1 2 11958 80.00 F 23 1 3 11959 55.00 F 18 1 2 11960 42.00 F 18 1 2 11961 39.00 F 18 1 2 11962 18.00 M 15 1 2 11963 33.00 F 18 1 2 11964 52.00 F 21 1 2 11965 6.00 M 18 1 1 11966 27.00 F 30 1 2 11967 20.00 M 18 1 2 11968 8.00 M 23 1 1 11969 30.00 F 23 1 2 11970 50.00 F 14 1 2 11971 27.00 M 30 1 2 11972 27.00 M 35 1 2 11973 66.00 F 30 1 3 11974 47.00 F 18 1 2 11975 65.00 F 14 1 3 11976 7.00 M 14 1 1 11977 13.00 M 16 1 1 11978 50.00 M 16 1 2 11979 45.00 M 25 1 2 11980 32.00 F 15 1 2 11981 21.00 F 15 1 2 11982 45.00 M 25 1 2 11983 27.00 M 13 1 2 11984 22.00 F 16 1 2 11985 48.00 M 27 1 2 11986 75.00 M 12 1 3 11987 55.00 M 20 1 2 11988 40.00 F 12 1 2 11989 43.00 M 12 1 2 11990 28.00 F 12 1 2 11991 45.00 F 12 1 2 11992 22.00 F 12 1 2 11993 20.00 F 14 1 2 11994 11.00 M 14 1 1 11995 22.00 M 14 1 2 11996 46.00 F 15 1 2 11997 28.00 M 11 1 2 11998 14.00 F 11 1 1 11999 22.00 M 11 1 2 12000 40.00 F 17 1 2 12001 20.00 M 11 1 2 12002 17.00 F 11 1 1 12003 12.00 F 11 1 1 12004 35.00 F 23 1 2 12005 62.00 M 12 1 3 12006 33.00 F 22 1 2 12007 9.00 M 18 1 1 12008 75.00 F 18 1 3 12009 48.00 F 25 1 2 12010 8.00 F 18 1 1 12011 65.00 F 17 1 3 12012 20.00 M 25 1 2 12013 28.00 M 13 1 2 12014 35.00 F 14 1 2 12015 15.00 M 17 1 1 12016 60.00 F 25 1 3 12017 16.00 F 17 1 1 12018 13.00 F 17 1 1 12019 35.00 M 47 1 2 12020 64.00 F 31 1 3 12021 25.00 M 32 1 2 12022 24.00 F 19 1 2 12023 27.00 M 32 1 2 12024 30.00 F 17 1 2 12025 19.00 M 12 1 2 12026 32.00 F 17 1 2 12027 13.00 M 12 1 1 12028 12.00 M 12 1 1 12029 55.00 M 31 1 2 12030 54.00 M 27 1 2 12031 69.00 M 17 1 3 12032 62.00 M 20 1 3 12033 31.00 F 19 1 2 12034 26.00 F 21 1 2 12035 34.00 M 33 1 2 12036 1.00 M 19 1 1 12037 18.00 F 19 1 2 12038 16.00 M 19 1 1 12039 40.00 F 17 1 2 12040 20.00 F 16 1 2 12041 57.00 M 22 1 2 12042 40.00 M 16 1 2 12043 29.00 F 16 1 2 12044 54.00 M 15 1 2 12045 22.00 M 23 1 2 12046 45.00 M 12 1 2 12047 23.00 M 17 1 2 12048 45.00 M 16 1 2 12049 38.00 F 15 1 2 12050 26.00 F 23 1 2 12051 30.00 M 15 1 2 12052 13.00 F 14 1 1 12053 54.00 M 14 1 2 12054 41.00 M 19 1 2 12055 68.00 M 23 1 3 12056 60.00 F 23 1 3 12057 23.00 F 21 1 2 12058 24.00 M 22 1 2 12059 35.00 F 16 1 2 12060 78.00 M 15 1 3 12061 22.00 M 14 1 2 12062 45.00 F 27 1 2 12063 24.00 F 28 1 2 12064 45.00 F 28 1 2 12065 30.00 M 24 1 2 12066 52.00 F 16 1 2 12067 38.00 M 16 1 2 12068 32.00 F 17 1 2 12069 35.00 M 26 1 2 12070 32.00 F 17 1 2 12071 12.00 F 20 1 1 12072 7.00 M 19 1 1 12073 38.00 M 17 1 2 12074 49.00 F 20 1 2 12075 27.00 M 27 1 2 12076 25.00 M 24 1 2 12077 33.00 M 20 1 2 12078 62.00 F 17 1 3 12079 34.00 F 31 1 2 12080 20.00 F 21 1 2 12081 22.00 F 21 1 2 12082 6.00 M 20 1 1 12083 17.00 M 24 1 1 12084 42.00 M 24 1 2 12085 11.00 M 16 1 1 12086 30.00 M 22 1 2 12087 20.00 F 25 1 2 12088 19.00 F 16 1 2 12089 32.00 M 21 1 2 12090 36.00 F 15 1 2 12091 37.00 M 19 1 2 12092 35.00 F 15 1 2 12093 46.00 F 15 1 2 12094 50.00 M 15 1 2 12095 16.00 M 15 1 1 12096 72.00 F 15 1 3 12097 22.00 M 15 1 2 12098 60.00 M 15 1 3 12099 40.00 M 4 1 2 12100 30.00 F 3 1 2 12101 34.00 M 26 1 2 12102 45.00 M 17 1 2 12103 29.00 F 13 1 2 12104 29.00 M 13 1 2 12105 51.00 M 45 1 2 12106 18.00 F 20 1 2 12107 30.00 M 17 1 2 12108 25.00 M 17 1 2 12109 51.00 M 19 1 2 12110 48.00 M 16 1 2 12111 52.00 F 17 1 2 12112 36.00 F 17 1 2 12113 15.00 F 19 1 1 12114 19.00 F 20 1 2 12115 27.00 M 19 1 2 12116 42.00 F 19 1 2 12117 5.00 M 19 1 1 12118 40.00 M 19 1 2 12119 26.00 M 31 1 2 12120 11.00 F 15 1 1 12121 35.00 F 44 1 2 12122 16.00 F 15 1 1 12123 40.00 F 25 1 2 12124 25.00 M 19 1 2 12125 52.00 M 16 1 2 12126 18.00 F 15 1 2 12127 45.00 M 15 1 2 12128 55.00 F 15 1 2 12129 26.00 M 16 1 2 12130 47.00 M 19 1 2 12131 30.00 F 15 1 2 12132 15.00 M 28 1 1 12133 40.00 F 15 1 2 12134 23.00 M 18 1 2 12135 0.80 M 15 1 1 12136 32.00 M 18 1 2 12137 30.00 M 22 1 2 12138 16.00 F 19 1 1 12139 35.00 F 19 1 2 12140 53.00 F 17 1 2 12141 40.00 F 15 1 2 12142 35.00 M 15 1 2 12143 36.00 F 15 1 2 12144 41.00 M 15 1 2 12145 13.00 F 18 1 1 12146 49.00 F 12 1 2 12147 55.00 F 15 1 2 12148 80.00 F 23 1 3 12149 19.00 F 19 1 2 12150 35.00 M 20 1 2 12151 23.00 M 14 1 2 12152 35.00 F 23 1 2 12153 22.00 M 14 1 2 12154 19.00 M 17 1 2 12155 40.00 M 23 1 2 12156 25.00 M 14 1 2 12157 58.00 M 17 1 2 12158 30.00 F 17 1 2 12159 20.00 M 17 1 2 12160 16.00 F 20 1 1 12161 21.00 F 24 1 2 12162 45.00 M 17 1 2 12163 38.00 F 17 1 2 12164 20.00 F 24 1 2 12165 23.00 M 17 1 2 12166 20.00 M 24 1 2 12167 10.00 M 16 1 1 12168 20.00 M 16 1 2 12169 18.00 F 16 1 2 12170 27.00 F 20 1 2 12171 18.00 F 16 1 2 12172 6.00 M 19 1 1 12173 9.00 M 16 1 1 12174 36.00 M 16 1 2 12175 32.00 F 15 1 2 12176 3.00 F 20 1 1 12177 13.00 F 15 1 1 12178 8.00 M 15 1 1 12179 38.00 F 20 1 2 12180 34.00 F 17 1 2 12181 25.00 F 16 1 2 12182 18.00 F 16 1 2 12183 11.00 F 16 1 1 12184 39.00 F 16 1 2 12185 33.00 M 16 1 2 12186 75.00 F 21 1 3 12187 12.00 F 16 1 1 12188 83.00 M 16 1 3 12189 0.40 F 21 1 1 12190 3.00 F 16 1 1 12191 60.00 M 16 1 3 12192 22.00 F 18 1 2 12193 64.00 M 16 1 3 12194 64.00 M 16 1 3 12195 64.00 M 23 1 3 12196 20.00 F 21 1 2 12197 45.00 M 16 1 2 12198 24.00 M 19 1 2 12199 24.00 M 14 1 2 12200 26.00 M 14 1 2 12201 36.00 M 16 1 2 12202 60.00 M 21 1 3 12203 55.00 F 16 1 2 12204 20.00 F 25 1 2 12205 40.00 F 16 1 2 12206 45.00 M 24 1 2 12207 20.00 F 25 1 2 12208 40.00 M 22 1 2 12209 24.00 M 21 1 2 12210 37.00 F 22 1 2 12211 11.00 F 13 1 1 12212 30.00 M 18 1 2 12213 12.00 F 18 1 1 12214 30.00 F 18 1 2 12215 46.00 M 16 1 2 12216 19.00 F 16 1 2 12217 31.00 F 22 1 2 12218 48.00 M 19 1 2 12219 30.00 M 41 1 2 12220 60.00 F 41 1 3 12221 70.00 F 41 1 3 12222 2.50 F 15 1 1 12223 65.00 M 15 1 3 12224 50.00 M 15 1 2 12225 68.00 M 10 1 3 12226 1.50 M 15 1 1 12227 17.00 F 17 1 1 12228 23.00 F 15 1 2 12229 34.00 M 15 1 2 12230 26.00 M 15 1 2 12231 17.00 M 22 1 1 12232 71.00 M 23 1 3 12233 32.00 F 15 1 2 12234 40.00 M 20 1 2 12235 27.00 M 24 1 2 12236 38.00 M 24 1 2 12237 29.00 M 37 1 2 12238 50.00 F 14 1 2 12239 15.00 M 14 1 1 12240 16.00 M 14 1 1 12241 42.00 M 14 1 2 12242 21.00 F 16 1 2 12243 31.00 M 16 1 2 12244 60.00 M 14 1 3 12245 22.00 M 39 1 2 12246 35.00 M 19 1 2 12247 30.00 M 19 1 2 12248 72.00 M 13 1 3 12249 65.00 M 17 1 3 12250 65.00 M 17 1 3 12251 18.00 M 22 1 2 12252 56.00 M 19 1 2 12253 43.00 M 19 1 2 12254 25.00 M 17 1 2 12255 27.00 M 19 1 2 12256 20.00 M 17 1 2 12257 33.00 M 16 1 2 12258 50.00 F 28 1 2 12259 29.00 F 40 1 2 12260 2.00 F 16 1 1 12261 38.00 M 22 1 2 12262 17.00 F 22 1 1 12263 60.00 F 16 1 3 12264 10.00 M 28 1 1 12265 14.00 F 22 1 1 12266 40.00 F 16 1 2 12267 63.00 M 16 1 3 12268 20.00 M 16 1 2 12269 56.00 F 33 1 2 12270 29.00 M 16 1 2 12271 60.00 F 22 1 3 12272 25.00 F 16 1 2 12273 3.00 F 22 1 1 12274 46.00 F 22 1 2 12275 50.00 F 22 1 2 12276 30.00 F 33 1 2 12277 8.00 F 22 1 1 12278 12.00 F 16 1 1 12279 22.00 M 36 1 2 12280 75.00 F 16 1 3 12281 12.00 M 16 1 1 12282 14.00 M 16 1 1 12283 27.00 F 22 1 2 12284 8.00 F 16 1 1 12285 3.00 M 22 1 1 12286 6.00 M 16 1 1 12287 22.00 M 14 1 2 12288 35.00 M 15 1 2 12289 38.00 M 14 1 2 12290 33.00 M 13 1 2 12291 30.00 F 17 1 2 12292 56.00 F 12 1 2 12293 26.00 M 16 1 2 12294 20.00 M 23 1 2 12295 28.00 M 14 1 2 12296 20.00 F 14 1 2 12297 50.00 M 19 1 2 12298 27.00 M 26 1 2 12299 55.00 F 16 1 2 12300 26.00 M 34 1 2 12301 30.00 F 18 1 2 12302 30.00 M 15 1 2 12303 46.00 M 18 1 2 12304 55.00 M 14 1 2 12305 14.00 M 17 1 1 12306 33.00 F 20 1 2 12307 38.00 M 20 1 2 12308 28.00 M 11 1 2 12309 16.00 M 14 1 1 12310 14.00 M 14 1 1 12311 33.00 M 14 1 2 12312 21.00 M 14 1 2 12313 19.00 M 14 1 2 12314 19.00 M 14 1 2 12315 34.00 M 14 1 2 12316 26.00 M 16 1 2 12317 50.00 F 16 1 2 12318 55.00 M 21 1 2 12319 31.00 M 21 1 2 12320 25.00 M 21 1 2 12321 70.00 M 21 1 3 12322 26.00 M 21 1 2 12323 18.00 M 21 1 2 12324 19.00 M 21 1 2 12325 20.00 M 21 1 2 12326 27.00 M 21 1 2 12327 33.00 F 18 1 2 12328 38.00 F 18 1 2 12329 38.00 F 19 1 2 12330 23.00 M 18 1 2 12331 30.00 M 18 1 2 12332 30.00 M 14 1 2 12333 17.00 M 14 1 1 12334 32.00 M 14 1 2 12335 20.00 M 14 1 2 12336 18.00 M 14 1 2 12337 29.00 M 18 1 2 12338 20.00 M 14 1 2 12339 36.00 M 22 1 2 12340 27.00 F 22 1 2 12341 7.00 F 28 1 1 12342 45.00 M 17 1 2 12343 4.00 F 28 1 1 12344 36.00 M 22 1 2 12345 22.00 F 18 1 2 12346 70.00 F 18 1 3 12347 22.00 M 18 1 2 12348 27.00 M 18 1 2 12349 21.00 M 18 1 2 12350 35.00 M 18 1 2 12351 61.00 M 14 1 3 12352 65.00 M 14 1 3 12353 17.00 F 18 1 1 12354 40.00 M 18 1 2 12355 20.00 M 50 1 2 12356 23.00 M 15 1 2 12357 45.00 M 13 1 2 12358 37.00 F 14 1 2 12359 2.00 F 13 1 1 12360 18.00 F 20 1 2 12361 16.00 F 24 1 1 12362 30.00 M 15 1 2 12363 18.00 M 15 1 2 12364 26.00 M 13 1 2 12365 38.00 F 15 1 2 12366 38.00 F 21 1 2 12367 17.00 M 23 1 1 12368 14.00 F 24 1 1 12369 43.00 M 27 1 2 12370 42.00 F 16 1 2 12371 30.00 F 12 1 2 12372 19.00 M 16 1 2 12373 28.00 F 16 1 2 12374 15.00 F 16 1 1 12375 35.00 F 16 1 2 12376 24.00 M 18 1 2 12377 40.00 M 15 1 2 12378 48.00 F 15 1 2 12379 38.00 M 17 1 2 12380 6.00 M 17 1 1 12381 26.00 M 15 1 2 12382 8.00 M 16 1 1 12383 10.00 M 17 1 1 12384 45.00 M 17 1 2 12385 40.00 F 16 1 2 12386 10.00 M 16 1 1 12387 47.00 M 20 1 2 12388 44.00 M 24 1 2 12389 28.00 M 14 1 2 12390 27.00 F 42 1 2 12391 23.00 M 20 1 2 12392 25.00 M 23 1 2 12393 37.00 M 11 1 2 12394 80.00 F 13 1 3 12395 28.00 M 15 1 2 12396 18.00 M 23 1 2 12397 32.00 F 15 1 2 12398 24.00 M 22 1 2 12399 3.00 F 16 1 1 12400 39.00 M 16 1 2 12401 42.00 M 17 1 2 12402 24.00 F 21 1 2 12403 7.00 M 19 1 1 12404 33.00 M 19 1 2 12405 21.00 F 25 1 2 12406 69.00 F 17 1 3 12407 6.00 M 13 1 1 12408 45.00 M 13 1 2 12409 33.00 F 13 1 2 12410 27.00 F 13 1 2 12411 81.00 M 39 1 3 12412 27.00 M 13 1 2 12413 76.00 M 35 1 3 12414 68.00 F 15 1 3 12415 37.00 M 13 1 2 12416 38.00 M 13 1 2 12417 65.00 M 13 1 3 12418 39.00 M 17 1 2 12419 40.00 M 13 1 2 12420 71.00 M 17 1 3 12421 40.00 M 17 1 2 12422 21.00 M 15 1 2 12423 21.00 M 15 1 2 12424 22.00 M 16 1 2 12425 28.00 M 15 1 2 12426 15.00 M 16 1 1 12427 27.00 M 15 1 2 12428 27.00 M 15 1 2 12429 33.00 M 16 1 2 12430 28.00 M 32 1 2 12431 30.00 M 16 1 2 12432 21.00 M 15 1 2 12433 52.00 M 16 1 2 12434 31.00 M 16 1 2 12435 33.00 F 16 1 2 12436 38.00 F 16 1 2 12437 37.00 M 16 1 2 12438 30.00 M 21 1 2 12439 18.00 M 19 1 2 12440 8.00 M 19 1 1 12441 30.00 F 14 1 2 12442 30.00 F 14 1 2 12443 80.00 M 12 1 3 12444 24.00 M 15 1 2 12445 36.00 M 17 1 2 12446 34.00 M 32 1 2 12447 33.00 M 16 1 2 12448 40.00 F 16 1 2 12449 50.00 M 16 1 2 12450 22.00 M 21 1 2 12451 28.00 M 21 1 2 12452 39.00 F 22 1 2 12453 9.00 F 24 1 1 12454 42.00 M 16 1 2 12455 15.00 M 16 1 1 12456 46.00 M 16 1 2 12457 6.00 F 18 1 1 12458 28.00 M 16 1 2 12459 40.00 M 23 1 2 12460 50.00 M 20 1 2 12461 1.00 F 15 1 1 12462 34.00 M 23 1 2 12463 65.00 F 14 1 3 12464 46.00 M 17 1 2 12465 33.00 M 14 1 2 12466 27.00 M 15 1 2 12467 25.00 M 14 1 2 12468 20.00 M 9 1 2 12469 50.00 M 15 1 2 12470 20.00 M 15 1 2 12471 27.00 M 15 1 2 12472 24.00 M 18 1 2 12473 23.00 M 15 1 2 12474 24.00 M 15 1 2 12475 26.00 M 15 1 2 12476 33.00 M 16 1 2 12477 17.00 M 15 1 1 12478 18.00 M 31 1 2 12479 19.00 M 15 1 2 12480 63.00 M 20 1 3 12481 21.00 F 18 1 2 12482 33.00 F 9 1 2 12483 15.00 F 9 1 1 12484 14.00 F 9 1 1 12485 55.00 M 9 1 2 12486 30.00 F 14 1 2 12487 50.00 F 9 1 2 12488 60.00 M 9 1 3 12489 10.00 F 9 1 1 12490 38.00 F 15 1 2 12491 42.00 M 15 1 2 12492 4.00 F 15 1 1 12493 4.00 F 12 1 1 12494 18.00 M 20 1 2 12495 31.00 M 13 1 2 12496 35.00 F 17 1 2 12497 27.00 M 20 1 2 12498 48.00 M 14 1 2 12499 33.00 F 14 1 2 12500 9.00 F 14 1 1 12501 11.00 F 14 1 1 12502 8.00 F 14 1 1 12503 28.00 F 14 1 2 12504 8.00 M 14 1 1 12505 58.00 M 14 1 2 12506 48.00 F 16 1 2 12507 32.00 M 14 1 2 12508 75.00 F 16 1 3 12509 44.00 M 14 1 2 12510 52.00 M 14 1 2 12511 35.00 F 14 1 2 12512 65.00 F 14 1 3 12513 60.00 F 14 1 3 12514 28.00 F 14 1 2 12515 32.00 F 14 1 2 12516 39.00 M 14 1 2 12517 1.00 M 14 1 1 12518 37.00 F 12 1 2 12519 33.00 M 19 1 2 12520 22.00 F 19 1 2 12521 3.00 F 19 1 1 12522 35.00 F 13 1 2 12523 39.00 M 16 1 2 12524 16.00 M 16 1 1 12525 53.00 M 14 1 2 12526 24.00 M 14 1 2 12527 51.00 M 14 1 2 12528 49.00 M 23 1 2 12529 35.00 F 22 1 2 12530 55.00 M 13 1 2 12531 10.00 M 13 1 1 12532 55.00 M 13 1 2 12533 36.00 M 13 1 2 12534 50.00 F 13 1 2 12535 13.00 M 13 1 1 12536 7.00 M 25 1 1 12537 40.00 M 13 1 2 12538 55.00 M 13 1 2 12539 30.00 M 11 1 2 12540 22.00 M 11 1 2 12541 34.00 M 11 1 2 12542 28.00 F 16 1 2 12543 25.00 M 16 1 2 12544 28.00 M 19 1 2 12545 24.00 M 12 1 2 12546 43.00 M 16 1 2 12547 68.00 M 9 1 3 12548 17.00 M 18 1 1 12549 40.00 F 11 1 2 12550 34.00 M 11 1 2 12551 29.00 F 11 1 2 12552 36.00 M 14 1 2 12553 37.00 F 14 1 2 12554 25.00 F 14 1 2 12555 32.00 F 14 1 2 12556 20.00 M 14 1 2 12557 44.00 M 14 1 2 12558 26.00 M 13 1 2 12559 26.00 M 16 1 2 12560 23.00 M 13 1 2 12561 28.00 M 13 1 2 12562 24.00 M 16 1 2 12563 25.00 M 13 1 2 12564 23.00 M 13 1 2 12565 27.00 M 13 1 2 12566 19.00 M 13 1 2 12567 25.00 M 13 1 2 12568 21.00 M 13 1 2 12569 32.00 M 13 1 2 12570 30.00 M 13 1 2 12571 19.00 M 13 1 2 12572 21.00 M 13 1 2 12573 24.00 M 14 1 2 12574 20.00 F 12 1 2 12575 25.00 M 12 1 2 12576 19.00 F 15 1 2 12577 45.00 M 24 1 2 12578 30.00 M 10 1 2 12579 33.00 M 20 1 2 12580 58.00 M 10 1 2 12581 32.00 M 10 1 2 12582 12.00 M 10 1 1 12583 10.00 M 19 1 1 12584 20.00 F 30 1 2 12585 24.00 M 10 1 2 12586 24.00 F 19 1 2 12587 25.00 F 10 1 2 12588 25.00 M 10 1 2 12589 30.00 M 10 1 2 12590 15.00 M 10 1 1 12591 30.00 M 10 1 2 12592 22.00 F 12 1 2 12593 24.00 F 12 1 2 12594 29.00 M 12 1 2 12595 27.00 F 12 1 2 12596 0.50 F 12 1 1 12597 27.00 M 15 1 2 12598 35.00 F 15 1 2 12599 28.00 F 15 1 2 12600 40.00 M 15 1 2 12601 8.00 M 19 1 1 12602 24.00 M 19 1 2 12603 10.00 F 19 1 1 12604 2.00 F 11 1 1 12605 20.00 M 13 1 2 12606 43.00 M 20 1 2 12607 14.00 M 13 1 1 12608 16.00 M 15 1 1 12609 22.00 M 29 1 2 12610 25.00 F 15 1 2 12611 28.00 M 15 1 2 12612 50.00 F 15 1 2 12613 10.00 M 15 1 1 12614 42.00 M 11 1 2 12615 31.00 M 15 1 2 12616 24.00 F 15 1 2 12617 35.00 M 15 1 2 12618 26.00 M 15 1 2 12619 33.00 M 15 1 2 12620 4.00 M 15 1 1 12621 40.00 F 23 1 2 12622 45.00 F 37 1 2 12623 46.00 M 13 1 2 12624 23.00 M 15 1 2 12625 23.00 F 15 1 2 12626 8.00 M 21 1 1 12627 30.00 M 15 1 2 12628 8.00 F 15 1 1 12629 3.00 F 15 1 1 12630 37.00 M 15 1 2 12631 30.00 M 32 1 2 12632 55.00 F 32 1 2 12633 28.00 F 13 1 2 12634 39.00 M 13 1 2 12635 32.00 M 13 1 2 12636 11.00 M 13 1 1 12637 30.00 F 13 1 2 12638 8.00 F 13 1 1 12639 4.00 F 12 1 1 12640 6.00 F 30 1 1 12641 4.00 M 12 1 1 12642 5.00 F 12 1 1 12643 25.00 F 12 1 2 12644 35.00 F 10 1 2 12645 27.00 M 9 1 2 12646 58.00 F 9 1 2 12647 22.00 F 10 1 2 12648 48.00 M 11 1 2 12649 14.00 M 11 1 1 12650 5.00 M 11 1 1 12651 30.00 M 11 1 2 12652 31.00 M 11 1 2 12653 2.00 M 9 1 1 12654 7.00 M 29 1 1 12655 42.00 M 11 1 2 12656 18.00 F 11 1 2 12657 8.00 F 11 1 1 12658 35.00 F 11 1 2 12659 32.00 M 11 1 2 12660 21.00 F 11 1 2 12661 40.00 M 11 1 2 12662 30.00 F 11 1 2 12663 30.00 F 11 1 2 12664 32.00 M 11 1 2 12665 54.00 F 11 1 2 12666 78.00 M 12 1 3 12667 1.00 M 16 1 1 12668 16.00 F 16 1 1 12669 24.00 F 16 1 2 12670 60.00 F 16 1 3 12671 40.00 F 16 1 2 12672 17.00 M 16 1 1 12673 20.00 F 16 1 2 12674 50.00 M 16 1 2 12675 52.00 F 16 1 2 12676 9.00 M 16 1 1 12677 33.00 F 16 1 2 12678 18.00 M 16 1 2 12679 65.00 M 19 1 3 12680 34.00 M 16 1 2 12681 25.00 M 16 1 2 12682 24.00 M 12 1 2 12683 24.00 F 12 1 2 12684 8.00 M 12 1 1 12685 38.00 M 12 1 2 12686 23.00 F 10 1 2 12687 36.00 F 15 1 2 12688 25.00 F 15 1 2 12689 43.00 M 8 1 2 12690 27.00 F 10 1 2 12691 34.00 F 12 1 2 12692 13.00 M 12 1 1 12693 20.00 M 12 1 2 12694 29.00 M 12 1 2 12695 39.00 F 12 1 2 12696 12.00 M 15 1 1 12697 15.00 F 12 1 1 12698 63.00 M 12 1 3 12699 20.00 F 13 1 2 12700 49.00 F 19 1 2 12701 28.00 M 12 1 2 12702 40.00 F 11 1 2 12703 17.00 F 17 1 1 12704 13.00 M 18 1 1 12705 38.00 F 17 1 2 12706 24.00 M 18 1 2 12707 16.00 F 18 1 1 12708 38.00 M 16 1 2 12709 30.00 F 16 1 2 12710 20.00 M 16 1 2 12711 45.00 M 16 1 2 12712 12.00 M 16 1 1 12713 39.00 F 19 1 2 12714 18.00 F 16 1 2 12715 19.00 F 16 1 2 12716 1.00 F 16 1 1 12717 50.00 F 16 1 2 12718 52.00 M 19 1 2 12719 45.00 F 16 1 2 12720 52.00 M 16 1 2 12721 44.00 M 16 1 2 12722 12.00 F 16 1 1 12723 32.00 F 19 1 2 12724 12.00 F 19 1 1 12725 34.00 M 16 1 2 12726 10.00 M 16 1 1 12727 28.00 F 16 1 2 12728 41.00 M 19 1 2 12729 10.00 M 16 1 1 12730 35.00 F 16 1 2 12731 47.00 F 19 1 2 12732 40.00 M 19 1 2 12733 16.00 F 16 1 1 12734 34.00 F 19 1 2 12735 37.00 M 28 1 2 12736 32.00 M 16 1 2 12737 8.00 F 19 1 1 12738 40.00 M 19 1 2 12739 38.00 M 16 1 2 12740 31.00 F 16 1 2 12741 37.00 M 16 1 2 12742 40.00 F 19 1 2 12743 33.00 F 16 1 2 12744 15.00 F 43 1 1 12745 47.00 M 16 1 2 12746 35.00 M 16 1 2 12747 54.00 M 31 1 2 12748 46.00 M 19 1 2 12749 33.00 F 16 1 2 12750 5.00 M 20 1 1 12751 26.00 M 16 1 2 12752 15.00 M 16 1 1 12753 27.00 F 16 1 2 12754 35.00 M 16 1 2 12755 31.00 F 18 1 2 12756 34.00 F 18 1 2 12757 19.00 M 11 1 2 12758 18.00 M 11 1 2 12759 25.00 M 11 1 2 12760 30.00 F 11 1 2 12761 20.00 M 11 1 2 12762 11.00 M 11 1 1 12763 13.00 F 11 1 1 12764 35.00 F 11 1 2 12765 70.00 M 11 1 3 12766 29.00 F 13 1 2 12767 6.00 F 11 1 1 12768 35.00 F 11 1 2 12769 69.00 M 10 1 3 12770 36.00 F 16 1 2 12771 30.00 M 23 1 2 12772 26.00 M 16 1 2 12773 13.00 F 16 1 1 12774 48.00 M 16 1 2 12775 20.00 M 16 1 2 12776 17.00 F 19 1 1 12777 37.00 F 16 1 2 12778 21.00 M 16 1 2 12779 7.00 M 12 1 1 12780 17.00 F 16 1 1 12781 10.00 M 13 1 1 12782 38.00 M 15 1 2 12783 11.00 F 18 1 1 12784 40.00 M 18 1 2 12785 23.00 M 18 1 2 12786 43.00 M 19 1 2 12787 30.00 M 11 1 2 12788 28.00 M 11 1 2 12789 30.00 M 9 1 2 12790 50.00 M 25 1 2 12791 36.00 F 16 1 2 12792 28.00 F 17 1 2 12793 30.00 F 19 1 2 12794 10.00 M 17 1 1 12795 12.00 F 17 1 1 12796 31.00 F 11 1 2 12797 40.00 M 11 1 2 12798 10.00 F 16 1 1 12799 39.00 M 16 1 2 12800 14.00 F 16 1 1 12801 44.00 M 19 1 2 12802 66.00 F 16 1 3 12803 27.00 F 21 1 2 12804 46.00 M 17 1 2 12805 35.00 F 9 1 2 12806 42.00 M 9 1 2 12807 36.00 M 14 1 2 12808 24.00 F 14 1 2 12809 22.00 M 9 1 2 12810 64.00 M 14 1 3 12811 40.00 M 20 1 2 12812 45.00 F 16 1 2 12813 31.00 F 16 1 2 12814 22.00 M 10 1 2 12815 35.00 M 10 1 2 12816 25.00 M 10 1 2 12817 22.00 F 10 1 2 12818 46.00 M 10 1 2 12819 26.00 M 10 1 2 12820 50.00 M 10 1 2 12821 24.00 F 12 1 2 12822 38.00 F 20 1 2 12823 55.00 M 11 1 2 12824 4.00 F 11 1 1 12825 15.00 F 11 1 1 12826 74.00 M 19 1 3 12827 31.00 F 11 1 2 12828 40.00 F 14 1 2 12829 13.00 M 9 1 1 12830 37.00 M 16 1 2 12831 38.00 M 9 1 2 12832 16.00 M 16 1 1 12833 13.00 M 9 1 1 12834 35.00 F 9 1 2 12835 28.00 F 16 1 2 12836 43.00 M 19 1 2 12837 7.00 F 17 1 1 12838 55.00 F 12 1 2 12839 47.00 F 11 1 2 12840 6.00 F 16 1 1 12841 12.00 F 12 1 1 12842 18.00 M 12 1 2 12843 56.00 M 12 1 2 12844 15.00 M 21 1 1 12845 45.00 M 12 1 2 12846 72.00 M 12 1 3 12847 9.00 F 29 1 1 12848 40.00 F 12 1 2 12849 26.00 F 24 1 2 12850 40.00 F 32 1 2 12851 12.00 F 30 1 1 12852 30.00 F 30 1 2 12853 40.00 F 10 1 2 12854 11.00 M 13 1 1 12855 7.00 F 8 1 1 12856 36.00 M 16 1 2 12857 27.00 M 16 1 2 12858 50.00 F 16 1 2 12859 23.00 M 16 1 2 12860 34.00 M 15 1 2 12861 37.00 M 12 1 2 12862 36.00 F 19 1 2 12863 16.00 M 16 1 1 12864 7.00 F 15 1 1 12865 60.00 M 33 1 3 12866 42.00 M 13 1 2 12867 44.00 M 26 1 2 12868 44.00 M 11 1 2 12869 35.00 M 29 1 2 12870 29.00 M 29 1 2 12871 47.00 M 15 1 2 12872 15.00 M 10 1 1 12873 40.00 F 15 1 2 12874 68.00 F 19 1 3 12875 22.00 M 16 1 2 12876 27.00 M 16 1 2 12877 6.00 F 10 1 1 12878 65.00 F 12 1 3 12879 63.00 F 12 1 3 12880 24.00 M 12 1 2 12881 25.00 M 12 1 2 12882 75.00 M 12 1 3 12883 30.00 M 7 1 2 12884 60.00 M 24 1 3 12885 7.00 F 12 1 1 12886 27.00 M 26 1 2 12887 60.00 F 10 1 3 12888 21.00 F 22 1 2 12889 3.00 M 25 1 1 12890 3.00 F 22 1 1 12891 56.00 M 10 1 2 12892 52.00 M 22 1 2 12893 29.00 F 34 1 2 12894 6.00 F 14 1 1 12895 29.00 F 14 1 2 12896 35.00 M 13 1 2 12897 18.00 M 7 1 2 12898 30.00 M 17 1 2 12899 2.00 M 10 1 1 12900 9.00 M 10 1 1 12901 32.00 F 10 1 2 12902 51.00 M 16 1 2 12903 33.00 M 10 1 2 12904 4.00 F 10 1 1 12905 6.00 M 10 1 1 12906 6.00 M 10 1 1 12907 4.00 M 10 1 1 12908 6.00 M 10 1 1 12909 7.00 F 10 1 1 12910 32.00 M 10 1 2 12911 51.00 F 10 1 2 12912 10.00 M 10 1 1 12913 6.00 M 10 1 1 12914 33.00 M 10 1 2 12915 3.00 F 10 1 1 12916 5.00 F 10 1 1 12917 35.00 F 17 1 2 12918 1.00 M 17 1 1 12919 26.00 F 10 1 2 12920 24.00 M 10 1 2 12921 21.00 M 10 1 2 12922 60.00 F 26 1 3 12923 9.00 M 21 1 1 12924 1.00 F 10 1 1 12925 2.00 M 10 1 1 12926 6.00 F 17 1 1 12927 38.00 F 20 1 2 12928 7.00 F 17 1 1 12929 14.00 M 13 1 1 12930 41.00 M 12 1 2 12931 33.00 M 13 1 2 12932 24.00 M 12 1 2 12933 20.00 F 12 1 2 12934 31.00 F 12 1 2 12935 31.00 F 12 1 2 12936 19.00 F 13 1 2 12937 15.00 F 10 1 1 12938 40.00 M 10 1 2 12939 17.00 F 10 1 1 12940 14.00 M 26 1 1 12941 35.00 F 16 1 2 12942 42.00 M 17 1 2 12943 35.00 F 16 1 2 12944 15.00 M 16 1 1 12945 33.00 F 17 1 2 12946 36.00 M 20 1 2 12947 42.00 M 17 1 2 12948 58.00 M 14 1 2 12949 43.00 F 12 1 2 12950 36.00 F 12 1 2 12951 48.00 F 13 1 2 12952 29.00 F 12 1 2 12953 32.00 M 15 1 2 12954 38.00 M 9 1 2 12955 39.00 M 8 1 2 12956 17.00 M 8 1 1 12957 18.00 F 8 1 2 12958 33.00 M 8 1 2 12959 4.00 M 13 1 1 12960 28.00 F 15 1 2 12961 41.00 M 15 1 2 12962 28.00 M 18 1 2 12963 23.00 M 15 1 2 12964 8.00 M 13 1 1 12965 52.00 M 15 1 2 12966 33.00 M 23 1 2 12967 12.00 M 11 1 1 12968 14.00 M 29 1 1 12969 32.00 F 35 1 2 12970 13.00 F 11 1 1 12971 47.00 F 16 1 2 12972 28.00 M 16 1 2 12973 32.00 M 20 1 2 12974 42.00 M 12 1 2 12975 37.00 F 19 1 2 12976 42.00 M 16 1 2 12977 32.00 F 16 1 2 12978 13.00 M 16 1 1 12979 11.00 M 16 1 1 12980 21.00 F 16 1 2 12981 56.00 F 16 1 2 12982 52.00 M 16 1 2 12983 16.00 M 16 1 1 12984 47.00 M 15 1 2 12985 35.00 M 29 1 2 12986 32.00 F 16 1 2 12987 12.00 M 16 1 1 12988 10.00 F 16 1 1 12989 29.00 M 19 1 2 12990 41.00 M 16 1 2 12991 36.00 M 11 1 2 12992 37.00 M 18 1 2 12993 22.00 F 9 1 2 12994 35.00 F 9 1 2 12995 45.00 F 9 1 2 12996 22.00 M 11 1 2 12997 23.00 M 11 1 2 12998 29.00 F 15 1 2 12999 39.00 M 17 1 2 13000 10.00 M 15 1 1 13001 21.00 M 17 1 2 13002 8.00 M 15 1 1 13003 17.00 F 20 1 1 13004 46.00 F 15 1 2 13005 45.00 M 18 1 2 13006 45.00 M 9 1 2 13007 14.00 M 19 1 1 13008 3.00 M 17 1 1 13009 14.00 M 17 1 1 13010 60.00 M 13 1 3 13011 50.00 M 12 1 2 13012 7.00 M 9 1 1 13013 49.00 M 10 1 2 13014 46.00 M 10 1 2 13015 48.00 F 10 1 2 13016 14.00 F 13 1 1 13017 25.00 M 14 1 2 13018 12.00 M 15 1 1 13019 32.00 F 9 1 2 13020 33.00 M 18 1 2 13021 32.00 M 14 1 2 13022 23.00 M 25 1 2 13023 12.00 M 9 1 1 13024 35.00 F 12 1 2 13025 35.00 M 15 1 2 13026 35.00 M 9 1 2 13027 25.00 F 18 1 2 13028 51.00 M 9 1 2 13029 17.00 F 12 1 1 13030 17.00 M 18 1 1 13031 35.00 M 25 1 2 13032 18.00 M 15 1 2 13033 1.00 F 21 1 1 13034 35.00 F 12 1 2 13035 53.00 F 9 1 2 13036 35.00 F 12 1 2 13037 14.00 F 9 1 1 13038 45.00 M 15 1 2 13039 31.00 F 20 1 2 13040 17.00 F 9 1 1 13041 55.00 M 20 1 2 13042 20.00 M 12 1 2 13043 42.00 F 9 1 2 13044 14.00 F 9 1 1 13045 18.00 M 9 1 2 13046 36.00 F 14 1 2 13047 34.00 M 14 1 2 13048 33.00 M 11 1 2 13049 60.00 M 18 1 3 13050 65.00 M 19 1 3 13051 23.00 F 18 1 2 13052 2.00 M 15 1 1 13053 32.00 M 10 1 2 13054 28.00 M 10 1 2 13055 42.00 M 9 1 2 13056 52.00 M 9 1 2 13057 34.00 M 21 1 2 13058 30.00 M 18 1 2 13059 22.00 F 9 1 2 13060 34.00 F 25 1 2 13061 15.00 M 15 1 1 13062 32.00 M 25 1 2 13063 7.00 M 15 1 1 13064 18.00 M 9 1 2 13065 34.00 F 18 1 2 13066 22.00 F 18 1 2 13067 15.00 M 15 1 1 13068 19.00 F 12 1 2 13069 66.00 M 15 1 3 13070 75.00 M 10 1 3 13071 24.00 F 9 1 2 13072 55.00 F 11 1 2 13073 28.00 F 11 1 2 13074 22.00 M 11 1 2 13075 36.00 M 9 1 2 13076 44.00 M 16 1 2 13077 29.00 F 28 1 2 13078 42.00 F 12 1 2 13079 33.00 F 34 1 2 13080 29.00 F 14 1 2 13081 35.00 M 14 1 2 13082 40.00 F 7 1 2 13083 45.00 M 7 1 2 13084 30.00 M 7 1 2 13085 17.00 M 7 1 1 13086 40.00 F 14 1 2 13087 47.00 M 7 1 2 13088 45.00 M 18 1 2 13089 40.00 M 14 1 2 13090 32.00 F 14 1 2 13091 38.00 M 14 1 2 13092 40.00 M 14 1 2 13093 33.00 F 20 1 2 13094 25.00 F 15 1 2 13095 27.00 F 10 1 2 13096 4.00 M 10 1 1 13097 31.00 M 10 1 2 13098 20.00 M 28 1 2 13099 25.00 F 32 1 2 13100 1.00 M 32 1 1 13101 13.00 F 16 1 1 13102 17.00 F 32 1 1 13103 45.00 M 10 1 2 13104 35.00 F 10 1 2 13105 60.00 F 18 1 3 13106 20.00 F 12 1 2 13107 30.00 M 20 1 2 13108 15.00 F 20 1 1 13109 36.00 F 15 1 2 13110 29.00 F 6 1 2 13111 20.00 M 6 1 2 13112 39.00 M 10 1 2 13113 18.00 M 10 1 2 13114 5.00 F 10 1 1 13115 42.00 F 9 1 2 13116 46.00 M 17 1 2 13117 50.00 M 17 1 2 13118 49.00 F 17 1 2 13119 20.00 F 17 1 2 13120 14.00 F 25 1 1 13121 31.00 M 19 1 2 13122 55.00 M 9 1 2 13123 48.00 F 17 1 2 13124 9.00 M 10 1 1 13125 25.00 M 15 1 2 13126 17.00 M 8 1 1 13127 7.00 F 15 1 1 13128 20.00 M 15 1 2 13129 50.00 F 18 1 2 13130 32.00 F 14 1 2 13131 8.00 M 14 1 1 13132 10.00 F 14 1 1 13133 28.00 F 14 1 2 13134 11.00 M 14 1 1 13135 30.00 F 14 1 2 13136 6.00 F 9 1 1 13137 1.00 F 28 1 1 13138 30.00 F 9 1 2 13139 30.00 M 16 1 2 13140 23.00 M 16 1 2 13141 30.00 M 16 1 2 13142 8.00 F 9 1 1 13143 17.00 F 15 1 1 13144 12.00 M 8 1 1 13145 38.00 M 11 1 2 13146 53.00 M 17 1 2 13147 34.00 M 17 1 2 13148 49.00 F 11 1 2 13149 26.00 M 7 1 2 13150 14.00 M 9 1 1 13151 38.00 M 31 1 2 13152 22.00 F 21 1 2 13153 8.00 F 33 1 1 13154 40.00 M 9 1 2 13155 55.00 M 9 1 2 13156 29.00 M 9 1 2 13157 40.00 M 9 1 2 13158 35.00 M 9 1 2 13159 54.00 F 24 1 2 13160 29.00 M 9 1 2 13161 65.00 F 9 1 3 13162 35.00 F 9 1 2 13163 7.00 M 6 1 1 13164 45.00 F 6 1 2 13165 54.00 M 6 1 2 13166 33.00 F 6 1 2 13167 0.30 M 24 1 1 13168 15.00 M 11 1 1 13169 16.00 M 8 1 1 13170 31.00 F 15 1 2 13171 41.00 M 15 1 2 13172 39.00 M 15 1 2 13173 39.00 F 15 1 2 13174 28.00 M 15 1 2 13175 15.00 F 15 1 1 13176 35.00 F 19 1 2 13177 11.00 M 15 1 1 13178 11.00 M 15 1 1 13179 6.00 M 15 1 1 13180 33.00 F 15 1 2 13181 17.00 F 15 1 1 13182 42.00 M 8 1 2 13183 69.00 F 8 1 3 13184 41.00 F 9 1 2 13185 30.00 M 14 1 2 13186 60.00 F 14 1 3 13187 13.00 M 10 1 1 13188 27.00 F 9 1 2 13189 34.00 M 9 1 2 13190 35.00 F 33 1 2 13191 13.00 F 24 1 1 13192 30.00 M 9 1 2 13193 9.00 M 9 1 1 13194 46.00 M 9 1 2 13195 45.00 M 27 1 2 13196 1.00 F 9 1 1 13197 48.00 M 9 1 2 13198 35.00 F 9 1 2 13199 33.00 F 27 1 2 13200 10.00 M 21 1 1 13201 70.00 F 9 1 3 13202 8.00 F 9 1 1 13203 6.00 F 24 1 1 13204 3.00 F 9 1 1 13205 30.00 M 33 1 2 13206 22.00 F 33 1 2 13207 24.00 M 15 1 2 13208 36.00 M 21 1 2 13209 2.00 F 9 1 1 13210 33.00 F 16 1 2 13211 46.00 M 9 1 2 13212 52.00 F 9 1 2 13213 4.00 M 14 1 1 13214 5.00 F 8 1 1 13215 35.00 M 34 1 2 13216 34.00 M 11 1 2 13217 7.00 M 19 1 1 13218 20.00 M 19 1 2 13219 27.00 M 17 1 2 13220 21.00 M 8 1 2 13221 27.00 M 11 1 2 13222 30.00 M 23 1 2 13223 40.00 M 14 1 2 13224 30.00 F 8 1 2 13225 45.00 M 8 1 2 13226 20.00 F 35 1 2 13227 35.00 F 27 1 2 13228 2.00 M 9 1 1 13229 45.00 M 33 1 2 13230 40.00 F 16 1 2 13231 25.00 M 16 1 2 13232 18.00 F 27 1 2 13233 18.00 F 16 1 2 13234 18.00 M 16 1 2 13235 17.00 F 29 1 1 13236 14.00 M 14 1 1 13237 40.00 F 33 1 2 13238 23.00 M 22 1 2 13239 48.00 F 14 1 2 13240 25.00 M 14 1 2 13241 31.00 M 14 1 2 13242 27.00 M 14 1 2 13243 7.00 F 14 1 1 13244 28.00 M 14 1 2 13245 26.00 F 14 1 2 13246 47.00 M 14 1 2 13247 2.00 F 9 1 1 13248 30.00 M 35 1 2 13249 24.00 M 18 1 2 13250 21.00 F 20 1 2 13251 28.00 M 16 1 2 13252 30.00 F 16 1 2 13253 8.00 F 9 1 1 13254 6.00 F 9 1 1 13255 23.00 M 35 1 2 13256 20.00 M 16 1 2 13257 21.00 F 16 1 2 13258 10.00 F 9 1 1 13259 24.00 M 27 1 2 13260 19.00 M 16 1 2 13261 42.00 M 16 1 2 13262 17.00 M 16 1 1 13263 15.00 M 9 1 1 13264 26.00 M 30 1 2 13265 18.00 M 16 1 2 13266 20.00 F 16 1 2 13267 52.00 M 20 1 2 13268 48.00 F 16 1 2 13269 22.00 F 16 1 2 13270 21.00 M 16 1 2 13271 35.00 F 16 1 2 13272 17.00 M 16 1 1 13273 55.00 M 14 1 2 13274 48.00 F 9 1 2 13275 32.00 M 16 1 2 13276 9.00 F 9 1 1 13277 7.00 M 9 1 1 13278 38.00 M 37 1 2 13279 31.00 M 16 1 2 13280 21.00 F 33 1 2 13281 32.00 F 18 1 2 13282 17.00 F 14 1 1 13283 15.00 F 9 1 1 13284 34.00 F 15 1 2 13285 23.00 M 15 1 2 13286 51.00 M 16 1 2 13287 20.00 F 15 1 2 13288 2.00 M 15 1 1 13289 45.00 M 15 1 2 13290 30.00 M 15 1 2 13291 58.00 F 15 1 2 13292 15.00 F 15 1 1 13293 45.00 M 15 1 2 13294 37.00 F 15 1 2 13295 13.00 M 15 1 1 13296 43.00 M 15 1 2 13297 20.00 F 15 1 2 13298 36.00 M 15 1 2 13299 16.00 F 19 1 1 13300 33.00 M 15 1 2 13301 23.00 F 15 1 2 13302 35.00 M 15 1 2 13303 57.00 M 22 1 2 13304 34.00 F 8 1 2 13305 50.00 F 13 1 2 13306 20.00 F 13 1 2 13307 22.00 F 13 1 2 13308 18.00 M 13 1 2 13309 18.00 F 13 1 2 13310 8.00 F 13 1 1 13311 21.00 M 13 1 2 13312 17.00 M 9 1 1 13313 40.00 M 21 1 2 13314 49.00 M 8 1 2 13315 29.00 F 14 1 2 13316 2.00 M 14 1 1 13317 49.00 F 18 1 2 13318 31.00 M 10 1 2 13319 11.00 M 10 1 1 13320 50.00 F 21 1 2 13321 23.00 M 10 1 2 13322 59.00 F 9 1 2 13323 25.00 F 9 1 2 13324 35.00 F 11 1 2 13325 35.00 F 11 1 2 13326 18.00 M 8 1 2 13327 28.00 M 8 1 2 13328 55.00 F 15 1 2 13329 32.00 M 10 1 2 13330 35.00 F 17 1 2 13331 60.00 F 10 1 3 13332 33.00 F 7 1 2 13333 33.00 F 7 1 2 13334 32.00 M 6 1 2 13335 20.00 M 6 1 2 13336 48.00 M 6 1 2 13337 50.00 F 6 1 2 13338 22.00 M 9 1 2 13339 50.00 M 15 1 2 13340 4.00 F 13 1 1 13341 17.00 F 19 1 1 13342 8.00 M 27 1 1 13343 25.00 M 17 1 2 13344 27.00 F 13 1 2 13345 43.00 M 18 1 2 13346 42.00 M 23 1 2 13347 15.00 F 16 1 1 13348 45.00 F 16 1 2 13349 37.00 F 13 1 2 13350 40.00 M 13 1 2 13351 14.00 M 16 1 1 13352 35.00 F 7 1 2 13353 11.00 F 16 1 1 13354 50.00 M 16 1 2 13355 70.00 F 7 1 3 13356 27.00 M 15 1 2 13357 24.00 M 13 1 2 13358 52.00 F 12 1 2 13359 24.00 F 12 1 2 13360 38.00 F 12 1 2 13361 38.00 M 10 1 2 13362 23.00 M 13 1 2 13363 45.00 M 13 1 2 13364 30.00 M 13 1 2 13365 24.00 F 20 1 2 13366 26.00 M 31 1 2 13367 31.00 M 20 1 2 13368 42.00 M 23 1 2 13369 21.00 F 16 1 2 13370 24.00 F 16 1 2 13371 42.00 F 16 1 2 13372 40.00 F 16 1 2 13373 22.00 M 26 1 2 13374 40.00 M 16 1 2 13375 18.00 F 16 1 2 13376 6.00 M 16 1 1 13377 6.00 M 16 1 1 13378 39.00 F 26 1 2 13379 32.00 M 16 1 2 13380 44.00 M 23 1 2 13381 38.00 M 23 1 2 13382 7.00 F 16 1 1 13383 20.00 F 14 1 2 13384 24.00 M 14 1 2 13385 42.00 M 8 1 2 13386 34.00 M 13 1 2 13387 35.00 F 10 1 2 13388 55.00 M 36 1 2 13389 16.00 M 15 1 1 13390 18.00 M 5 1 2 13391 23.00 M 13 1 2 13392 58.00 M 10 1 2 13393 26.00 F 18 1 2 13394 32.00 F 23 1 2 13395 22.00 M 13 1 2 13396 33.00 M 13 1 2 13397 20.00 M 13 1 2 13398 36.00 M 16 1 2 13399 32.00 F 13 1 2 13400 51.00 M 7 1 2 13401 41.00 M 7 1 2 13402 32.00 M 17 1 2 13403 4.00 M 7 1 1 13404 50.00 M 17 1 2 13405 22.00 F 5 1 2 13406 37.00 M 17 1 2 13407 26.00 M 17 1 2 13408 24.00 F 7 1 2 13409 35.00 F 11 1 2 13410 1.00 M 11 1 1 13411 29.00 M 7 1 2 13412 4.00 M 11 1 1 13413 29.00 F 21 1 2 13414 48.00 M 17 1 2 13415 23.00 F 11 1 2 13416 29.00 F 11 1 2 13417 30.00 M 24 1 2 13418 44.00 F 7 1 2 13419 54.00 M 13 1 2 13420 1.50 F 13 1 1 13421 7.00 M 13 1 1 13422 9.00 M 13 1 1 13423 25.00 M 13 1 2 13424 21.00 M 13 1 2 13425 2.00 M 15 1 1 13426 45.00 M 15 1 2 13427 26.00 M 21 1 2 13428 23.00 F 7 1 2 13429 22.00 F 17 1 2 13430 25.00 F 17 1 2 13431 21.00 F 13 1 2 13432 21.00 F 19 1 2 13433 70.00 F 13 1 3 13434 37.00 F 19 1 2 13435 21.00 F 19 1 2 13436 18.00 F 13 1 2 13437 31.00 M 13 1 2 13438 3.00 F 13 1 1 13439 14.00 M 13 1 1 13440 9.00 F 13 1 1 13441 26.00 M 19 1 2 13442 61.00 F 13 1 3 13443 1.00 F 13 1 1 13444 31.00 M 21 1 2 13445 21.00 M 21 1 2 13446 31.00 M 10 1 2 13447 74.00 M 22 1 3 13448 25.00 M 19 1 2 13449 30.00 F 13 1 2 13450 9.00 F 10 1 1 13451 34.00 M 16 1 2 13452 27.00 M 20 1 2 13453 54.00 F 20 1 2 13454 3.00 F 23 1 1 13455 30.00 F 23 1 2 13456 5.00 M 10 1 1 13457 4.00 M 10 1 1 13458 65.00 M 25 1 3 13459 10.00 M 25 1 1 13460 43.00 M 12 1 2 13461 6.00 F 6 1 1 13462 72.00 F 10 1 3 13463 9.00 F 14 1 1 13464 33.00 F 10 1 2 13465 11.00 F 16 1 1 13466 6.00 F 14 1 1 13467 67.00 F 16 1 3 13468 30.00 M 31 1 2 13469 25.00 M 10 1 2 13470 55.00 M 25 1 2 13471 3.00 F 12 1 1 13472 33.00 M 18 1 2 13473 25.00 M 18 1 2 13474 17.00 F 18 1 1 13475 22.00 F 18 1 2 13476 5.00 M 18 1 1 13477 40.00 M 25 1 2 13478 20.00 F 23 1 2 13479 3.00 M 33 1 1 13480 22.00 F 35 1 2 13481 25.00 F 18 1 2 13482 30.00 M 18 1 2 13483 22.00 F 12 1 2 13484 22.00 F 23 1 2 13485 20.00 F 22 1 2 13486 22.00 M 18 1 2 13487 48.00 M 12 1 2 13488 53.00 F 7 1 2 13489 25.00 M 7 1 2 13490 47.00 F 31 1 2 13491 21.00 F 16 1 2 13492 2.00 M 12 1 1 13493 34.00 M 10 1 2 13494 28.00 F 6 1 2 13495 60.00 M 12 1 3 13496 14.00 M 15 1 1 13497 42.00 M 12 1 2 13498 18.00 M 12 1 2 13499 30.00 M 12 1 2 13500 10.00 M 18 1 1 13501 55.00 F 12 1 2 13502 45.00 M 12 1 2 13503 18.00 M 12 1 2 13504 40.00 M 12 1 2 13505 15.00 F 12 1 1 13506 26.00 M 18 1 2 13507 29.00 F 18 1 2 13508 68.00 M 18 1 3 13509 35.00 F 12 1 2 13510 29.00 M 12 1 2 13511 40.00 F 19 1 2 13512 48.00 M 12 1 2 13513 23.00 M 9 1 2 13514 33.00 F 12 1 2 13515 17.00 M 12 1 1 13516 60.00 M 20 1 3 13517 20.00 F 6 1 2 13518 11.00 F 6 1 1 13519 58.00 F 24 1 2 13520 46.00 M 16 1 2 13521 1.00 F 16 1 1 13522 33.00 M 20 1 2 13523 38.00 M 6 1 2 13524 30.00 M 4 1 2 13525 65.00 F 14 1 3 13526 45.00 M 12 1 2 13527 26.00 F 14 1 2 13528 40.00 M 6 1 2 13529 46.00 M 23 1 2 13530 44.00 M 6 1 2 13531 57.00 M 5 1 2 13532 50.00 M 13 1 2 13533 48.00 M 5 1 2 13534 36.00 M 23 1 2 13535 21.00 F 12 1 2 13536 33.00 M 16 1 2 13537 47.00 M 17 1 2 13538 28.00 M 11 1 2 13539 9.00 M 11 1 1 13540 20.00 F 19 1 2 13541 25.00 M 19 1 2 13542 22.00 F 19 1 2 13543 25.00 M 25 1 2 13544 34.00 M 19 1 2 13545 15.00 M 19 1 1 13546 25.00 M 19 1 2 13547 37.00 M 37 1 2 13548 27.00 M 6 1 2 13549 30.00 M 21 1 2 13550 30.00 M 6 1 2 13551 6.00 M 19 1 1 13552 25.00 F 19 1 2 13553 19.00 M 19 1 2 13554 18.00 M 19 1 2 13555 45.00 M 20 1 2 13556 18.00 M 11 1 2 13557 34.00 M 24 1 2 13558 30.00 M 7 1 2 13559 60.00 M 13 1 3 13560 17.00 M 11 1 1 13561 47.00 F 11 1 2 13562 55.00 F 11 1 2 13563 28.00 M 15 1 2 13564 58.00 M 11 1 2 13565 43.00 M 11 1 2 13566 23.00 M 11 1 2 13567 42.00 F 11 1 2 13568 34.00 M 11 1 2 13569 43.00 M 14 1 2 13570 37.00 F 11 1 2 13571 16.00 M 14 1 1 13572 53.00 M 13 1 2 13573 20.00 F 14 1 2 13574 52.00 M 14 1 2 13575 14.00 M 14 1 1 13576 35.00 F 19 1 2 13577 40.00 F 14 1 2 13578 10.00 M 14 1 1 13579 52.00 M 14 1 2 13580 17.00 F 19 1 1 13581 45.00 M 16 1 2 13582 35.00 F 20 1 2 13583 27.00 M 11 1 2 13584 30.00 M 23 1 2 13585 30.00 F 21 1 2 13586 21.00 M 17 1 2 13587 33.00 M 11 1 2 13588 25.00 M 11 1 2 13589 46.00 M 17 1 2 13590 17.00 M 11 1 1 13591 23.00 M 17 1 2 13592 25.00 M 17 1 2 13593 31.00 M 17 1 2 13594 26.00 M 17 1 2 13595 30.00 M 11 1 2 13596 36.00 M 17 1 2 13597 20.00 M 17 1 2 13598 48.00 M 17 1 2 13599 27.00 M 11 1 2 13600 15.00 M 17 1 1 13601 30.00 M 17 1 2 13602 17.00 M 11 1 1 13603 20.00 M 11 1 2 13604 22.00 M 11 1 2 13605 31.00 M 17 1 2 13606 27.00 M 14 1 2 13607 35.00 M 9 1 2 13608 9.00 F 11 1 1 13609 65.00 F 11 1 3 13610 35.00 M 8 1 2 13611 27.00 F 8 1 2 13612 32.00 M 8 1 2 13613 56.00 M 8 1 2 13614 39.00 F 8 1 2 13615 43.00 M 17 1 2 13616 38.00 F 8 1 2 13617 38.00 F 17 1 2 13618 27.00 F 8 1 2 13619 39.00 M 17 1 2 13620 17.00 F 30 1 1 13621 38.00 M 17 1 2 13622 28.00 F 17 1 2 13623 54.00 M 11 1 2 13624 55.00 F 5 1 2 13625 38.00 M 5 1 2 13626 9.00 M 8 1 1 13627 36.00 F 5 1 2 13628 14.00 M 5 1 1 13629 63.00 F 8 1 3 13630 39.00 M 8 1 2 13631 9.00 M 5 1 1 13632 26.00 F 8 1 2 13633 12.00 M 16 1 1 13634 12.00 F 11 1 1 13635 35.00 M 23 1 2 13636 36.00 F 5 1 2 13637 46.00 M 13 1 2 13638 11.00 F 23 1 1 13639 59.00 F 16 1 2 13640 3.00 F 23 1 1 13641 26.00 M 11 1 2 13642 30.00 M 16 1 2 13643 36.00 F 14 1 2 13644 27.00 F 10 1 2 13645 6.00 F 10 1 1 13646 4.00 M 10 1 1 13647 13.00 M 16 1 1 13648 25.00 F 14 1 2 13649 39.00 M 14 1 2 13650 2.00 F 10 1 1 13651 3.00 M 10 1 1 13652 33.00 M 10 1 2 13653 1.00 F 10 1 1 13654 7.00 F 10 1 1 13655 26.00 F 16 1 2 13656 50.00 M 31 1 2 13657 45.00 M 8 1 2 13658 31.00 M 14 1 2 13659 25.00 F 10 1 2 13660 12.00 M 13 1 1 13661 31.00 F 13 1 2 13662 28.00 M 13 1 2 13663 35.00 M 10 1 2 13664 43.00 M 10 1 2 13665 34.00 M 13 1 2 13666 28.00 F 10 1 2 13667 25.00 M 10 1 2 13668 21.00 M 14 1 2 13669 20.00 M 10 1 2 13670 25.00 M 17 1 2 13671 30.00 M 29 1 2 13672 20.00 F 23 1 2 13673 60.00 F 29 1 3 13674 12.00 F 12 1 1 13675 37.00 F 29 1 2 13676 45.00 F 8 1 2 13677 22.00 M 8 1 2 13678 39.00 M 8 1 2 13679 45.00 M 7 1 2 13680 27.00 M 36 1 2 13681 57.00 M 10 1 2 13682 60.00 M 18 1 3 13683 25.00 F 7 1 2 13684 32.00 M 20 1 2 13685 40.00 M 7 1 2 13686 22.00 M 10 1 2 13687 49.00 M 10 1 2 13688 55.00 F 21 1 2 13689 21.00 M 14 1 2 13690 29.00 M 7 1 2 13691 32.00 M 8 1 2 13692 38.00 M 10 1 2 13693 17.00 F 10 1 1 13694 13.00 M 10 1 1 13695 18.00 F 10 1 2 13696 50.00 M 10 1 2 13697 40.00 M 10 1 2 13698 35.00 F 10 1 2 13699 17.00 M 10 1 1 13700 10.00 M 10 1 1 13701 34.00 M 16 1 2 13702 34.00 M 10 1 2 13703 7.00 F 10 1 1 13704 4.00 F 10 1 1 13705 41.00 M 10 1 2 13706 20.00 M 10 1 2 13707 36.00 M 10 1 2 13708 23.00 M 10 1 2 13709 16.00 M 10 1 1 13710 22.00 M 10 1 2 13711 27.00 M 10 1 2 13712 11.00 F 10 1 1 13713 7.00 M 10 1 1 13714 26.00 M 21 1 2 13715 40.00 M 10 1 2 13716 36.00 M 22 1 2 13717 23.00 F 7 1 2 13718 28.00 F 10 1 2 13719 22.00 F 7 1 2 13720 42.00 M 7 1 2 13721 19.00 M 10 1 2 13722 60.00 M 13 1 3 13723 50.00 F 12 1 2 13724 10.00 F 7 1 1 13725 9.00 F 10 1 1 13726 35.00 M 10 1 2 13727 39.00 M 13 1 2 13728 48.00 M 17 1 2 13729 38.00 F 18 1 2 13730 18.00 M 13 1 2 13731 2.00 F 11 1 1 13732 32.00 M 11 1 2 13733 28.00 M 11 1 2 13734 37.00 F 11 1 2 13735 22.00 F 7 1 2 13736 28.00 F 37 1 2 13737 41.00 M 21 1 2 13738 31.00 F 4 1 2 13739 27.00 M 14 1 2 13740 30.00 M 14 1 2 13741 32.00 M 4 1 2 13742 17.00 F 12 1 1 13743 34.00 M 29 1 2 13744 25.00 M 14 1 2 13745 24.00 M 10 1 2 13746 52.00 M 11 1 2 13747 9.00 M 11 1 1 13748 4.00 M 14 1 1 13749 9.00 M 8 1 1 13750 35.00 M 8 1 2 13751 3.00 F 7 1 1 13752 32.00 M 8 1 2 13753 31.00 M 8 1 2 13754 68.00 F 16 1 3 13755 30.00 F 10 1 2 13756 23.00 F 15 1 2 13757 40.00 F 10 1 2 13758 25.00 M 15 1 2 13759 16.00 F 7 1 1 13760 48.00 M 7 1 2 13761 21.00 F 7 1 2 13762 46.00 M 10 1 2 13763 20.00 M 8 1 2 13764 73.00 F 15 1 3 13765 46.00 M 14 1 2 13766 26.00 M 6 1 2 13767 32.00 M 14 1 2 13768 23.00 M 7 1 2 13769 30.00 F 11 1 2 13770 39.00 M 22 1 2 13771 61.00 M 19 1 3 13772 62.00 F 7 1 3 13773 27.00 M 28 1 2 13774 34.00 F 11 1 2 13775 28.00 M 11 1 2 13776 48.00 M 13 1 2 13777 32.00 M 21 1 2 13778 34.00 F 29 1 2 13779 29.00 F 11 1 2 13780 39.00 M 3 1 2 13781 32.00 M 3 1 2 13782 34.00 M 11 1 2 13783 34.00 M 11 1 2 13784 41.00 M 13 1 2 13785 12.00 M 6 1 1 13786 25.00 M 9 1 2 13787 46.00 M 9 1 2 13788 18.00 F 12 1 2 13789 30.00 F 6 1 2 13790 42.00 F 9 1 2 13791 45.00 M 6 1 2 13792 32.00 M 6 1 2 13793 30.00 M 6 1 2 13794 32.00 M 6 1 2 13795 44.00 M 16 1 2 13796 45.00 F 6 1 2 13797 40.00 M 12 1 2 13798 37.00 M 8 1 2 13799 15.00 M 9 1 1 13800 36.00 M 9 1 2 13801 19.00 M 9 1 2 13802 21.00 M 15 1 2 13803 24.00 M 15 1 2 13804 25.00 M 15 1 2 13805 48.00 M 11 1 2 13806 19.00 M 13 1 2 13807 43.00 M 11 1 2 13808 59.00 F 21 1 2 13809 30.00 F 11 1 2 13810 6.00 F 11 1 1 13811 33.00 F 11 1 2 13812 34.00 M 23 1 2 13813 50.00 M 13 1 2 13814 24.00 F 11 1 2 13815 23.00 M 8 1 2 13816 38.00 M 14 1 2 13817 44.00 M 14 1 2 13818 30.00 M 28 1 2 13819 46.00 M 20 1 2 13820 50.00 M 4 1 2 13821 25.00 M 10 1 2 13822 28.00 M 15 1 2 13823 24.00 M 20 1 2 13824 28.00 M 15 1 2 13825 24.00 F 15 1 2 13826 8.00 M 23 1 1 13827 45.00 M 25 1 2 13828 11.00 M 9 1 1 13829 36.00 M 9 1 2 13830 18.00 F 6 1 2 13831 31.00 F 14 1 2 13832 36.00 M 8 1 2 13833 35.00 F 2 1 2 13834 11.00 F 17 1 1 13835 30.00 F 11 1 2 13836 9.00 M 20 1 1 13837 2.00 M 13 1 1 13838 34.00 M 15 1 2 13839 28.00 F 13 1 2 13840 22.00 M 13 1 2 13841 43.00 M 18 1 2 13842 40.00 M 6 1 2 13843 31.00 F 9 1 2 13844 36.00 M 12 1 2 13845 25.00 M 17 1 2 13846 35.00 M 6 1 2 13847 25.00 F 6 1 2 13848 23.00 M 12 1 2 13849 2.00 M 7 1 1 13850 42.00 M 17 1 2 13851 46.00 F 9 1 2 13852 60.00 M 6 1 3 13853 47.00 M 9 1 2 13854 36.00 M 17 1 2 13855 65.00 M 17 1 3 13856 29.00 M 9 1 2 13857 30.00 F 9 1 2 13858 48.00 M 9 1 2 13859 47.00 M 13 1 2 13860 42.00 M 7 1 2 13861 25.00 F 11 1 2 13862 4.00 M 11 1 1 13863 34.00 M 12 1 2 13864 22.00 M 9 1 2 13865 17.00 M 9 1 1 13866 32.00 F 9 1 2 13867 59.00 M 9 1 2 13868 30.00 M 9 1 2 13869 31.00 F 13 1 2 13870 20.00 F 15 1 2 13871 51.00 M 9 1 2 13872 20.00 M 9 1 2 13873 10.00 M 9 1 1 13874 6.00 M 9 1 1 13875 49.00 M 10 1 2 13876 63.00 M 10 1 3 13877 38.00 F 19 1 2 13878 7.00 M 19 1 1 13879 39.00 M 13 1 2 13880 34.00 M 13 1 2 13881 36.00 M 19 1 2 13882 39.00 M 10 1 2 13883 80.00 F 8 1 3 13884 27.00 F 13 1 2 13885 41.00 M 8 1 2 13886 28.00 M 26 1 2 13887 6.00 M 10 1 1 13888 36.00 M 10 1 2 13889 10.00 M 12 1 1 13890 50.00 M 18 1 2 13891 35.00 M 34 1 2 13892 55.00 F 27 1 2 13893 22.00 F 29 1 2 13894 15.00 F 24 1 1 13895 10.00 F 31 1 1 13896 13.00 M 12 1 1 13897 30.00 M 14 1 2 13898 65.00 F 6 1 3 13899 68.00 F 6 1 3 13900 8.00 M 6 1 1 13901 68.00 F 6 1 3 13902 26.00 M 11 1 2 13903 23.00 F 7 1 2 13904 28.00 M 16 1 2 13905 28.00 M 20 1 2 13906 35.00 F 6 1 2 13907 33.00 M 19 1 2 13908 20.00 M 10 1 2 13909 25.00 F 10 1 2 13910 8.00 F 10 1 1 13911 23.00 M 10 1 2 13912 10.00 F 10 1 1 13913 20.00 M 10 1 2 13914 34.00 F 10 1 2 13915 36.00 F 14 1 2 13916 33.00 F 14 1 2 13917 6.00 M 10 1 1 13918 42.00 M 10 1 2 13919 32.00 F 10 1 2 13920 12.00 F 10 1 1 13921 35.00 M 10 1 2 13922 38.00 M 12 1 2 13923 23.00 M 7 1 2 13924 27.00 M 18 1 2 13925 20.00 M 22 1 2 13926 18.00 F 9 1 2 13927 54.00 M 21 1 2 13928 34.00 M 21 1 2 13929 13.00 M 27 1 1 13930 29.00 M 22 1 2 13931 32.00 M 9 1 2 13932 29.00 F 22 1 2 13933 20.00 M 21 1 2 13934 21.00 M 22 1 2 13935 20.00 M 22 1 2 13936 16.00 M 22 1 1 13937 41.00 F 21 1 2 13938 11.00 F 22 1 1 13939 12.00 M 22 1 1 13940 35.00 F 9 1 2 13941 24.00 F 21 1 2 13942 9.00 F 9 1 1 13943 49.00 M 25 1 2 13944 37.00 M 22 1 2 13945 54.00 F 23 1 2 13946 44.00 F 22 1 2 13947 46.00 M 9 1 2 13948 42.00 M 29 1 2 13949 40.00 M 18 1 2 13950 16.00 M 22 1 1 13951 35.00 F 23 1 2 13952 48.00 M 23 1 2 13953 34.00 F 9 1 2 13954 16.00 F 22 1 1 13955 48.00 F 22 1 2 13956 19.00 M 22 1 2 13957 32.00 M 18 1 2 13958 30.00 F 15 1 2 13959 35.00 M 22 1 2 13960 7.00 M 23 1 1 13961 11.00 M 22 1 1 13962 19.00 F 18 1 2 13963 18.00 M 9 1 2 13964 45.00 M 22 1 2 13965 22.00 M 22 1 2 13966 30.00 F 22 1 2 13967 16.00 F 9 1 1 13968 8.00 M 9 1 1 13969 13.00 M 9 1 1 13970 23.00 F 27 1 2 13971 17.00 F 9 1 1 13972 32.00 M 22 1 2 13973 34.00 M 22 1 2 13974 15.00 M 22 1 1 13975 38.00 F 22 1 2 13976 18.00 F 9 1 2 13977 22.00 M 22 1 2 13978 13.00 M 22 1 1 13979 18.00 M 22 1 2 13980 45.00 M 21 1 2 13981 15.00 M 9 1 1 13982 38.00 M 22 1 2 13983 26.00 M 35 1 2 13984 17.00 M 20 1 1 13985 32.00 M 24 1 2 13986 36.00 M 36 1 2 13987 49.00 F 35 1 2 13988 68.00 M 13 1 3 13989 31.00 M 35 1 2 13990 28.00 F 20 1 2 13991 25.00 M 14 1 2 13992 32.00 F 29 1 2 13993 3.00 M 29 1 1 13994 27.00 F 14 1 2 13995 26.00 M 14 1 2 13996 35.00 M 14 1 2 13997 38.00 M 14 1 2 13998 30.00 F 14 1 2 13999 27.00 M 14 1 2 14000 18.00 F 14 1 2 14001 17.00 F 14 1 1 14002 17.00 M 14 1 1 14003 44.00 M 14 1 2 14004 8.00 F 14 1 1 14005 5.00 M 24 1 1 14006 14.00 M 14 1 1 14007 53.00 M 14 1 2 14008 27.00 M 14 1 2 14009 25.00 M 16 1 2 14010 17.00 M 14 1 1 14011 27.00 M 14 1 2 14012 54.00 M 22 1 2 14013 24.00 F 12 1 2 14014 35.00 M 14 1 2 14015 12.00 M 12 1 1 14016 35.00 M 14 1 2 14017 8.00 M 29 1 1 14018 24.00 M 14 1 2 14019 3.00 F 12 1 1 14020 20.00 F 22 1 2 14021 40.00 F 14 1 2 14022 38.00 M 14 1 2 14023 24.00 M 14 1 2 14024 29.00 M 14 1 2 14025 50.00 M 14 1 2 14026 40.00 M 12 1 2 14027 10.00 F 12 1 1 14028 40.00 M 14 1 2 14029 12.00 M 12 1 1 14030 50.00 F 14 1 2 14031 48.00 M 14 1 2 14032 33.00 F 14 1 2 14033 35.00 F 14 1 2 14034 22.00 F 14 1 2 14035 2.00 M 12 1 1 14036 22.00 M 22 1 2 14037 24.00 F 14 1 2 14038 34.00 M 14 1 2 14039 25.00 F 14 1 2 14040 28.00 F 14 1 2 14041 37.00 M 14 1 2 14042 14.00 F 29 1 1 14043 30.00 M 14 1 2 14044 65.00 M 21 1 3 14045 26.00 M 10 1 2 14046 3.00 M 7 1 1 14047 30.00 M 16 1 2 14048 28.00 M 7 1 2 14049 50.00 F 10 1 2 14050 15.00 F 10 1 1 14051 13.00 F 10 1 1 14052 7.00 M 10 1 1 14053 6.00 M 10 1 1 14054 35.00 F 12 1 2 14055 20.00 F 10 1 2 14056 20.00 F 12 1 2 14057 25.00 M 10 1 2 14058 26.00 F 12 1 2 14059 2.00 F 12 1 1 14060 35.00 M 10 1 2 14061 37.00 F 12 1 2 14062 22.00 F 10 1 2 14063 32.00 M 12 1 2 14064 8.00 M 12 1 1 14065 20.00 F 10 1 2 14066 25.00 M 12 1 2 14067 23.00 M 10 1 2 14068 16.00 F 10 1 1 14069 48.00 M 10 1 2 14070 18.00 M 10 1 2 14071 13.00 F 10 1 1 14072 29.00 F 12 1 2 14073 21.00 M 12 1 2 14074 22.00 M 12 1 2 14075 55.00 M 10 1 2 14076 46.00 F 10 1 2 14077 17.00 F 10 1 1 14078 16.00 F 10 1 1 14079 30.00 M 10 1 2 14080 23.00 F 10 1 2 14081 38.00 M 19 1 2 14082 42.00 M 10 1 2 14083 38.00 F 19 1 2 14084 30.00 M 10 1 2 14085 26.00 F 10 1 2 14086 10.00 F 10 1 1 14087 20.00 M 10 1 2 14088 27.00 M 10 1 2 14089 22.00 F 10 1 2 14090 31.00 M 10 1 2 14091 35.00 M 12 1 2 14092 20.00 M 14 1 2 14093 60.00 F 12 1 3 14094 6.00 F 10 1 1 14095 48.00 M 8 1 2 14096 28.00 M 8 1 2 14097 38.00 M 8 1 2 14098 3.00 M 16 1 1 14099 23.00 M 40 1 2 14100 31.00 M 11 1 2 14101 41.00 F 17 1 2 14102 30.00 M 10 1 2 14103 22.00 M 10 1 2 14104 38.00 F 8 1 2 14105 47.00 M 15 1 2 14106 22.00 M 8 1 2 14107 20.00 F 8 1 2 14108 5.00 F 8 1 1 14109 27.00 F 6 1 2 14110 24.00 M 8 1 2 14111 25.00 F 8 1 2 14112 35.00 M 8 1 2 14113 34.00 F 4 1 2 14114 32.00 M 7 1 2 14115 30.00 M 9 1 2 14116 41.00 M 26 1 2 14117 25.00 M 26 1 2 14118 40.00 M 11 1 2 14119 37.00 M 9 1 2 14120 47.00 M 9 1 2 14121 36.00 M 11 1 2 14122 15.00 M 15 1 1 14123 40.00 M 27 1 2 14124 2.00 F 9 1 1 14125 47.00 F 19 1 2 14126 48.00 M 34 1 2 14127 29.00 M 13 1 2 14128 20.00 M 13 1 2 14129 45.00 M 13 1 2 14130 40.00 M 13 1 2 14131 43.00 M 13 1 2 14132 19.00 M 13 1 2 14133 11.00 M 13 1 1 14134 39.00 M 13 1 2 14135 32.00 M 13 1 2 14136 30.00 F 20 1 2 14137 27.00 F 23 1 2 14138 66.00 M 13 1 3 14139 17.00 M 28 1 1 14140 30.00 M 13 1 2 14141 7.00 F 13 1 1 14142 3.00 F 13 1 1 14143 2.00 M 13 1 1 14144 1.00 F 13 1 1 14145 19.00 M 28 1 2 14146 16.00 F 13 1 1 14147 24.00 M 4 1 2 14148 45.00 F 4 1 2 14149 33.00 F 5 1 2 14150 18.00 M 33 1 2 14151 55.00 F 10 1 2 14152 32.00 F 5 1 2 14153 40.00 M 12 1 2 14154 7.00 F 10 1 1 14155 32.00 M 10 1 2 14156 29.00 F 10 1 2 14157 38.00 F 10 1 2 14158 23.00 M 16 1 2 14159 27.00 M 13 1 2 14160 42.00 M 11 1 2 14161 32.00 M 6 1 2 14162 25.00 F 26 1 2 14163 28.00 M 25 1 2 14164 20.00 M 7 1 2 14165 35.00 M 20 1 2 14166 30.00 F 7 1 2 14167 37.00 F 9 1 2 14168 14.00 F 7 1 1 14169 28.00 M 8 1 2 14170 35.00 F 12 1 2 14171 15.00 M 14 1 1 14172 44.00 M 18 1 2 14173 35.00 F 13 1 2 14174 38.00 M 4 1 2 14175 44.00 M 24 1 2 14176 45.00 M 11 1 2 14177 65.00 M 11 1 3 14178 47.00 M 11 1 2 14179 23.00 M 13 1 2 14180 7.00 M 13 1 1 14181 3.00 F 13 1 1 14182 27.00 F 13 1 2 14183 19.00 M 9 1 2 14184 13.00 M 9 1 1 14185 15.00 M 9 1 1 14186 11.00 M 9 1 1 14187 51.00 F 17 1 2 14188 54.00 M 8 1 2 14189 24.00 M 21 1 2 14190 21.00 M 10 1 2 14191 38.00 M 17 1 2 14192 48.00 M 20 1 2 14193 38.00 F 20 1 2 14194 11.00 F 16 1 1 14195 61.00 M 5 1 3 14196 24.00 M 5 1 2 14197 31.00 M 10 1 2 14198 17.00 M 5 1 1 14199 20.00 M 16 1 2 14200 33.00 F 5 1 2 14201 26.00 M 4 1 2 14202 18.00 F 9 1 2 14203 32.00 M 39 1 2 14204 22.00 F 9 1 2 14205 19.00 M 9 1 2 14206 27.00 M 38 1 2 14207 18.00 M 9 1 2 14208 36.00 M 9 1 2 14209 29.00 M 16 1 2 14210 55.00 M 16 1 2 14211 30.00 M 34 1 2 14212 8.00 M 34 1 1 14213 30.00 M 15 1 2 14214 46.00 M 15 1 2 14215 29.00 M 4 1 2 14216 18.00 M 4 1 2 14217 20.00 M 6 1 2 14218 11.00 F 8 1 1 14219 12.00 M 34 1 1 14220 2.00 F 8 1 1 14221 36.00 F 6 1 2 14222 54.00 M 17 1 2 14223 19.00 F 4 1 2 14224 53.00 M 4 1 2 14225 29.00 M 4 1 2 14226 25.00 F 7 1 2 14227 35.00 F 7 1 2 14228 58.00 M 9 1 2 14229 17.00 F 9 1 1 14230 5.00 F 9 1 1 14231 26.00 F 9 1 2 14232 44.00 F 9 1 2 14233 16.00 F 17 1 1 14234 46.00 M 17 1 2 14235 34.00 M 17 1 2 14236 18.00 M 8 1 2 14237 12.00 F 34 1 1 14238 5.00 M 17 1 1 14239 17.00 M 34 1 1 14240 19.00 F 34 1 2 14241 30.00 M 17 1 2 14242 32.00 F 17 1 2 14243 33.00 F 13 1 2 14244 34.00 F 13 1 2 14245 45.00 M 10 1 2 14246 17.00 F 10 1 1 14247 5.00 F 13 1 1 14248 65.00 M 17 1 3 14249 70.00 M 7 1 3 14250 55.00 M 6 1 2 14251 55.00 F 6 1 2 14252 38.00 M 6 1 2 14253 28.00 F 7 1 2 14254 38.00 M 8 1 2 14255 30.00 M 8 1 2 14256 19.00 F 13 1 2 14257 24.00 M 16 1 2 14258 21.00 M 33 1 2 14259 8.00 M 16 1 1 14260 40.00 F 10 1 2 14261 25.00 F 25 1 2 14262 34.00 M 25 1 2 14263 36.00 M 25 1 2 14264 20.00 M 20 1 2 14265 30.00 M 25 1 2 14266 27.00 F 19 1 2 14267 6.00 M 25 1 1 14268 3.00 M 25 1 1 14269 25.00 M 21 1 2 14270 1.00 M 21 1 1 14271 40.00 F 27 1 2 14272 18.00 M 25 1 2 14273 12.00 M 19 1 1 14274 2.00 M 21 1 1 14275 40.00 M 25 1 2 14276 31.00 M 19 1 2 14277 45.00 M 16 1 2 14278 35.00 F 23 1 2 14279 25.00 F 8 1 2 14280 5.00 M 25 1 1 14281 22.00 F 12 1 2 14282 30.00 F 10 1 2 14283 25.00 M 10 1 2 14284 30.00 F 10 1 2 14285 20.00 M 27 1 2 14286 6.00 M 10 1 1 14287 28.00 M 9 1 2 14288 65.00 F 9 1 3 14289 34.00 F 9 1 2 14290 8.00 F 9 1 1 14291 60.00 F 10 1 3 14292 40.00 M 9 1 2 14293 44.00 F 9 1 2 14294 27.00 F 10 1 2 14295 6.00 F 10 1 1 14296 0.90 M 10 1 1 14297 25.00 M 10 1 2 14298 40.00 M 4 1 2 14299 35.00 F 10 1 2 14300 7.00 F 10 1 1 14301 6.00 F 10 1 1 14302 32.00 F 10 1 2 14303 18.00 M 24 1 2 14304 30.00 M 23 1 2 14305 29.00 M 9 1 2 14306 4.00 M 9 1 1 14307 31.00 M 9 1 2 14308 48.00 M 9 1 2 14309 38.00 F 9 1 2 14310 13.00 M 9 1 1 14311 32.00 M 9 1 2 14312 35.00 F 9 1 2 14313 21.00 F 9 1 2 14314 18.00 F 9 1 2 14315 62.00 M 9 1 3 14316 52.00 F 9 1 2 14317 24.00 M 10 1 2 14318 21.00 M 9 1 2 14319 48.00 M 9 1 2 14320 24.00 M 9 1 2 14321 11.00 F 9 1 1 14322 10.00 F 9 1 1 14323 27.00 M 9 1 2 14324 28.00 M 12 1 2 14325 32.00 F 12 1 2 14326 19.00 F 12 1 2 14327 6.00 F 9 1 1 14328 19.00 M 12 1 2 14329 37.00 F 10 1 2 14330 45.00 M 10 1 2 14331 46.00 F 16 1 2 14332 51.00 M 24 1 2 14333 27.00 F 16 1 2 14334 51.00 M 9 1 2 14335 32.00 M 8 1 2 14336 15.00 M 14 1 1 14337 46.00 M 23 1 2 14338 26.00 F 10 1 2 14339 37.00 F 10 1 2 14340 23.00 F 10 1 2 14341 32.00 M 16 1 2 14342 42.00 M 10 1 2 14343 26.00 F 14 1 2 14344 6.00 M 12 1 1 14345 36.00 M 14 1 2 14346 3.00 M 12 1 1 14347 18.00 M 12 1 2 14348 40.00 M 12 1 2 14349 29.00 M 12 1 2 14350 16.00 M 27 1 1 14351 11.00 M 12 1 1 14352 19.00 F 12 1 2 14353 12.00 M 19 1 1 14354 50.00 M 12 1 2 14355 50.00 F 33 1 2 14356 37.00 F 22 1 2 14357 18.00 F 27 1 2 14358 15.00 F 12 1 1 14359 13.00 M 12 1 1 14360 50.00 F 12 1 2 14361 11.00 F 12 1 1 14362 19.00 F 27 1 2 14363 25.00 F 12 1 2 14364 11.00 F 12 1 1 14365 16.00 M 12 1 1 14366 13.00 M 12 1 1 14367 25.00 M 12 1 2 14368 37.00 M 12 1 2 14369 18.00 F 12 1 2 14370 36.00 F 12 1 2 14371 14.00 M 12 1 1 14372 22.00 F 12 1 2 14373 30.00 F 12 1 2 14374 21.00 F 27 1 2 14375 18.00 F 12 1 2 14376 21.00 F 12 1 2 14377 4.00 F 12 1 1 14378 12.00 F 12 1 1 14379 42.00 M 22 1 2 14380 13.00 F 12 1 1 14381 22.00 F 12 1 2 14382 23.00 M 20 1 2 14383 6.00 M 20 1 1 14384 45.00 F 11 1 2 14385 31.00 F 11 1 2 14386 36.00 M 11 1 2 14387 28.00 F 16 1 2 14388 27.00 M 11 1 2 14389 50.00 M 11 1 2 14390 40.00 F 23 1 2 14391 27.00 F 5 1 2 14392 32.00 M 5 1 2 14393 22.00 M 5 1 2 14394 14.00 F 5 1 1 14395 38.00 M 16 1 2 14396 23.00 M 25 1 2 14397 35.00 M 25 1 2 14398 16.00 M 19 1 1 14399 24.00 M 19 1 2 14400 20.00 M 27 1 2 14401 22.00 M 8 1 2 14402 46.00 F 16 1 2 14403 42.00 M 21 1 2 14404 9.00 M 21 1 1 14405 13.00 F 27 1 1 14406 35.00 F 16 1 2 14407 13.00 F 8 1 1 14408 36.00 F 16 1 2 14409 35.00 M 19 1 2 14410 1.00 M 20 1 1 14411 28.00 M 8 1 2 14412 24.00 M 19 1 2 14413 18.00 F 8 1 2 14414 21.00 F 25 1 2 14415 20.00 F 16 1 2 14416 11.00 M 23 1 1 14417 35.00 F 25 1 2 14418 10.00 M 25 1 1 14419 18.00 M 8 1 2 14420 13.00 M 19 1 1 14421 17.00 F 25 1 1 14422 18.00 M 16 1 2 14423 35.00 M 20 1 2 14424 5.00 M 25 1 1 14425 5.00 M 16 1 1 14426 30.00 F 8 1 2 14427 36.00 M 25 1 2 14428 30.00 M 8 1 2 14429 30.00 M 25 1 2 14430 30.00 F 16 1 2 14431 18.00 F 31 1 2 14432 20.00 F 23 1 2 14433 40.00 M 8 1 2 14434 36.00 F 23 1 2 14435 25.00 F 31 1 2 14436 22.00 F 8 1 2 14437 22.00 F 20 1 2 14438 25.00 F 16 1 2 14439 18.00 F 25 1 2 14440 6.00 F 25 1 1 14441 20.00 M 25 1 2 14442 28.00 M 25 1 2 14443 48.00 F 16 1 2 14444 28.00 F 16 1 2 14445 34.00 F 19 1 2 14446 3.00 F 25 1 1 14447 20.00 F 31 1 2 14448 25.00 F 16 1 2 14449 22.00 M 16 1 2 14450 30.00 F 25 1 2 14451 3.00 M 19 1 1 14452 35.00 M 20 1 2 14453 6.00 F 20 1 1 14454 47.00 M 16 1 2 14455 18.00 M 20 1 2 14456 21.00 M 16 1 2 14457 50.00 M 19 1 2 14458 27.00 M 24 1 2 14459 32.00 M 7 1 2 14460 21.00 F 19 1 2 14461 1.00 M 26 1 1 14462 21.00 M 7 1 2 14463 23.00 M 12 1 2 14464 28.00 F 7 1 2 14465 35.00 M 7 1 2 14466 27.00 M 12 1 2 14467 25.00 M 15 1 2 14468 3.00 M 21 1 1 14469 47.00 M 15 1 2 14470 35.00 M 12 1 2 14471 55.00 M 24 1 2 14472 4.00 F 11 1 1 14473 45.00 F 8 1 2 14474 35.00 F 9 1 2 14475 23.00 F 9 1 2 14476 24.00 M 11 1 2 14477 62.00 M 13 1 3 14478 22.00 M 11 1 2 14479 26.00 F 18 1 2 14480 26.00 F 18 1 2 14481 25.00 M 10 1 2 14482 10.00 F 10 1 1 14483 4.00 M 18 1 1 14484 18.00 F 10 1 2 14485 30.00 M 10 1 2 14486 16.00 F 10 1 1 14487 16.00 F 10 1 1 14488 21.00 M 10 1 2 14489 35.00 F 10 1 2 14490 30.00 F 17 1 2 14491 30.00 F 24 1 2 14492 33.00 M 21 1 2 14493 59.00 M 8 1 2 14494 37.00 M 14 1 2 14495 5.00 M 8 1 1 14496 2.00 M 11 1 1 14497 20.00 F 16 1 2 14498 54.00 F 16 1 2 14499 30.00 M 8 1 2 14500 22.00 F 14 1 2 14501 25.00 F 14 1 2 14502 3.00 F 8 1 1 14503 28.00 F 19 1 2 14504 50.00 M 16 1 2 14505 49.00 M 18 1 2 14506 42.00 M 4 1 2 14507 35.00 M 10 1 2 14508 39.00 F 18 1 2 14509 29.00 M 5 1 2 14510 25.00 F 5 1 2 14511 31.00 M 6 1 2 14512 51.00 M 5 1 2 14513 32.00 M 10 1 2 14514 25.00 F 5 1 2 14515 6.00 F 12 1 1 14516 33.00 M 16 1 2 14517 43.00 M 7 1 2 14518 31.00 F 14 1 2 14519 27.00 M 18 1 2 14520 52.00 M 18 1 2 14521 50.00 M 18 1 2 14522 44.00 M 16 1 2 14523 30.00 M 7 1 2 14524 17.00 M 6 1 1 14525 31.00 M 6 1 2 14526 52.00 M 6 1 2 14527 35.00 F 6 1 2 14528 40.00 M 9 1 2 14529 38.00 F 6 1 2 14530 43.00 M 14 1 2 14531 20.00 M 10 1 2 14532 31.00 F 6 1 2 14533 42.00 F 17 1 2 14534 7.00 F 6 1 1 14535 36.00 M 6 1 2 14536 45.00 M 6 1 2 14537 12.00 M 5 1 1 14538 31.00 F 5 1 2 14539 28.00 M 10 1 2 14540 58.00 M 10 1 2 14541 36.00 M 10 1 2 14542 48.00 F 10 1 2 14543 10.00 M 12 1 1 14544 26.00 M 8 1 2 14545 42.00 M 8 1 2 14546 43.00 M 8 1 2 14547 16.00 F 8 1 1 14548 36.00 F 8 1 2 14549 14.00 M 12 1 1 14550 30.00 F 8 1 2 14551 14.00 F 12 1 1 14552 28.00 F 8 1 2 14553 43.00 F 8 1 2 14554 49.00 M 12 1 2 14555 32.00 F 8 1 2 14556 31.00 F 12 1 2 14557 5.00 F 8 1 1 14558 16.00 F 32 1 1 14559 20.00 M 12 1 2 14560 34.00 M 15 1 2 14561 64.00 F 8 1 3 14562 24.00 F 15 1 2 14563 10.00 M 15 1 1 14564 40.00 M 12 1 2 14565 44.00 M 12 1 2 14566 38.00 M 12 1 2 14567 40.00 M 13 1 2 14568 13.00 M 12 1 1 14569 42.00 M 9 1 2 14570 48.00 M 13 1 2 14571 11.00 M 15 1 1 14572 38.00 M 7 1 2 14573 35.00 M 7 1 2 14574 26.00 F 16 1 2 14575 54.00 F 16 1 2 14576 28.00 F 7 1 2 14577 25.00 M 7 1 2 14578 36.00 M 13 1 2 14579 29.00 M 3 1 2 14580 50.00 M 9 1 2 14581 32.00 F 7 1 2 14582 35.00 F 7 1 2 14583 29.00 M 5 1 2 14584 39.00 M 11 1 2 14585 25.00 M 7 1 2 14586 55.00 F 10 1 2 14587 67.00 M 5 1 3 14588 45.00 M 7 1 2 14589 10.00 F 3 1 1 14590 28.00 M 23 1 2 14591 56.00 M 6 1 2 14592 57.00 M 7 1 2 14593 22.00 M 7 1 2 14594 35.00 M 7 1 2 14595 37.00 F 5 1 2 14596 41.00 M 7 1 2 14597 65.00 M 5 1 3 14598 53.00 M 16 1 2 14599 33.00 M 7 1 2 14600 49.00 M 7 1 2 14601 59.00 M 7 1 2 14602 4.00 M 13 1 1 14603 43.00 M 3 1 2 14604 47.00 M 9 1 2 14605 33.00 M 7 1 2 14606 39.00 M 5 1 2 14607 43.00 M 3 1 2 14608 42.00 M 3 1 2 14609 34.00 F 15 1 2 14610 40.00 M 7 1 2 14611 33.00 F 7 1 2 14612 10.00 M 9 1 1 14613 43.00 M 3 1 2 14614 31.00 F 7 1 2 14615 29.00 M 7 1 2 14616 70.00 M 5 1 3 14617 9.00 F 13 1 1 14618 41.00 M 11 1 2 14619 39.00 M 13 1 2 14620 30.00 F 10 1 2 14621 16.00 M 13 1 1 14622 33.00 M 7 1 2 14623 22.00 M 14 1 2 14624 23.00 M 8 1 2 14625 29.00 M 11 1 2 14626 29.00 M 11 1 2 14627 24.00 M 11 1 2 14628 30.00 F 8 1 2 14629 52.00 M 11 1 2 14630 52.00 M 14 1 2 14631 49.00 M 8 1 2 14632 2.00 F 8 1 1 14633 28.00 M 8 1 2 14634 57.00 M 18 1 2 14635 35.00 F 23 1 2 14636 0.30 M 9 1 1 14637 8.00 F 15 1 1 14638 19.00 M 15 1 2 14639 20.00 M 12 1 2 14640 14.00 F 15 1 1 14641 51.00 M 15 1 2 14642 58.00 M 15 1 2 14643 43.00 M 12 1 2 14644 44.00 M 17 1 2 14645 30.00 F 7 1 2 14646 35.00 F 17 1 2 14647 55.00 M 7 1 2 14648 50.00 M 15 1 2 14649 13.00 F 15 1 1 14650 15.00 F 14 1 1 14651 9.00 M 14 1 1 14652 32.00 M 10 1 2 14653 30.00 F 10 1 2 14654 42.00 M 17 1 2 14655 50.00 M 9 1 2 14656 39.00 F 17 1 2 14657 15.00 M 13 1 1 14658 44.00 M 18 1 2 14659 36.00 M 11 1 2 14660 40.00 M 8 1 2 14661 55.00 F 13 1 2 14662 47.00 M 13 1 2 14663 30.00 M 9 1 2 14664 44.00 M 7 1 2 14665 45.00 M 7 1 2 14666 58.00 M 24 1 2 14667 50.00 M 9 1 2 14668 3.00 F 16 1 1 14669 13.00 F 7 1 1 14670 47.00 M 7 1 2 14671 37.00 M 7 1 2 14672 22.00 M 13 1 2 14673 47.00 M 13 1 2 14674 29.00 M 9 1 2 14675 36.00 F 5 1 2 14676 45.00 F 9 1 2 14677 24.00 F 9 1 2 14678 50.00 M 9 1 2 14679 27.00 M 9 1 2 14680 43.00 M 4 1 2 14681 48.00 F 6 1 2 14682 28.00 M 6 1 2 14683 29.00 M 13 1 2 14684 51.00 F 13 1 2 14685 27.00 F 6 1 2 14686 59.00 M 6 1 2 14687 27.00 M 13 1 2 14688 23.00 M 13 1 2 14689 15.00 F 13 1 1 14690 30.00 F 23 1 2 14691 37.00 F 23 1 2 14692 43.00 M 9 1 2 14693 22.00 F 9 1 2 14694 3.00 F 9 1 1 14695 7.00 M 10 1 1 14696 8.00 F 10 1 1 14697 12.00 F 10 1 1 14698 15.00 F 16 1 1 14699 35.00 F 16 1 2 14700 45.00 M 16 1 2 14701 65.00 F 9 1 3 14702 34.00 M 9 1 2 14703 16.00 M 9 1 1 14704 35.00 M 9 1 2 14705 20.00 M 9 1 2 14706 32.00 M 9 1 2 14707 30.00 M 9 1 2 14708 26.00 M 9 1 2 14709 20.00 M 9 1 2 14710 20.00 M 9 1 2 14711 19.00 M 9 1 2 14712 54.00 M 9 1 2 14713 44.00 M 9 1 2 14714 25.00 M 10 1 2 14715 25.00 M 9 1 2 14716 47.00 M 9 1 2 14717 25.00 M 9 1 2 14718 45.00 F 6 1 2 14719 50.00 M 6 1 2 14720 27.00 M 23 1 2 14721 28.00 F 4 1 2 14722 28.00 M 13 1 2 14723 15.00 F 8 1 1 14724 12.00 F 13 1 1 14725 38.00 F 16 1 2 14726 31.00 M 27 1 2 14727 28.00 F 10 1 2 14728 34.00 M 7 1 2 14729 31.00 M 5 1 2 14730 14.00 M 7 1 1 14731 30.00 F 10 1 2 14732 31.00 M 10 1 2 14733 13.00 F 10 1 1 14734 30.00 F 10 1 2 14735 4.00 M 11 1 1 14736 6.00 M 10 1 1 14737 65.00 F 9 1 3 14738 2.00 F 12 1 1 14739 11.00 M 6 1 1 14740 53.00 M 8 1 2 14741 31.00 M 8 1 2 14742 29.00 F 8 1 2 14743 35.00 M 8 1 2 14744 44.00 M 8 1 2 14745 38.00 M 8 1 2 14746 32.00 F 8 1 2 14747 26.00 M 8 1 2 14748 20.00 M 8 1 2 14749 48.00 M 8 1 2 14750 66.00 F 8 1 3 14751 42.00 M 10 1 2 14752 25.00 M 12 1 2 14753 47.00 M 12 1 2 14754 22.00 M 6 1 2 14755 21.00 M 6 1 2 14756 37.00 F 6 1 2 14757 30.00 M 6 1 2 14758 45.00 M 8 1 2 14759 35.00 M 16 1 2 14760 30.00 F 14 1 2 14761 40.00 M 10 1 2 14762 24.00 M 6 1 2 14763 30.00 M 6 1 2 14764 39.00 M 10 1 2 14765 36.00 M 12 1 2 14766 36.00 M 6 1 2 14767 28.00 M 10 1 2 14768 36.00 M 9 1 2 14769 8.00 M 6 1 1 14770 28.00 M 14 1 2 14771 32.00 M 14 1 2 14772 28.00 F 14 1 2 14773 50.00 M 14 1 2 14774 36.00 F 30 1 2 14775 59.00 F 30 1 2 14776 40.00 M 14 1 2 14777 18.00 F 10 1 2 14778 19.00 F 14 1 2 14779 21.00 M 14 1 2 14780 28.00 M 10 1 2 14781 38.00 F 5 1 2 14782 17.00 M 5 1 1 14783 24.00 F 5 1 2 14784 29.00 M 12 1 2 14785 37.00 M 12 1 2 14786 42.00 F 12 1 2 14787 30.00 F 11 1 2 14788 19.00 M 16 1 2 14789 12.00 F 10 1 1 14790 18.00 M 12 1 2 14791 40.00 M 10 1 2 14792 36.00 M 10 1 2 14793 33.00 M 10 1 2 14794 30.00 M 10 1 2 14795 29.00 F 10 1 2 14796 40.00 M 10 1 2 14797 28.00 F 15 1 2 14798 44.00 F 10 1 2 14799 30.00 F 15 1 2 14800 28.00 M 10 1 2 14801 24.00 F 10 1 2 14802 30.00 F 10 1 2 14803 28.00 M 12 1 2 14804 26.00 F 15 1 2 14805 4.00 M 12 1 1 14806 40.00 M 15 1 2 14807 35.00 F 15 1 2 14808 31.00 M 16 1 2 14809 21.00 M 12 1 2 14810 28.00 F 16 1 2 14811 22.00 F 12 1 2 14812 4.00 F 12 1 1 14813 1.00 F 12 1 1 14814 28.00 M 12 1 2 14815 2.00 F 15 1 1 14816 43.00 M 15 1 2 14817 35.00 F 15 1 2 14818 21.00 M 15 1 2 14819 42.00 M 12 1 2 14820 58.00 M 6 1 2 14821 30.00 M 10 1 2 14822 29.00 M 23 1 2 14823 36.00 M 6 1 2 14824 33.00 F 6 1 2 14825 36.00 M 11 1 2 14826 14.00 F 10 1 1 14827 20.00 M 12 1 2 14828 42.00 F 15 1 2 14829 42.00 M 12 1 2 14830 26.00 M 10 1 2 14831 27.00 M 6 1 2 14832 42.00 M 12 1 2 14833 20.00 M 12 1 2 14834 44.00 M 12 1 2 14835 22.00 M 14 1 2 14836 49.00 M 10 1 2 14837 21.00 M 9 1 2 14838 39.00 M 10 1 2 14839 16.00 F 10 1 1 14840 30.00 F 17 1 2 14841 42.00 F 10 1 2 14842 47.00 M 11 1 2 14843 26.00 F 10 1 2 14844 32.00 M 9 1 2 14845 56.00 M 10 1 2 14846 42.00 M 6 1 2 14847 38.00 M 10 1 2 14848 42.00 M 12 1 2 14849 37.00 M 6 1 2 14850 45.00 M 14 1 2 14851 24.00 M 10 1 2 14852 67.00 M 12 1 3 14853 48.00 M 14 1 2 14854 42.00 M 11 1 2 14855 34.00 F 12 1 2 14856 39.00 M 14 1 2 14857 33.00 M 14 1 2 14858 44.00 M 14 1 2 14859 29.00 F 6 1 2 14860 44.00 M 6 1 2 14861 42.00 M 12 1 2 14862 36.00 F 6 1 2 14863 29.00 M 10 1 2 14864 34.00 M 6 1 2 14865 23.00 M 17 1 2 14866 32.00 M 10 1 2 14867 21.00 M 23 1 2 14868 38.00 M 10 1 2 14869 29.00 F 6 1 2 14870 34.00 M 6 1 2 14871 39.00 M 6 1 2 14872 47.00 M 10 1 2 14873 32.00 M 24 1 2 14874 16.00 M 6 1 1 14875 38.00 M 12 1 2 14876 38.00 M 10 1 2 14877 29.00 M 14 1 2 14878 31.00 M 14 1 2 14879 30.00 M 15 1 2 14880 42.00 M 11 1 2 14881 36.00 M 6 1 2 14882 41.00 M 12 1 2 14883 26.00 M 23 1 2 14884 29.00 M 6 1 2 14885 33.00 F 10 1 2 14886 4.00 M 23 1 1 14887 47.00 M 11 1 2 14888 40.00 M 6 1 2 14889 32.00 F 10 1 2 14890 31.00 M 6 1 2 14891 54.00 M 15 1 2 14892 31.00 M 10 1 2 14893 32.00 M 11 1 2 14894 30.00 F 12 1 2 14895 25.00 M 12 1 2 14896 29.00 M 10 1 2 14897 43.00 M 14 1 2 14898 39.00 M 6 1 2 14899 33.00 F 14 1 2 14900 44.00 M 12 1 2 14901 31.00 M 11 1 2 14902 27.00 M 10 1 2 14903 32.00 F 11 1 2 14904 45.00 M 18 1 2 14905 26.00 M 14 1 2 14906 40.00 F 6 1 2 14907 28.00 M 14 1 2 14908 37.00 M 6 1 2 14909 35.00 M 6 1 2 14910 55.00 M 6 1 2 14911 47.00 M 6 1 2 14912 44.00 M 19 1 2 14913 38.00 M 19 1 2 14914 35.00 M 12 1 2 14915 33.00 M 11 1 2 14916 18.00 M 12 1 2 14917 40.00 M 12 1 2 14918 50.00 F 6 1 2 14919 35.00 M 6 1 2 14920 52.00 M 6 1 2 14921 24.00 F 12 1 2 14922 57.00 M 15 1 2 14923 18.00 M 10 1 2 14924 35.00 F 6 1 2 14925 36.00 M 12 1 2 14926 46.00 M 12 1 2 14927 50.00 M 14 1 2 14928 22.00 F 6 1 2 14929 43.00 M 12 1 2 14930 49.00 M 14 1 2 14931 34.00 F 6 1 2 14932 39.00 M 6 1 2 14933 37.00 F 14 1 2 14934 33.00 M 15 1 2 14935 36.00 M 10 1 2 14936 14.00 M 6 1 1 14937 46.00 M 13 1 2 14938 43.00 M 14 1 2 14939 33.00 F 11 1 2 14940 43.00 M 14 1 2 14941 42.00 M 6 1 2 14942 26.00 M 11 1 2 14943 24.00 M 6 1 2 14944 35.00 M 7 1 2 14945 32.00 M 7 1 2 14946 40.00 M 7 1 2 14947 0.20 F 10 1 1 14948 14.00 F 7 1 1 14949 30.00 F 10 1 2 14950 30.00 F 23 1 2 14951 6.00 F 23 1 1 14952 1.00 M 23 1 1 14953 22.00 M 17 1 2 14954 3.00 M 23 1 1 14955 27.00 M 17 1 2 14956 32.00 M 23 1 2 14957 49.00 F 19 1 2 14958 22.00 F 14 1 2 14959 42.00 M 23 1 2 14960 23.00 M 23 1 2 14961 21.00 M 23 1 2 14962 26.00 F 14 1 2 14963 35.00 M 18 1 2 14964 25.00 F 23 1 2 14965 5.00 F 11 1 1 14966 65.00 F 7 1 3 14967 37.00 F 5 1 2 14968 24.00 M 9 1 2 14969 46.00 F 9 1 2 14970 35.00 F 8 1 2 14971 24.00 M 14 1 2 14972 19.00 M 7 1 2 14973 48.00 M 10 1 2 14974 32.00 M 10 1 2 14975 42.00 F 10 1 2 14976 28.00 M 10 1 2 14977 24.00 F 10 1 2 14978 7.00 F 10 1 1 14979 23.00 M 13 1 2 14980 40.00 F 17 1 2 14981 21.00 M 22 1 2 14982 18.00 M 12 1 2 14983 25.00 M 17 1 2 14984 25.00 F 10 1 2 14985 45.00 M 12 1 2 14986 30.00 M 10 1 2 14987 34.00 M 10 1 2 14988 26.00 F 10 1 2 14989 43.00 M 12 1 2 14990 2.00 M 10 1 1 14991 55.00 M 10 1 2 14992 12.00 M 10 1 1 14993 29.00 M 13 1 2 14994 19.00 M 13 1 2 14995 16.00 F 8 1 1 14996 42.00 M 12 1 2 14997 14.00 M 10 1 1 14998 27.00 F 13 1 2 14999 37.00 F 10 1 2 15000 55.00 M 10 1 2 15001 32.00 M 17 1 2 15002 56.00 F 10 1 2 15003 20.00 M 10 1 2 15004 14.00 M 17 1 1 15005 31.00 F 5 1 2 15006 28.00 F 10 1 2 15007 45.00 M 10 1 2 15008 26.00 F 5 1 2 15009 62.00 F 5 1 3 15010 30.00 F 5 1 2 15011 32.00 F 5 1 2 15012 26.00 F 5 1 2 15013 13.00 M 5 1 1 15014 46.00 M 5 1 2 15015 48.00 F 32 1 2 15016 17.00 M 10 1 1 15017 47.00 M 5 1 2 15018 15.00 M 5 1 1 15019 45.00 M 5 1 2 15020 41.00 M 5 1 2 15021 6.00 M 5 1 1 15022 51.00 M 17 1 2 15023 22.00 F 5 1 2 15024 24.00 M 5 1 2 15025 42.00 F 5 1 2 15026 26.00 F 5 1 2 15027 41.00 F 17 1 2 15028 4.00 F 10 1 1 15029 65.00 F 5 1 3 15030 25.00 M 12 1 2 15031 30.00 M 12 1 2 15032 25.00 M 12 1 2 15033 30.00 F 10 1 2 15034 22.00 M 10 1 2 15035 26.00 M 10 1 2 15036 22.00 M 10 1 2 15037 30.00 M 10 1 2 15038 9.00 M 9 1 1 15039 10.00 M 12 1 1 15040 21.00 M 10 1 2 15041 39.00 M 10 1 2 15042 4.00 M 9 1 1 15043 32.00 F 9 1 2 15044 35.00 M 9 1 2 15045 65.00 F 9 1 3 15046 24.00 F 9 1 2 15047 35.00 F 9 1 2 15048 39.00 M 27 1 2 15049 45.00 M 12 1 2 15050 50.00 F 10 1 2 15051 48.00 F 10 1 2 15052 18.00 M 10 1 2 15053 6.00 F 10 1 1 15054 30.00 F 8 1 2 15055 35.00 F 12 1 2 15056 5.00 F 10 1 1 15057 30.00 M 10 1 2 15058 15.00 M 15 1 1 15059 13.00 F 10 1 1 15060 5.00 M 12 1 1 15061 30.00 F 15 1 2 15062 12.00 M 15 1 1 15063 37.00 F 10 1 2 15064 27.00 M 10 1 2 15065 4.00 F 10 1 1 15066 40.00 M 17 1 2 15067 24.00 M 17 1 2 15068 32.00 M 10 1 2 15069 30.00 M 10 1 2 15070 10.00 M 17 1 1 15071 35.00 M 12 1 2 15072 26.00 F 17 1 2 15073 33.00 F 12 1 2 15074 35.00 M 12 1 2 15075 11.00 M 12 1 1 15076 39.00 F 17 1 2 15077 48.00 F 12 1 2 15078 2.00 F 12 1 1 15079 5.00 M 15 1 1 15080 28.00 M 10 1 2 15081 6.00 M 12 1 1 15082 20.00 M 17 1 2 15083 25.00 F 12 1 2 15084 38.00 M 15 1 2 15085 13.00 M 15 1 1 15086 33.00 F 12 1 2 15087 35.00 M 12 1 2 15088 37.00 F 12 1 2 15089 32.00 F 12 1 2 15090 15.00 M 12 1 1 15091 42.00 M 12 1 2 15092 24.00 M 14 1 2 15093 25.00 F 10 1 2 15094 55.00 M 10 1 2 15095 8.00 M 12 1 1 15096 35.00 F 12 1 2 15097 38.00 M 10 1 2 15098 40.00 M 17 1 2 15099 50.00 M 17 1 2 15100 55.00 M 7 1 2 15101 32.00 F 14 1 2 15102 23.00 F 12 1 2 15103 40.00 F 12 1 2 15104 27.00 F 11 1 2 15105 38.00 M 5 1 2 15106 45.00 M 22 1 2 15107 43.00 M 11 1 2 15108 30.00 M 11 1 2 15109 51.00 M 22 1 2 15110 40.00 M 9 1 2 15111 36.00 F 11 1 2 15112 32.00 M 11 1 2 15113 35.00 M 15 1 2 15114 38.00 M 3 1 2 15115 39.00 M 15 1 2 15116 32.00 M 10 1 2 15117 35.00 M 10 1 2 15118 43.00 F 11 1 2 15119 59.00 F 15 1 2 15120 28.00 M 15 1 2 15121 35.00 M 14 1 2 15122 45.00 M 13 1 2 15123 37.00 M 14 1 2 15124 11.00 F 20 1 1 15125 43.00 M 18 1 2 15126 42.00 F 10 1 2 15127 61.00 F 10 1 3 15128 25.00 M 12 1 2 15129 29.00 F 9 1 2 15130 43.00 M 14 1 2 15131 35.00 M 22 1 2 15132 33.00 M 11 1 2 15133 35.00 M 5 1 2 15134 22.00 M 7 1 2 15135 11.00 F 11 1 1 15136 28.00 M 9 1 2 15137 10.00 M 13 1 1 15138 18.00 F 7 1 2 15139 34.00 F 13 1 2 15140 31.00 M 5 1 2 15141 30.00 M 13 1 2 15142 33.00 M 11 1 2 15143 27.00 M 13 1 2 15144 36.00 M 13 1 2 15145 23.00 M 9 1 2 15146 48.00 M 13 1 2 15147 37.00 M 11 1 2 15148 52.00 M 9 1 2 15149 33.00 F 7 1 2 15150 47.00 M 7 1 2 15151 66.00 M 3 1 3 15152 55.00 F 7 1 2 15153 3.00 F 9 1 1 15154 4.00 M 7 1 1 15155 63.00 M 15 1 3 15156 32.00 F 7 1 2 15157 49.00 M 22 1 2 15158 12.00 M 7 1 1 15159 5.00 F 9 1 1 15160 60.00 M 14 1 3 15161 37.00 M 9 1 2 15162 32.00 M 7 1 2 15163 23.00 M 11 1 2 15164 23.00 M 6 1 2 15165 25.00 M 22 1 2 15166 25.00 M 16 1 2 15167 40.00 M 18 1 2 15168 25.00 M 12 1 2 15169 36.00 M 11 1 2 15170 29.00 M 18 1 2 15171 45.00 M 5 1 2 15172 15.00 F 22 1 1 15173 23.00 F 22 1 2 15174 26.00 M 22 1 2 15175 35.00 F 5 1 2 15176 15.00 M 13 1 1 15177 10.00 F 5 1 1 15178 35.00 F 22 1 2 15179 30.00 M 5 1 2 15180 39.00 M 13 1 2 15181 16.00 M 5 1 1 15182 12.00 M 13 1 1 15183 27.00 M 5 1 2 15184 48.00 M 22 1 2 15185 28.00 F 5 1 2 15186 14.00 F 5 1 1 15187 42.00 M 5 1 2 15188 13.00 F 24 1 1 15189 11.00 F 5 1 1 15190 27.00 M 5 1 2 15191 28.00 M 24 1 2 15192 23.00 M 5 1 2 15193 47.00 F 5 1 2 15194 14.00 M 16 1 1 15195 49.00 M 5 1 2 15196 73.00 M 16 1 3 15197 36.00 M 5 1 2 15198 20.00 F 5 1 2 15199 30.00 F 5 1 2 15200 32.00 M 20 1 2 15201 45.00 M 20 1 2 15202 40.00 F 20 1 2 15203 28.00 F 20 1 2 15204 39.00 M 14 1 2 15205 23.00 M 13 1 2 15206 46.00 M 24 1 2 15207 36.00 F 14 1 2 15208 2.00 M 9 1 1 15209 1.00 M 12 1 1 15210 22.00 M 12 1 2 15211 54.00 M 8 1 2 15212 42.00 M 14 1 2 15213 33.00 M 14 1 2 15214 33.00 M 4 1 2 15215 53.00 M 20 1 2 15216 35.00 M 20 1 2 15217 47.00 M 17 1 2 15218 45.00 M 14 1 2 15219 55.00 M 17 1 2 15220 32.00 M 14 1 2 15221 49.00 M 20 1 2 15222 50.00 M 14 1 2 15223 52.00 M 17 1 2 15224 55.00 M 15 1 2 15225 35.00 F 7 1 2 15226 30.00 M 24 1 2 15227 64.00 F 7 1 3 15228 20.00 F 6 1 2 15229 37.00 F 9 1 2 15230 36.00 F 21 1 2 15231 35.00 M 17 1 2 15232 17.00 M 10 1 1 15233 13.00 M 10 1 1 15234 25.00 F 10 1 2 15235 40.00 F 10 1 2 15236 1.00 M 10 1 1 15237 35.00 M 10 1 2 15238 35.00 F 11 1 2 15239 35.00 M 9 1 2 15240 5.00 F 20 1 1 15241 21.00 F 10 1 2 15242 32.00 M 16 1 2 15243 7.00 M 10 1 1 15244 20.00 M 10 1 2 15245 60.00 M 20 1 3 15246 40.00 M 16 1 2 15247 38.00 M 10 1 2 15248 36.00 M 10 1 2 15249 26.00 F 10 1 2 15250 10.00 F 11 1 1 15251 24.00 M 10 1 2 15252 42.00 M 16 1 2 15253 38.00 F 16 1 2 15254 17.00 M 16 1 1 15255 12.00 F 18 1 1 15256 27.00 M 18 1 2 15257 28.00 M 15 1 2 15258 22.00 F 14 1 2 15259 2.00 M 14 1 1 15260 36.00 M 10 1 2 15261 25.00 F 10 1 2 15262 27.00 M 10 1 2 15263 20.00 F 14 1 2 15264 35.00 M 10 1 2 15265 8.00 M 10 1 1 15266 30.00 F 10 1 2 15267 7.00 F 10 1 1 15268 20.00 M 14 1 2 15269 36.00 M 16 1 2 15270 70.00 F 21 1 3 15271 70.00 F 14 1 3 15272 68.00 M 8 1 3 15273 55.00 F 11 1 2 15274 68.00 M 8 1 3 15275 26.00 M 7 1 2 15276 23.00 F 10 1 2 15277 24.00 M 10 1 2 15278 18.00 M 10 1 2 15279 68.00 F 10 1 3 15280 6.00 F 18 1 1 15281 28.00 M 18 1 2 15282 28.00 F 18 1 2 15283 30.00 M 14 1 2 15284 28.00 M 14 1 2 15285 35.00 F 10 1 2 15286 45.00 F 27 1 2 15287 27.00 F 13 1 2 15288 50.00 F 13 1 2 15289 29.00 M 29 1 2 15290 31.00 M 4 1 2 15291 30.00 M 11 1 2 15292 24.00 M 4 1 2 15293 39.00 M 11 1 2 15294 18.00 M 11 1 2 15295 20.00 M 11 1 2 15296 27.00 F 16 1 2 15297 54.00 M 16 1 2 15298 20.00 M 20 1 2 15299 22.00 M 20 1 2 15300 14.00 M 16 1 1 15301 24.00 F 16 1 2 15302 16.00 M 10 1 1 15303 18.00 M 10 1 2 15304 35.00 F 21 1 2 15305 7.00 F 14 1 1 15306 40.00 F 10 1 2 15307 3.00 F 16 1 1 15308 35.00 F 9 1 2 15309 45.00 M 14 1 2 15310 26.00 F 7 1 2 15311 12.00 M 16 1 1 15312 4.00 M 14 1 1 15313 14.00 F 25 1 1 15314 32.00 M 11 1 2 15315 12.00 M 34 1 1 15316 22.00 M 10 1 2 15317 25.00 M 9 1 2 15318 23.00 F 17 1 2 15319 39.00 M 16 1 2 15320 15.00 F 14 1 1 15321 12.00 M 17 1 1 15322 8.00 M 9 1 1 15323 40.00 M 9 1 2 15324 37.00 F 9 1 2 15325 17.00 M 9 1 1 15326 14.00 M 9 1 1 15327 33.00 M 13 1 2 15328 26.00 M 34 1 2 15329 65.00 M 13 1 3 15330 6.00 F 13 1 1 15331 31.00 M 11 1 2 15332 29.00 M 11 1 2 15333 26.00 M 21 1 2 15334 24.00 F 21 1 2 15335 11.00 M 11 1 1 15336 37.00 M 11 1 2 15337 13.00 M 11 1 1 15338 8.00 M 11 1 1 15339 20.00 M 21 1 2 15340 26.00 M 14 1 2 15341 18.00 M 13 1 2 15342 17.00 M 14 1 1 15343 50.00 F 14 1 2 15344 28.00 M 9 1 2 15345 24.00 M 11 1 2 15346 57.00 F 14 1 2 15347 25.00 M 11 1 2 15348 17.00 M 9 1 1 15349 22.00 M 9 1 2 15350 28.00 M 11 1 2 15351 21.00 M 10 1 2 15352 7.00 M 11 1 1 15353 56.00 F 14 1 2 15354 8.00 M 11 1 1 15355 27.00 F 15 1 2 15356 24.00 F 8 1 2 15357 40.00 F 21 1 2 15358 37.00 F 11 1 2 15359 18.00 F 8 1 2 15360 49.00 M 11 1 2 15361 25.00 M 11 1 2 15362 16.00 M 11 1 1 15363 58.00 F 8 1 2 15364 21.00 M 8 1 2 15365 24.00 M 8 1 2 15366 24.00 M 12 1 2 15367 10.00 F 11 1 1 15368 36.00 M 11 1 2 15369 54.00 M 7 1 2 15370 62.00 F 20 1 3 15371 55.00 F 6 1 2 15372 22.00 F 6 1 2 15373 36.00 M 11 1 2 15374 26.00 F 9 1 2 15375 5.00 F 6 1 1 15376 1.00 M 6 1 1 15377 35.00 F 9 1 2 15378 21.00 F 6 1 2 15379 55.00 M 6 1 2 15380 37.00 M 7 1 2 15381 35.00 F 7 1 2 15382 25.00 M 15 1 2 15383 65.00 M 23 1 3 15384 24.00 M 23 1 2 15385 30.00 M 23 1 2 15386 35.00 F 15 1 2 15387 28.00 M 23 1 2 15388 37.00 M 23 1 2 15389 33.00 M 19 1 2 15390 12.00 M 19 1 1 15391 18.00 M 19 1 2 15392 35.00 F 19 1 2 15393 40.00 M 19 1 2 15394 13.00 M 17 1 1 15395 16.00 F 17 1 1 15396 6.00 M 15 1 1 15397 11.00 M 15 1 1 15398 28.00 M 19 1 2 15399 12.00 F 12 1 1 15400 18.00 F 15 1 2 15401 11.00 M 12 1 1 15402 14.00 F 15 1 1 15403 35.00 F 12 1 2 15404 38.00 M 15 1 2 15405 9.00 M 17 1 1 15406 40.00 M 15 1 2 15407 14.00 F 19 1 1 15408 9.00 F 23 1 1 15409 35.00 M 16 1 2 15410 37.00 F 12 1 2 15411 19.00 M 23 1 2 15412 60.00 M 19 1 3 15413 6.00 F 19 1 1 15414 30.00 F 19 1 2 15415 9.00 M 15 1 1 15416 14.00 F 19 1 1 15417 21.00 F 15 1 2 15418 9.00 M 23 1 1 15419 12.00 M 19 1 1 15420 36.00 M 2 1 2 15421 3.00 M 12 1 1 15422 52.00 F 23 1 2 15423 8.00 F 15 1 1 15424 15.00 M 15 1 1 15425 18.00 F 19 1 2 15426 25.00 M 19 1 2 15427 1.00 F 17 1 1 15428 10.00 M 15 1 1 15429 37.00 M 17 1 2 15430 22.00 F 19 1 2 15431 32.00 M 19 1 2 15432 12.00 M 19 1 1 15433 7.00 F 19 1 1 15434 35.00 F 23 1 2 15435 10.00 M 16 1 1 15436 2.00 M 19 1 1 15437 42.00 M 16 1 2 15438 16.00 M 23 1 1 15439 30.00 F 23 1 2 15440 20.00 F 15 1 2 15441 35.00 M 23 1 2 15442 11.00 M 12 1 1 15443 3.00 M 19 1 1 15444 6.00 M 19 1 1 15445 41.00 M 23 1 2 15446 7.00 M 19 1 1 15447 30.00 M 23 1 2 15448 10.00 F 23 1 1 15449 25.00 F 23 1 2 15450 34.00 F 23 1 2 15451 35.00 M 17 1 2 15452 25.00 F 19 1 2 15453 35.00 F 19 1 2 15454 12.00 F 15 1 1 15455 12.00 F 12 1 1 15456 13.00 F 19 1 1 15457 32.00 F 23 1 2 15458 6.00 M 12 1 1 15459 17.00 M 12 1 1 15460 28.00 M 16 1 2 15461 25.00 F 9 1 2 15462 22.00 F 19 1 2 15463 39.00 M 12 1 2 15464 7.00 F 23 1 1 15465 1.00 M 30 1 1 15466 28.00 F 19 1 2 15467 3.00 M 12 1 1 15468 26.00 F 15 1 2 15469 35.00 M 14 1 2 15470 28.00 F 8 1 2 15471 48.00 M 21 1 2 15472 50.00 M 9 1 2 15473 3.00 M 10 1 1 15474 8.00 F 10 1 1 15475 32.00 M 10 1 2 15476 25.00 F 21 1 2 15477 23.00 F 9 1 2 15478 15.00 F 9 1 1 15479 27.00 M 21 1 2 15480 31.00 F 9 1 2 15481 9.00 M 21 1 1 15482 7.00 M 9 1 1 15483 34.00 M 9 1 2 15484 4.00 F 21 1 1 15485 42.00 F 9 1 2 15486 35.00 M 21 1 2 15487 42.00 F 9 1 2 15488 54.00 M 14 1 2 15489 33.00 M 14 1 2 15490 48.00 M 14 1 2 15491 7.00 M 14 1 1 15492 43.00 M 14 1 2 15493 39.00 M 14 1 2 15494 32.00 F 14 1 2 15495 9.00 M 14 1 1 15496 53.00 M 14 1 2 15497 28.00 M 14 1 2 15498 18.00 M 14 1 2 15499 21.00 F 19 1 2 15500 42.00 M 14 1 2 15501 41.00 F 14 1 2 15502 47.00 M 14 1 2 15503 29.00 F 5 1 2 15504 16.00 M 4 1 1 15505 47.00 M 4 1 2 15506 12.00 F 6 1 1 15507 42.00 M 4 1 2 15508 37.00 F 16 1 2 15509 36.00 M 9 1 2 15510 57.00 M 9 1 2 15511 46.00 M 9 1 2 15512 45.00 M 13 1 2 15513 45.00 M 13 1 2 15514 40.00 M 12 1 2 15515 25.00 M 10 1 2 15516 30.00 M 8 1 2 15517 28.00 M 4 1 2 15518 32.00 M 14 1 2 15519 52.00 M 4 1 2 15520 39.00 M 4 1 2 15521 28.00 M 4 1 2 15522 37.00 M 10 1 2 15523 43.00 M 4 1 2 15524 45.00 M 8 1 2 15525 29.00 M 12 1 2 15526 51.00 M 4 1 2 15527 38.00 M 9 1 2 15528 30.00 M 10 1 2 15529 34.00 F 22 1 2 15530 32.00 M 4 1 2 15531 42.00 M 10 1 2 15532 26.00 M 9 1 2 15533 47.00 F 20 1 2 15534 25.00 M 4 1 2 15535 25.00 M 4 1 2 15536 53.00 M 4 1 2 15537 39.00 M 12 1 2 15538 28.00 M 13 1 2 15539 27.00 M 8 1 2 15540 27.00 M 4 1 2 15541 33.00 F 8 1 2 15542 61.00 M 4 1 3 15543 50.00 M 8 1 2 15544 59.00 M 4 1 2 15545 54.00 M 10 1 2 15546 51.00 M 10 1 2 15547 21.00 M 4 1 2 15548 37.00 M 20 1 2 15549 54.00 M 6 1 2 15550 48.00 M 10 1 2 15551 25.00 F 6 1 2 15552 35.00 M 6 1 2 15553 30.00 M 9 1 2 15554 42.00 M 22 1 2 15555 29.00 F 6 1 2 15556 56.00 F 13 1 2 15557 26.00 F 13 1 2 15558 22.00 M 13 1 2 15559 51.00 M 13 1 2 15560 49.00 M 10 1 2 15561 39.00 M 6 1 2 15562 36.00 M 6 1 2 15563 23.00 M 11 1 2 15564 34.00 M 8 1 2 15565 33.00 M 9 1 2 15566 33.00 F 6 1 2 15567 19.00 M 10 1 2 15568 30.00 M 13 1 2 15569 34.00 M 11 1 2 15570 43.00 M 10 1 2 15571 29.00 M 8 1 2 15572 42.00 M 20 1 2 15573 26.00 M 13 1 2 15574 32.00 M 8 1 2 15575 22.00 M 13 1 2 15576 27.00 M 8 1 2 15577 53.00 M 6 1 2 15578 43.00 F 10 1 2 15579 45.00 M 13 1 2 15580 40.00 M 9 1 2 15581 19.00 M 7 1 2 15582 17.00 F 10 1 1 15583 44.00 M 13 1 2 15584 35.00 M 11 1 2 15585 42.00 M 10 1 2 15586 27.00 M 13 1 2 15587 41.00 M 22 1 2 15588 30.00 M 13 1 2 15589 35.00 M 13 1 2 15590 31.00 M 13 1 2 15591 20.00 M 22 1 2 15592 30.00 F 14 1 2 15593 9.00 F 4 1 1 15594 38.00 M 16 1 2 15595 32.00 M 8 1 2 15596 36.00 M 10 1 2 15597 54.00 M 10 1 2 15598 19.00 M 12 1 2 15599 19.00 M 29 1 2 15600 60.00 M 21 1 3 15601 55.00 F 21 1 2 15602 54.00 M 27 1 2 15603 51.00 F 27 1 2 15604 21.00 M 27 1 2 15605 18.00 M 27 1 2 15606 20.00 F 27 1 2 15607 55.00 F 27 1 2 15608 24.00 M 27 1 2 15609 32.00 M 27 1 2 15610 38.00 M 20 1 2 15611 38.00 M 20 1 2 15612 24.00 M 27 1 2 15613 46.00 M 27 1 2 15614 23.00 M 13 1 2 15615 25.00 M 21 1 2 15616 25.00 M 10 1 2 15617 27.00 M 7 1 2 15618 24.00 F 2 1 2 15619 18.00 M 9 1 2 15620 30.00 F 19 1 2 15621 28.00 M 19 1 2 15622 68.00 M 12 1 3 15623 23.00 M 28 1 2 15624 52.00 M 9 1 2 15625 2.00 M 6 1 1 15626 41.00 M 6 1 2 15627 2.00 M 6 1 1 15628 37.00 F 6 1 2 15629 48.00 M 10 1 2 15630 11.00 F 7 1 1 15631 18.00 M 7 1 2 15632 55.00 M 7 1 2 15633 25.00 M 7 1 2 15634 47.00 M 6 1 2 15635 47.00 M 15 1 2 15636 37.00 M 6 1 2 15637 34.00 F 7 1 2 15638 36.00 M 6 1 2 15639 22.00 M 6 1 2 15640 20.00 F 6 1 2 15641 48.00 M 7 1 2 15642 52.00 M 6 1 2 15643 13.00 M 6 1 1 15644 6.00 M 6 1 1 15645 16.00 M 6 1 1 15646 16.00 M 6 1 1 15647 21.00 F 13 1 2 15648 19.00 M 6 1 2 15649 35.00 F 7 1 2 15650 34.00 F 7 1 2 15651 40.00 M 6 1 2 15652 34.00 M 7 1 2 15653 30.00 F 6 1 2 15654 45.00 M 7 1 2 15655 40.00 F 6 1 2 15656 32.00 M 6 1 2 15657 27.00 M 7 1 2 15658 11.00 F 6 1 1 15659 13.00 M 6 1 1 15660 14.00 M 6 1 1 15661 30.00 M 6 1 2 15662 20.00 M 6 1 2 15663 18.00 F 10 1 2 15664 45.00 F 11 1 2 15665 21.00 F 20 1 2 15666 12.00 F 15 1 1 15667 37.00 M 11 1 2 15668 25.00 F 11 1 2 15669 28.00 M 11 1 2 15670 5.00 F 9 1 1 15671 35.00 M 11 1 2 15672 13.00 M 9 1 1 15673 16.00 M 11 1 1 15674 48.00 M 11 1 2 15675 19.00 M 12 1 2 15676 22.00 M 12 1 2 15677 20.00 F 12 1 2 15678 12.00 M 15 1 1 15679 60.00 F 22 1 3 15680 30.00 M 9 1 2 15681 8.00 F 22 1 1 15682 38.00 F 25 1 2 15683 10.00 F 15 1 1 15684 52.00 F 9 1 2 15685 36.00 F 11 1 2 15686 13.00 F 15 1 1 15687 14.00 F 11 1 1 15688 24.00 M 11 1 2 15689 11.00 F 15 1 1 15690 40.00 F 11 1 2 15691 50.00 M 11 1 2 15692 36.00 F 11 1 2 15693 20.00 M 11 1 2 15694 35.00 F 12 1 2 15695 28.00 M 11 1 2 15696 30.00 F 17 1 2 15697 13.00 F 9 1 1 15698 25.00 M 12 1 2 15699 37.00 M 12 1 2 15700 52.00 M 20 1 2 15701 44.00 M 7 1 2 15702 37.00 F 11 1 2 15703 25.00 M 11 1 2 15704 29.00 M 11 1 2 15705 40.00 F 11 1 2 15706 17.00 M 11 1 1 15707 18.00 M 11 1 2 15708 18.00 M 20 1 2 15709 36.00 M 11 1 2 15710 28.00 M 11 1 2 15711 40.00 M 11 1 2 15712 23.00 M 12 1 2 15713 27.00 F 11 1 2 15714 44.00 M 11 1 2 15715 38.00 M 11 1 2 15716 38.00 F 11 1 2 15717 48.00 M 11 1 2 15718 20.00 F 7 1 2 15719 14.00 F 7 1 1 15720 29.00 M 15 1 2 15721 8.00 F 9 1 1 15722 48.00 M 11 1 2 15723 51.00 M 12 1 2 15724 6.00 M 9 1 1 15725 11.00 M 9 1 1 15726 10.00 M 9 1 1 15727 47.00 F 11 1 2 15728 30.00 F 7 1 2 15729 18.00 M 7 1 2 15730 36.00 F 22 1 2 15731 30.00 F 7 1 2 15732 11.00 M 7 1 1 15733 42.00 M 7 1 2 15734 22.00 M 22 1 2 15735 27.00 M 7 1 2 15736 15.00 F 10 1 1 15737 18.00 F 10 1 2 15738 60.00 M 10 1 3 15739 32.00 M 12 1 2 15740 33.00 M 12 1 2 15741 23.00 M 12 1 2 15742 25.00 M 11 1 2 15743 7.00 M 12 1 1 15744 13.00 F 11 1 1 15745 31.00 M 15 1 2 15746 36.00 M 12 1 2 15747 30.00 F 9 1 2 15748 8.00 M 10 1 1 15749 13.00 F 11 1 1 15750 5.00 M 11 1 1 15751 28.00 F 7 1 2 15752 45.00 F 32 1 2 15753 3.00 M 9 1 1 15754 3.00 M 15 1 1 15755 36.00 M 12 1 2 15756 37.00 M 15 1 2 15757 56.00 F 12 1 2 15758 26.00 M 5 1 2 15759 8.00 M 12 1 1 15760 30.00 M 8 1 2 15761 33.00 M 7 1 2 15762 36.00 M 14 1 2 15763 32.00 F 12 1 2 15764 13.00 F 10 1 1 15765 46.00 M 10 1 2 15766 35.00 M 11 1 2 15767 39.00 M 11 1 2 15768 27.00 M 5 1 2 15769 45.00 F 5 1 2 15770 18.00 M 5 1 2 15771 2.00 F 5 1 1 15772 1.00 F 5 1 1 15773 22.00 M 5 1 2 15774 16.00 F 5 1 1 15775 6.00 M 5 1 1 15776 30.00 M 5 1 2 15777 14.00 M 5 1 1 15778 55.00 M 14 1 2 15779 21.00 M 18 1 2 15780 29.00 F 14 1 2 15781 35.00 M 18 1 2 15782 36.00 M 18 1 2 15783 50.00 M 14 1 2 15784 48.00 M 14 1 2 15785 47.00 F 18 1 2 15786 57.00 M 14 1 2 15787 14.00 M 14 1 1 15788 33.00 F 18 1 2 15789 43.00 M 18 1 2 15790 76.00 F 18 1 3 15791 58.00 M 7 1 2 15792 36.00 M 7 1 2 15793 52.00 M 4 1 2 15794 24.00 M 20 1 2 15795 60.00 F 7 1 3 15796 48.00 M 7 1 2 15797 43.00 M 1 1 2 15798 43.00 M 20 1 2 15799 57.00 M 16 1 2 15800 35.00 M 10 1 2 15801 22.00 F 18 1 2 15802 53.00 F 8 1 2 15803 32.00 F 16 1 2 15804 60.00 F 14 1 3 15805 62.00 M 7 1 3 15806 46.00 F 7 1 2 15807 17.00 F 9 1 1 15808 62.00 M 9 1 3 15809 22.00 M 9 1 2 15810 25.00 F 9 1 2 15811 10.00 F 9 1 1 15812 8.00 M 9 1 1 15813 29.00 F 9 1 2 15814 49.00 M 9 1 2 15815 17.00 M 7 1 1 15816 41.00 F 7 1 2 15817 55.00 M 10 1 2 15818 25.00 M 10 1 2 15819 26.00 M 7 1 2 15820 22.00 M 23 1 2 15821 23.00 M 20 1 2 15822 17.00 M 7 1 1 15823 25.00 M 10 1 2 15824 27.00 F 7 1 2 15825 30.00 M 7 1 2 15826 20.00 F 14 1 2 15827 24.00 M 10 1 2 15828 22.00 M 10 1 2 15829 45.00 M 19 1 2 15830 25.00 M 7 1 2 15831 32.00 M 14 1 2 15832 9.00 F 7 1 1 15833 36.00 M 5 1 2 15834 2.00 F 5 1 1 15835 12.00 F 25 1 1 15836 31.00 M 14 1 2 15837 56.00 M 14 1 2 15838 46.00 M 9 1 2 15839 12.00 F 14 1 1 15840 9.00 M 23 1 1 15841 5.00 M 19 1 1 15842 44.00 M 19 1 2 15843 17.00 M 14 1 1 15844 13.00 M 14 1 1 15845 31.00 M 14 1 2 15846 27.00 M 7 1 2 15847 58.00 M 5 1 2 15848 12.00 M 7 1 1 15849 21.00 M 3 1 2 15850 40.00 M 3 1 2 15851 28.00 F 6 1 2 15852 50.00 M 3 1 2 15853 8.00 F 3 1 1 15854 35.00 F 3 1 2 15855 25.00 M 3 1 2 15856 24.00 M 19 1 2 15857 24.00 M 3 1 2 15858 28.00 M 3 1 2 15859 16.00 F 3 1 1 15860 23.00 F 3 1 2 15861 9.00 F 3 1 1 15862 27.00 F 3 1 2 15863 16.00 M 3 1 1 15864 23.00 M 3 1 2 15865 30.00 M 3 1 2 15866 35.00 M 3 1 2 15867 35.00 F 3 1 2 15868 26.00 F 12 1 2 15869 23.00 M 4 1 2 15870 20.00 F 15 1 2 15871 39.00 M 3 1 2 15872 31.00 F 4 1 2 15873 20.00 F 6 1 2 15874 2.00 F 9 1 1 15875 39.00 M 11 1 2 15876 22.00 M 9 1 2 15877 61.00 M 7 1 3 15878 25.00 M 3 1 2 15879 42.00 M 3 1 2 15880 30.00 F 3 1 2 15881 52.00 M 7 1 2 15882 24.00 M 12 1 2 15883 32.00 M 12 1 2 15884 38.00 M 12 1 2 15885 11.00 M 7 1 1 15886 40.00 M 7 1 2 15887 33.00 M 12 1 2 15888 33.00 M 7 1 2 15889 39.00 M 9 1 2 15890 13.00 M 11 1 1 15891 47.00 M 20 1 2 15892 32.00 M 9 1 2 15893 24.00 M 21 1 2 15894 32.00 M 7 1 2 15895 26.00 F 7 1 2 15896 32.00 M 8 1 2 15897 39.00 F 9 1 2 15898 43.00 M 9 1 2 15899 42.00 M 6 1 2 15900 29.00 M 11 1 2 15901 46.00 M 7 1 2 15902 41.00 F 20 1 2 15903 36.00 F 9 1 2 15904 46.00 M 7 1 2 15905 50.00 M 7 1 2 15906 43.00 M 7 1 2 15907 49.00 M 8 1 2 15908 36.00 M 7 1 2 15909 16.00 F 11 1 1 15910 40.00 M 9 1 2 15911 30.00 F 11 1 2 15912 49.00 M 10 1 2 15913 32.00 M 8 1 2 15914 55.00 M 15 1 2 15915 48.00 M 9 1 2 15916 28.00 F 7 1 2 15917 28.00 F 9 1 2 15918 47.00 M 15 1 2 15919 42.00 F 5 1 2 15920 33.00 F 5 1 2 15921 40.00 M 11 1 2 15922 41.00 M 5 1 2 15923 42.00 M 8 1 2 15924 3.00 M 7 1 1 15925 41.00 M 20 1 2 15926 33.00 M 9 1 2 15927 37.00 F 9 1 2 15928 44.00 M 12 1 2 15929 54.00 M 3 1 2 15930 33.00 M 9 1 2 15931 41.00 M 8 1 2 15932 44.00 M 20 1 2 15933 56.00 F 7 1 2 15934 28.00 M 7 1 2 15935 49.00 M 11 1 2 15936 57.00 M 11 1 2 15937 11.00 M 12 1 1 15938 46.00 M 11 1 2 15939 39.00 M 5 1 2 15940 34.00 F 7 1 2 15941 56.00 M 7 1 2 15942 47.00 F 5 1 2 15943 33.00 M 7 1 2 15944 33.00 M 7 1 2 15945 30.00 F 7 1 2 15946 20.00 M 7 1 2 15947 19.00 M 9 1 2 15948 47.00 M 11 1 2 15949 30.00 M 9 1 2 15950 48.00 F 12 1 2 15951 18.00 M 11 1 2 15952 44.00 M 18 1 2 15953 55.00 M 5 1 2 15954 42.00 M 11 1 2 15955 44.00 M 9 1 2 15956 36.00 M 7 1 2 15957 24.00 M 8 1 2 15958 35.00 M 11 1 2 15959 20.00 M 7 1 2 15960 37.00 M 7 1 2 15961 54.00 M 7 1 2 15962 16.00 M 11 1 1 15963 44.00 M 10 1 2 15964 26.00 M 5 1 2 15965 51.00 M 11 1 2 15966 55.00 M 11 1 2 15967 39.00 M 7 1 2 15968 48.00 M 12 1 2 15969 42.00 M 11 1 2 15970 35.00 M 11 1 2 15971 40.00 F 5 1 2 15972 6.00 M 13 1 1 15973 42.00 M 5 1 2 15974 54.00 M 13 1 2 15975 18.00 M 9 1 2 15976 46.00 M 18 1 2 15977 25.00 M 7 1 2 15978 37.00 M 11 1 2 15979 42.00 M 5 1 2 15980 43.00 M 9 1 2 15981 42.00 M 7 1 2 15982 44.00 M 5 1 2 15983 61.00 M 7 1 3 15984 13.00 M 11 1 1 15985 40.00 F 11 1 2 15986 38.00 M 11 1 2 15987 41.00 M 11 1 2 15988 20.00 M 11 1 2 15989 58.00 M 5 1 2 15990 33.00 M 8 1 2 15991 19.00 M 7 1 2 15992 22.00 M 7 1 2 15993 18.00 F 11 1 2 15994 48.00 M 7 1 2 15995 22.00 M 7 1 2 15996 18.00 M 13 1 2 15997 37.00 F 8 1 2 15998 40.00 M 11 1 2 15999 22.00 M 11 1 2 16000 16.00 F 7 1 1 16001 41.00 M 13 1 2 16002 58.00 F 8 1 2 16003 26.00 F 11 1 2 16004 35.00 M 21 1 2 16005 27.00 M 12 1 2 16006 32.00 F 21 1 2 16007 42.00 M 8 1 2 16008 45.00 M 10 1 2 16009 45.00 M 3 1 2 16010 48.00 M 7 1 2 16011 41.00 M 11 1 2 16012 52.00 M 20 1 2 16013 42.00 M 12 1 2 16014 29.00 M 11 1 2 16015 26.00 M 8 1 2 16016 40.00 M 20 1 2 16017 48.00 M 9 1 2 16018 52.00 M 7 1 2 16019 18.00 F 20 1 2 16020 38.00 M 9 1 2 16021 41.00 M 7 1 2 16022 28.00 M 12 1 2 16023 33.00 F 13 1 2 16024 29.00 F 7 1 2 16025 39.00 F 3 1 2 16026 32.00 M 7 1 2 16027 41.00 M 7 1 2 16028 48.00 M 8 1 2 16029 55.00 M 12 1 2 16030 30.00 M 5 1 2 16031 26.00 M 5 1 2 16032 9.00 F 7 1 1 16033 37.00 M 8 1 2 16034 32.00 F 7 1 2 16035 42.00 M 10 1 2 16036 55.00 M 9 1 2 16037 33.00 M 5 1 2 16038 2.00 M 6 1 1 16039 32.00 F 6 1 2 16040 42.00 M 6 1 2 16041 28.00 F 5 1 2 16042 34.00 F 5 1 2 16043 50.00 M 8 1 2 16044 47.00 M 7 1 2 16045 40.00 M 5 1 2 16046 32.00 M 12 1 2 16047 26.00 M 9 1 2 16048 60.00 M 11 1 3 16049 38.00 M 9 1 2 16050 31.00 M 11 1 2 16051 28.00 M 9 1 2 16052 46.00 F 5 1 2 16053 32.00 F 5 1 2 16054 22.00 M 7 1 2 16055 41.00 M 7 1 2 16056 42.00 M 13 1 2 16057 32.00 M 9 1 2 16058 31.00 M 7 1 2 16059 52.00 M 13 1 2 16060 28.00 F 5 1 2 16061 33.00 M 11 1 2 16062 53.00 M 7 1 2 16063 37.00 F 9 1 2 16064 33.00 M 5 1 2 16065 25.00 F 9 1 2 16066 33.00 M 8 1 2 16067 21.00 M 7 1 2 16068 32.00 M 9 1 2 16069 33.00 M 9 1 2 16070 46.00 M 3 1 2 16071 47.00 M 11 1 2 16072 38.00 M 13 1 2 16073 18.00 M 6 1 2 16074 24.00 M 7 1 2 16075 18.00 M 7 1 2 16076 43.00 F 11 1 2 16077 39.00 M 7 1 2 16078 26.00 M 3 1 2 16079 60.00 M 6 1 3 16080 30.00 M 4 1 2 16081 36.00 M 12 1 2 16082 8.00 F 4 1 1 16083 19.00 M 4 1 2 16084 28.00 M 4 1 2 16085 45.00 M 4 1 2 16086 34.00 M 4 1 2 16087 45.00 F 4 1 2 16088 51.00 M 4 1 2 16089 35.00 M 4 1 2 16090 35.00 F 4 1 2 16091 69.00 M 11 1 3 16092 56.00 M 9 1 2 16093 39.00 M 4 1 2 16094 70.00 F 4 1 3 16095 65.00 F 15 1 3 16096 47.00 F 4 1 2 16097 58.00 F 8 1 2 16098 60.00 F 4 1 3 16099 58.00 M 19 1 2 16100 25.00 F 4 1 2 16101 70.00 M 6 1 3 16102 58.00 F 12 1 2 16103 70.00 M 4 1 3 16104 25.00 F 11 1 2 16105 33.00 M 7 1 2 16106 64.00 M 7 1 3 16107 36.00 F 10 1 2 16108 60.00 F 7 1 3 16109 35.00 F 10 1 2 16110 42.00 F 7 1 2 16111 29.00 M 13 1 2 16112 61.00 M 24 1 3 16113 27.00 F 8 1 2 16114 47.00 F 8 1 2 16115 4.00 M 12 1 1 16116 46.00 F 10 1 2 16117 45.00 F 18 1 2 16118 24.00 F 27 1 2 16119 24.00 M 10 1 2 16120 23.00 M 20 1 2 16121 42.00 M 32 1 2 16122 32.00 M 17 1 2 16123 45.00 F 27 1 2 16124 28.00 M 10 1 2 16125 37.00 F 5 1 2 16126 18.00 F 9 1 2 16127 40.00 M 14 1 2 16128 28.00 M 9 1 2 16129 60.00 F 9 1 3 16130 4.00 M 14 1 1 16131 50.00 M 9 1 2 16132 45.00 F 9 1 2 16133 46.00 M 9 1 2 16134 42.00 M 11 1 2 16135 25.00 M 16 1 2 16136 18.00 M 9 1 2 16137 16.00 M 9 1 1 16138 8.00 M 10 1 1 16139 29.00 M 9 1 2 16140 27.00 F 6 1 2 16141 7.00 F 9 1 1 16142 25.00 M 14 1 2 16143 20.00 M 11 1 2 16144 38.00 M 31 1 2 16145 16.00 F 11 1 1 16146 24.00 M 31 1 2 16147 56.00 F 9 1 2 16148 3.00 M 16 1 1 16149 60.00 F 10 1 3 16150 6.00 F 9 1 1 16151 19.00 M 11 1 2 16152 6.00 M 11 1 1 16153 4.00 M 11 1 1 16154 28.00 F 6 1 2 16155 42.00 M 11 1 2 16156 50.00 F 28 1 2 16157 35.00 F 10 1 2 16158 38.00 F 11 1 2 16159 5.00 M 11 1 1 16160 17.00 F 11 1 1 16161 14.00 M 9 1 1 16162 30.00 M 9 1 2 16163 11.00 M 9 1 1 16164 99.00 F 11 1 3 16165 35.00 M 9 1 2 16166 5.00 M 9 1 1 16167 30.00 F 20 1 2 16168 29.00 M 11 1 2 16169 12.00 M 11 1 1 16170 10.00 M 9 1 1 16171 35.00 M 9 1 2 16172 22.00 M 14 1 2 16173 5.00 F 11 1 1 16174 24.00 F 11 1 2 16175 4.00 F 11 1 1 16176 25.00 F 11 1 2 16177 1.00 F 9 1 1 16178 38.00 M 9 1 2 16179 29.00 M 9 1 2 16180 40.00 M 9 1 2 16181 30.00 M 11 1 2 16182 45.00 M 9 1 2 16183 2.00 M 9 1 1 16184 50.00 F 9 1 2 16185 36.00 F 11 1 2 16186 7.00 M 31 1 1 16187 13.00 F 11 1 1 16188 26.00 M 11 1 2 16189 35.00 M 31 1 2 16190 30.00 M 9 1 2 16191 25.00 F 11 1 2 16192 20.00 M 11 1 2 16193 30.00 M 11 1 2 16194 32.00 M 11 1 2 16195 18.00 F 11 1 2 16196 7.00 F 11 1 1 16197 28.00 M 11 1 2 16198 35.00 M 13 1 2 16199 24.00 F 13 1 2 16200 26.00 F 11 1 2 16201 32.00 M 11 1 2 16202 49.00 F 11 1 2 16203 30.00 M 11 1 2 16204 52.00 M 9 1 2 16205 20.00 M 17 1 2 16206 38.00 M 9 1 2 16207 22.00 F 11 1 2 16208 25.00 M 11 1 2 16209 40.00 F 11 1 2 16210 22.00 F 11 1 2 16211 45.00 M 11 1 2 16212 40.00 F 11 1 2 16213 18.00 M 11 1 2 16214 35.00 F 11 1 2 16215 28.00 M 11 1 2 16216 31.00 M 36 1 2 16217 27.00 M 11 1 2 16218 15.00 F 11 1 1 16219 12.00 F 11 1 1 16220 39.00 M 9 1 2 16221 20.00 F 9 1 2 16222 30.00 F 9 1 2 16223 7.00 F 9 1 1 16224 26.00 M 22 1 2 16225 23.00 F 9 1 2 16226 20.00 M 9 1 2 16227 25.00 F 21 1 2 16228 24.00 F 19 1 2 16229 48.00 F 6 1 2 16230 45.00 F 6 1 2 16231 27.00 M 21 1 2 16232 21.00 F 9 1 2 16233 23.00 F 9 1 2 16234 14.00 M 21 1 1 16235 12.00 M 8 1 1 16236 6.00 F 8 1 1 16237 9.00 M 21 1 1 16238 8.00 F 21 1 1 16239 19.00 F 11 1 2 16240 18.00 M 11 1 2 16241 17.00 M 11 1 1 16242 40.00 M 11 1 2 16243 16.00 F 11 1 1 16244 31.00 F 11 1 2 16245 35.00 M 10 1 2 16246 30.00 F 10 1 2 16247 10.00 M 10 1 1 16248 8.00 M 10 1 1 16249 30.00 M 11 1 2 16250 62.00 M 21 1 3 16251 45.00 M 11 1 2 16252 35.00 F 11 1 2 16253 21.00 F 11 1 2 16254 40.00 M 9 1 2 16255 35.00 F 9 1 2 16256 9.00 M 9 1 1 16257 12.00 M 21 1 1 16258 11.00 M 11 1 1 16259 52.00 M 11 1 2 16260 48.00 F 21 1 2 16261 15.00 F 11 1 1 16262 24.00 M 21 1 2 16263 34.00 M 8 1 2 16264 61.00 F 17 1 3 16265 50.00 F 6 1 2 16266 45.00 M 6 1 2 16267 27.00 F 6 1 2 16268 54.00 F 8 1 2 16269 36.00 M 8 1 2 16270 2.00 F 14 1 1 16271 40.00 M 10 1 2 16272 25.00 F 10 1 2 16273 30.00 M 11 1 2 16274 38.00 M 8 1 2 16275 42.00 F 11 1 2 16276 29.00 M 6 1 2 16277 28.00 M 7 1 2 16278 32.00 M 7 1 2 16279 29.00 M 7 1 2 16280 40.00 M 15 1 2 16281 35.00 M 13 1 2 16282 10.00 M 9 1 1 16283 8.00 F 6 1 1 16284 23.00 M 9 1 2 16285 35.00 F 11 1 2 16286 10.00 M 11 1 1 16287 8.00 M 21 1 1 16288 24.00 M 11 1 2 16289 30.00 M 11 1 2 16290 55.00 F 11 1 2 16291 55.00 F 6 1 2 16292 34.00 F 9 1 2 16293 17.00 M 21 1 1 16294 34.00 M 21 1 2 16295 12.00 M 8 1 1 16296 6.00 M 8 1 1 16297 5.00 F 8 1 1 16298 14.00 M 8 1 1 16299 55.00 F 11 1 2 16300 36.00 F 11 1 2 16301 2.00 M 8 1 1 16302 8.00 M 11 1 1 16303 21.00 M 11 1 2 16304 18.00 M 11 1 2 16305 20.00 M 21 1 2 16306 20.00 M 11 1 2 16307 24.00 M 21 1 2 16308 34.00 M 11 1 2 16309 58.00 M 10 1 2 16310 20.00 M 21 1 2 16311 7.00 M 16 1 1 16312 35.00 M 16 1 2 16313 50.00 M 11 1 2 16314 30.00 M 11 1 2 16315 35.00 M 11 1 2 16316 58.00 M 11 1 2 16317 26.00 M 8 1 2 16318 37.00 F 11 1 2 16319 29.00 M 11 1 2 16320 6.00 M 8 1 1 16321 2.00 M 8 1 1 16322 23.00 F 19 1 2 16323 29.00 M 11 1 2 16324 26.00 M 14 1 2 16325 30.00 M 13 1 2 16326 38.00 M 8 1 2 16327 44.00 F 8 1 2 16328 43.00 M 27 1 2 16329 36.00 M 6 1 2 16330 27.00 M 6 1 2 16331 37.00 M 6 1 2 16332 31.00 M 6 1 2 16333 35.00 F 6 1 2 16334 24.00 M 8 1 2 16335 33.00 M 6 1 2 16336 42.00 F 6 1 2 16337 13.00 F 3 1 1 16338 53.00 M 13 1 2 16339 42.00 F 13 1 2 16340 16.00 M 13 1 1 16341 29.00 M 6 1 2 16342 30.00 M 13 1 2 16343 15.00 M 6 1 1 16344 38.00 F 14 1 2 16345 49.00 M 1 1 2 16346 30.00 M 19 1 2 16347 24.00 M 6 1 2 16348 32.00 F 3 1 2 16349 6.00 F 13 1 1 16350 27.00 M 13 1 2 16351 9.00 M 13 1 1 16352 37.00 M 10 1 2 16353 50.00 M 10 1 2 16354 40.00 M 9 1 2 16355 38.00 F 6 1 2 16356 73.00 M 11 1 3 16357 34.00 M 7 1 2 16358 39.00 M 7 1 2 16359 43.00 M 4 1 2 16360 45.00 M 11 1 2 16361 49.00 M 7 1 2 16362 8.00 F 7 1 1 16363 48.00 F 7 1 2 16364 59.00 M 7 1 2 16365 55.00 F 7 1 2 16366 56.00 F 8 1 2 16367 41.00 M 8 1 2 16368 39.00 M 6 1 2 16369 26.00 F 6 1 2 16370 39.00 M 6 1 2 16371 3.00 F 11 1 1 16372 34.00 M 17 1 2 16373 61.00 M 12 1 3 16374 23.00 M 10 1 2 16375 35.00 M 11 1 2 16376 1.00 F 11 1 1 16377 48.00 F 7 1 2 16378 33.00 M 4 1 2 16379 33.00 M 7 1 2 16380 46.00 M 11 1 2 16381 12.00 F 7 1 1 16382 10.00 F 7 1 1 16383 55.00 M 11 1 2 16384 44.00 M 7 1 2 16385 10.00 M 7 1 1 16386 40.00 M 7 1 2 16387 36.00 M 7 1 2 16388 46.00 M 7 1 2 16389 13.00 F 7 1 1 16390 39.00 M 11 1 2 16391 24.00 M 7 1 2 16392 32.00 M 11 1 2 16393 20.00 F 9 1 2 16394 48.00 M 11 1 2 16395 35.00 M 7 1 2 16396 44.00 F 8 1 2 16397 31.00 M 7 1 2 16398 33.00 F 7 1 2 16399 35.00 F 11 1 2 16400 46.00 M 2 1 2 16401 6.00 M 6 1 1 16402 38.00 M 6 1 2 16403 36.00 M 4 1 2 16404 5.00 M 7 1 1 16405 10.00 M 4 1 1 16406 13.00 F 7 1 1 16407 42.00 M 7 1 2 16408 7.00 F 7 1 1 16409 13.00 F 11 1 1 16410 48.00 M 16 1 2 16411 39.00 F 11 1 2 16412 12.00 F 16 1 1 16413 17.00 F 11 1 1 16414 37.00 F 11 1 2 16415 12.00 F 11 1 1 16416 26.00 F 4 1 2 16417 45.00 M 4 1 2 16418 44.00 M 7 1 2 16419 43.00 M 11 1 2 16420 27.00 F 7 1 2 16421 37.00 M 11 1 2 16422 17.00 M 11 1 1 16423 50.00 M 7 1 2 16424 42.00 F 11 1 2 16425 37.00 M 7 1 2 16426 48.00 M 18 1 2 16427 60.00 M 7 1 3 16428 25.00 M 7 1 2 16429 33.00 M 9 1 2 16430 30.00 M 11 1 2 16431 42.00 M 7 1 2 16432 46.00 M 10 1 2 16433 46.00 M 7 1 2 16434 6.00 F 7 1 1 16435 71.00 M 11 1 3 16436 6.00 M 10 1 1 16437 36.00 F 10 1 2 16438 26.00 M 11 1 2 16439 33.00 M 6 1 2 16440 34.00 M 8 1 2 16441 31.00 M 6 1 2 16442 4.00 F 6 1 1 16443 46.00 M 8 1 2 16444 20.00 M 8 1 2 16445 34.00 F 6 1 2 16446 10.00 F 7 1 1 16447 38.00 F 12 1 2 16448 28.00 M 19 1 2 16449 52.00 F 10 1 2 16450 19.00 M 8 1 2 16451 33.00 M 11 1 2 16452 25.00 F 6 1 2 16453 48.00 F 6 1 2 16454 45.00 M 6 1 2 16455 45.00 F 10 1 2 16456 34.00 F 8 1 2 16457 13.00 M 6 1 1 16458 36.00 M 6 1 2 16459 31.00 M 6 1 2 16460 48.00 M 4 1 2 16461 43.00 F 5 1 2 16462 41.00 F 12 1 2 16463 46.00 M 8 1 2 16464 10.00 F 4 1 1 16465 38.00 M 4 1 2 16466 61.00 M 8 1 3 16467 1.00 M 5 1 1 16468 39.00 M 11 1 2 16469 4.00 M 7 1 1 16470 27.00 F 7 1 2 16471 19.00 M 11 1 2 16472 30.00 M 11 1 2 16473 28.00 M 2 1 2 16474 31.00 F 8 1 2 16475 64.00 M 4 1 3 16476 1.00 F 12 1 1 16477 52.00 M 8 1 2 16478 46.00 F 8 1 2 16479 26.00 F 8 1 2 16480 17.00 M 12 1 1 16481 65.00 M 8 1 3 16482 54.00 M 8 1 2 16483 47.00 F 15 1 2 16484 72.00 F 19 1 3 16485 65.00 F 9 1 3 16486 17.00 M 26 1 1 16487 20.00 F 31 1 2 16488 35.00 M 26 1 2 16489 12.00 M 15 1 1 16490 18.00 M 15 1 2 16491 26.00 M 15 1 2 16492 26.00 F 14 1 2 16493 19.00 F 13 1 2 16494 22.00 M 13 1 2 16495 44.00 F 13 1 2 16496 29.00 M 13 1 2 16497 18.00 M 13 1 2 16498 4.00 F 13 1 1 16499 10.00 F 28 1 1 16500 37.00 M 13 1 2 16501 33.00 F 14 1 2 16502 4.00 M 14 1 1 16503 45.00 M 13 1 2 16504 43.00 M 19 1 2 16505 24.00 F 31 1 2 16506 25.00 M 13 1 2 16507 18.00 M 26 1 2 16508 24.00 M 13 1 2 16509 45.00 M 13 1 2 16510 16.00 M 15 1 1 16511 22.00 M 15 1 2 16512 26.00 M 15 1 2 16513 24.00 F 19 1 2 16514 2.00 F 31 1 1 16515 28.00 F 15 1 2 16516 25.00 F 15 1 2 16517 7.00 M 15 1 1 16518 7.00 M 15 1 1 16519 51.00 M 13 1 2 16520 32.00 M 10 1 2 16521 30.00 F 10 1 2 16522 20.00 M 5 1 2 16523 20.00 M 5 1 2 16524 45.00 F 5 1 2 16525 55.00 F 5 1 2 16526 55.00 M 5 1 2 16527 19.00 F 10 1 2 16528 55.00 M 20 1 2 16529 3.00 F 9 1 1 16530 20.00 F 9 1 2 16531 10.00 F 9 1 1 16532 6.00 M 10 1 1 16533 60.00 M 9 1 3 16534 20.00 M 20 1 2 16535 25.00 M 5 1 2 16536 21.00 F 8 1 2 16537 35.00 F 5 1 2 16538 25.00 M 16 1 2 16539 20.00 F 16 1 2 16540 28.00 M 8 1 2 16541 18.00 F 21 1 2 16542 12.00 M 9 1 1 16543 9.00 M 9 1 1 16544 25.00 F 20 1 2 16545 10.00 F 20 1 1 16546 20.00 M 9 1 2 16547 35.00 F 8 1 2 16548 18.00 F 8 1 2 16549 40.00 M 9 1 2 16550 13.00 F 9 1 1 16551 25.00 M 10 1 2 16552 25.00 F 8 1 2 16553 52.00 M 10 1 2 16554 20.00 M 8 1 2 16555 18.00 M 8 1 2 16556 30.00 F 20 1 2 16557 32.00 M 8 1 2 16558 29.00 M 10 1 2 16559 71.00 F 7 1 3 16560 50.00 F 7 1 2 16561 23.00 F 6 1 2 16562 20.00 F 6 1 2 16563 46.00 F 6 1 2 16564 45.00 M 6 1 2 16565 42.00 F 6 1 2 16566 46.00 F 7 1 2 16567 24.00 F 6 1 2 16568 9.00 M 7 1 1 16569 42.00 M 7 1 2 16570 31.00 F 7 1 2 16571 36.00 F 7 1 2 16572 42.00 F 7 1 2 16573 48.00 F 7 1 2 16574 53.00 F 6 1 2 16575 44.00 M 7 1 2 16576 33.00 F 25 1 2 16577 49.00 F 25 1 2 16578 40.00 M 25 1 2 16579 26.00 M 25 1 2 16580 37.00 F 25 1 2 16581 32.00 F 9 1 2 16582 25.00 M 9 1 2 16583 57.00 F 11 1 2 16584 52.00 M 26 1 2 16585 57.00 M 9 1 2 16586 33.00 M 19 1 2 16587 50.00 F 16 1 2 16588 55.00 M 18 1 2 16589 18.00 M 9 1 2 16590 42.00 F 9 1 2 16591 48.00 F 9 1 2 16592 50.00 M 26 1 2 16593 22.00 F 26 1 2 16594 7.00 M 13 1 1 16595 17.00 F 10 1 1 16596 45.00 F 13 1 2 16597 16.00 F 13 1 1 16598 28.00 F 13 1 2 16599 38.00 F 10 1 2 16600 15.00 M 10 1 1 16601 54.00 M 10 1 2 16602 48.00 M 10 1 2 16603 13.00 M 13 1 1 16604 42.00 F 10 1 2 16605 16.00 F 10 1 1 16606 52.00 M 12 1 2 16607 37.00 M 14 1 2 16608 50.00 M 3 1 2 16609 17.00 M 3 1 1 16610 32.00 F 3 1 2 16611 52.00 M 8 1 2 16612 57.00 M 18 1 2 16613 32.00 M 7 1 2 16614 34.00 M 18 1 2 16615 33.00 M 14 1 2 16616 40.00 M 3 1 2 16617 41.00 F 3 1 2 16618 15.00 M 3 1 1 16619 40.00 F 6 1 2 16620 38.00 M 18 1 2 16621 41.00 M 18 1 2 16622 45.00 M 9 1 2 16623 14.00 M 6 1 1 16624 35.00 F 20 1 2 16625 12.00 F 19 1 1 16626 10.00 M 19 1 1 16627 50.00 M 7 1 2 16628 31.00 M 11 1 2 16629 39.00 M 7 1 2 16630 21.00 F 16 1 2 16631 24.00 F 16 1 2 16632 11.00 F 16 1 1 16633 59.00 M 9 1 2 16634 49.00 F 9 1 2 16635 14.00 M 14 1 1 16636 24.00 F 14 1 2 16637 35.00 M 8 1 2 16638 64.00 M 12 1 3 16639 61.00 F 5 1 3 16640 31.00 F 9 1 2 16641 25.00 M 5 1 2 16642 43.00 M 5 1 2 16643 24.00 M 9 1 2 16644 28.00 M 8 1 2 16645 36.00 M 12 1 2 16646 30.00 F 12 1 2 16647 20.00 M 5 1 2 16648 7.00 F 9 1 1 16649 4.00 F 5 1 1 16650 28.00 F 5 1 2 16651 36.00 M 5 1 2 16652 30.00 F 8 1 2 16653 5.00 M 27 1 1 16654 20.00 M 5 1 2 16655 10.00 F 27 1 1 16656 52.00 M 8 1 2 16657 20.00 M 9 1 2 16658 47.00 M 9 1 2 16659 20.00 M 9 1 2 16660 22.00 M 5 1 2 16661 26.00 M 5 1 2 16662 12.00 M 5 1 1 16663 25.00 M 7 1 2 16664 35.00 M 5 1 2 16665 17.00 M 5 1 1 16666 45.00 M 9 1 2 16667 24.00 M 12 1 2 16668 7.00 M 5 1 1 16669 28.00 M 5 1 2 16670 27.00 F 5 1 2 16671 6.00 F 5 1 1 16672 26.00 M 9 1 2 16673 13.00 M 13 1 1 16674 8.00 F 10 1 1 16675 28.00 F 10 1 2 16676 22.00 F 10 1 2 16677 18.00 M 9 1 2 16678 30.00 M 9 1 2 16679 6.00 F 9 1 1 16680 30.00 F 9 1 2 16681 2.00 F 8 1 1 16682 42.00 M 14 1 2 16683 50.00 M 18 1 2 16684 41.00 F 14 1 2 16685 15.00 M 14 1 1 16686 42.00 F 7 1 2 16687 32.00 F 6 1 2 16688 35.00 M 7 1 2 16689 47.00 F 18 1 2 16690 7.00 M 3 1 1 16691 42.00 M 5 1 2 16692 42.00 M 6 1 2 16693 57.00 M 10 1 2 16694 53.00 F 7 1 2 16695 52.00 M 3 1 2 16696 30.00 F 23 1 2 16697 45.00 M 20 1 2 16698 8.00 M 4 1 1 16699 23.00 M 17 1 2 16700 26.00 F 11 1 2 16701 23.00 M 10 1 2 16702 47.00 M 15 1 2 16703 38.00 F 15 1 2 16704 18.00 F 8 1 2 16705 48.00 F 15 1 2 16706 39.00 F 30 1 2 16707 10.00 F 15 1 1 16708 22.00 F 15 1 2 16709 16.00 M 16 1 1 16710 20.00 F 16 1 2 16711 36.00 M 16 1 2 16712 45.00 F 10 1 2 16713 64.00 F 19 1 3 16714 38.00 M 9 1 2 16715 34.00 F 9 1 2 16716 9.00 F 9 1 1 16717 20.00 M 9 1 2 16718 36.00 M 30 1 2 16719 23.00 F 15 1 2 16720 58.00 F 7 1 2 16721 46.00 M 17 1 2 16722 42.00 F 17 1 2 16723 14.00 M 17 1 1 16724 4.00 F 14 1 1 16725 30.00 F 17 1 2 16726 22.00 M 13 1 2 16727 42.00 F 13 1 2 16728 46.00 M 13 1 2 16729 12.00 M 17 1 1 16730 23.00 F 17 1 2 16731 14.00 M 16 1 1 16732 5.00 F 30 1 1 16733 24.00 F 9 1 2 16734 18.00 F 9 1 2 16735 38.00 F 14 1 2 16736 18.00 F 30 1 2 16737 30.00 M 30 1 2 16738 42.00 M 9 1 2 16739 27.00 F 9 1 2 16740 44.00 M 9 1 2 16741 42.00 F 14 1 2 16742 16.00 M 16 1 1 16743 20.00 M 14 1 2 16744 78.00 M 12 1 3 16745 29.00 F 16 1 2 16746 20.00 F 9 1 2 16747 31.00 M 9 1 2 16748 20.00 F 15 1 2 16749 45.00 F 9 1 2 16750 22.00 F 9 1 2 16751 20.00 F 9 1 2 16752 15.00 M 16 1 1 16753 23.00 M 9 1 2 16754 24.00 F 14 1 2 16755 42.00 F 9 1 2 16756 26.00 M 9 1 2 16757 32.00 F 9 1 2 16758 25.00 F 14 1 2 16759 71.00 F 29 1 3 16760 40.00 F 30 1 2 16761 18.00 M 9 1 2 16762 26.00 M 25 1 2 16763 10.00 M 9 1 1 16764 20.00 F 10 1 2 16765 7.00 M 12 1 1 16766 17.00 F 7 1 1 16767 30.00 F 7 1 2 16768 35.00 M 15 1 2 16769 33.00 M 12 1 2 16770 30.00 F 7 1 2 16771 8.00 M 7 1 1 16772 23.00 F 7 1 2 16773 28.00 F 7 1 2 16774 18.00 M 10 1 2 16775 27.00 M 7 1 2 16776 23.00 M 12 1 2 16777 34.00 M 10 1 2 16778 36.00 M 7 1 2 16779 30.00 M 15 1 2 16780 41.00 M 7 1 2 16781 42.00 M 7 1 2 16782 43.00 M 7 1 2 16783 29.00 M 7 1 2 16784 33.00 M 7 1 2 16785 28.00 M 7 1 2 16786 26.00 M 7 1 2 16787 22.00 M 10 1 2 16788 25.00 M 7 1 2 16789 27.00 M 7 1 2 16790 35.00 M 7 1 2 16791 25.00 M 7 1 2 16792 41.00 M 15 1 2 16793 28.00 F 7 1 2 16794 7.00 F 10 1 1 16795 12.00 M 7 1 1 16796 60.00 F 11 1 3 16797 30.00 F 7 1 2 16798 12.00 F 11 1 1 16799 30.00 M 7 1 2 16800 24.00 M 12 1 2 16801 25.00 F 7 1 2 16802 38.00 M 7 1 2 16803 32.00 F 10 1 2 16804 24.00 F 7 1 2 16805 16.00 F 10 1 1 16806 36.00 M 7 1 2 16807 6.00 M 7 1 1 16808 10.00 M 12 1 1 16809 13.00 M 10 1 1 16810 11.00 F 10 1 1 16811 35.00 F 10 1 2 16812 45.00 F 6 1 2 16813 54.00 M 6 1 2 16814 48.00 M 15 1 2 16815 34.00 M 13 1 2 16816 29.00 M 15 1 2 16817 42.00 M 15 1 2 16818 36.00 F 10 1 2 16819 44.00 M 19 1 2 16820 20.00 M 7 1 2 16821 19.00 F 7 1 2 16822 24.00 M 7 1 2 16823 3.00 M 9 1 1 16824 8.00 F 9 1 1 16825 40.00 M 20 1 2 16826 30.00 M 9 1 2 16827 25.00 F 9 1 2 16828 3.00 F 14 1 1 16829 25.00 F 9 1 2 16830 7.00 F 21 1 1 16831 36.00 M 9 1 2 16832 28.00 F 9 1 2 16833 20.00 F 9 1 2 16834 20.00 M 9 1 2 16835 48.00 M 17 1 2 16836 25.00 F 17 1 2 16837 30.00 M 21 1 2 16838 11.00 F 21 1 1 16839 21.00 M 9 1 2 16840 15.00 M 9 1 1 16841 20.00 M 7 1 2 16842 43.00 F 17 1 2 16843 28.00 M 17 1 2 16844 6.00 M 17 1 1 16845 47.00 F 21 1 2 16846 38.00 M 21 1 2 16847 5.00 F 17 1 1 16848 33.00 M 21 1 2 16849 6.00 F 14 1 1 16850 40.00 F 17 1 2 16851 17.00 F 14 1 1 16852 17.00 M 17 1 1 16853 17.00 F 19 1 1 16854 28.00 F 19 1 2 16855 8.00 F 7 1 1 16856 20.00 M 9 1 2 16857 28.00 F 19 1 2 16858 30.00 M 9 1 2 16859 5.00 F 9 1 1 16860 35.00 M 9 1 2 16861 40.00 M 12 1 2 16862 16.00 F 17 1 1 16863 16.00 F 9 1 1 16864 12.00 F 11 1 1 16865 18.00 M 15 1 2 16866 22.00 M 9 1 2 16867 58.00 F 15 1 2 16868 13.00 M 17 1 1 16869 33.00 M 9 1 2 16870 40.00 F 14 1 2 16871 12.00 M 14 1 1 16872 15.00 M 20 1 1 16873 30.00 F 15 1 2 16874 40.00 F 9 1 2 16875 23.00 M 9 1 2 16876 25.00 F 9 1 2 16877 48.00 F 15 1 2 16878 19.00 M 7 1 2 16879 42.00 M 9 1 2 16880 38.00 M 15 1 2 16881 18.00 F 7 1 2 16882 1.30 M 17 1 1 16883 30.00 M 17 1 2 16884 9.00 F 17 1 1 16885 65.00 M 19 1 3 16886 26.00 F 6 1 2 16887 43.00 M 6 1 2 16888 44.00 M 7 1 2 16889 53.00 M 5 1 2 16890 48.00 F 5 1 2 16891 26.00 M 6 1 2 16892 50.00 M 10 1 2 16893 17.00 M 5 1 1 16894 15.00 M 10 1 1 16895 28.00 M 5 1 2 16896 24.00 M 2 1 2 16897 36.00 M 2 1 2 16898 44.00 M 15 1 2 16899 35.00 M 13 1 2 16900 34.00 F 2 1 2 16901 33.00 F 2 1 2 16902 20.00 F 2 1 2 16903 52.00 M 2 1 2 16904 48.00 M 5 1 2 16905 47.00 M 2 1 2 16906 51.00 M 2 1 2 16907 6.00 M 6 1 1 16908 1.00 F 6 1 1 16909 36.00 F 6 1 2 16910 39.00 F 6 1 2 16911 16.00 M 6 1 1 16912 54.00 M 3 1 2 16913 22.00 M 18 1 2 16914 20.00 F 5 1 2 16915 36.00 M 5 1 2 16916 43.00 M 5 1 2 16917 27.00 F 18 1 2 16918 30.00 F 5 1 2 16919 13.00 M 7 1 1 16920 5.00 M 12 1 1 16921 52.00 M 17 1 2 16922 32.00 M 8 1 2 16923 55.00 M 6 1 2 16924 47.00 M 6 1 2 16925 56.00 M 8 1 2 16926 34.00 M 5 1 2 16927 33.00 F 4 1 2 16928 10.00 M 4 1 1 16929 30.00 F 10 1 2 16930 46.00 M 5 1 2 16931 61.00 M 12 1 3 16932 13.00 M 10 1 1 16933 30.00 F 32 1 2 16934 20.00 M 12 1 2 16935 30.00 F 12 1 2 16936 18.00 F 16 1 2 16937 3.00 M 12 1 1 16938 20.00 F 16 1 2 16939 50.00 M 12 1 2 16940 38.00 M 12 1 2 16941 19.00 M 15 1 2 16942 25.00 F 12 1 2 16943 22.00 M 11 1 2 16944 30.00 M 10 1 2 16945 22.00 M 10 1 2 16946 40.00 M 14 1 2 16947 27.00 F 16 1 2 16948 43.00 M 15 1 2 16949 50.00 M 10 1 2 16950 9.00 F 10 1 1 16951 25.00 F 21 1 2 16952 36.00 M 12 1 2 16953 20.00 F 11 1 2 16954 9.00 M 14 1 1 16955 25.00 M 14 1 2 16956 26.00 M 12 1 2 16957 27.00 M 14 1 2 16958 47.00 M 10 1 2 16959 24.00 F 15 1 2 16960 18.00 M 15 1 2 16961 45.00 M 15 1 2 16962 23.00 F 12 1 2 16963 27.00 M 10 1 2 16964 35.00 M 12 1 2 16965 21.00 F 16 1 2 16966 60.00 M 10 1 3 16967 25.00 M 29 1 2 16968 15.00 M 12 1 1 16969 26.00 F 10 1 2 16970 30.00 F 14 1 2 16971 34.00 M 10 1 2 16972 57.00 F 14 1 2 16973 45.00 M 15 1 2 16974 20.00 M 32 1 2 16975 22.00 M 32 1 2 16976 4.00 M 29 1 1 16977 81.00 M 14 1 3 16978 30.00 M 12 1 2 16979 55.00 F 10 1 2 16980 9.00 F 10 1 1 16981 25.00 F 10 1 2 16982 19.00 M 15 1 2 16983 24.00 F 14 1 2 16984 23.00 M 10 1 2 16985 62.00 M 10 1 3 16986 25.00 F 14 1 2 16987 12.00 F 32 1 1 16988 6.00 F 16 1 1 16989 26.00 M 14 1 2 16990 21.00 M 14 1 2 16991 44.00 F 12 1 2 16992 18.00 F 12 1 2 16993 25.00 F 13 1 2 16994 46.00 M 10 1 2 16995 30.00 M 10 1 2 16996 38.00 M 7 1 2 16997 32.00 M 10 1 2 16998 46.00 M 16 1 2 16999 24.00 M 7 1 2 17000 28.00 M 10 1 2 17001 27.00 M 12 1 2 17002 22.00 M 16 1 2 17003 25.00 M 7 1 2 17004 24.00 M 9 1 2 17005 31.00 M 16 1 2 17006 29.00 M 16 1 2 17007 26.00 M 16 1 2 17008 26.00 M 10 1 2 17009 28.00 M 16 1 2 17010 28.00 M 11 1 2 17011 24.00 M 7 1 2 17012 31.00 M 16 1 2 17013 28.00 M 17 1 2 17014 30.00 M 10 1 2 17015 27.00 M 10 1 2 17016 27.00 M 11 1 2 17017 24.00 M 16 1 2 17018 76.00 F 7 1 3 17019 30.00 M 24 1 2 17020 12.00 M 24 1 1 17021 50.00 F 9 1 2 17022 52.00 F 9 1 2 17023 38.00 F 15 1 2 17024 42.00 M 15 1 2 17025 34.00 F 24 1 2 17026 24.00 F 15 1 2 17027 32.00 M 15 1 2 17028 50.00 F 24 1 2 17029 32.00 M 24 1 2 17030 60.00 M 12 1 3 17031 24.00 M 15 1 2 17032 54.00 F 9 1 2 17033 34.00 F 24 1 2 17034 38.00 F 24 1 2 17035 68.00 F 24 1 3 17036 40.00 M 13 1 2 17037 11.00 F 9 1 1 17038 42.00 F 7 1 2 17039 34.00 F 7 1 2 17040 40.00 M 7 1 2 17041 62.00 M 7 1 3 17042 58.00 M 7 1 2 17043 48.00 F 7 1 2 17044 66.00 F 7 1 3 17045 36.00 F 7 1 2 17046 38.00 F 7 1 2 17047 58.00 M 8 1 2 17048 48.00 M 8 1 2 17049 27.00 M 8 1 2 17050 25.00 M 8 1 2 17051 68.00 M 18 1 3 17052 56.00 F 16 1 2 17053 38.00 F 20 1 2 17054 60.00 M 15 1 3 17055 65.00 M 14 1 3 17056 50.00 M 8 1 2 17057 45.00 F 5 1 2 17058 23.00 F 5 1 2 17059 52.00 M 5 1 2 17060 60.00 M 5 1 3 17061 18.00 M 12 1 2 17062 33.00 M 8 1 2 17063 28.00 M 14 1 2 17064 20.00 F 14 1 2 17065 52.00 M 14 1 2 17066 60.00 M 13 1 3 17067 21.00 M 8 1 2 17068 18.00 M 8 1 2 17069 52.00 M 16 1 2 17070 16.00 F 20 1 1 17071 25.00 M 8 1 2 17072 35.00 F 20 1 2 17073 30.00 F 20 1 2 17074 7.00 M 10 1 1 17075 25.00 F 18 1 2 17076 4.00 F 13 1 1 17077 2.00 F 18 1 1 17078 8.00 F 10 1 1 17079 50.00 M 20 1 2 17080 43.00 F 13 1 2 17081 13.00 M 10 1 1 17082 28.00 F 20 1 2 17083 21.00 M 16 1 2 17084 33.00 M 13 1 2 17085 33.00 M 13 1 2 17086 10.00 M 20 1 1 17087 4.00 F 16 1 1 17088 35.00 F 8 1 2 17089 16.00 M 8 1 1 17090 20.00 M 8 1 2 17091 50.00 F 14 1 2 17092 30.00 M 8 1 2 17093 20.00 M 8 1 2 17094 37.00 M 8 1 2 17095 28.00 F 18 1 2 17096 32.00 M 8 1 2 17097 30.00 F 20 1 2 17098 60.00 M 13 1 3 17099 15.00 F 10 1 1 17100 10.00 F 13 1 1 17101 35.00 M 8 1 2 17102 26.00 F 18 1 2 17103 20.00 M 8 1 2 17104 15.00 F 11 1 1 17105 30.00 F 13 1 2 17106 42.00 M 6 1 2 17107 25.00 M 18 1 2 17108 25.00 M 6 1 2 17109 29.00 M 11 1 2 17110 10.00 F 18 1 1 17111 46.00 M 16 1 2 17112 10.00 F 16 1 1 17113 22.00 M 8 1 2 17114 4.00 M 16 1 1 17115 30.00 F 10 1 2 17116 20.00 M 8 1 2 17117 15.00 F 16 1 1 17118 60.00 M 16 1 3 17119 13.00 F 16 1 1 17120 30.00 F 11 1 2 17121 15.00 M 18 1 1 17122 27.00 F 8 1 2 17123 45.00 M 8 1 2 17124 39.00 F 8 1 2 17125 20.00 M 8 1 2 17126 40.00 M 13 1 2 17127 32.00 F 10 1 2 17128 18.00 M 10 1 2 17129 30.00 M 9 1 2 17130 30.00 M 16 1 2 17131 20.00 F 14 1 2 17132 30.00 M 11 1 2 17133 27.00 F 14 1 2 17134 52.00 M 11 1 2 17135 45.00 M 11 1 2 17136 50.00 M 14 1 2 17137 53.00 M 14 1 2 17138 36.00 M 11 1 2 17139 56.00 F 11 1 2 17140 22.00 M 11 1 2 17141 22.00 M 16 1 2 17142 60.00 M 16 1 3 17143 29.00 M 8 1 2 17144 60.00 M 6 1 3 17145 30.00 M 1 1 2 17146 40.00 M 5 1 2 17147 10.00 M 28 1 1 17148 8.00 M 13 1 1 17149 30.00 F 28 1 2 17150 22.00 F 7 1 2 17151 35.00 M 13 1 2 17152 32.00 M 17 1 2 17153 10.00 M 17 1 1 17154 48.00 M 13 1 2 17155 17.00 F 15 1 1 17156 35.00 M 17 1 2 17157 25.00 M 15 1 2 17158 22.00 F 7 1 2 17159 45.00 M 13 1 2 17160 38.00 M 13 1 2 17161 17.00 M 7 1 1 17162 19.00 M 7 1 2 17163 19.00 M 7 1 2 17164 15.00 M 15 1 1 17165 10.00 M 15 1 1 17166 7.00 F 15 1 1 17167 25.00 F 17 1 2 17168 50.00 F 13 1 2 17169 36.00 F 13 1 2 17170 27.00 M 7 1 2 17171 17.00 M 7 1 1 17172 20.00 M 15 1 2 17173 60.00 F 15 1 3 17174 60.00 F 22 1 3 17175 28.00 M 17 1 2 17176 27.00 M 8 1 2 17177 5.00 F 15 1 1 17178 30.00 M 9 1 2 17179 7.00 M 9 1 1 17180 13.00 F 9 1 1 17181 35.00 M 15 1 2 17182 24.00 F 15 1 2 17183 13.00 M 10 1 1 17184 20.00 F 5 1 2 17185 2.00 F 9 1 1 17186 26.00 F 9 1 2 17187 61.00 M 31 1 3 17188 29.00 F 10 1 2 17189 31.00 F 15 1 2 17190 26.00 F 10 1 2 17191 5.00 F 5 1 1 17192 3.00 F 5 1 1 17193 50.00 F 6 1 2 17194 25.00 M 7 1 2 17195 24.00 M 7 1 2 17196 23.00 F 9 1 2 17197 7.00 M 3 1 1 17198 2.00 F 6 1 1 17199 1.00 M 3 1 1 17200 10.00 M 3 1 1 17201 25.00 F 7 1 2 17202 7.00 M 9 1 1 17203 25.00 F 13 1 2 17204 15.00 F 7 1 1 17205 23.00 F 15 1 2 17206 30.00 F 10 1 2 17207 32.00 F 15 1 2 17208 56.00 F 15 1 2 17209 35.00 F 15 1 2 17210 37.00 M 15 1 2 17211 28.00 M 9 1 2 17212 42.00 F 4 1 2 17213 46.00 F 7 1 2 17214 34.00 M 7 1 2 17215 25.00 F 9 1 2 17216 32.00 M 7 1 2 17217 19.00 M 7 1 2 17218 54.00 F 7 1 2 17219 62.00 F 7 1 3 17220 43.00 M 11 1 2 17221 34.00 F 24 1 2 17222 19.00 M 14 1 2 17223 16.00 M 6 1 1 17224 23.00 M 23 1 2 17225 60.00 M 24 1 3 17226 37.00 M 23 1 2 17227 28.00 M 23 1 2 17228 43.00 M 23 1 2 17229 22.00 F 13 1 2 17230 20.00 F 24 1 2 17231 29.00 M 24 1 2 17232 54.00 M 24 1 2 17233 27.00 F 11 1 2 17234 62.00 F 15 1 3 17235 57.00 M 32 1 2 17236 24.00 F 8 1 2 17237 17.00 M 17 1 1 17238 25.00 F 7 1 2 17239 39.00 M 10 1 2 17240 40.00 F 7 1 2 17241 32.00 F 10 1 2 17242 23.00 M 5 1 2 17243 23.00 F 5 1 2 17244 21.00 F 10 1 2 17245 34.00 M 10 1 2 17246 24.00 M 10 1 2 17247 17.00 M 10 1 1 17248 32.00 M 14 1 2 17249 38.00 F 18 1 2 17250 40.00 F 14 1 2 17251 65.00 F 14 1 3 17252 30.00 F 18 1 2 17253 7.00 F 16 1 1 17254 7.00 M 16 1 1 17255 10.00 M 14 1 1 17256 9.00 F 11 1 1 17257 35.00 M 16 1 2 17258 5.00 F 14 1 1 17259 25.00 M 10 1 2 17260 6.00 F 10 1 1 17261 24.00 F 10 1 2 17262 53.00 F 10 1 2 17263 24.00 F 10 1 2 17264 7.00 M 11 1 1 17265 20.00 M 14 1 2 17266 20.00 M 14 1 2 17267 29.00 F 10 1 2 17268 25.00 F 10 1 2 17269 38.00 F 10 1 2 17270 42.00 F 14 1 2 17271 20.00 F 10 1 2 17272 15.00 F 16 1 1 17273 50.00 F 16 1 2 17274 28.00 M 16 1 2 17275 10.00 F 14 1 1 17276 25.00 F 16 1 2 17277 30.00 M 14 1 2 17278 42.00 M 16 1 2 17279 24.00 F 18 1 2 17280 30.00 F 12 1 2 17281 8.00 F 16 1 1 17282 25.00 M 10 1 2 17283 45.00 M 14 1 2 17284 10.00 M 16 1 1 17285 21.00 M 16 1 2 17286 25.00 M 14 1 2 17287 30.00 F 16 1 2 17288 31.00 M 14 1 2 17289 35.00 F 10 1 2 17290 28.00 F 14 1 2 17291 47.00 F 10 1 2 17292 23.00 F 14 1 2 17293 17.00 F 14 1 1 17294 17.00 F 14 1 1 17295 17.00 F 14 1 1 17296 20.00 M 14 1 2 17297 30.00 F 14 1 2 17298 46.00 M 14 1 2 17299 23.00 M 14 1 2 17300 17.00 M 24 1 1 17301 20.00 F 16 1 2 17302 14.00 F 16 1 1 17303 46.00 F 10 1 2 17304 22.00 M 14 1 2 17305 29.00 M 14 1 2 17306 28.00 F 16 1 2 17307 35.00 M 6 1 2 17308 13.00 F 10 1 1 17309 7.00 M 10 1 1 17310 2.00 F 13 1 1 17311 45.00 F 14 1 2 17312 33.00 M 5 1 2 17313 15.00 M 6 1 1 17314 31.00 M 7 1 2 17315 29.00 M 5 1 2 17316 59.00 M 7 1 2 17317 24.00 M 14 1 2 17318 35.00 M 5 1 2 17319 32.00 M 11 1 2 17320 58.00 M 22 1 2 17321 23.00 F 13 1 2 17322 22.00 F 7 1 2 17323 25.00 F 7 1 2 17324 55.00 F 22 1 2 17325 45.00 M 23 1 2 17326 37.00 M 12 1 2 17327 43.00 F 8 1 2 17328 43.00 M 8 1 2 17329 25.00 M 15 1 2 17330 25.00 M 15 1 2 17331 26.00 M 15 1 2 17332 9.00 F 14 1 1 17333 27.00 M 9 1 2 17334 46.00 M 9 1 2 17335 52.00 M 9 1 2 17336 10.00 M 9 1 1 17337 47.00 M 9 1 2 17338 35.00 F 15 1 2 17339 66.00 M 15 1 3 17340 9.00 M 9 1 1 17341 52.00 M 9 1 2 17342 25.00 F 9 1 2 17343 27.00 F 7 1 2 17344 38.00 M 7 1 2 17345 38.00 F 7 1 2 17346 42.00 M 7 1 2 17347 18.00 F 7 1 2 17348 62.00 F 7 1 3 17349 66.00 M 7 1 3 17350 4.00 M 7 1 1 17351 64.00 M 9 1 3 17352 45.00 F 6 1 2 17353 58.00 M 14 1 2 17354 16.00 F 6 1 1 17355 22.00 F 9 1 2 17356 46.00 M 15 1 2 17357 22.00 M 4 1 2 17358 24.00 F 16 1 2 17359 2.00 F 16 1 1 17360 25.00 M 9 1 2 17361 23.00 M 9 1 2 17362 21.00 M 9 1 2 17363 0.60 F 8 1 1 17364 21.00 F 8 1 2 17365 3.00 F 8 1 1 17366 20.00 F 31 1 2 17367 5.00 M 17 1 1 17368 60.00 M 24 1 3 17369 14.00 F 8 1 1 17370 26.00 F 11 1 2 17371 29.00 F 8 1 2 17372 6.00 F 8 1 1 17373 40.00 M 14 1 2 17374 35.00 F 8 1 2 17375 14.00 M 4 1 1 17376 5.00 M 9 1 1 17377 32.00 M 20 1 2 17378 63.00 F 8 1 3 17379 33.00 M 5 1 2 17380 24.00 M 5 1 2 17381 40.00 F 5 1 2 17382 65.00 M 8 1 3 17383 56.00 F 5 1 2 17384 25.00 M 5 1 2 17385 28.00 M 5 1 2 17386 10.00 M 16 1 1 17387 35.00 F 5 1 2 17388 7.00 F 10 1 1 17389 33.00 F 10 1 2 17390 28.00 M 10 1 2 17391 4.00 F 10 1 1 17392 23.00 M 10 1 2 17393 22.00 F 10 1 2 17394 12.00 F 10 1 1 17395 11.00 F 10 1 1 17396 25.00 M 10 1 2 17397 13.00 F 10 1 1 17398 27.00 M 10 1 2 17399 30.00 M 10 1 2 17400 20.00 M 25 1 2 17401 65.00 M 12 1 3 17402 59.00 M 14 1 2 17403 11.00 F 5 1 1 17404 35.00 M 3 1 2 17405 36.00 F 14 1 2 17406 34.00 F 5 1 2 17407 25.00 F 3 1 2 17408 23.00 F 9 1 2 17409 30.00 F 7 1 2 17410 30.00 M 3 1 2 17411 47.00 M 12 1 2 17412 5.00 F 1 1 1 17413 35.00 F 1 1 2 17414 33.00 M 4 1 2 17415 39.00 M 1 1 2 17416 60.00 M 2 1 3 17417 60.00 M 2 1 3 17418 16.00 M 1 1 1 17419 72.00 F 2 1 3 17420 41.00 F 1 1 2 17421 30.00 M 2 1 2 17422 47.00 M 14 1 2 17423 30.00 M 1 1 2 17424 34.00 M 10 1 2 17425 20.00 M 12 1 2 17426 21.00 F 10 1 2 17427 34.00 M 10 1 2 17428 24.00 M 10 1 2 17429 56.00 M 9 1 2 17430 34.00 F 11 1 2 17431 72.00 F 21 1 3 17432 37.00 M 8 1 2 17433 40.00 M 13 1 2 17434 49.00 M 11 1 2 17435 63.00 M 12 1 3 17436 62.00 F 11 1 3 17437 34.00 M 13 1 2 17438 0.50 M 8 1 1 17439 50.00 M 13 1 2 17440 46.00 M 8 1 2 17441 33.00 F 8 1 2 17442 12.00 F 8 1 1 17443 33.00 M 8 1 2 17444 75.00 F 9 1 3 17445 35.00 M 9 1 2 17446 28.00 M 8 1 2 17447 32.00 F 13 1 2 17448 38.00 M 4 1 2 17449 22.00 M 4 1 2 17450 18.00 M 4 1 2 17451 18.00 M 6 1 2 17452 17.00 M 4 1 1 17453 15.00 M 6 1 1 17454 18.00 M 4 1 2 17455 24.00 F 4 1 2 17456 54.00 F 13 1 2 17457 38.00 F 10 1 2 17458 52.00 M 21 1 2 17459 52.00 M 6 1 2 17460 43.00 M 13 1 2 17461 36.00 M 10 1 2 17462 43.00 M 7 1 2 17463 26.00 M 13 1 2 17464 25.00 M 13 1 2 17465 30.00 M 10 1 2 17466 37.00 M 13 1 2 17467 45.00 M 13 1 2 17468 28.00 M 7 1 2 17469 29.00 M 7 1 2 17470 27.00 M 13 1 2 17471 45.00 M 10 1 2 17472 2.00 M 23 1 1 17473 29.00 M 19 1 2 17474 20.00 M 13 1 2 17475 23.00 M 13 1 2 17476 23.00 M 21 1 2 17477 35.00 M 13 1 2 17478 28.00 M 13 1 2 17479 52.00 M 13 1 2 17480 10.00 M 9 1 1 17481 55.00 M 9 1 2 17482 31.00 M 7 1 2 17483 26.00 F 8 1 2 17484 16.00 M 11 1 1 17485 54.00 M 11 1 2 17486 36.00 F 11 1 2 17487 60.00 F 11 1 3 17488 36.00 M 10 1 2 17489 23.00 F 10 1 2 17490 42.00 F 11 1 2 17491 34.00 M 11 1 2 17492 7.00 M 11 1 1 17493 12.00 F 11 1 1 17494 30.00 F 11 1 2 17495 11.00 F 11 1 1 17496 23.00 F 11 1 2 17497 25.00 F 30 1 2 17498 28.00 F 11 1 2 17499 38.00 F 12 1 2 17500 27.00 M 9 1 2 17501 24.00 M 9 1 2 17502 7.00 M 9 1 1 17503 34.00 F 9 1 2 17504 4.00 M 9 1 1 17505 35.00 F 9 1 2 17506 4.00 F 9 1 1 17507 25.00 M 9 1 2 17508 55.00 M 9 1 2 17509 56.00 F 9 1 2 17510 60.00 M 13 1 3 17511 33.00 M 1 1 2 17512 34.00 F 1 1 2 17513 33.00 F 1 1 2 17514 44.00 M 1 1 2 17515 52.00 M 1 1 2 17516 17.00 F 1 1 1 17517 8.00 F 1 1 1 17518 22.00 M 1 1 2 17519 40.00 F 1 1 2 17520 48.00 M 1 1 2 17521 43.00 M 1 1 2 17522 9.00 F 1 1 1 17523 47.00 M 1 1 2 17524 9.00 M 1 1 1 17525 42.00 M 2 1 2 17526 32.00 M 6 1 2 17527 28.00 F 2 1 2 17528 34.00 F 2 1 2 17529 46.00 M 13 1 2 17530 55.00 M 1 1 2 17531 71.00 M 12 1 3 17532 28.00 M 12 1 2 17533 27.00 F 21 1 2 17534 25.00 F 12 1 2 17535 46.00 M 13 1 2 17536 20.00 F 12 1 2 17537 73.00 F 22 1 3 17538 33.00 M 6 1 2 17539 54.00 F 21 1 2 17540 32.00 M 9 1 2 17541 76.00 M 21 1 3 17542 48.00 F 21 1 2 17543 30.00 M 21 1 2 17544 24.00 F 21 1 2 17545 19.00 F 21 1 2 17546 25.00 M 21 1 2 17547 64.00 F 12 1 3 17548 40.00 M 12 1 2 17549 24.00 F 21 1 2 17550 45.00 M 12 1 2 17551 22.00 F 12 1 2 17552 42.00 F 21 1 2 17553 53.00 F 9 1 2 17554 46.00 F 7 1 2 17555 41.00 M 12 1 2 17556 59.00 F 8 1 2 17557 41.00 M 9 1 2 17558 32.00 M 9 1 2 17559 35.00 M 10 1 2 17560 31.00 M 10 1 2 17561 60.00 F 10 1 3 17562 27.00 F 10 1 2 17563 12.00 F 10 1 1 17564 8.00 F 10 1 1 17565 3.00 M 10 1 1 17566 23.00 F 14 1 2 17567 25.00 M 14 1 2 17568 23.00 M 14 1 2 17569 55.00 F 26 1 2 17570 25.00 M 11 1 2 17571 24.00 F 8 1 2 17572 21.00 M 8 1 2 17573 21.00 M 11 1 2 17574 34.00 M 8 1 2 17575 38.00 M 8 1 2 17576 29.00 F 22 1 2 17577 50.00 F 14 1 2 17578 3.00 F 11 1 1 17579 34.00 M 8 1 2 17580 59.00 M 8 1 2 17581 30.00 F 6 1 2 17582 15.00 M 6 1 1 17583 32.00 M 6 1 2 17584 30.00 M 11 1 2 17585 22.00 M 6 1 2 17586 34.00 M 11 1 2 17587 34.00 M 15 1 2 17588 40.00 M 6 1 2 17589 41.00 M 6 1 2 17590 33.00 M 9 1 2 17591 48.00 M 16 1 2 17592 31.00 M 9 1 2 17593 20.00 F 6 1 2 17594 27.00 M 6 1 2 17595 31.00 M 15 1 2 17596 32.00 M 6 1 2 17597 27.00 M 11 1 2 17598 35.00 M 15 1 2 17599 51.00 M 6 1 2 17600 20.00 F 20 1 2 17601 9.00 F 14 1 1 17602 36.00 M 6 1 2 17603 67.00 F 9 1 3 17604 44.00 M 18 1 2 17605 30.00 F 6 1 2 17606 25.00 M 15 1 2 17607 24.00 M 9 1 2 17608 44.00 M 6 1 2 17609 32.00 M 6 1 2 17610 38.00 M 6 1 2 17611 50.00 M 6 1 2 17612 33.00 M 9 1 2 17613 31.00 M 18 1 2 17614 21.00 M 8 1 2 17615 26.00 M 6 1 2 17616 32.00 F 11 1 2 17617 22.00 M 9 1 2 17618 32.00 M 9 1 2 17619 29.00 M 6 1 2 17620 29.00 M 8 1 2 17621 29.00 M 11 1 2 17622 31.00 M 6 1 2 17623 25.00 M 6 1 2 17624 47.00 M 6 1 2 17625 42.00 M 8 1 2 17626 29.00 M 6 1 2 17627 54.00 M 11 1 2 17628 44.00 M 14 1 2 17629 43.00 M 6 1 2 17630 31.00 M 6 1 2 17631 46.00 M 14 1 2 17632 61.00 M 11 1 3 17633 23.00 M 6 1 2 17634 24.00 M 6 1 2 17635 22.00 M 11 1 2 17636 35.00 M 9 1 2 17637 60.00 F 11 1 3 17638 3.00 F 9 1 1 17639 24.00 M 14 1 2 17640 36.00 M 6 1 2 17641 31.00 M 11 1 2 17642 43.00 M 15 1 2 17643 50.00 M 9 1 2 17644 35.00 M 15 1 2 17645 51.00 M 15 1 2 17646 21.00 M 14 1 2 17647 20.00 F 15 1 2 17648 20.00 F 6 1 2 17649 21.00 M 11 1 2 17650 29.00 F 15 1 2 17651 42.00 M 15 1 2 17652 30.00 M 6 1 2 17653 42.00 M 8 1 2 17654 34.00 M 8 1 2 17655 35.00 M 11 1 2 17656 50.00 M 11 1 2 17657 63.00 F 6 1 3 17658 39.00 F 15 1 2 17659 58.00 F 15 1 2 17660 24.00 M 15 1 2 17661 24.00 F 9 1 2 17662 18.00 M 6 1 2 17663 40.00 M 6 1 2 17664 10.00 M 6 1 1 17665 46.00 M 8 1 2 17666 36.00 F 15 1 2 17667 55.00 M 14 1 2 17668 43.00 F 14 1 2 17669 42.00 M 11 1 2 17670 19.00 M 11 1 2 17671 45.00 M 15 1 2 17672 45.00 M 11 1 2 17673 31.00 F 15 1 2 17674 31.00 F 15 1 2 17675 24.00 M 7 1 2 17676 23.00 M 9 1 2 17677 34.00 F 9 1 2 17678 55.00 M 8 1 2 17679 4.00 M 10 1 1 17680 48.00 F 12 1 2 17681 29.00 F 10 1 2 17682 27.00 M 11 1 2 17683 10.00 F 12 1 1 17684 28.00 F 13 1 2 17685 23.00 M 12 1 2 17686 34.00 M 12 1 2 17687 33.00 M 12 1 2 17688 31.00 F 12 1 2 17689 58.00 F 8 1 2 17690 27.00 M 8 1 2 17691 2.00 M 12 1 1 17692 5.00 F 12 1 1 17693 31.00 F 16 1 2 17694 20.00 M 8 1 2 17695 19.00 M 11 1 2 17696 44.00 F 11 1 2 17697 46.00 M 11 1 2 17698 49.00 M 12 1 2 17699 54.00 M 8 1 2 17700 5.00 F 8 1 1 17701 24.00 F 12 1 2 17702 21.00 F 12 1 2 17703 40.00 M 8 1 2 17704 35.00 M 8 1 2 17705 38.00 F 8 1 2 17706 62.00 F 22 1 3 17707 19.00 M 20 1 2 17708 18.00 M 20 1 2 17709 63.00 M 20 1 3 17710 57.00 M 20 1 2 17711 54.00 M 20 1 2 17712 36.00 M 20 1 2 17713 20.00 M 12 1 2 17714 46.00 F 8 1 2 17715 40.00 F 11 1 2 17716 1.00 M 10 1 1 17717 68.00 M 20 1 3 17718 4.00 F 20 1 1 17719 28.00 F 20 1 2 17720 30.00 F 20 1 2 17721 38.00 F 10 1 2 17722 36.00 M 14 1 2 17723 85.00 F 13 1 3 17724 79.00 M 13 1 3 17725 17.00 F 13 1 1 17726 16.00 M 7 1 1 17727 24.00 M 7 1 2 17728 12.00 F 7 1 1 17729 23.00 M 13 1 2 17730 45.00 M 9 1 2 17731 12.00 M 9 1 1 17732 33.00 M 9 1 2 17733 39.00 M 12 1 2 17734 35.00 F 12 1 2 17735 50.00 M 9 1 2 17736 21.00 M 11 1 2 17737 46.00 M 6 1 2 17738 55.00 M 6 1 2 17739 58.00 M 7 1 2 17740 9.00 M 6 1 1 17741 23.00 M 8 1 2 17742 28.00 M 6 1 2 17743 31.00 M 6 1 2 17744 25.00 M 12 1 2 17745 29.00 M 8 1 2 17746 24.00 M 12 1 2 17747 30.00 M 9 1 2 17748 40.00 M 12 1 2 17749 46.00 M 8 1 2 17750 28.00 M 12 1 2 17751 55.00 F 8 1 2 17752 30.00 F 12 1 2 17753 8.00 F 12 1 1 17754 1.00 M 6 1 1 17755 27.00 F 6 1 2 17756 22.00 F 6 1 2 17757 4.00 M 12 1 1 17758 35.00 M 20 1 2 17759 25.00 F 6 1 2 17760 61.00 F 12 1 3 17761 1.00 M 6 1 1 17762 29.00 F 12 1 2 17763 24.00 M 12 1 2 17764 2.00 F 6 1 1 17765 8.00 M 12 1 1 17766 2.00 M 12 1 1 17767 20.00 F 6 1 2 17768 12.00 M 12 1 1 17769 4.00 F 20 1 1 17770 1.00 M 20 1 1 17771 60.00 M 22 1 3 17772 42.00 M 10 1 2 17773 35.00 M 9 1 2 17774 7.00 F 14 1 1 17775 9.00 F 24 1 1 17776 29.00 F 14 1 2 17777 39.00 M 10 1 2 17778 50.00 F 8 1 2 17779 25.00 M 12 1 2 17780 37.00 F 14 1 2 17781 24.00 M 25 1 2 17782 15.00 M 9 1 1 17783 5.00 M 10 1 1 17784 35.00 M 5 1 2 17785 19.00 M 12 1 2 17786 75.00 M 12 1 3 17787 50.00 M 16 1 2 17788 21.00 F 14 1 2 17789 14.00 M 12 1 1 17790 35.00 F 20 1 2 17791 37.00 M 12 1 2 17792 50.00 F 14 1 2 17793 0.25 F 12 1 1 17794 3.00 M 12 1 1 17795 5.00 M 12 1 1 17796 24.00 M 12 1 2 17797 28.00 M 12 1 2 17798 12.00 F 12 1 1 17799 6.00 M 12 1 1 17800 10.00 M 12 1 1 17801 30.00 F 14 1 2 17802 7.00 M 12 1 1 17803 19.00 M 12 1 2 17804 8.00 F 12 1 1 17805 10.00 M 14 1 1 17806 45.00 M 12 1 2 17807 12.00 F 12 1 1 17808 13.00 F 12 1 1 17809 33.00 F 12 1 2 17810 35.00 M 12 1 2 17811 25.00 F 12 1 2 17812 22.00 M 12 1 2 17813 28.00 M 12 1 2 17814 42.00 M 12 1 2 17815 30.00 M 12 1 2 17816 38.00 F 14 1 2 17817 13.00 M 14 1 1 17818 30.00 F 12 1 2 17819 38.00 F 12 1 2 17820 5.00 F 14 1 1 17821 25.00 F 12 1 2 17822 6.00 M 12 1 1 17823 38.00 M 12 1 2 17824 3.00 F 12 1 1 17825 18.00 F 12 1 2 17826 46.00 F 14 1 2 17827 30.00 F 12 1 2 17828 12.00 M 12 1 1 17829 35.00 M 12 1 2 17830 14.00 M 12 1 1 17831 16.00 F 12 1 1 17832 32.00 F 12 1 2 17833 35.00 F 12 1 2 17834 11.00 M 12 1 1 17835 12.00 F 12 1 1 17836 25.00 M 14 1 2 17837 35.00 M 19 1 2 17838 46.00 M 14 1 2 17839 80.00 F 19 1 3 17840 11.00 M 13 1 1 17841 50.00 M 15 1 2 17842 55.00 F 12 1 2 17843 60.00 F 12 1 3 17844 75.00 M 14 1 3 17845 38.00 F 13 1 2 17846 4.00 M 13 1 1 17847 35.00 F 8 1 2 17848 26.00 F 8 1 2 17849 17.00 M 8 1 1 17850 28.00 F 8 1 2 17851 38.00 M 8 1 2 17852 35.00 F 8 1 2 17853 28.00 F 8 1 2 17854 19.00 M 8 1 2 17855 5.00 M 8 1 1 17856 50.00 M 8 1 2 17857 33.00 M 8 1 2 17858 30.00 M 8 1 2 17859 32.00 M 8 1 2 17860 8.00 F 8 1 1 17861 27.00 M 8 1 2 17862 26.00 F 8 1 2 17863 28.00 M 10 1 2 17864 32.00 M 8 1 2 17865 30.00 M 8 1 2 17866 6.00 F 8 1 1 17867 5.00 M 8 1 1 17868 16.00 F 10 1 1 17869 14.00 M 10 1 1 17870 46.00 F 8 1 2 17871 48.00 M 8 1 2 17872 17.00 M 10 1 1 17873 26.00 M 8 1 2 17874 16.00 F 8 1 1 17875 11.00 F 8 1 1 17876 45.00 M 8 1 2 17877 14.00 M 8 1 1 17878 36.00 M 8 1 2 17879 18.00 M 8 1 2 17880 38.00 M 8 1 2 17881 36.00 M 10 1 2 17882 21.00 M 8 1 2 17883 5.00 M 8 1 1 17884 36.00 M 10 1 2 17885 27.00 M 8 1 2 17886 14.00 M 10 1 1 17887 14.00 F 10 1 1 17888 22.00 F 10 1 2 17889 40.00 M 10 1 2 17890 9.00 M 24 1 1 17891 24.00 F 10 1 2 17892 28.00 F 10 1 2 17893 28.00 F 10 1 2 17894 16.00 M 10 1 1 17895 11.00 F 17 1 1 17896 32.00 M 16 1 2 17897 6.00 M 10 1 1 17898 27.00 F 10 1 2 17899 47.00 F 17 1 2 17900 19.00 F 10 1 2 17901 16.00 M 10 1 1 17902 20.00 F 10 1 2 17903 42.00 M 10 1 2 17904 20.00 F 10 1 2 17905 38.00 M 10 1 2 17906 28.00 F 11 1 2 17907 45.00 M 11 1 2 17908 32.00 F 24 1 2 17909 23.00 F 11 1 2 17910 70.00 F 22 1 3 17911 33.00 M 11 1 2 17912 25.00 F 10 1 2 17913 3.00 M 11 1 1 17914 28.00 M 11 1 2 17915 30.00 F 11 1 2 17916 62.00 F 13 1 3 17917 35.00 F 11 1 2 17918 30.00 F 12 1 2 17919 71.00 M 13 1 3 17920 22.00 M 13 1 2 17921 55.00 M 13 1 2 17922 30.00 M 6 1 2 17923 8.00 F 11 1 1 17924 2.00 F 11 1 1 17925 33.00 F 11 1 2 17926 27.00 M 11 1 2 17927 25.00 F 11 1 2 17928 10.00 F 11 1 1 17929 2.00 M 11 1 1 17930 1.00 F 11 1 1 17931 35.00 M 11 1 2 17932 30.00 F 11 1 2 17933 18.00 F 11 1 2 17934 19.00 F 16 1 2 17935 2.00 M 11 1 1 17936 40.00 M 11 1 2 17937 18.00 M 11 1 2 17938 30.00 F 13 1 2 17939 43.00 M 16 1 2 17940 40.00 F 11 1 2 17941 16.00 F 11 1 1 17942 15.00 F 11 1 1 17943 8.00 F 11 1 1 17944 51.00 M 11 1 2 17945 35.00 M 11 1 2 17946 18.00 M 11 1 2 17947 28.00 M 11 1 2 17948 22.00 F 11 1 2 17949 40.00 M 11 1 2 17950 30.00 F 16 1 2 17951 29.00 M 11 1 2 17952 25.00 F 11 1 2 17953 2.00 M 24 1 1 17954 2.00 M 6 1 1 17955 4.00 M 26 1 1 17956 48.00 F 14 1 2 17957 30.00 F 6 1 2 17958 5.00 M 6 1 1 17959 60.00 F 6 1 3 17960 36.00 M 14 1 2 17961 37.00 M 2 1 2 17962 44.00 M 4 1 2 17963 40.00 M 1 1 2 17964 24.00 M 1 1 2 17965 59.00 M 1 1 2 17966 23.00 M 1 1 2 17967 24.00 F 5 1 2 17968 33.00 F 2 1 2 17969 40.00 M 1 1 2 17970 23.00 F 5 1 2 17971 62.00 M 5 1 3 17972 24.00 F 2 1 2 17973 6.00 F 1 1 1 17974 35.00 M 7 1 2 17975 3.00 M 5 1 1 17976 62.00 M 8 1 3 17977 26.00 M 12 1 2 17978 54.00 F 7 1 2 17979 28.00 F 7 1 2 17980 25.00 M 7 1 2 17981 46.00 M 25 1 2 17982 54.00 M 7 1 2 17983 30.00 F 11 1 2 17984 46.00 F 11 1 2 17985 49.00 F 21 1 2 17986 36.00 F 11 1 2 17987 8.00 M 11 1 1 17988 20.00 M 7 1 2 17989 20.00 M 15 1 2 17990 39.00 F 7 1 2 17991 35.00 F 9 1 2 17992 32.00 M 3 1 2 17993 60.00 M 5 1 3 17994 24.00 F 5 1 2 17995 12.00 M 5 1 1 17996 26.00 F 5 1 2 17997 45.00 M 13 1 2 17998 15.00 M 13 1 1 17999 30.00 F 13 1 2 18000 47.00 M 13 1 2 18001 62.00 M 8 1 3 18002 30.00 M 12 1 2 18003 25.00 M 1 1 2 18004 26.00 F 9 1 2 18005 45.00 M 7 1 2 18006 35.00 F 11 1 2 18007 12.00 M 7 1 1 18008 65.00 M 7 1 3 18009 38.00 M 7 1 2 18010 23.00 M 9 1 2 18011 11.00 F 21 1 1 18012 73.00 M 19 1 3 18013 40.00 F 9 1 2 18014 34.00 M 9 1 2 18015 38.00 M 24 1 2 18016 28.00 F 19 1 2 18017 73.00 M 19 1 3 18018 37.00 M 20 1 2 18019 56.00 F 20 1 2 18020 38.00 M 11 1 2 18021 36.00 M 19 1 2 18022 42.00 M 19 1 2 18023 25.00 M 11 1 2 18024 23.00 M 11 1 2 18025 53.00 M 20 1 2 18026 46.00 F 11 1 2 18027 33.00 M 19 1 2 18028 67.00 M 7 1 3 18029 68.00 F 21 1 3 18030 29.00 F 11 1 2 18031 51.00 F 11 1 2 18032 26.00 F 19 1 2 18033 7.00 F 11 1 1 18034 45.00 M 9 1 2 18035 36.00 M 10 1 2 18036 85.00 F 14 1 3 18037 79.00 M 10 1 3 18038 17.00 F 10 1 1 18039 21.00 M 12 1 2 18040 35.00 M 22 1 2 18041 35.00 M 12 1 2 18042 34.00 F 5 1 2 18043 38.00 M 11 1 2 18044 53.00 M 18 1 2 18045 52.00 M 7 1 2 18046 50.00 M 7 1 2 18047 13.00 F 2 1 1 18048 4.00 M 9 1 1 18049 28.00 M 4 1 2 18050 42.00 M 2 1 2 18051 23.00 M 2 1 2 18052 39.00 M 4 1 2 18053 28.00 F 1 1 2 18054 36.00 M 1 1 2 18055 34.00 M 1 1 2 18056 33.00 F 4 1 2 18057 32.00 M 1 1 2 18058 41.00 M 1 1 2 18059 37.00 F 4 1 2 18060 19.00 M 1 1 2 18061 47.00 M 2 1 2 18062 10.00 M 9 1 1 18063 35.00 F 9 1 2 18064 61.00 F 9 1 3 18065 65.00 F 9 1 3 18066 32.00 M 11 1 2 18067 24.00 F 27 1 2 18068 41.00 M 11 1 2 18069 33.00 F 21 1 2 18070 50.00 M 11 1 2 18071 21.00 M 13 1 2 18072 62.00 M 11 1 3 18073 28.00 F 11 1 2 18074 10.00 F 11 1 1 18075 6.00 F 11 1 1 18076 4.00 F 11 1 1 18077 26.00 F 13 1 2 18078 6.00 F 11 1 1 18079 8.00 F 11 1 1 18080 29.00 M 13 1 2 18081 25.00 F 11 1 2 18082 21.00 F 11 1 2 18083 17.00 F 13 1 1 18084 18.00 F 21 1 2 18085 22.00 F 9 1 2 18086 28.00 M 9 1 2 18087 26.00 F 9 1 2 18088 10.00 M 7 1 1 18089 23.00 F 9 1 2 18090 17.00 M 9 1 1 18091 30.00 M 9 1 2 18092 25.00 F 9 1 2 18093 41.00 M 9 1 2 18094 36.00 F 9 1 2 18095 12.00 M 7 1 1 18096 17.00 M 9 1 1 18097 65.00 M 9 1 3 18098 26.00 F 9 1 2 18099 14.00 F 9 1 1 18100 8.00 M 7 1 1 18101 14.00 F 9 1 1 18102 48.00 M 9 1 2 18103 36.00 M 9 1 2 18104 43.00 M 9 1 2 18105 27.00 M 9 1 2 18106 27.00 F 13 1 2 18107 60.00 F 21 1 3 18108 56.00 F 21 1 2 18109 63.00 M 21 1 3 18110 44.00 M 21 1 2 18111 18.00 F 9 1 2 18112 33.00 M 12 1 2 18113 22.00 F 12 1 2 18114 6.00 M 12 1 1 18115 24.00 F 9 1 2 18116 16.00 M 10 1 1 18117 2.00 M 5 1 1 18118 60.00 M 11 1 3 18119 2.00 F 5 1 1 18120 44.00 M 5 1 2 18121 45.00 M 5 1 2 18122 66.00 M 12 1 3 18123 34.00 M 13 1 2 18124 55.00 M 11 1 2 18125 46.00 M 11 1 2 18126 43.00 M 11 1 2 18127 43.00 M 13 1 2 18128 5.00 F 12 1 1 18129 34.00 M 9 1 2 18130 26.00 M 4 1 2 18131 25.00 F 10 1 2 18132 23.00 F 10 1 2 18133 58.00 M 18 1 2 18134 56.00 F 10 1 2 18135 26.00 F 4 1 2 18136 25.00 M 6 1 2 18137 44.00 M 6 1 2 18138 25.00 M 6 1 2 18139 22.00 M 11 1 2 18140 23.00 M 6 1 2 18141 24.00 M 18 1 2 18142 39.00 M 10 1 2 18143 42.00 M 10 1 2 18144 24.00 M 6 1 2 18145 47.00 M 10 1 2 18146 23.00 M 10 1 2 18147 23.00 M 10 1 2 18148 26.00 M 10 1 2 18149 23.00 M 6 1 2 18150 25.00 M 6 1 2 18151 39.00 M 10 1 2 18152 24.00 M 6 1 2 18153 51.00 F 10 1 2 18154 29.00 F 10 1 2 18155 26.00 M 7 1 2 18156 23.00 M 22 1 2 18157 23.00 M 22 1 2 18158 23.00 M 14 1 2 18159 41.00 M 8 1 2 18160 9.00 M 7 1 1 18161 50.00 M 8 1 2 18162 2.00 M 8 1 1 18163 36.00 M 12 1 2 18164 10.00 F 8 1 1 18165 57.00 F 10 1 2 18166 27.00 M 8 1 2 18167 25.00 M 10 1 2 18168 50.00 M 18 1 2 18169 72.00 M 10 1 3 18170 63.00 M 10 1 3 18171 78.00 M 10 1 3 18172 60.00 M 10 1 3 18173 55.00 F 18 1 2 18174 17.00 M 10 1 1 18175 40.00 M 10 1 2 18176 80.00 F 10 1 3 18177 30.00 F 10 1 2 18178 72.00 M 8 1 3 18179 8.00 M 10 1 1 18180 8.00 F 10 1 1 18181 58.00 M 10 1 2 18182 26.00 M 10 1 2 18183 15.00 F 10 1 1 18184 27.00 F 11 1 2 18185 45.00 F 10 1 2 18186 51.00 M 10 1 2 18187 15.00 M 10 1 1 18188 44.00 F 10 1 2 18189 65.00 F 6 1 3 18190 11.00 M 10 1 1 18191 35.00 F 10 1 2 18192 13.00 M 10 1 1 18193 24.00 F 5 1 2 18194 8.00 F 6 1 1 18195 36.00 F 12 1 2 18196 17.00 M 23 1 1 18197 26.00 F 23 1 2 18198 30.00 F 18 1 2 18199 44.00 M 8 1 2 18200 35.00 F 8 1 2 18201 40.00 M 5 1 2 18202 24.00 F 8 1 2 18203 27.00 M 14 1 2 18204 27.00 F 8 1 2 18205 63.00 M 8 1 3 18206 35.00 F 8 1 2 18207 19.00 M 8 1 2 18208 27.00 M 8 1 2 18209 25.00 F 8 1 2 18210 40.00 F 14 1 2 18211 15.00 M 14 1 1 18212 30.00 M 8 1 2 18213 25.00 F 10 1 2 18214 40.00 F 8 1 2 18215 32.00 M 10 1 2 18216 28.00 F 17 1 2 18217 28.00 F 12 1 2 18218 56.00 F 10 1 2 18219 16.00 F 8 1 1 18220 51.00 M 10 1 2 18221 30.00 M 10 1 2 18222 28.00 M 10 1 2 18223 35.00 F 10 1 2 18224 72.00 M 17 1 3 18225 3.00 M 7 1 1 18226 55.00 M 10 1 2 18227 36.00 M 10 1 2 18228 36.00 F 17 1 2 18229 22.00 M 11 1 2 18230 16.00 M 11 1 1 18231 37.00 F 11 1 2 18232 35.00 F 11 1 2 18233 22.00 F 11 1 2 18234 2.00 F 11 1 1 18235 2.00 F 12 1 1 18236 49.00 M 11 1 2 18237 43.00 F 11 1 2 18238 22.00 M 11 1 2 18239 48.00 M 11 1 2 18240 27.00 M 11 1 2 18241 26.00 M 11 1 2 18242 20.00 M 11 1 2 18243 35.00 M 17 1 2 18244 4.00 F 11 1 1 18245 28.00 M 15 1 2 18246 21.00 F 15 1 2 18247 21.00 F 12 1 2 18248 27.00 M 11 1 2 18249 33.00 M 11 1 2 18250 20.00 M 11 1 2 18251 55.00 F 11 1 2 18252 5.00 M 11 1 1 18253 8.00 F 11 1 1 18254 1.00 F 11 1 1 18255 25.00 F 11 1 2 18256 15.00 M 11 1 1 18257 43.00 F 11 1 2 18258 17.00 M 11 1 1 18259 36.00 F 11 1 2 18260 18.00 F 11 1 2 18261 42.00 M 10 1 2 18262 20.00 M 11 1 2 18263 44.00 M 8 1 2 18264 19.00 M 8 1 2 18265 21.00 M 8 1 2 18266 28.00 M 20 1 2 18267 40.00 M 11 1 2 18268 30.00 F 12 1 2 18269 46.00 M 13 1 2 18270 7.00 M 8 1 1 18271 12.00 F 10 1 1 18272 45.00 M 11 1 2 18273 40.00 F 11 1 2 18274 17.00 F 11 1 1 18275 15.00 M 11 1 1 18276 20.00 F 6 1 2 18277 30.00 F 6 1 2 18278 6.00 F 6 1 1 18279 29.00 M 19 1 2 18280 26.00 M 13 1 2 18281 4.00 F 16 1 1 18282 29.00 M 12 1 2 18283 21.00 M 4 1 2 18284 22.00 M 12 1 2 18285 14.00 F 6 1 1 18286 34.00 M 6 1 2 18287 38.00 M 6 1 2 18288 22.00 F 6 1 2 18289 34.00 M 12 1 2 18290 42.00 M 6 1 2 18291 35.00 F 12 1 2 18292 26.00 F 6 1 2 18293 37.00 M 4 1 2 18294 32.00 F 4 1 2 18295 46.00 F 6 1 2 18296 44.00 M 9 1 2 18297 36.00 M 10 1 2 18298 50.00 M 8 1 2 18299 53.00 M 8 1 2 18300 46.00 M 8 1 2 18301 68.00 F 9 1 3 18302 57.00 M 19 1 2 18303 69.00 M 18 1 3 18304 20.00 M 19 1 2 18305 57.00 M 20 1 2 18306 20.00 F 20 1 2 18307 36.00 F 18 1 2 18308 61.00 M 18 1 3 18309 18.00 F 18 1 2 18310 57.00 M 18 1 2 18311 60.00 M 19 1 3 18312 30.00 F 18 1 2 18313 64.00 F 18 1 3 18314 51.00 M 8 1 2 18315 35.00 F 9 1 2 18316 34.00 M 18 1 2 18317 40.00 M 8 1 2 18318 48.00 F 11 1 2 18319 26.00 M 11 1 2 18320 45.00 M 12 1 2 18321 50.00 M 12 1 2 18322 26.00 M 12 1 2 18323 33.00 M 7 1 2 18324 35.00 M 5 1 2 18325 33.00 M 9 1 2 18326 0.91 M 8 1 1 18327 47.00 M 18 1 2 18328 29.00 F 17 1 2 18329 30.00 M 17 1 2 18330 60.00 F 17 1 3 18331 27.00 M 18 1 2 18332 42.00 M 17 1 2 18333 20.00 M 17 1 2 18334 30.00 M 26 1 2 18335 29.00 M 9 1 2 18336 33.00 M 17 1 2 18337 78.00 M 17 1 3 18338 68.00 M 18 1 3 18339 64.00 M 21 1 3 18340 45.00 M 7 1 2 18341 62.00 M 17 1 3 18342 32.00 M 18 1 2 18343 38.00 M 17 1 2 18344 24.00 M 8 1 2 18345 60.00 M 19 1 3 18346 59.00 F 8 1 2 18347 38.00 M 18 1 2 18348 38.00 M 17 1 2 18349 34.00 M 13 1 2 18350 40.00 M 13 1 2 18351 25.00 F 13 1 2 18352 19.00 M 9 1 2 18353 25.00 F 9 1 2 18354 63.00 M 11 1 3 18355 3.00 M 9 1 1 18356 28.00 M 9 1 2 18357 78.00 F 11 1 3 18358 80.00 M 11 1 3 18359 35.00 M 15 1 2 18360 33.00 M 8 1 2 18361 38.00 F 8 1 2 18362 12.00 F 8 1 1 18363 8.00 M 8 1 1 18364 46.00 M 2 1 2 18365 17.00 F 9 1 1 18366 39.00 F 9 1 2 18367 18.00 F 9 1 2 18368 65.00 F 2 1 3 18369 44.00 F 9 1 2 18370 14.00 M 9 1 1 18371 17.00 M 9 1 1 18372 42.00 M 10 1 2 18373 8.00 M 8 1 1 18374 61.00 F 8 1 3 18375 65.00 M 10 1 3 18376 62.00 M 12 1 3 18377 63.00 M 10 1 3 18378 7.00 F 11 1 1 18379 24.00 M 5 1 2 18380 22.00 M 5 1 2 18381 22.00 M 5 1 2 18382 22.00 M 5 1 2 18383 23.00 M 10 1 2 18384 28.00 M 10 1 2 18385 26.00 M 5 1 2 18386 23.00 M 10 1 2 18387 24.00 M 10 1 2 18388 23.00 M 5 1 2 18389 25.00 M 9 1 2 18390 22.00 M 9 1 2 18391 46.00 M 9 1 2 18392 29.00 M 9 1 2 18393 26.00 M 17 1 2 18394 34.00 M 9 1 2 18395 35.00 M 5 1 2 18396 22.00 M 9 1 2 18397 25.00 F 5 1 2 18398 2.00 F 9 1 1 18399 26.00 F 9 1 2 18400 30.00 M 5 1 2 18401 55.00 F 9 1 2 18402 28.00 F 9 1 2 18403 25.00 M 6 1 2 18404 26.00 M 6 1 2 18405 26.00 M 9 1 2 18406 27.00 M 9 1 2 18407 25.00 M 17 1 2 18408 26.00 M 9 1 2 18409 28.00 M 9 1 2 18410 24.00 M 17 1 2 18411 25.00 M 17 1 2 18412 38.00 M 17 1 2 18413 38.00 M 9 1 2 18414 12.00 M 9 1 1 18415 36.00 M 6 1 2 18416 46.00 M 9 1 2 18417 34.00 M 9 1 2 18418 27.00 M 10 1 2 18419 27.00 M 10 1 2 18420 34.00 M 10 1 2 18421 40.00 M 10 1 2 18422 48.00 M 9 1 2 18423 39.00 M 9 1 2 18424 33.00 M 9 1 2 18425 40.00 M 6 1 2 18426 57.00 M 6 1 2 18427 47.00 M 6 1 2 18428 31.00 M 9 1 2 18429 36.00 M 9 1 2 18430 37.00 M 9 1 2 18431 42.00 M 9 1 2 18432 45.00 M 9 1 2 18433 32.00 M 9 1 2 18434 24.00 F 9 1 2 18435 25.00 M 9 1 2 18436 23.00 M 17 1 2 18437 20.00 M 9 1 2 18438 25.00 M 10 1 2 18439 31.00 M 9 1 2 18440 24.00 M 5 1 2 18441 25.00 M 9 1 2 18442 32.00 M 9 1 2 18443 29.00 M 6 1 2 18444 25.00 M 9 1 2 18445 27.00 M 9 1 2 18446 48.00 M 6 1 2 18447 23.00 M 9 1 2 18448 38.00 M 6 1 2 18449 32.00 M 10 1 2 18450 28.00 M 6 1 2 18451 31.00 M 9 1 2 18452 32.00 M 5 1 2 18453 44.00 M 9 1 2 18454 28.00 M 6 1 2 18455 26.00 M 10 1 2 18456 26.00 M 6 1 2 18457 33.00 M 9 1 2 18458 43.00 M 9 1 2 18459 30.00 M 9 1 2 18460 46.00 M 9 1 2 18461 49.00 F 9 1 2 18462 36.00 M 9 1 2 18463 12.00 M 10 1 1 18464 75.00 F 10 1 3 18465 83.00 M 10 1 3 18466 12.00 M 10 1 1 18467 57.00 M 8 1 2 18468 57.00 M 10 1 2 18469 49.00 M 10 1 2 18470 26.00 F 16 1 2 18471 11.00 F 16 1 1 18472 3.00 M 16 1 1 18473 21.00 F 18 1 2 18474 52.00 M 9 1 2 18475 6.00 M 8 1 1 18476 70.00 F 6 1 3 18477 55.00 F 5 1 2 18478 35.00 M 5 1 2 18479 34.00 M 5 1 2 18480 27.00 M 8 1 2 18481 36.00 M 7 1 2 18482 38.00 M 14 1 2 18483 21.00 M 10 1 2 18484 39.00 M 7 1 2 18485 25.00 F 12 1 2 18486 49.00 M 9 1 2 18487 31.00 M 7 1 2 18488 65.00 M 16 1 3 18489 32.00 M 9 1 2 18490 45.00 M 9 1 2 18491 35.00 F 9 1 2 18492 28.00 M 11 1 2 18493 23.00 F 10 1 2 18494 27.00 M 7 1 2 18495 7.00 M 10 1 1 18496 40.00 M 12 1 2 18497 31.00 M 9 1 2 18498 35.00 F 10 1 2 18499 5.00 F 7 1 1 18500 33.00 M 9 1 2 18501 3.00 F 7 1 1 18502 36.00 F 11 1 2 18503 27.00 M 9 1 2 18504 20.00 F 9 1 2 18505 38.00 F 9 1 2 18506 17.00 F 9 1 1 18507 28.00 F 9 1 2 18508 14.00 M 9 1 1 18509 40.00 F 9 1 2 18510 17.00 F 9 1 1 18511 23.00 M 9 1 2 18512 23.00 M 9 1 2 18513 22.00 F 9 1 2 18514 23.00 M 9 1 2 18515 54.00 F 9 1 2 18516 45.00 F 9 1 2 18517 21.00 F 9 1 2 18518 43.00 F 16 1 2 18519 21.00 M 7 1 2 18520 37.00 M 9 1 2 18521 23.00 M 9 1 2 18522 29.00 M 9 1 2 18523 5.00 F 7 1 1 18524 50.00 F 9 1 2 18525 9.00 F 10 1 1 18526 16.00 F 9 1 1 18527 27.00 M 9 1 2 18528 24.00 M 9 1 2 18529 30.00 F 9 1 2 18530 40.00 M 9 1 2 18531 21.00 F 11 1 2 18532 26.00 M 9 1 2 18533 25.00 M 16 1 2 18534 31.00 M 6 1 2 18535 30.00 F 6 1 2 18536 29.00 F 6 1 2 18537 41.00 M 8 1 2 18538 1.00 F 5 1 1 18539 12.00 M 5 1 1 18540 20.00 M 5 1 2 18541 21.00 F 5 1 2 18542 28.00 M 5 1 2 18543 35.00 F 5 1 2 18544 22.00 M 10 1 2 18545 25.00 M 14 1 2 18546 30.00 M 10 1 2 18547 45.00 M 10 1 2 18548 41.00 M 13 1 2 18549 24.00 F 7 1 2 18550 29.00 F 10 1 2 18551 22.00 M 7 1 2 18552 10.00 M 7 1 1 18553 31.00 M 11 1 2 18554 30.00 M 11 1 2 18555 25.00 F 14 1 2 18556 4.00 F 11 1 1 18557 46.00 M 16 1 2 18558 60.00 F 19 1 3 18559 23.00 F 9 1 2 18560 24.00 F 10 1 2 18561 35.00 F 11 1 2 18562 10.00 M 10 1 1 18563 8.00 F 10 1 1 18564 6.00 M 26 1 1 18565 29.00 F 26 1 2 18566 35.00 F 10 1 2 18567 40.00 M 10 1 2 18568 18.00 F 11 1 2 18569 27.00 M 11 1 2 18570 2.00 M 4 1 1 18571 28.00 M 10 1 2 18572 26.00 F 10 1 2 18573 24.00 F 4 1 2 18574 47.00 M 10 1 2 18575 42.00 M 12 1 2 18576 48.00 M 9 1 2 18577 37.00 F 11 1 2 18578 39.00 M 11 1 2 18579 39.00 M 11 1 2 18580 13.00 F 9 1 1 18581 45.00 M 26 1 2 18582 28.00 F 10 1 2 18583 6.00 M 26 1 1 18584 35.00 M 10 1 2 18585 58.00 F 10 1 2 18586 34.00 M 10 1 2 18587 25.00 F 10 1 2 18588 24.00 M 10 1 2 18589 36.00 F 11 1 2 18590 30.00 M 11 1 2 18591 29.00 M 10 1 2 18592 26.00 M 11 1 2 18593 30.00 F 11 1 2 18594 18.00 M 10 1 2 18595 40.00 F 10 1 2 18596 39.00 F 11 1 2 18597 5.00 F 23 1 1 18598 41.00 M 12 1 2 18599 36.00 M 19 1 2 18600 32.00 M 10 1 2 18601 15.00 M 10 1 1 18602 25.00 F 19 1 2 18603 37.00 M 16 1 2 18604 18.00 M 11 1 2 18605 30.00 F 10 1 2 18606 49.00 F 10 1 2 18607 35.00 M 15 1 2 18608 32.00 M 15 1 2 18609 17.00 M 15 1 1 18610 38.00 M 9 1 2 18611 27.00 F 9 1 2 18612 30.00 M 15 1 2 18613 33.00 M 18 1 2 18614 16.00 F 15 1 1 18615 57.00 M 18 1 2 18616 70.00 M 15 1 3 18617 50.00 M 18 1 2 18618 40.00 F 15 1 2 18619 29.00 M 15 1 2 18620 55.00 M 9 1 2 18621 59.00 M 9 1 2 18622 30.00 F 7 1 2 18623 10.00 F 9 1 1 18624 34.00 M 9 1 2 18625 33.00 M 9 1 2 18626 33.00 F 20 1 2 18627 35.00 M 9 1 2 18628 16.00 F 9 1 1 18629 47.00 M 9 1 2 18630 65.00 M 22 1 3 18631 52.00 F 8 1 2 18632 64.00 F 22 1 3 18633 35.00 M 8 1 2 18634 43.00 M 8 1 2 18635 30.00 F 16 1 2 18636 38.00 F 16 1 2 18637 12.00 F 16 1 1 18638 42.00 M 9 1 2 18639 35.00 M 16 1 2 18640 32.00 M 1 1 2 18641 45.00 M 10 1 2 18642 27.00 M 1 1 2 18643 9.00 F 13 1 1 18644 22.00 F 13 1 2 18645 9.00 M 7 1 1 18646 54.00 M 7 1 2 18647 16.00 M 10 1 1 18648 51.00 F 10 1 2 18649 24.00 F 10 1 2 18650 5.00 M 9 1 1 18651 45.00 M 9 1 2 18652 50.00 M 10 1 2 18653 20.00 F 7 1 2 18654 37.00 M 15 1 2 18655 56.00 F 10 1 2 18656 20.00 M 10 1 2 18657 25.00 F 10 1 2 18658 28.00 F 8 1 2 18659 24.00 F 8 1 2 18660 29.00 F 9 1 2 18661 55.00 M 9 1 2 18662 51.00 M 10 1 2 18663 20.00 F 10 1 2 18664 6.00 F 10 1 1 18665 10.00 M 10 1 1 18666 34.00 F 10 1 2 18667 68.00 F 10 1 3 18668 31.00 M 7 1 2 18669 23.00 F 8 1 2 18670 26.00 F 9 1 2 18671 56.00 F 18 1 2 18672 35.00 M 16 1 2 18673 63.00 F 20 1 3 18674 33.00 M 16 1 2 18675 22.00 F 16 1 2 18676 36.00 M 16 1 2 18677 33.00 F 17 1 2 18678 34.00 F 16 1 2 18679 19.00 F 16 1 2 18680 67.00 M 17 1 3 18681 35.00 M 18 1 2 18682 44.00 M 17 1 2 18683 49.00 M 16 1 2 18684 24.00 M 17 1 2 18685 46.00 M 17 1 2 18686 24.00 F 17 1 2 18687 36.00 M 7 1 2 18688 59.00 M 17 1 2 18689 57.00 M 17 1 2 18690 54.00 M 17 1 2 18691 18.00 F 16 1 2 18692 40.00 F 16 1 2 18693 32.00 F 16 1 2 18694 4.00 M 16 1 1 18695 35.00 M 18 1 2 18696 28.00 M 16 1 2 18697 15.00 F 16 1 1 18698 30.00 F 10 1 2 18699 13.00 M 10 1 1 18700 25.00 F 16 1 2 18701 5.00 M 11 1 1 18702 23.00 M 16 1 2 18703 30.00 M 14 1 2 18704 26.00 F 14 1 2 18705 14.00 F 14 1 1 18706 31.00 F 18 1 2 18707 37.00 M 14 1 2 18708 29.00 F 10 1 2 18709 6.00 F 10 1 1 18710 40.00 M 10 1 2 18711 10.00 F 10 1 1 18712 25.00 F 14 1 2 18713 11.00 F 18 1 1 18714 58.00 F 14 1 2 18715 18.00 M 14 1 2 18716 35.00 M 18 1 2 18717 45.00 F 10 1 2 18718 55.00 M 10 1 2 18719 25.00 F 10 1 2 18720 3.00 M 10 1 1 18721 15.00 F 25 1 1 18722 6.00 F 10 1 1 18723 26.00 M 14 1 2 18724 23.00 F 14 1 2 18725 35.00 M 25 1 2 18726 6.00 M 10 1 1 18727 20.00 M 14 1 2 18728 48.00 F 9 1 2 18729 19.00 M 18 1 2 18730 2.00 M 9 1 1 18731 37.00 M 8 1 2 18732 23.00 M 9 1 2 18733 9.00 M 9 1 1 18734 13.00 F 8 1 1 18735 4.00 M 8 1 1 18736 50.00 M 8 1 2 18737 23.00 F 8 1 2 18738 32.00 F 8 1 2 18739 4.00 M 8 1 1 18740 3.00 M 8 1 1 18741 2.00 F 15 1 1 18742 41.00 F 15 1 2 18743 45.00 F 15 1 2 18744 7.00 M 10 1 1 18745 9.00 F 10 1 1 18746 1.00 F 7 1 1 18747 9.00 M 7 1 1 18748 35.00 F 7 1 2 18749 30.00 M 7 1 2 18750 28.00 F 7 1 2 18751 31.00 F 7 1 2 18752 44.00 M 7 1 2 18753 4.00 M 7 1 1 18754 11.00 F 7 1 1 18755 10.00 M 7 1 1 18756 30.00 M 7 1 2 18757 25.00 M 13 1 2 18758 34.00 M 8 1 2 18759 36.00 F 8 1 2 18760 43.00 M 8 1 2 18761 10.00 F 9 1 1 18762 61.00 M 24 1 3 18763 5.00 F 6 1 1 18764 50.00 M 10 1 2 18765 7.00 F 6 1 1 18766 45.00 M 10 1 2 18767 49.00 M 13 1 2 18768 48.00 M 8 1 2 18769 14.00 F 8 1 1 18770 43.00 M 8 1 2 18771 40.00 F 8 1 2 18772 28.00 F 6 1 2 18773 52.00 M 13 1 2 18774 8.00 M 9 1 1 18775 10.00 F 9 1 1 18776 1.00 M 6 1 1 18777 27.00 M 9 1 2 18778 62.00 M 15 1 3 18779 29.00 F 13 1 2 18780 6.00 M 9 1 1 18781 43.00 M 10 1 2 18782 28.00 M 10 1 2 18783 49.00 M 24 1 2 18784 10.00 M 14 1 1 18785 34.00 M 14 1 2 18786 44.00 M 14 1 2 18787 13.00 M 14 1 1 18788 22.00 M 14 1 2 18789 35.00 F 14 1 2 18790 15.00 M 14 1 1 18791 63.00 M 9 1 3 18792 4.00 F 20 1 1 18793 3.00 F 9 1 1 18794 23.00 M 15 1 2 18795 50.00 M 8 1 2 18796 22.00 M 15 1 2 18797 58.00 M 8 1 2 18798 25.00 M 15 1 2 18799 34.00 M 8 1 2 18800 28.00 M 8 1 2 18801 23.00 M 8 1 2 18802 35.00 M 8 1 2 18803 30.00 M 15 1 2 18804 48.00 F 8 1 2 18805 44.00 F 8 1 2 18806 27.00 M 8 1 2 18807 24.00 M 8 1 2 18808 45.00 M 8 1 2 18809 38.00 M 8 1 2 18810 27.00 M 15 1 2 18811 36.00 M 8 1 2 18812 39.00 M 8 1 2 18813 25.00 M 15 1 2 18814 23.00 M 8 1 2 18815 5.00 F 7 1 1 18816 39.00 F 7 1 2 18817 21.00 F 7 1 2 18818 60.00 M 7 1 3 18819 69.00 M 7 1 3 18820 19.00 F 7 1 2 18821 18.00 M 7 1 2 18822 30.00 M 6 1 2 18823 52.00 M 9 1 2 18824 50.00 M 9 1 2 18825 15.00 F 11 1 1 18826 50.00 F 11 1 2 18827 21.00 M 11 1 2 18828 32.00 M 11 1 2 18829 26.00 M 11 1 2 18830 32.00 F 11 1 2 18831 20.00 M 11 1 2 18832 25.00 M 11 1 2 18833 55.00 M 21 1 2 18834 45.00 F 11 1 2 18835 43.00 M 11 1 2 18836 26.00 F 11 1 2 18837 3.00 F 11 1 1 18838 29.00 F 11 1 2 18839 72.00 F 13 1 3 18840 12.00 M 11 1 1 18841 40.00 M 11 1 2 18842 23.00 M 11 1 2 18843 25.00 F 8 1 2 18844 30.00 M 5 1 2 18845 32.00 F 5 1 2 18846 27.00 M 7 1 2 18847 25.00 M 8 1 2 18848 37.00 F 8 1 2 18849 53.00 F 8 1 2 18850 30.00 M 11 1 2 18851 56.00 M 10 1 2 18852 5.00 M 9 1 1 18853 28.00 M 9 1 2 18854 30.00 M 10 1 2 18855 30.00 F 7 1 2 18856 8.00 M 9 1 1 18857 37.00 M 10 1 2 18858 23.00 M 10 1 2 18859 40.00 M 13 1 2 18860 45.00 F 13 1 2 18861 23.00 M 13 1 2 18862 39.00 M 10 1 2 18863 28.00 F 8 1 2 18864 21.00 M 8 1 2 18865 42.00 F 14 1 2 18866 18.00 F 12 1 2 18867 35.00 F 12 1 2 18868 23.00 F 8 1 2 18869 37.00 M 9 1 2 18870 46.00 F 9 1 2 18871 52.00 M 9 1 2 18872 48.00 M 9 1 2 18873 30.00 M 9 1 2 18874 34.00 M 9 1 2 18875 30.00 M 12 1 2 18876 35.00 F 9 1 2 18877 40.00 F 9 1 2 18878 40.00 F 9 1 2 18879 15.00 M 9 1 1 18880 30.00 M 9 1 2 18881 60.00 M 9 1 3 18882 32.00 F 12 1 2 18883 41.00 F 8 1 2 18884 25.00 M 9 1 2 18885 32.00 M 9 1 2 18886 34.00 M 9 1 2 18887 52.00 M 9 1 2 18888 22.00 M 14 1 2 18889 42.00 M 23 1 2 18890 50.00 M 14 1 2 18891 31.00 M 12 1 2 18892 29.00 M 12 1 2 18893 40.00 M 12 1 2 18894 16.00 M 12 1 1 18895 38.00 F 12 1 2 18896 32.00 M 12 1 2 18897 27.00 M 9 1 2 18898 28.00 M 12 1 2 18899 22.00 F 9 1 2 18900 3.00 F 12 1 1 18901 64.00 M 12 1 3 18902 37.00 M 14 1 2 18903 48.00 F 9 1 2 18904 26.00 M 15 1 2 18905 22.00 M 14 1 2 18906 70.00 M 14 1 3 18907 30.00 F 14 1 2 18908 8.00 M 12 1 1 18909 7.00 F 9 1 1 18910 30.00 F 15 1 2 18911 45.00 F 16 1 2 18912 65.00 M 16 1 3 18913 17.00 M 9 1 1 18914 17.00 F 9 1 1 18915 31.00 F 11 1 2 18916 24.00 M 24 1 2 18917 30.00 M 10 1 2 18918 26.00 F 10 1 2 18919 7.00 M 10 1 1 18920 38.00 F 10 1 2 18921 36.00 F 10 1 2 18922 35.00 F 9 1 2 18923 30.00 M 7 1 2 18924 11.00 M 7 1 1 18925 12.00 M 17 1 1 18926 11.00 F 9 1 1 18927 54.00 M 24 1 2 18928 52.00 F 10 1 2 18929 1.00 F 7 1 1 18930 40.00 F 17 1 2 18931 54.00 M 17 1 2 18932 36.00 F 3 1 2 18933 26.00 M 10 1 2 18934 33.00 M 10 1 2 18935 3.00 F 10 1 1 18936 11.00 F 11 1 1 18937 40.00 F 11 1 2 18938 14.00 M 11 1 1 18939 13.00 F 11 1 1 18940 65.00 M 11 1 3 18941 22.00 F 11 1 2 18942 60.00 M 11 1 3 18943 75.00 F 11 1 3 18944 26.00 M 10 1 2 18945 23.00 F 10 1 2 18946 27.00 F 10 1 2 18947 1.00 F 21 1 1 18948 12.00 M 15 1 1 18949 48.00 M 24 1 2 18950 10.00 F 10 1 1 18951 15.00 F 10 1 1 18952 8.00 F 24 1 1 18953 41.00 M 10 1 2 18954 17.00 F 10 1 1 18955 4.00 M 9 1 1 18956 66.00 M 21 1 3 18957 7.00 F 10 1 1 18958 50.00 F 10 1 2 18959 22.00 M 10 1 2 18960 30.00 M 7 1 2 18961 6.00 F 7 1 1 18962 8.00 F 7 1 1 18963 7.00 M 9 1 1 18964 25.00 F 7 1 2 18965 42.00 M 7 1 2 18966 34.00 F 7 1 2 18967 40.00 M 10 1 2 18968 47.00 F 11 1 2 18969 42.00 M 22 1 2 18970 54.00 M 9 1 2 18971 51.00 M 9 1 2 18972 55.00 F 21 1 2 18973 55.00 F 7 1 2 18974 2.00 M 7 1 1 18975 25.00 F 16 1 2 18976 50.00 F 6 1 2 18977 31.00 M 6 1 2 18978 24.00 M 6 1 2 18979 49.00 M 6 1 2 18980 45.00 M 6 1 2 18981 30.00 M 11 1 2 18982 28.00 M 11 1 2 18983 35.00 F 7 1 2 18984 25.00 M 13 1 2 18985 30.00 M 8 1 2 18986 24.00 M 7 1 2 18987 37.00 M 11 1 2 18988 28.00 F 7 1 2 18989 40.00 M 9 1 2 18990 36.00 F 22 1 2 18991 5.00 F 11 1 1 18992 24.00 M 13 1 2 18993 28.00 F 11 1 2 18994 2.00 M 8 1 1 18995 28.00 M 13 1 2 18996 65.00 M 22 1 3 18997 38.00 M 11 1 2 18998 43.00 M 8 1 2 18999 56.00 M 13 1 2 19000 48.00 F 13 1 2 19001 29.00 M 13 1 2 19002 64.00 M 11 1 3 19003 25.00 M 22 1 2 19004 40.00 M 7 1 2 19005 30.00 M 7 1 2 19006 43.00 M 13 1 2 19007 49.00 M 11 1 2 19008 36.00 M 7 1 2 19009 41.00 F 7 1 2 19010 23.00 M 8 1 2 19011 18.00 M 13 1 2 19012 22.00 M 8 1 2 19013 26.00 M 8 1 2 19014 34.00 M 8 1 2 19015 25.00 M 13 1 2 19016 44.00 M 7 1 2 19017 57.00 M 8 1 2 19018 46.00 F 13 1 2 19019 33.00 M 8 1 2 19020 43.00 M 14 1 2 19021 22.00 M 7 1 2 19022 23.00 M 7 1 2 19023 22.00 M 7 1 2 19024 78.00 M 14 1 3 19025 22.00 M 9 1 2 19026 34.00 F 8 1 2 19027 24.00 F 8 1 2 19028 34.00 F 8 1 2 19029 27.00 F 8 1 2 19030 38.00 M 8 1 2 19031 21.00 F 8 1 2 19032 55.00 F 8 1 2 19033 50.00 M 8 1 2 19034 32.00 M 8 1 2 19035 82.00 F 6 1 3 19036 60.00 F 8 1 3 19037 30.00 F 8 1 2 19038 29.00 F 6 1 2 19039 35.00 M 8 1 2 19040 20.00 M 8 1 2 19041 40.00 M 8 1 2 19042 8.00 M 8 1 1 19043 41.00 M 8 1 2 19044 7.00 F 9 1 1 19045 32.00 F 8 1 2 19046 37.00 M 8 1 2 19047 63.00 M 9 1 3 19048 54.00 M 9 1 2 19049 27.00 F 6 1 2 19050 36.00 M 7 1 2 19051 36.00 F 8 1 2 19052 23.00 F 14 1 2 19053 49.00 M 14 1 2 19054 26.00 F 19 1 2 19055 30.00 F 14 1 2 19056 37.00 M 18 1 2 19057 41.00 M 18 1 2 19058 40.00 M 19 1 2 19059 32.00 F 14 1 2 19060 7.00 F 19 1 1 19061 10.00 M 14 1 1 19062 60.00 M 14 1 3 19063 33.00 F 18 1 2 19064 13.00 F 14 1 1 19065 10.00 M 19 1 1 19066 56.00 F 19 1 2 19067 35.00 F 14 1 2 19068 38.00 M 19 1 2 19069 13.00 F 14 1 1 19070 7.00 M 19 1 1 19071 42.00 M 12 1 2 19072 41.00 F 12 1 2 19073 17.00 F 12 1 1 19074 38.00 M 12 1 2 19075 65.00 M 12 1 3 19076 14.00 F 8 1 1 19077 26.00 F 11 1 2 19078 50.00 F 23 1 2 19079 20.00 F 9 1 2 19080 65.00 F 9 1 3 19081 42.00 M 10 1 2 19082 28.00 F 7 1 2 19083 18.00 F 7 1 2 19084 20.00 F 4 1 2 19085 22.00 F 4 1 2 19086 21.00 F 4 1 2 19087 23.00 F 4 1 2 19088 54.00 F 7 1 2 19089 12.00 M 7 1 1 19090 60.00 F 7 1 3 19091 24.00 F 7 1 2 19092 48.00 F 7 1 2 19093 65.00 M 7 1 3 19094 35.00 M 12 1 2 19095 55.00 M 12 1 2 19096 37.00 F 13 1 2 19097 16.00 F 13 1 1 19098 31.00 M 13 1 2 19099 59.00 M 13 1 2 19100 25.00 M 8 1 2 19101 15.00 M 8 1 1 19102 27.00 M 8 1 2 19103 24.00 F 14 1 2 19104 50.00 M 10 1 2 19105 49.00 M 8 1 2 19106 40.00 F 8 1 2 19107 55.00 F 18 1 2 19108 42.00 F 18 1 2 19109 26.00 M 18 1 2 19110 35.00 M 18 1 2 19111 41.00 M 18 1 2 19112 61.00 F 15 1 3 19113 50.00 F 15 1 2 19114 64.00 F 16 1 3 19115 53.00 M 15 1 2 19116 35.00 M 18 1 2 19117 36.00 M 15 1 2 19118 53.00 M 14 1 2 19119 32.00 F 14 1 2 19120 34.00 M 15 1 2 19121 55.00 M 17 1 2 19122 61.00 F 17 1 3 19123 40.00 M 14 1 2 19124 29.00 F 14 1 2 19125 59.00 F 14 1 2 19126 61.00 F 16 1 3 19127 32.00 M 16 1 2 19128 33.00 M 17 1 2 19129 24.00 M 14 1 2 19130 45.00 F 16 1 2 19131 65.00 M 16 1 3 19132 26.00 M 14 1 2 19133 54.00 M 16 1 2 19134 17.00 F 16 1 1 19135 13.00 F 16 1 1 19136 12.00 F 16 1 1 19137 16.00 F 16 1 1 19138 22.00 F 16 1 2 19139 42.00 F 16 1 2 19140 21.00 F 16 1 2 19141 45.00 F 16 1 2 19142 18.00 F 14 1 2 19143 15.00 M 14 1 1 19144 27.00 F 14 1 2 19145 7.00 F 16 1 1 19146 45.00 F 16 1 2 19147 26.00 M 14 1 2 19148 19.00 M 16 1 2 19149 33.00 M 7 1 2 19150 19.00 F 7 1 2 19151 62.00 M 14 1 3 19152 55.00 F 7 1 2 19153 25.00 M 7 1 2 19154 30.00 M 14 1 2 19155 31.00 F 7 1 2 19156 24.00 M 7 1 2 19157 45.00 F 7 1 2 19158 33.00 M 7 1 2 19159 1.00 F 7 1 1 19160 17.00 M 7 1 1 19161 15.00 M 16 1 1 19162 25.00 M 7 1 2 19163 5.00 F 16 1 1 19164 60.00 M 14 1 3 19165 70.00 M 16 1 3 19166 42.00 M 16 1 2 19167 35.00 M 16 1 2 19168 70.00 M 15 1 3 19169 69.00 M 16 1 3 19170 36.00 M 15 1 2 19171 53.00 M 14 1 2 19172 1.00 F 15 1 1 19173 22.00 F 14 1 2 19174 50.00 F 15 1 2 19175 46.00 F 15 1 2 19176 45.00 F 15 1 2 19177 47.00 M 14 1 2 19178 56.00 F 15 1 2 19179 25.00 F 14 1 2 19180 15.00 F 14 1 1 19181 46.00 F 16 1 2 19182 52.00 M 14 1 2 19183 48.00 M 14 1 2 19184 75.00 M 14 1 3 19185 72.00 F 14 1 3 19186 29.00 M 15 1 2 19187 53.00 F 14 1 2 19188 21.00 F 15 1 2 19189 31.00 F 14 1 2 19190 47.00 M 15 1 2 19191 28.00 M 15 1 2 19192 44.00 M 15 1 2 19193 49.00 F 15 1 2 19194 23.00 M 14 1 2 19195 33.00 F 16 1 2 19196 57.00 M 15 1 2 19197 22.00 M 15 1 2 19198 66.00 F 14 1 3 19199 99.00 F 15 1 3 19200 28.00 M 14 1 2 19201 70.00 F 14 1 3 19202 31.00 F 14 1 2 19203 74.00 M 15 1 3 19204 68.00 F 16 1 3 19205 51.00 M 8 1 2 19206 50.00 M 7 1 2 19207 63.00 M 11 1 3 19208 57.00 M 11 1 2 19209 33.00 M 11 1 2 19210 22.00 F 11 1 2 19211 27.00 F 9 1 2 19212 31.00 M 9 1 2 19213 32.00 F 6 1 2 19214 67.00 M 23 1 3 19215 37.00 F 9 1 2 19216 50.00 F 23 1 2 19217 26.00 M 10 1 2 19218 50.00 M 9 1 2 19219 20.00 F 10 1 2 19220 20.00 M 9 1 2 19221 19.00 F 10 1 2 19222 23.00 M 9 1 2 19223 62.00 F 9 1 3 19224 30.00 F 10 1 2 19225 11.00 M 10 1 1 19226 32.00 M 12 1 2 19227 29.00 M 9 1 2 19228 19.00 M 9 1 2 19229 35.00 F 17 1 2 19230 48.00 M 9 1 2 19231 40.00 F 23 1 2 19232 40.00 F 9 1 2 19233 20.00 F 9 1 2 19234 18.00 F 9 1 2 19235 8.00 M 9 1 1 19236 27.00 F 9 1 2 19237 22.00 F 9 1 2 19238 21.00 M 13 1 2 19239 26.00 F 9 1 2 19240 35.00 M 9 1 2 19241 48.00 M 14 1 2 19242 34.00 M 9 1 2 19243 39.00 M 11 1 2 19244 37.00 F 10 1 2 19245 9.00 M 9 1 1 19246 18.00 F 9 1 2 19247 25.00 F 9 1 2 19248 6.00 M 9 1 1 19249 0.50 M 9 1 1 19250 35.00 M 7 1 2 19251 35.00 M 9 1 2 19252 28.00 M 10 1 2 19253 24.00 F 17 1 2 19254 40.00 F 10 1 2 19255 26.00 F 9 1 2 19256 34.00 M 9 1 2 19257 20.00 F 9 1 2 19258 55.00 M 14 1 2 19259 68.00 F 10 1 3 19260 45.00 F 14 1 2 19261 28.00 M 11 1 2 19262 25.00 F 11 1 2 19263 69.00 F 4 1 3 19264 36.00 F 7 1 2 19265 24.00 M 16 1 2 19266 45.00 M 7 1 2 19267 26.00 F 7 1 2 19268 65.00 F 13 1 3 19269 43.00 M 8 1 2 19270 48.00 M 8 1 2 19271 40.00 F 8 1 2 19272 44.00 F 17 1 2 19273 48.00 M 19 1 2 19274 23.00 M 12 1 2 19275 16.00 F 12 1 1 19276 85.00 F 17 1 3 19277 81.00 M 11 1 3 19278 25.00 M 11 1 2 19279 18.00 M 8 1 2 19280 29.00 M 15 1 2 19281 50.00 F 6 1 2 19282 23.00 F 8 1 2 19283 4.00 F 8 1 1 19284 42.00 F 8 1 2 19285 59.00 M 10 1 2 19286 17.00 F 8 1 1 19287 36.00 M 8 1 2 19288 27.00 M 8 1 2 19289 35.00 F 8 1 2 19290 44.00 M 8 1 2 19291 38.00 M 17 1 2 19292 49.00 M 15 1 2 19293 17.00 M 15 1 1 19294 39.00 F 15 1 2 19295 18.00 M 15 1 2 19296 30.00 M 8 1 2 19297 57.00 M 8 1 2 19298 21.00 M 8 1 2 19299 21.00 F 7 1 2 19300 23.00 F 9 1 2 19301 38.00 M 9 1 2 19302 54.00 M 9 1 2 19303 31.00 M 9 1 2 19304 47.00 M 9 1 2 19305 18.00 M 9 1 2 19306 50.00 M 9 1 2 19307 25.00 M 9 1 2 19308 55.00 M 15 1 2 19309 60.00 M 17 1 3 19310 62.00 M 9 1 3 19311 32.00 M 9 1 2 19312 46.00 M 6 1 2 19313 54.00 M 9 1 2 19314 6.00 F 12 1 1 19315 65.00 M 12 1 3 19316 3.00 F 7 1 1 19317 2.00 M 12 1 1 19318 24.00 F 12 1 2 19319 45.00 F 12 1 2 19320 29.00 F 18 1 2 19321 4.00 F 18 1 1 19322 13.00 F 18 1 1 19323 8.00 M 18 1 1 19324 59.00 M 18 1 2 19325 37.00 M 10 1 2 19326 40.00 F 10 1 2 19327 16.00 F 18 1 1 19328 33.00 F 18 1 2 19329 31.00 M 18 1 2 19330 56.00 M 18 1 2 19331 50.00 F 18 1 2 19332 42.00 F 10 1 2 19333 16.00 M 18 1 1 19334 12.00 F 18 1 1 19335 28.00 M 10 1 2 19336 23.00 F 10 1 2 19337 23.00 M 12 1 2 19338 31.00 M 8 1 2 19339 27.00 M 10 1 2 19340 40.00 M 8 1 2 19341 42.00 M 10 1 2 19342 36.00 M 8 1 2 19343 26.00 M 21 1 2 19344 34.00 M 10 1 2 19345 34.00 M 10 1 2 19346 39.00 M 10 1 2 19347 43.00 M 10 1 2 19348 43.00 M 8 1 2 19349 31.00 M 12 1 2 19350 40.00 M 10 1 2 19351 36.00 M 12 1 2 19352 25.00 M 10 1 2 19353 50.00 F 10 1 2 19354 29.00 F 10 1 2 19355 21.00 F 10 1 2 19356 60.00 M 10 1 3 19357 24.00 F 10 1 2 19358 21.00 M 12 1 2 19359 19.00 F 6 1 2 19360 32.00 M 10 1 2 19361 24.00 M 12 1 2 19362 56.00 M 10 1 2 19363 28.00 M 10 1 2 19364 35.00 F 10 1 2 19365 39.00 F 12 1 2 19366 38.00 F 10 1 2 19367 60.00 M 10 1 3 19368 27.00 F 10 1 2 19369 30.00 M 8 1 2 19370 0.30 M 8 1 1 19371 42.00 M 8 1 2 19372 19.00 M 5 1 2 19373 28.00 F 5 1 2 19374 45.00 F 5 1 2 19375 47.00 M 10 1 2 19376 46.00 M 10 1 2 19377 65.00 F 10 1 3 19378 45.00 F 10 1 2 19379 44.00 F 10 1 2 19380 43.00 F 7 1 2 19381 25.00 F 10 1 2 19382 22.00 F 7 1 2 19383 20.00 F 7 1 2 19384 16.00 F 7 1 1 19385 13.00 M 7 1 1 19386 15.00 F 7 1 1 19387 8.00 M 10 1 1 19388 48.00 M 10 1 2 19389 23.00 M 7 1 2 19390 24.00 M 7 1 2 19391 16.00 M 7 1 1 19392 19.00 M 7 1 2 19393 47.00 M 7 1 2 19394 62.00 F 7 1 3 19395 48.00 M 7 1 2 19396 70.00 M 7 1 3 19397 70.00 F 7 1 3 19398 38.00 M 7 1 2 19399 42.00 M 7 1 2 19400 26.00 M 7 1 2 19401 68.00 F 7 1 3 19402 28.00 M 7 1 2 19403 24.00 M 7 1 2 19404 24.00 M 7 1 2 19405 19.00 F 7 1 2 19406 30.00 M 7 1 2 19407 60.00 F 7 1 3 19408 38.00 M 7 1 2 19409 26.00 M 7 1 2 19410 38.00 F 7 1 2 19411 10.00 M 7 1 1 19412 50.00 M 7 1 2 19413 52.00 M 7 1 2 19414 40.00 M 7 1 2 19415 20.00 F 7 1 2 19416 8.00 F 7 1 1 19417 75.00 M 7 1 3 19418 65.00 F 7 1 3 19419 75.00 F 7 1 3 19420 26.00 M 7 1 2 19421 38.00 F 7 1 2 19422 64.00 M 16 1 3 19423 62.00 F 7 1 3 19424 14.00 M 7 1 1 19425 6.00 M 7 1 1 19426 38.00 M 7 1 2 19427 13.00 F 7 1 1 19428 30.00 M 7 1 2 19429 30.00 F 7 1 2 19430 55.00 F 3 1 2 19431 45.00 F 7 1 2 19432 40.00 F 7 1 2 19433 4.00 F 7 1 1 19434 33.00 M 7 1 2 19435 7.00 M 7 1 1 19436 24.00 M 7 1 2 19437 21.00 F 7 1 2 19438 28.00 M 7 1 2 19439 30.00 M 7 1 2 19440 12.00 F 7 1 1 19441 20.00 F 7 1 2 19442 9.00 F 7 1 1 19443 31.00 M 8 1 2 19444 36.00 M 8 1 2 19445 24.00 M 8 1 2 19446 33.00 M 8 1 2 19447 30.00 M 8 1 2 19448 23.00 M 8 1 2 19449 22.00 M 8 1 2 19450 42.00 M 8 1 2 19451 54.00 F 5 1 2 19452 49.00 M 8 1 2 19453 53.00 M 8 1 2 19454 52.00 M 8 1 2 19455 22.00 M 8 1 2 19456 30.00 M 8 1 2 19457 24.00 M 8 1 2 19458 28.00 M 8 1 2 19459 23.00 M 8 1 2 19460 22.00 M 8 1 2 19461 25.00 M 8 1 2 19462 21.00 M 6 1 2 19463 49.00 F 5 1 2 19464 19.00 M 8 1 2 19465 38.00 M 9 1 2 19466 30.00 F 9 1 2 19467 54.00 F 14 1 2 19468 51.00 M 9 1 2 19469 51.00 M 9 1 2 19470 38.00 F 11 1 2 19471 42.00 M 11 1 2 19472 15.00 M 11 1 1 19473 27.00 M 11 1 2 19474 17.00 M 11 1 1 19475 50.00 F 9 1 2 19476 19.00 M 9 1 2 19477 54.00 M 9 1 2 19478 33.00 M 11 1 2 19479 36.00 M 9 1 2 19480 20.00 M 9 1 2 19481 21.00 F 19 1 2 19482 55.00 F 9 1 2 19483 31.00 F 9 1 2 19484 25.00 F 9 1 2 19485 32.00 F 9 1 2 19486 4.00 F 9 1 1 19487 70.00 F 9 1 3 19488 42.00 M 9 1 2 19489 20.00 M 9 1 2 19490 32.00 F 9 1 2 19491 52.00 M 9 1 2 19492 32.00 F 9 1 2 19493 21.00 F 9 1 2 19494 60.00 F 9 1 3 19495 23.00 M 9 1 2 19496 35.00 M 9 1 2 19497 19.00 M 9 1 2 19498 20.00 F 9 1 2 19499 22.00 F 9 1 2 19500 72.00 F 9 1 3 19501 22.00 F 9 1 2 19502 20.00 M 9 1 2 19503 40.00 F 9 1 2 19504 48.00 F 9 1 2 19505 45.00 F 9 1 2 19506 80.00 F 9 1 3 19507 24.00 F 19 1 2 19508 28.00 M 9 1 2 19509 42.00 M 9 1 2 19510 30.00 F 12 1 2 19511 60.00 F 14 1 3 19512 35.00 M 13 1 2 19513 12.00 F 6 1 1 19514 21.00 M 14 1 2 19515 32.00 M 21 1 2 19516 35.00 M 14 1 2 19517 45.00 F 13 1 2 19518 36.00 M 13 1 2 19519 60.00 F 12 1 3 19520 21.00 F 14 1 2 19521 30.00 F 15 1 2 19522 22.00 F 14 1 2 19523 62.00 M 13 1 3 19524 52.00 F 14 1 2 19525 60.00 M 15 1 3 19526 69.00 M 14 1 3 19527 45.00 F 12 1 2 19528 54.00 M 14 1 2 19529 24.00 F 15 1 2 19530 54.00 F 14 1 2 19531 53.00 M 12 1 2 19532 27.00 F 13 1 2 19533 68.00 M 22 1 3 19534 50.00 F 14 1 2 19535 36.00 M 14 1 2 19536 41.00 M 14 1 2 19537 61.00 M 14 1 3 19538 37.00 F 12 1 2 19539 34.00 M 13 1 2 19540 34.00 F 13 1 2 19541 44.00 F 13 1 2 19542 65.00 F 13 1 3 19543 15.00 F 14 1 1 19544 70.00 F 14 1 3 19545 32.00 F 13 1 2 19546 53.00 F 14 1 2 19547 54.00 M 10 1 2 19548 48.00 F 10 1 2 19549 45.00 F 12 1 2 19550 20.00 F 12 1 2 19551 15.00 F 12 1 1 19552 4.00 M 12 1 1 19553 60.00 M 12 1 3 19554 40.00 M 12 1 2 19555 30.00 M 14 1 2 19556 40.00 F 14 1 2 19557 16.00 M 14 1 1 19558 16.00 M 14 1 1 19559 30.00 F 14 1 2 19560 19.00 M 7 1 2 19561 28.00 M 7 1 2 19562 35.00 F 17 1 2 19563 25.00 M 14 1 2 19564 35.00 M 14 1 2 19565 30.00 F 14 1 2 19566 18.00 M 14 1 2 19567 25.00 F 7 1 2 19568 9.00 M 8 1 1 19569 40.00 F 9 1 2 19570 28.00 F 16 1 2 19571 62.00 M 9 1 3 19572 28.00 F 17 1 2 19573 10.00 F 16 1 1 19574 60.00 F 22 1 3 19575 19.00 M 14 1 2 19576 40.00 F 10 1 2 19577 40.00 F 10 1 2 19578 50.00 M 10 1 2 19579 22.00 F 10 1 2 19580 30.00 M 9 1 2 19581 53.00 F 8 1 2 19582 55.00 M 9 1 2 19583 27.00 F 10 1 2 19584 31.00 M 10 1 2 19585 30.00 M 10 1 2 19586 24.00 F 10 1 2 19587 0.75 F 10 1 1 19588 2.00 F 16 1 1 19589 40.00 F 9 1 2 19590 8.00 M 10 1 1 19591 10.00 M 9 1 1 19592 44.00 M 9 1 2 19593 27.00 M 9 1 2 19594 24.00 F 16 1 2 19595 15.00 M 9 1 1 19596 9.00 F 9 1 1 19597 28.00 M 10 1 2 19598 25.00 F 3 1 2 19599 45.00 F 12 1 2 19600 23.00 F 21 1 2 19601 38.00 F 12 1 2 19602 6.00 F 14 1 1 19603 36.00 F 14 1 2 19604 12.00 F 5 1 1 19605 55.00 F 5 1 2 19606 56.00 M 5 1 2 19607 14.00 M 5 1 1 19608 45.00 F 5 1 2 19609 50.00 F 14 1 2 19610 36.00 M 5 1 2 19611 25.00 F 10 1 2 19612 58.00 F 10 1 2 19613 0.41 F 10 1 1 19614 33.00 M 10 1 2 19615 17.00 M 6 1 1 19616 43.00 F 7 1 2 19617 69.00 F 6 1 3 19618 50.00 M 6 1 2 19619 42.00 F 7 1 2 19620 19.00 F 6 1 2 19621 45.00 M 6 1 2 19622 29.00 F 12 1 2 19623 35.00 M 12 1 2 19624 65.00 M 10 1 3 19625 75.00 F 12 1 3 19626 27.00 M 11 1 2 19627 28.00 F 11 1 2 19628 53.00 F 11 1 2 19629 6.00 M 11 1 1 19630 31.00 F 11 1 2 19631 55.00 M 13 1 2 19632 24.00 M 11 1 2 19633 21.00 F 12 1 2 19634 33.00 M 12 1 2 19635 68.00 F 12 1 3 19636 6.00 F 12 1 1 19637 31.00 M 12 1 2 19638 12.00 M 12 1 1 19639 5.00 M 12 1 1 19640 27.00 F 9 1 2 19641 8.00 F 8 1 1 19642 12.00 M 8 1 1 19643 34.00 F 8 1 2 19644 36.00 M 8 1 2 19645 25.00 M 8 1 2 19646 15.00 M 8 1 1 19647 30.00 F 8 1 2 19648 37.00 M 8 1 2 19649 66.00 M 7 1 3 19650 28.00 M 7 1 2 19651 50.00 F 7 1 2 19652 50.00 M 7 1 2 19653 60.00 M 7 1 3 19654 65.00 F 7 1 3 19655 60.00 F 7 1 3 19656 59.00 F 7 1 2 19657 30.00 F 7 1 2 19658 61.00 M 12 1 3 19659 65.00 F 7 1 3 19660 22.00 M 7 1 2 19661 45.00 M 7 1 2 19662 16.00 M 7 1 1 19663 62.00 M 7 1 3 19664 70.00 M 7 1 3 19665 10.00 F 7 1 1 19666 8.00 M 7 1 1 19667 48.00 F 7 1 2 19668 65.00 M 3 1 3 19669 25.00 M 7 1 2 19670 70.00 F 1 1 3 19671 30.00 F 7 1 2 19672 85.00 M 7 1 3 19673 29.00 M 7 1 2 19674 58.00 F 7 1 2 19675 31.00 F 7 1 2 19676 29.00 F 7 1 2 19677 4.00 F 7 1 1 19678 1.00 M 7 1 1 19679 34.00 F 7 1 2 19680 15.00 M 7 1 1 19681 23.00 M 7 1 2 19682 20.00 F 7 1 2 19683 26.00 F 7 1 2 19684 25.00 F 7 1 2 19685 59.00 M 9 1 2 19686 42.00 M 9 1 2 19687 58.00 F 9 1 2 19688 56.00 F 10 1 2 19689 65.00 F 10 1 3 19690 26.00 M 10 1 2 19691 25.00 M 10 1 2 19692 31.00 M 7 1 2 19693 39.00 M 7 1 2 19694 58.00 F 6 1 2 19695 14.00 M 6 1 1 19696 56.00 F 7 1 2 19697 60.00 F 7 1 3 19698 59.00 M 7 1 2 19699 47.00 M 7 1 2 19700 26.00 F 10 1 2 19701 18.00 M 13 1 2 19702 31.00 M 7 1 2 19703 71.00 F 10 1 3 19704 30.00 F 10 1 2 19705 24.00 F 3 1 2 19706 29.00 F 7 1 2 19707 65.00 M 18 1 3 19708 25.00 M 4 1 2 19709 35.00 M 11 1 2 19710 60.00 F 10 1 3 19711 38.00 F 10 1 2 19712 65.00 M 9 1 3 19713 21.00 F 9 1 2 19714 38.00 M 13 1 2 19715 37.00 M 14 1 2 19716 52.00 F 13 1 2 19717 23.00 M 13 1 2 19718 45.00 F 12 1 2 19719 32.00 M 12 1 2 19720 27.00 M 12 1 2 19721 62.00 F 15 1 3 19722 48.00 M 12 1 2 19723 26.00 M 13 1 2 19724 80.00 F 13 1 3 19725 44.00 M 12 1 2 19726 34.00 M 11 1 2 19727 58.00 M 11 1 2 19728 30.00 M 14 1 2 19729 6.00 F 13 1 1 19730 68.00 M 12 1 3 19731 23.00 F 14 1 2 19732 58.00 M 14 1 2 19733 56.00 M 13 1 2 19734 46.00 M 14 1 2 19735 47.00 M 12 1 2 19736 27.00 F 13 1 2 19737 35.00 F 12 1 2 19738 64.00 F 17 1 3 19739 52.00 F 17 1 2 19740 27.00 F 13 1 2 19741 30.00 F 12 1 2 19742 30.00 M 13 1 2 19743 36.00 M 13 1 2 19744 32.00 F 12 1 2 19745 25.00 F 11 1 2 19746 51.00 F 13 1 2 19747 55.00 F 13 1 2 19748 52.00 M 13 1 2 19749 36.00 F 13 1 2 19750 63.00 F 15 1 3 19751 59.00 M 13 1 2 19752 48.00 M 13 1 2 19753 27.00 M 13 1 2 19754 59.00 M 12 1 2 19755 81.00 M 13 1 3 19756 55.00 M 13 1 2 19757 55.00 M 12 1 2 19758 55.00 M 13 1 2 19759 16.00 M 13 1 1 19760 51.00 F 12 1 2 19761 23.00 M 11 1 2 19762 15.00 F 12 1 1 19763 49.00 F 11 1 2 19764 66.00 F 11 1 3 19765 24.00 F 11 1 2 19766 19.00 F 13 1 2 19767 16.00 F 11 1 1 19768 8.00 F 11 1 1 19769 37.00 F 11 1 2 19770 52.00 F 12 1 2 19771 70.00 M 13 1 3 19772 56.00 M 16 1 2 19773 55.00 M 12 1 2 19774 1.00 M 12 1 1 19775 27.00 F 12 1 2 19776 32.00 M 12 1 2 19777 4.00 F 12 1 1 19778 27.00 M 14 1 2 19779 73.00 M 14 1 3 19780 50.00 F 13 1 2 19781 23.00 F 14 1 2 19782 54.00 M 13 1 2 19783 11.00 M 13 1 1 19784 68.00 M 20 1 3 19785 38.00 M 13 1 2 19786 43.00 F 11 1 2 19787 30.00 M 12 1 2 19788 62.00 F 12 1 3 19789 50.00 M 12 1 2 19790 49.00 M 14 1 2 19791 57.00 F 13 1 2 19792 68.00 F 15 1 3 19793 23.00 F 11 1 2 19794 25.00 M 13 1 2 19795 35.00 M 13 1 2 19796 24.00 F 13 1 2 19797 65.00 M 12 1 3 19798 33.00 M 12 1 2 19799 49.00 F 13 1 2 19800 36.00 M 13 1 2 19801 57.00 M 14 1 2 19802 63.00 M 13 1 3 19803 48.00 M 13 1 2 19804 66.00 M 13 1 3 19805 85.00 M 13 1 3 19806 16.00 M 11 1 1 19807 42.00 M 13 1 2 19808 26.00 F 13 1 2 19809 27.00 M 13 1 2 19810 28.00 M 13 1 2 19811 75.00 M 13 1 3 19812 55.00 F 13 1 2 19813 50.00 M 13 1 2 19814 55.00 M 14 1 2 19815 24.00 M 13 1 2 19816 56.00 M 13 1 2 19817 54.00 F 13 1 2 19818 42.00 M 13 1 2 19819 56.00 F 12 1 2 19820 57.00 M 12 1 2 19821 27.00 M 17 1 2 19822 27.00 F 13 1 2 19823 57.00 M 15 1 2 19824 56.00 F 13 1 2 19825 55.00 F 13 1 2 19826 29.00 M 13 1 2 19827 28.00 M 13 1 2 19828 49.00 M 13 1 2 19829 65.00 M 14 1 3 19830 67.00 M 13 1 3 19831 31.00 F 13 1 2 19832 51.00 M 4 1 2 19833 4.00 M 13 1 1 19834 10.00 F 13 1 1 19835 8.00 M 13 1 1 19836 58.00 M 13 1 2 19837 59.00 M 13 1 2 19838 51.00 M 13 1 2 19839 59.00 M 14 1 2 19840 20.00 M 13 1 2 19841 27.00 M 14 1 2 19842 25.00 M 14 1 2 19843 17.00 M 14 1 1 19844 14.00 M 14 1 1 19845 14.00 F 14 1 1 19846 70.00 M 7 1 3 19847 26.00 F 7 1 2 19848 32.00 F 8 1 2 19849 59.00 M 8 1 2 19850 30.00 F 8 1 2 19851 38.00 M 8 1 2 19852 36.00 M 9 1 2 19853 42.00 M 12 1 2 19854 54.00 M 9 1 2 19855 43.00 M 17 1 2 19856 17.00 M 17 1 1 19857 32.00 M 9 1 2 19858 50.00 M 7 1 2 19859 42.00 M 7 1 2 19860 48.00 M 7 1 2 19861 22.00 M 7 1 2 19862 56.00 M 7 1 2 19863 38.00 M 7 1 2 19864 9.00 M 7 1 1 19865 13.00 F 7 1 1 19866 30.00 M 7 1 2 19867 31.00 F 7 1 2 19868 65.00 M 10 1 3 19869 62.00 M 9 1 3 19870 33.00 F 7 1 2 19871 64.00 M 7 1 3 19872 64.00 M 7 1 3 19873 30.00 M 11 1 2 19874 35.00 M 9 1 2 19875 56.00 M 11 1 2 19876 65.00 F 8 1 3 19877 25.00 M 17 1 2 19878 32.00 M 8 1 2 19879 23.00 F 8 1 2 19880 30.00 F 8 1 2 19881 30.00 F 8 1 2 19882 37.00 F 8 1 2 19883 30.00 F 8 1 2 19884 28.00 M 8 1 2 19885 36.00 F 15 1 2 19886 65.00 M 10 1 3 19887 50.00 F 11 1 2 19888 25.00 F 20 1 2 19889 28.00 M 7 1 2 19890 31.00 M 9 1 2 19891 29.00 M 7 1 2 19892 29.00 M 7 1 2 19893 30.00 M 9 1 2 19894 29.00 F 9 1 2 19895 58.00 M 9 1 2 19896 33.00 F 9 1 2 19897 38.00 F 9 1 2 19898 19.00 M 9 1 2 19899 14.00 F 9 1 1 19900 30.00 M 9 1 2 19901 13.00 F 9 1 1 19902 25.00 M 9 1 2 19903 15.00 F 9 1 1 19904 38.00 F 12 1 2 19905 24.00 M 9 1 2 19906 28.00 M 9 1 2 19907 41.00 F 9 1 2 19908 19.00 F 9 1 2 19909 19.00 F 9 1 2 19910 50.00 M 9 1 2 19911 24.00 M 9 1 2 19912 40.00 F 9 1 2 19913 32.00 M 9 1 2 19914 6.00 M 7 1 1 19915 3.00 M 7 1 1 19916 34.00 M 9 1 2 19917 37.00 M 9 1 2 19918 30.00 M 20 1 2 19919 31.00 M 20 1 2 19920 22.00 F 9 1 2 19921 77.00 M 11 1 3 19922 72.00 M 20 1 3 19923 32.00 M 9 1 2 19924 35.00 M 20 1 2 19925 50.00 F 20 1 2 19926 69.00 F 9 1 3 19927 42.00 F 21 1 2 19928 32.00 M 2 1 2 19929 25.00 M 8 1 2 19930 24.00 F 9 1 2 19931 3.00 M 9 1 1 19932 50.00 F 9 1 2 19933 25.00 M 10 1 2 19934 50.00 M 9 1 2 19935 7.00 F 9 1 1 19936 31.00 M 9 1 2 19937 3.00 M 9 1 1 19938 26.00 M 9 1 2 19939 45.00 F 9 1 2 19940 1.00 M 9 1 1 19941 30.00 F 12 1 2 19942 12.00 F 12 1 1 19943 40.00 M 13 1 2 19944 62.00 M 8 1 3 19945 39.00 M 8 1 2 19946 57.00 F 8 1 2 19947 30.00 F 9 1 2 19948 7.00 M 8 1 1 19949 30.00 F 9 1 2 19950 45.00 M 9 1 2 19951 2.00 F 15 1 1 19952 30.00 M 13 1 2 19953 18.00 F 13 1 2 19954 9.00 F 15 1 1 19955 29.00 M 10 1 2 19956 30.00 M 15 1 2 19957 8.00 M 16 1 1 19958 52.00 M 11 1 2 19959 12.00 M 9 1 1 19960 24.00 M 9 1 2 19961 24.00 M 9 1 2 19962 22.00 M 9 1 2 19963 1.00 M 14 1 1 19964 29.00 M 4 1 2 19965 40.00 F 9 1 2 19966 42.00 F 10 1 2 19967 28.00 F 13 1 2 19968 19.00 F 14 1 2 19969 21.00 M 14 1 2 19970 57.00 F 20 1 2 19971 54.00 M 13 1 2 19972 24.00 F 9 1 2 19973 25.00 M 13 1 2 19974 30.00 F 9 1 2 19975 64.00 F 11 1 3 19976 72.00 F 8 1 3 19977 43.00 M 8 1 2 19978 30.00 M 8 1 2 19979 35.00 F 8 1 2 19980 60.00 F 6 1 3 19981 75.00 M 12 1 3 19982 19.00 F 17 1 2 19983 13.00 M 17 1 1 19984 25.00 M 12 1 2 19985 50.00 M 17 1 2 19986 20.00 F 6 1 2 19987 20.00 F 6 1 2 19988 60.00 F 6 1 3 19989 20.00 F 6 1 2 19990 32.00 F 6 1 2 19991 28.00 F 6 1 2 19992 68.00 F 8 1 3 19993 20.00 F 6 1 2 19994 70.00 M 6 1 3 19995 30.00 M 6 1 2 19996 20.00 M 6 1 2 19997 52.00 F 6 1 2 19998 33.00 M 6 1 2 19999 56.00 M 9 1 2 [ reached 'max' / getOption(\"max.print\") -- omitted 6742 rows ]"},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-preparing-the-data","dir":"Articles > Interactive_tte_tutorial","previous_headings":"The study and the data","what":"Preparing the data","title":"visR","text":"analysis, slight modifications need implemented data. Since visR developed goal speed clinical development process, follows cdisc ADaM standards. Additionally, functions data-type sensitive give informative summaries proper data-type present. following changes necessary: per ADaM guidelines, event indicated 0 censoring indicated >0. data use, 2 stands event 1 stands censoring. Therefore, censoring values adjusted. column Age_Cat parsed integer Sex character. Converting factor result informative output. Furthermore, Age_Cat encoded numerical value 1-3. adding respective names categories, output readable.","code":"# 1. Adjust censoring data$Status = abs(data$Status - 2) # 2. Convert to factors and add the age categories data = data %>% dplyr::mutate( Age_Cat = recode_factor(Age_Cat, `1` = \"<18yr\", `2` =\"18yr-60yr\", `3` = \">60yr\"), Sex = as.factor(Sex)) data"},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-live-demo","dir":"Articles > Interactive_tte_tutorial","previous_headings":"The study and the data","what":"Live Demo","title":"visR","text":"","code":"# Live demo"},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-generation-of-summary-tables","dir":"Articles > Interactive_tte_tutorial","previous_headings":"","what":"Generation of summary tables","title":"visR","text":"typical clinical report contains demography table, detailing distribution patients across different arms clinical trial. Commonly reported variables age, sex baseline disease characteristics. table sometimes referred Table 1. visR provides set functions generate render tables. rendering, visR enforces specification data source title. functions demonstrated demonstrated . default, table generated whole population stratifier can defined. Exercise 1: Generate table using Sex stratifier. Exercise 2: Generate table using Sex Age_Cat stratifier. Exercise 3: Add additional footnote table.","code":"# Define meta-data DATASOURCE = \"https://github.com/vntkumar8/covid-survival\" TITLE = \"Indian Covid Data\" data %>% tableone(title = TITLE, datasource = DATASOURCE) # Have fun!"},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-note","dir":"Articles > Interactive_tte_tutorial","previous_headings":"Generation of summary tables","what":"Note","title":"visR","text":"notice tables contain NAs stratifier split . workaround first get table 1 data.frame, remove stratifier, render . examples demonstrates modular built compatibility visR. tableone command actually wrapper around functions get_tableone builds data.frame summary statistics render command displays nicely. (fixed upcoming release.)","code":"data %>% get_tableone(strata = c(\"Sex\", \"Age_Cat\")) %>% filter(variable != \"Sex\" & variable != \"Age_Cat\") %>% render(title = TITLE, datasource = DATASOURCE)"},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-fitting-survival-models","dir":"Articles > Interactive_tte_tutorial","previous_headings":"","what":"Fitting survival models","title":"visR","text":"mentioned, visR defaults following CDISC ADaM standard. data set uses well, estimating plotting survival curves particularly straightforward.","code":"# The dataset that comes with visR is cdisc ADaM compliant mod = visR::adtte %>% estimate_KM() # When no strata is specified, the overall patient cohort is analysed mod mod %>% visr()"},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-survival-analysis-of-the-indian-covid-data","dir":"Articles > Interactive_tte_tutorial","previous_headings":"Fitting survival models","what":"Survival analysis of the Indian COVID data","title":"visR","text":"Since ADaM standards utilized beyond clinical trial analysis reporting,, functions visR parameters allowing specification respective column names without modifying actual data. model estimated, different summary statistics easy get_ Exercise 1: Calculate quantiles model.","code":"mod = data %>% estimate_KM(strata = \"Sex\", CNSR = \"Status\", AVAL = \"Stay\") mod mod %>% get_pvalue() # Have fun!"},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-plotting-survival-models","dir":"Articles > Interactive_tte_tutorial","previous_headings":"","what":"Plotting survival models","title":"visR","text":"survival models can easily plotted using visR. visR function provides several convenient functions adjust aesthetics plot. Exercise 1: Change stratifier survival model Age_Cat. Exercise 2: Plot new model.","code":"mod %>% visr() mod %>% visr(legend_position = \"top\", x_label = \"\") mod %>% visr(legend_position = \"top\", x_units = \"years\") mod %>% visr(legend_position = \"top\", fun = \"log\") # Have fun!"},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-improving-survival-plots","dir":"Articles > Interactive_tte_tutorial","previous_headings":"Plotting survival models","what":"Improving survival plots","title":"visR","text":"top , visR provides several functions improve plots. , example, easy add confidence intervals censoring markers. Exercise 1: Add markers censoring. (Hint: functions adding statistics plot visR usually start add_). Also, function provided annotate plot additional information. Exercise 1: Add information statistical significance tests survival plot. (Hint: Combine add_annotation() get_pvalue()).","code":"mod %>% visr() %>% add_CI() # Have fun! mod %>% visr() %>% visR::add_annotation(label = \"Hello world\", xmin = 0, ymin = 0.5) # Have fun!"},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-styling","dir":"Articles > Interactive_tte_tutorial","previous_headings":"Plotting survival models","what":"Styling","title":"visR","text":"Particular attention paid stay compatible ggplot2 ecosystem. Therefore, created objects can example styled like ggplot. Exercise 1: Try recreate Figure 5 Indian Covid data publication close possible using learned now. Alternatively, can create visually pleasing variant.","code":"gg = mod %>% visr() gg + ggplot2::theme_dark() # Have fun!"},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-combining-plots-with-summary-statistics","dir":"Articles > Interactive_tte_tutorial","previous_headings":"","what":"Combining plots with summary statistics","title":"visR","text":"Another good practice provide summary statistics accompany survival plot. purpose, visR provides handy function can appended normal piping framework. NOTE: breaks compatibility ggplot2 functions. Therefore, styling happen adding risktable. Analogous functions creating showing Table 1, risktables can also generated independently (using get_ function) can rendered. Exercise 1: Create render risktable survival model","code":"mod %>% visr() %>% add_risktable(statlist = c(\"n.risk\", \"n.event\", \"n.censor\")) # Have fun!"},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-advanced-usage","dir":"Articles > Interactive_tte_tutorial","previous_headings":"","what":"Advanced usage","title":"visR","text":"demonstrate advanced options might useful cases.","code":""},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-attrition","dir":"Articles > Interactive_tte_tutorial","previous_headings":"Advanced usage","what":"Attrition","title":"visR","text":"Often subgroups population analysed complete data sets need filtered according specific criteria. function get_attrition allows list filter statements explanations, can visualized table (render) plotted (visr). function apply_attrition filters data.frame.","code":"data$Patient = 1:nrow(data) condition = \"Age_Cat != '<18yr'\" filters = data %>% get_attrition(subject_column_name = \"Patient\", criteria_descriptions = \"18 and older\", criteria_conditions = condition) filters %>% visr() filters %>% render(title = \"Attrition Table\", datasource = DATASOURCE) data %>% apply_attrition(condition)"},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-custom-summary-functions-for-the-table-1","dir":"Articles > Interactive_tte_tutorial","previous_headings":"Advanced usage","what":"Custom summary functions for the Table 1","title":"visR","text":"tableone function accepts custom functions run columns. purpose, different possible data-type considered. simplicity, behaviour numeric columns changed example .","code":"# This is basically the default function but doesn't return the missing values. my_func = function(x) { if (is.numeric(x)) { dat = list( `Mean (SD)` = paste0(format(mean(x, na.rm = TRUE), digits = 3), \" (\", format(sd(x, na.rm = TRUE), digits = 3), \")\"), `Median (IQR)` = paste0(format(median(x, na.rm = TRUE), digits = 3), \" (\", format(quantile(x, probs=0.25, na.rm = TRUE), digits = 3), \"-\", format(quantile(x, probs=0.75, na.rm = TRUE), digits = 3), \")\"), `Min-max` = paste0(format(min(x, na.rm = TRUE), digits = 3), \"-\", format(max(x, na.rm = TRUE), digits = 3)) ) list(dat) } else { visR::summarize_short(x) } } data %>% get_tableone(strata = c(\"Sex\", \"Age_Cat\"), summary_function = my_func) %>% filter(variable != \"Sex\" & variable != \"Age_Cat\") %>% render(title = TITLE, datasource = DATASOURCE)"},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-different-rendering-engines-for-table-output","dir":"Articles > Interactive_tte_tutorial","previous_headings":"Advanced usage","what":"Different rendering engines for table output","title":"visR","text":"default, tables rendered gt. However, options like example kable dt also implemented.","code":"mod %>% get_pvalue() %>% render(title = TITLE, datasource = DATASOURCE, engine = \"kable\") # dt launches a child process which crashes on shinyapps.io?"},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-possible-solution-to-the-exercise-for-recreating-figure-5","dir":"Articles > Interactive_tte_tutorial","previous_headings":"Advanced usage","what":"Possible solution to the exercise for recreating figure 5","title":"visR","text":"library(\"learnr\") library(\"visR\") library(\"ggplot2\") library(\"dplyr\") tutorial_options(exercise.timelimit = 120) # prep work one chunk well can always reference one # \"exercise-setup\" chunk data = read.csv(\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\") data$Status = abs(data$Status - 2) data = data %>% dplyr::mutate( Age_Cat = recode_factor(Age_Cat, `1` = \"<18yr\", `2` =\"18yr-60yr\", `3` = \">60yr\"), Sex = .factor(Sex)) DATASOURCE = \"https://github.com/vntkumar8/covid-survival\" TITLE = \"Indian Covid Data\" mod = data %>% estimate_KM(strata = \"Sex\", CNSR = \"Status\", AVAL = \"Stay\") assign(\"data\", data, envir = globalenv()) assign(\"DATASOURCE\", DATASOURCE, envir = globalenv()) assign(\"TITLE\", TITLE, envir = globalenv()) assign(\"mod\", mod, envir = globalenv()) theme_set(theme_bw()) learnr:::register_http_handlers(session, metadata = NULL) learnr:::prepare_tutorial_state(session) learnr:::i18n_observe_tutorial_language(input, session) session$onSessionEnded(function() { learnr:::event_trigger(session, \"session_stop\") }) `tutorial-exercise-load-data-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-load-data-code-editor`)), session) output$`tutorial-exercise-load-data-output` <- renderUI({ `tutorial-exercise-load-data-result`() }) learnr:::store_exercise_cache(structure(list(label = \"load-data\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = NULL, chunks = list(list(label = \"load-data\", code = \"\\n# First, set default ggplot2 theme\\ntheme_set(theme_bw())\\n\\n# , directly load data GitHub repository\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\n\\ndata\\n\", opts = list(label = \"\\\"load-data\\\"\", exercise = \"TRUE\", exercise.eval = \"TRUE\", exercise.startover = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list(eval = TRUE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/private/var/folders/4f/x7rnzbxn0ys7dwprbsnq_2rc0000gn/T/RtmpVyK1qk/file16e315fb8f80b/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"load-data\", exercise = TRUE, exercise.eval = TRUE, exercise.startover = FALSE, code = c(\"\", \"# First, set default ggplot2 theme\", \"theme_set(theme_bw())\", \"\", \"# , directly load data GitHub repository\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"\", \"data\", \"\"), .width.px = 700, .height.px = 432.632880098888, params.src = \"load-data, exercise = TRUE, exercise.eval = TRUE, exercise.startover = FALSE\", fig.alt = NULL, fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\"))) `tutorial-exercise-prepare-data-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-prepare-data-code-editor`)), session) output$`tutorial-exercise-prepare-data-output` <- renderUI({ `tutorial-exercise-prepare-data-result`() }) learnr:::store_exercise_cache(structure(list(label = \"prepare-data\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"\\n# First, set default ggplot2 theme\\ntheme_set(theme_bw())\\n\\n# , directly load data GitHub repository\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\n\\ndata\\n\", chunks = list(list(label = \"load-data\", code = \"\\n# First, set default ggplot2 theme\\ntheme_set(theme_bw())\\n\\n# , directly load data GitHub repository\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\n\\ndata\\n\", opts = list(label = \"\\\"load-data\\\"\", exercise = \"TRUE\", exercise.eval = \"TRUE\", exercise.startover = \"FALSE\"), engine = \"r\"), list(label = \"prepare-data\", code = \"\\n# 1. Adjust censoring\\ndata$Status = abs(data$Status - 2)\\n\\n# 2. Convert factors add age categories\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\n\\ndata\", opts = list(label = \"\\\"prepare-data\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"load-data\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list(eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/private/var/folders/4f/x7rnzbxn0ys7dwprbsnq_2rc0000gn/T/RtmpVyK1qk/file16e315fb8f80b/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"prepare-data\", exercise = TRUE, exercise.setup = \"load-data\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"# 1. Adjust censoring\", \"data$Status = abs(data$Status - 2)\", \"\", \"# 2. Convert factors add age categories\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"\", \"data\"), .width.px = 700, .height.px = 432.632880098888, params.src = \"prepare-data, exercise = TRUE, exercise.setup = \\\"load-data\\\", exercise.startover = FALSE, exercise.eval = FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-live-demo-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-live-demo-code-editor`)), session) output$`tutorial-exercise-live-demo-output` <- renderUI({ `tutorial-exercise-live-demo-result`() }) learnr:::store_exercise_cache(structure(list(label = \"live-demo\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"live-demo\", code = \"# Live demo\", opts = list(label = \"\\\"live-demo\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\", exercise.lines = \"30\", fig.width = \"9\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list( eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/private/var/folders/4f/x7rnzbxn0ys7dwprbsnq_2rc0000gn/T/RtmpVyK1qk/file16e315fb8f80b/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 9, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 864, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"live-demo\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, exercise.lines = 30, code = \"# Live demo\", .width.px = 864, .height.px = 432.632880098888, params.src = \"live-demo, exercise = TRUE, exercise.setup = \\\"setup\\\", exercise.startover = FALSE, exercise.eval = FALSE, exercise.lines = 30, fig.width=9\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-basic-tableone-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-basic-tableone-code-editor`)), session) output$`tutorial-exercise-basic-tableone-output` <- renderUI({ `tutorial-exercise-basic-tableone-result`() }) learnr:::store_exercise_cache(structure(list(label = \"basic-tableone\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"basic-tableone\", code = \"\\n# Define meta-data\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\n\\ndata %>% tableone(title = TITLE, datasource = DATASOURCE)\", opts = list(label = \"\\\"basic-tableone\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list(eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/private/var/folders/4f/x7rnzbxn0ys7dwprbsnq_2rc0000gn/T/RtmpVyK1qk/file16e315fb8f80b/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"basic-tableone\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"# Define meta-data\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"\", \"data %>% tableone(title = TITLE, datasource = DATASOURCE)\" ), .width.px = 700, .height.px = 432.632880098888, params.src = \"basic-tableone, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-survival-plot-exercise-1-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-survival-plot-exercise-1-code-editor`)), session) output$`tutorial-exercise-survival-plot-exercise-1-output` <- renderUI({ `tutorial-exercise-survival-plot-exercise-1-result`() }) learnr:::store_exercise_cache(structure(list(label = \"survival-plot-exercise-1\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"survival-plot-exercise-1\", code = \"\\n# fun!\\n\", opts = list(label = \"\\\"survival-plot-exercise-1\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list( eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/private/var/folders/4f/x7rnzbxn0ys7dwprbsnq_2rc0000gn/T/RtmpVyK1qk/file16e315fb8f80b/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"survival-plot-exercise-1\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"# fun!\", \"\" ), .width.px = 700, .height.px = 432.632880098888, params.src = \"survival-plot-exercise-1, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-fixed-tableone-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-fixed-tableone-code-editor`)), session) output$`tutorial-exercise-fixed-tableone-output` <- renderUI({ `tutorial-exercise-fixed-tableone-result`() }) learnr:::store_exercise_cache(structure(list(label = \"fixed-tableone\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"fixed-tableone\", code = \"\\ndata %>% \\n get_tableone(strata = c(\\\"Sex\\\", \\\"Age_Cat\\\")) %>% \\n filter(variable != \\\"Sex\\\" & variable != \\\"Age_Cat\\\") %>% \\n render(title = TITLE, datasource = DATASOURCE)\", opts = list(label = \"\\\"fixed-tableone\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list(eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/private/var/folders/4f/x7rnzbxn0ys7dwprbsnq_2rc0000gn/T/RtmpVyK1qk/file16e315fb8f80b/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"fixed-tableone\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"data %>% \", \" get_tableone(strata = c(\\\"Sex\\\", \\\"Age_Cat\\\")) %>% \", \" filter(variable != \\\"Sex\\\" & variable != \\\"Age_Cat\\\") %>% \", \" render(title = TITLE, datasource = DATASOURCE)\"), .width.px = 700, .height.px = 432.632880098888, params.src = \"fixed-tableone, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-cdisc-survival-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-cdisc-survival-code-editor`)), session) output$`tutorial-exercise-cdisc-survival-output` <- renderUI({ `tutorial-exercise-cdisc-survival-result`() }) learnr:::store_exercise_cache(structure(list(label = \"cdisc-survival\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"cdisc-survival\", code = \"\\n# dataset comes visR cdisc ADaM compliant \\nmod = visR::adtte %>% estimate_KM() \\n\\n# strata specified, overall patient cohort analysed\\nmod\\n\\nmod %>% visr()\\n\", opts = list(label = \"\\\"cdisc-survival\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list(eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/private/var/folders/4f/x7rnzbxn0ys7dwprbsnq_2rc0000gn/T/RtmpVyK1qk/file16e315fb8f80b/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"cdisc-survival\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"# dataset comes visR cdisc ADaM compliant \", \"mod = visR::adtte %>% estimate_KM() \", \"\", \"# strata specified, overall patient cohort analysed\", \"mod\", \"\", \"mod %>% visr()\", \"\"), .width.px = 700, .height.px = 432.632880098888, params.src = \"cdisc-survival, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-indian-survival-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-indian-survival-code-editor`)), session) output$`tutorial-exercise-indian-survival-output` <- renderUI({ `tutorial-exercise-indian-survival-result`() }) learnr:::store_exercise_cache(structure(list(label = \"indian-survival\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"indian-survival\", code = \"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\nmod\", opts = list(label = \"\\\"indian-survival\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list(eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/private/var/folders/4f/x7rnzbxn0ys7dwprbsnq_2rc0000gn/T/RtmpVyK1qk/file16e315fb8f80b/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"indian-survival\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"mod\"), .width.px = 700, .height.px = 432.632880098888, params.src = \"indian-survival, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-get_pvalue-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-get_pvalue-code-editor`)), session) output$`tutorial-exercise-get_pvalue-output` <- renderUI({ `tutorial-exercise-get_pvalue-result`() }) learnr:::store_exercise_cache(structure(list(label = \"get_pvalue\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"get_pvalue\", code = \"\\nmod %>% get_pvalue()\\n\", opts = list(label = \"\\\"get_pvalue\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list(eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/private/var/folders/4f/x7rnzbxn0ys7dwprbsnq_2rc0000gn/T/RtmpVyK1qk/file16e315fb8f80b/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"get_pvalue\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"mod %>% get_pvalue()\", \"\"), .width.px = 700, .height.px = 432.632880098888, params.src = \"get_pvalue, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-survival-plot-exercise_1-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-survival-plot-exercise_1-code-editor`)), session) output$`tutorial-exercise-survival-plot-exercise_1-output` <- renderUI({ `tutorial-exercise-survival-plot-exercise_1-result`() }) learnr:::store_exercise_cache(structure(list(label = \"survival-plot-exercise_1\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"survival-plot-exercise_1\", code = \"\\n# fun!\\n\", opts = list(label = \"\\\"survival-plot-exercise_1\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list( eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/private/var/folders/4f/x7rnzbxn0ys7dwprbsnq_2rc0000gn/T/RtmpVyK1qk/file16e315fb8f80b/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"survival-plot-exercise_1\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"# fun!\", \"\" ), .width.px = 700, .height.px = 432.632880098888, params.src = \"survival-plot-exercise_1, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-basic-survival-plot-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-basic-survival-plot-code-editor`)), session) output$`tutorial-exercise-basic-survival-plot-output` <- renderUI({ `tutorial-exercise-basic-survival-plot-result`() }) learnr:::store_exercise_cache(structure(list(label = \"basic-survival-plot\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"basic-survival-plot\", code = \"\\nmod %>% visr()\\n\", opts = list(label = \"\\\"basic-survival-plot\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list(eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/private/var/folders/4f/x7rnzbxn0ys7dwprbsnq_2rc0000gn/T/RtmpVyK1qk/file16e315fb8f80b/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"basic-survival-plot\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"mod %>% visr()\", \"\"), .width.px = 700, .height.px = 432.632880098888, params.src = \"basic-survival-plot, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-basic-survival-plot-options-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-basic-survival-plot-options-code-editor`)), session) output$`tutorial-exercise-basic-survival-plot-options-output` <- renderUI({ `tutorial-exercise-basic-survival-plot-options-result`() }) learnr:::store_exercise_cache(structure(list(label = \"basic-survival-plot-options\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"basic-survival-plot-options\", code = \"\\nmod %>%\\n visr(legend_position = \\\"top\\\",\\n x_label = \\\"\\\")\\nmod %>%\\n visr(legend_position = \\\"top\\\",\\n x_units = \\\"years\\\")\\nmod %>%\\n visr(legend_position = \\\"top\\\",\\n fun = \\\"log\\\")\\n\", opts = list(label = \"\\\"basic-survival-plot-options\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list( eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/private/var/folders/4f/x7rnzbxn0ys7dwprbsnq_2rc0000gn/T/RtmpVyK1qk/file16e315fb8f80b/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"basic-survival-plot-options\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"mod %>%\", \" visr(legend_position = \\\"top\\\",\", \" x_label = \\\"\\\")\", \"mod %>%\", \" visr(legend_position = \\\"top\\\",\", \" x_units = \\\"years\\\")\", \"mod %>%\", \" visr(legend_position = \\\"top\\\",\", \" fun = \\\"log\\\")\", \"\"), .width.px = 700, .height.px = 432.632880098888, params.src = \"basic-survival-plot-options, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-survival-plot-exercise-3-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-survival-plot-exercise-3-code-editor`)), session) output$`tutorial-exercise-survival-plot-exercise-3-output` <- renderUI({ `tutorial-exercise-survival-plot-exercise-3-result`() }) learnr:::store_exercise_cache(structure(list(label = \"survival-plot-exercise-3\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"survival-plot-exercise-3\", code = \"\\n# fun!\\n\", opts = list(label = \"\\\"survival-plot-exercise-3\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list( eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/private/var/folders/4f/x7rnzbxn0ys7dwprbsnq_2rc0000gn/T/RtmpVyK1qk/file16e315fb8f80b/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"survival-plot-exercise-3\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"# fun!\", \"\" ), .width.px = 700, .height.px = 432.632880098888, params.src = \"survival-plot-exercise-3, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-survival-plot-add-x-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-survival-plot-add-x-code-editor`)), session) output$`tutorial-exercise-survival-plot-add-x-output` <- renderUI({ `tutorial-exercise-survival-plot-add-x-result`() }) learnr:::store_exercise_cache(structure(list(label = \"survival-plot-add-x\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"survival-plot-add-x\", code = \"\\nmod %>%\\n visr() %>%\\n add_CI()\\n\", opts = list(label = \"\\\"survival-plot-add-x\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list(eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/private/var/folders/4f/x7rnzbxn0ys7dwprbsnq_2rc0000gn/T/RtmpVyK1qk/file16e315fb8f80b/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"survival-plot-add-x\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"mod %>%\", \" visr() %>%\", \" add_CI()\", \"\"), .width.px = 700, .height.px = 432.632880098888, params.src = \"survival-plot-add-x, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-survival-plot-exercise-4-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-survival-plot-exercise-4-code-editor`)), session) output$`tutorial-exercise-survival-plot-exercise-4-output` <- renderUI({ `tutorial-exercise-survival-plot-exercise-4-result`() }) learnr:::store_exercise_cache(structure(list(label = \"survival-plot-exercise-4\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"survival-plot-exercise-4\", code = \"\\n# fun!\\n\", opts = list(label = \"\\\"survival-plot-exercise-4\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list( eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/private/var/folders/4f/x7rnzbxn0ys7dwprbsnq_2rc0000gn/T/RtmpVyK1qk/file16e315fb8f80b/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"survival-plot-exercise-4\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"# fun!\", \"\" ), .width.px = 700, .height.px = 432.632880098888, params.src = \"survival-plot-exercise-4, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-survival-plot-annotate-basic-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-survival-plot-annotate-basic-code-editor`)), session) output$`tutorial-exercise-survival-plot-annotate-basic-output` <- renderUI({ `tutorial-exercise-survival-plot-annotate-basic-result`() }) learnr:::store_exercise_cache(structure(list(label = \"survival-plot-annotate-basic\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"survival-plot-annotate-basic\", code = \"\\nmod %>%\\n visr() %>%\\n visR::add_annotation(label = \\\"Hello world\\\", xmin = 0, ymin = 0.5)\\n\", opts = list(label = \"\\\"survival-plot-annotate-basic\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list( eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/private/var/folders/4f/x7rnzbxn0ys7dwprbsnq_2rc0000gn/T/RtmpVyK1qk/file16e315fb8f80b/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"survival-plot-annotate-basic\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"mod %>%\", \" visr() %>%\", \" visR::add_annotation(label = \\\"Hello world\\\", xmin = 0, ymin = 0.5)\", \"\"), .width.px = 700, .height.px = 432.632880098888, params.src = \"survival-plot-annotate-basic, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-survival-plot-exercise-5-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-survival-plot-exercise-5-code-editor`)), session) output$`tutorial-exercise-survival-plot-exercise-5-output` <- renderUI({ `tutorial-exercise-survival-plot-exercise-5-result`() }) learnr:::store_exercise_cache(structure(list(label = \"survival-plot-exercise-5\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"survival-plot-exercise-5\", code = \"\\n# fun!\\n\", opts = list(label = \"\\\"survival-plot-exercise-5\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list( eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/private/var/folders/4f/x7rnzbxn0ys7dwprbsnq_2rc0000gn/T/RtmpVyK1qk/file16e315fb8f80b/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"survival-plot-exercise-5\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"# fun!\", \"\" ), .width.px = 700, .height.px = 432.632880098888, params.src = \"survival-plot-exercise-5, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-survival-plot-style-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-survival-plot-style-code-editor`)), session) output$`tutorial-exercise-survival-plot-style-output` <- renderUI({ `tutorial-exercise-survival-plot-style-result`() }) learnr:::store_exercise_cache(structure(list(label = \"survival-plot-style\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"survival-plot-style\", code = \"\\ngg = mod %>% visr() \\n \\ngg + ggplot2::theme_dark()\\n\", opts = list(label = \"\\\"survival-plot-style\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list(eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/private/var/folders/4f/x7rnzbxn0ys7dwprbsnq_2rc0000gn/T/RtmpVyK1qk/file16e315fb8f80b/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"survival-plot-style\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"gg = mod %>% visr() \", \" \", \"gg + ggplot2::theme_dark()\", \"\"), .width.px = 700, .height.px = 432.632880098888, params.src = \"survival-plot-style, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-survival-plot-exercise-6-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-survival-plot-exercise-6-code-editor`)), session) output$`tutorial-exercise-survival-plot-exercise-6-output` <- renderUI({ `tutorial-exercise-survival-plot-exercise-6-result`() }) learnr:::store_exercise_cache(structure(list(label = \"survival-plot-exercise-6\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"survival-plot-exercise-6\", code = \"\\n# fun!\\n\", opts = list(label = \"\\\"survival-plot-exercise-6\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list( eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/private/var/folders/4f/x7rnzbxn0ys7dwprbsnq_2rc0000gn/T/RtmpVyK1qk/file16e315fb8f80b/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"survival-plot-exercise-6\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"# fun!\", \"\" ), .width.px = 700, .height.px = 432.632880098888, params.src = \"survival-plot-exercise-6, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-survival-plot-risktable-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-survival-plot-risktable-code-editor`)), session) output$`tutorial-exercise-survival-plot-risktable-output` <- renderUI({ `tutorial-exercise-survival-plot-risktable-result`() }) learnr:::store_exercise_cache(structure(list(label = \"survival-plot-risktable\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"survival-plot-risktable\", code = \"\\nmod %>%\\n visr() %>%\\n add_risktable(statlist = c(\\\"n.risk\\\", \\\"n.event\\\", \\\"n.censor\\\"))\\n\", opts = list(label = \"\\\"survival-plot-risktable\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\", fig.height = \"7\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list(eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/private/var/folders/4f/x7rnzbxn0ys7dwprbsnq_2rc0000gn/T/RtmpVyK1qk/file16e315fb8f80b/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 7, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"survival-plot-risktable\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"mod %>%\", \" visr() %>%\", \" add_risktable(statlist = c(\\\"n.risk\\\", \\\"n.event\\\", \\\"n.censor\\\"))\", \"\"), .width.px = 700, .height.px = 672, params.src = \"survival-plot-risktable, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE, fig.height = 7\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-survival-plot-exercise-7-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-survival-plot-exercise-7-code-editor`)), session) output$`tutorial-exercise-survival-plot-exercise-7-output` <- renderUI({ `tutorial-exercise-survival-plot-exercise-7-result`() }) learnr:::store_exercise_cache(structure(list(label = \"survival-plot-exercise-7\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"survival-plot-exercise-7\", code = \"\\n# fun!\\n\", opts = list(label = \"\\\"survival-plot-exercise-7\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list( eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/private/var/folders/4f/x7rnzbxn0ys7dwprbsnq_2rc0000gn/T/RtmpVyK1qk/file16e315fb8f80b/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"survival-plot-exercise-7\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"# fun!\", \"\" ), .width.px = 700, .height.px = 432.632880098888, params.src = \"survival-plot-exercise-7, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-basic-attrition-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-basic-attrition-code-editor`)), session) output$`tutorial-exercise-basic-attrition-output` <- renderUI({ `tutorial-exercise-basic-attrition-result`() }) learnr:::store_exercise_cache(structure(list(label = \"basic-attrition\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"basic-attrition\", code = \"\\ndata$Patient = 1:nrow(data) \\n\\ncondition = \\\"Age_Cat != '<18yr'\\\"\\n\\nfilters = data %>% get_attrition(subject_column_name = \\\"Patient\\\", \\n criteria_descriptions = \\\"18 older\\\", \\n criteria_conditions = condition) \\n\\nfilters %>% visr()\\n\\nfilters %>% render(title = \\\"Attrition Table\\\", datasource = DATASOURCE)\\n\\ndata %>% apply_attrition(condition)\\n\\n\", opts = list(label = \"\\\"basic-attrition\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list(eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/private/var/folders/4f/x7rnzbxn0ys7dwprbsnq_2rc0000gn/T/RtmpVyK1qk/file16e315fb8f80b/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"basic-attrition\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"data$Patient = 1:nrow(data) \", \"\", \"condition = \\\"Age_Cat != '<18yr'\\\"\", \"\", \"filters = data %>% get_attrition(subject_column_name = \\\"Patient\\\", \", \" criteria_descriptions = \\\"18 older\\\", \", \" criteria_conditions = condition) \", \"\", \"filters %>% visr()\", \"\", \"filters %>% render(title = \\\"Attrition Table\\\", datasource = DATASOURCE)\", \"\", \"data %>% apply_attrition(condition)\", \"\", \"\"), .width.px = 700, .height.px = 432.632880098888, params.src = \"basic-attrition, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-custom-func-tableone-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-custom-func-tableone-code-editor`)), session) output$`tutorial-exercise-custom-func-tableone-output` <- renderUI({ `tutorial-exercise-custom-func-tableone-result`() }) learnr:::store_exercise_cache(structure(list(label = \"custom-func-tableone\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"custom-func-tableone\", code = \"\\n# basically default function return missing values.\\nmy_func = function(x) {\\n \\n (.numeric(x)) {\\n \\n dat = list(\\n `Mean (SD)` = paste0(format(mean(x, na.rm = TRUE), digits = 3), \\n \\\" (\\\", \\n format(sd(x, na.rm = TRUE), digits = 3), \\n \\\")\\\"),\\n `Median (IQR)` = paste0(format(median(x, na.rm = TRUE), digits = 3), \\n \\\" (\\\", \\n format(quantile(x, probs=0.25, na.rm = TRUE), digits = 3),\\n \\\"-\\\", \\n format(quantile(x, probs=0.75, na.rm = TRUE), digits = 3), \\n \\\")\\\"),\\n `Min-max` = paste0(format(min(x, na.rm = TRUE), digits = 3), \\n \\\"-\\\", format(max(x, na.rm = TRUE), digits = 3))\\n )\\n \\n list(dat)\\n \\n } else {\\n \\n visR::summarize_short(x)\\n \\n }\\n}\\n\\ndata %>% \\n get_tableone(strata = c(\\\"Sex\\\", \\\"Age_Cat\\\"), summary_function = my_func) %>% \\n filter(variable != \\\"Sex\\\" & variable != \\\"Age_Cat\\\") %>% \\n render(title = TITLE, datasource = DATASOURCE)\", opts = list(label = \"\\\"custom-func-tableone\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\", exercise.lines = \"35\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list( eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/private/var/folders/4f/x7rnzbxn0ys7dwprbsnq_2rc0000gn/T/RtmpVyK1qk/file16e315fb8f80b/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"custom-func-tableone\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, exercise.lines = 35, code = c(\"\", \"# basically default function return missing values.\", \"my_func = function(x) {\", \" \", \" (.numeric(x)) {\", \" \", \" dat = list(\", \" `Mean (SD)` = paste0(format(mean(x, na.rm = TRUE), digits = 3), \", \" \\\" (\\\", \", \" format(sd(x, na.rm = TRUE), digits = 3), \", \" \\\")\\\"),\", \" `Median (IQR)` = paste0(format(median(x, na.rm = TRUE), digits = 3), \", \" \\\" (\\\", \", \" format(quantile(x, probs=0.25, na.rm = TRUE), digits = 3),\", \" \\\"-\\\", \", \" format(quantile(x, probs=0.75, na.rm = TRUE), digits = 3), \", \" \\\")\\\"),\", \" `Min-max` = paste0(format(min(x, na.rm = TRUE), digits = 3), \", \" \\\"-\\\", format(max(x, na.rm = TRUE), digits = 3))\", \" )\", \" \", \" list(dat)\", \" \", \" } else {\", \" \", \" visR::summarize_short(x)\", \" \", \" }\", \"}\", \"\", \"data %>% \", \" get_tableone(strata = c(\\\"Sex\\\", \\\"Age_Cat\\\"), summary_function = my_func) %>% \", \" filter(variable != \\\"Sex\\\" & variable != \\\"Age_Cat\\\") %>% \", \" render(title = TITLE, datasource = DATASOURCE)\"), .width.px = 700, .height.px = 432.632880098888, params.src = \"custom-func-tableone, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE, exercise.lines=35\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-rendering-engines-dt-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-rendering-engines-dt-code-editor`)), session) output$`tutorial-exercise-rendering-engines-dt-output` <- renderUI({ `tutorial-exercise-rendering-engines-dt-result`() }) learnr:::store_exercise_cache(structure(list(label = \"rendering-engines-dt\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"rendering-engines-dt\", code = \"\\nmod %>% \\n get_pvalue() %>% \\n render(title = TITLE, \\n datasource = DATASOURCE, \\n engine = \\\"kable\\\") # dt launches child process crashes shinyapps.io? \\n\", opts = list(label = \"\\\"rendering-engines-dt\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list(eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/private/var/folders/4f/x7rnzbxn0ys7dwprbsnq_2rc0000gn/T/RtmpVyK1qk/file16e315fb8f80b/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"rendering-engines-dt\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"mod %>% \", \" get_pvalue() %>% \", \" render(title = TITLE, \", \" datasource = DATASOURCE, \", \" engine = \\\"kable\\\") # dt launches child process crashes shinyapps.io? \", \"\"), .width.px = 700, .height.px = 432.632880098888, params.src = \"rendering-engines-dt, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-solution-figure5-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-solution-figure5-code-editor`)), session) output$`tutorial-exercise-solution-figure5-output` <- renderUI({ `tutorial-exercise-solution-figure5-result`() }) learnr:::store_exercise_cache(structure(list(label = \"solution-figure5\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"solution-figure5\", code = \"\\nm = data %>% estimate_KM(strata = c(\\\"Sex\\\", \\\"Age_Cat\\\"),\\n CNSR = \\\"Status\\\", \\n AVAL = \\\"Stay\\\")\\n\\nhalf_surv_df = m %>% \\n get_quantile(probs = 0.5) %>% \\n dplyr::filter(quantity == \\\"quantile\\\") %>%\\n dplyr::mutate(pos1 = `50`, pos2 = 0.5) %>%\\n dplyr::select(-c(quantity, `50`))\\n \\nhalf_surv_df_horizontal = half_surv_df %>% dplyr::mutate(pos1 = 0)\\n \\nhalf_surv_df_vertical = half_surv_df %>% dplyr::mutate(pos2 = 0)\\n \\nhalf_surv_df = rbind(half_surv_df, half_surv_df_horizontal, half_surv_df_vertical) \\n \\nm %>%\\n visr() %>%\\n add_CI() %>%\\n add_CNSR() +\\n ggplot2::geom_line(data = half_surv_df, ggplot2::aes(pos1, pos2, group = strata), linetype = \\\"dashed\\\")\\n\", opts = list(label = \"\\\"solution-figure5\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list(eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/private/var/folders/4f/x7rnzbxn0ys7dwprbsnq_2rc0000gn/T/RtmpVyK1qk/file16e315fb8f80b/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"solution-figure5\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"m = data %>% estimate_KM(strata = c(\\\"Sex\\\", \\\"Age_Cat\\\"),\", \" CNSR = \\\"Status\\\", \", \" AVAL = \\\"Stay\\\")\", \"\", \"half_surv_df = m %>% \", \" get_quantile(probs = 0.5) %>% \", \" dplyr::filter(quantity == \\\"quantile\\\") %>%\", \" dplyr::mutate(pos1 = `50`, pos2 = 0.5) %>%\", \" dplyr::select(-c(quantity, `50`))\", \" \", \"half_surv_df_horizontal = half_surv_df %>% dplyr::mutate(pos1 = 0)\", \" \", \"half_surv_df_vertical = half_surv_df %>% dplyr::mutate(pos2 = 0)\", \" \", \"half_surv_df = rbind(half_surv_df, half_surv_df_horizontal, half_surv_df_vertical) \", \" \", \"m %>%\", \" visr() %>%\", \" add_CI() %>%\", \" add_CNSR() +\", \" ggplot2::geom_line(data = half_surv_df, ggplot2::aes(pos1, pos2, group = strata), linetype = \\\"dashed\\\")\", \"\"), .width.px = 700, .height.px = 432.632880098888, params.src = \"solution-figure5, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" )))","code":"m = data %>% estimate_KM(strata = c(\"Sex\", \"Age_Cat\"), CNSR = \"Status\", AVAL = \"Stay\") half_surv_df = m %>% get_quantile(probs = 0.5) %>% dplyr::filter(quantity == \"quantile\") %>% dplyr::mutate(pos1 = `50`, pos2 = 0.5) %>% dplyr::select(-c(quantity, `50`)) half_surv_df_horizontal = half_surv_df %>% dplyr::mutate(pos1 = 0) half_surv_df_vertical = half_surv_df %>% dplyr::mutate(pos2 = 0) half_surv_df = rbind(half_surv_df, half_surv_df_horizontal, half_surv_df_vertical) m %>% visr() %>% add_CI() %>% add_CNSR() + ggplot2::geom_line(data = half_surv_df, ggplot2::aes(pos1, pos2, group = strata), linetype = \"dashed\")"},{"path":"https://openpharma.github.io/visR/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Mark Baillie. Author, maintainer, copyright holder. Diego Saldana. Author. Charlotta Fruechtenicht. Author. Marc Vandemeulebroecke. Author. Thanos Siadimas. Author. Pawel Kawski. Author. Steven Haesendonckx. Author. James Black. Author. Pelagia Alexandra Papadopoulou. Author. Tim Treis. Author. Rebecca Albrecht. Author. Ardalan Mirshani. Contributor. Daniel D. Sjoberg. Author.","code":""},{"path":"https://openpharma.github.io/visR/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Baillie M, Saldana D, Fruechtenicht C, Vandemeulebroecke M, Siadimas T, Kawski P, Haesendonckx S, Black J, Alexandra Papadopoulou P, Treis T, Albrecht R, Sjoberg D (2023). visR: Clinical Graphs Tables Adhering Graphical Principles. R package version 0.4.0, https://github.com/openpharma/visR.","code":"@Manual{, title = {visR: Clinical Graphs and Tables Adhering to Graphical Principles}, author = {Mark Baillie and Diego Saldana and Charlotta Fruechtenicht and Marc Vandemeulebroecke and Thanos Siadimas and Pawel Kawski and Steven Haesendonckx and James Black and Pelagia {Alexandra Papadopoulou} and Tim Treis and Rebecca Albrecht and Daniel D. Sjoberg}, year = {2023}, note = {R package version 0.4.0}, url = {https://github.com/openpharma/visR}, }"},{"path":"https://openpharma.github.io/visR/contributing.html","id":null,"dir":"","previous_headings":"","what":"Contributing to visR","title":"Contributing to visR","text":"detailed info contributing, please see development contributing guide.","code":""},{"path":"https://openpharma.github.io/visR/contributing.html","id":"fixing-typos","dir":"","previous_headings":"","what":"Fixing typos","title":"Contributing to visR","text":"can fix typos, spelling mistakes, grammatical errors documentation directly using GitHub web interface, long changes made source file. generally means ’ll need edit roxygen2 comments .R, .Rd file. can find .R file generates .Rd reading comment first line.","code":""},{"path":"https://openpharma.github.io/visR/contributing.html","id":"bigger-changes","dir":"","previous_headings":"","what":"Bigger changes","title":"Contributing to visR","text":"want make bigger contribution, ’s good idea first file issue make sure someone team agrees ’s needed. ’ve found bug, please file issue illustrates bug minimal reprex (also help write unit test, needed).","code":""},{"path":"https://openpharma.github.io/visR/contributing.html","id":"pull-request-process","dir":"","previous_headings":"Bigger changes","what":"Pull request process","title":"Contributing to visR","text":"Fork package clone onto computer. haven’t done , recommend using usethis::create_from_github(\"openpharma/visR\", fork = TRUE). Install development dependencies devtools::install_dev_deps(), make sure package passes R CMD check running devtools::check(). R CMD check doesn’t pass cleanly, ’s good idea ask help continuing. Create Git branch pull request (PR). recommend using usethis::pr_init(\"brief-description--change\"). Make changes, commit git, create PR running usethis::pr_push(), following prompts browser. title PR briefly describe change. body PR contain Fixes #issue-number. user-facing changes, add bullet top NEWS.md (.e. just first header). Follow style described https://style.tidyverse.org/news.html.","code":""},{"path":[]},{"path":"https://openpharma.github.io/visR/contributing.html","id":"general-coding-principles","dir":"","previous_headings":"Code style","what":"General coding principles","title":"Contributing to visR","text":"new functions preferably built using widely adapted tidyverse (please see namespace allowed package dependencies). Dependencies kept minimum. Please don’t restyle code nothing PR. Use roxygen2, Markdown syntax, updating creating documentation. Use testthat unit tests. Contributions accompanied extensive user acceptance testing. Please reach team need help. CRAN requires us use TRUE/FALSE, don’t use T/F. Subset using ‘[[’ rather ‘$’ avoid surprises partial matching","code":""},{"path":"https://openpharma.github.io/visR/contributing.html","id":"data-manipulation","dir":"","previous_headings":"Code style","what":"Data Manipulation","title":"Contributing to visR","text":"Data expected present tidy form (one row per observation) unless otherwise noted. Dataframes, rather tibbles returned functions. magrittr pipe (%>%) can used consecutive operations data. models broom package easily converts key information models tidy data tibbles subsequent wrangling visualisation. Note implemented methods lazy extract key information, used common downstream processing. visR custom tidiers extract informtation model objects dataframe users information required downstream processing.","code":""},{"path":"https://openpharma.github.io/visR/contributing.html","id":"figures","dir":"","previous_headings":"Code style","what":"Figures","title":"Contributing to visR","text":"Plotting implemented using ggplot2 unless possible. Interactivity may provided using ggplotly - needed plotly packages.","code":""},{"path":"https://openpharma.github.io/visR/contributing.html","id":"tables","dir":"","previous_headings":"Code style","what":"Tables","title":"Contributing to visR","text":"Tables always also available raw dataframes.","code":""},{"path":"https://openpharma.github.io/visR/contributing.html","id":"testing","dir":"","previous_headings":"","what":"Testing","title":"Contributing to visR","text":"Write tests soon function somewhat usable state. Improving easier starting. Add new test every issue/bug identified. Use vdiffr comparison anything plotted library manually curated plots. Educate break: Rather just stopping parameters provided don’t make sense, like shape = NULL, warn user required argument set reasonable default.","code":""},{"path":"https://openpharma.github.io/visR/contributing.html","id":"package-maintenance","dir":"","previous_headings":"","what":"Package maintenance","title":"Contributing to visR","text":"integrated several “watchdogs” testing routine ensure adherence certain standards ’ve set. routines scan codebase possible style violations:","code":""},{"path":"https://openpharma.github.io/visR/contributing.html","id":"cran-watchdog","dir":"","previous_headings":"Package maintenance","what":"CRAN watchdog","title":"Contributing to visR","text":"successful submission CRAN, certain rules set place CRAN team, example usage TRUE/FALSE T/F. continuously ensure compliance , CRAN watchdog scans respective files violations .","code":""},{"path":"https://openpharma.github.io/visR/contributing.html","id":"validation-watchdog-in-pr","dir":"","previous_headings":"Package maintenance","what":"Validation watchdog (in PR)","title":"Contributing to visR","text":"want make easy use package stringent environment might require packages validated. Based discussions similar projects decided implement traceability testing files. Therefore, tests well last change , automatically written files potential scraping. details last change gathered usage git log table contents unit test specifications generated based strings actual tests.","code":""},{"path":"https://openpharma.github.io/visR/contributing.html","id":"code-of-conduct","dir":"","previous_headings":"","what":"Code of Conduct","title":"Contributing to visR","text":"Please note visR project released Contributor Code Conduct. contributing project agree abide terms.","code":""},{"path":"https://openpharma.github.io/visR/index.html","id":"visr-","dir":"","previous_headings":"","what":"Clinical Graphs and Tables Adhering to Graphical Principles","title":"Clinical Graphs and Tables Adhering to Graphical Principles","text":"goal visR enable fit--purpose, reusable clinical medical research focused visualizations tables sensible defaults based sound graphical principles. Package documentation","code":""},{"path":"https://openpharma.github.io/visR/index.html","id":"motivation","dir":"","previous_headings":"","what":"Motivation","title":"Clinical Graphs and Tables Adhering to Graphical Principles","text":"using common package visualising data analysis results clinical development process, want positive influence choice visualisation making easy explore different visualisation use impactful visualisations fit--purpose effective visual communication making easy implement best practices judging visualisation chose research question, want facilitate support good practice. can read philosophy architecture repo wiki.","code":""},{"path":"https://openpharma.github.io/visR/index.html","id":"installation","dir":"","previous_headings":"","what":"Installation","title":"Clinical Graphs and Tables Adhering to Graphical Principles","text":"easiest way get visR install CRAN: Install development version GitHub :","code":"install.packages(\"visR\") # defaults to main branch devtools::install_github(\"openpharma/visR\")"},{"path":"https://openpharma.github.io/visR/index.html","id":"cite-visr","dir":"","previous_headings":"","what":"Cite visR","title":"Clinical Graphs and Tables Adhering to Graphical Principles","text":"","code":"> citation(\"visR\")"},{"path":"https://openpharma.github.io/visR/index.html","id":"contributing","dir":"","previous_headings":"","what":"Contributing","title":"Clinical Graphs and Tables Adhering to Graphical Principles","text":"Please note visR project released Contributor Code Conduct. contributing project, agree abide terms. Thank contributors: @AlexandraP-21, @ardeeshany, @bailliem, @cschaerfe, @ddsjoberg, @diego-s, @epijim, @galachad, @gdario, @ginberg, @jameshunterbr, @jinjooshim, @joanacmbarros, @Jonnie-Bevan, @kawap, @kawap93, @kentm4, @krystian8207, @kzalocusky, @lcomm, @lesniewa, @prabhushanmup, @rebecca-albrecht, @SHAESEN2, @thanos-siadimas, @therneau, @thomas-neitmann, @timtreis, @yonicd","code":""},{"path":"https://openpharma.github.io/visR/reference/Surv_CNSR.html","id":null,"dir":"Reference","previous_headings":"","what":"Create a Survival Object from CDISC Data — Surv_CNSR","title":"Create a Survival Object from CDISC Data — Surv_CNSR","text":"aim Surv_CNSR() map inconsistency convention survival package CDISC ADaM ADTTE data model. function creates survival object (e.g. survival::Surv()) uses CDISC ADaM ADTTE coding conventions converts arguments status/event variable convention used survival package. AVAL CNSR arguments passed survival::Surv(time = AVAL, event = 1 - CNSR, type = \"right\", origin = 0).","code":""},{"path":"https://openpharma.github.io/visR/reference/Surv_CNSR.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create a Survival Object from CDISC Data — Surv_CNSR","text":"","code":"Surv_CNSR(AVAL, CNSR)"},{"path":"https://openpharma.github.io/visR/reference/Surv_CNSR.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create a Survival Object from CDISC Data — Surv_CNSR","text":"AVAL follow-time. follow-time assumed originate zero. argument passed, default value column/vector named AVAL. CNSR censoring indicator 1=censored 0=death/event. argument passed, default value column/vector named CNSR.","code":""},{"path":"https://openpharma.github.io/visR/reference/Surv_CNSR.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create a Survival Object from CDISC Data — Surv_CNSR","text":"Object class 'Surv'","code":""},{"path":"https://openpharma.github.io/visR/reference/Surv_CNSR.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Create a Survival Object from CDISC Data — Surv_CNSR","text":"Surv_CNSR() function creates survival object utilizing expected data structure CDISC ADaM ADTTE data model, mapping CDISC ADaM ADTTE coding conventions expected status/event variable convention used survival package---specifically, coding convention used status/event indicator. survival package expects status/event indicator following format: 0=alive, 1=dead. accepted choices TRUE/FALSE (TRUE = death) 1/2 (2=death). final risky option omit indicator variable, case subjects assumed event. CDISC ADaM ADTTE data model adopts different coding convention event/status indicator. Using convention, event/status variable named 'CNSR' uses following coding: censor = 1, status/event = 0.","code":""},{"path":[]},{"path":"https://openpharma.github.io/visR/reference/Surv_CNSR.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Create a Survival Object from CDISC Data — Surv_CNSR","text":"","code":"# Use the `Surv_CNSR()` function with visR functions adtte %>% visR::estimate_KM(formula = visR::Surv_CNSR() ~ SEX) #> Call: ~survival::survfit(formula = visR::Surv_CNSR() ~ SEX, data = data) #> #> n events median 0.95LCL 0.95UCL #> SEX=F 143 80 64 47 96 #> SEX=M 111 72 41 30 57 # Use the `Surv_CNSR()` function with functions from other packages as well survival::survfit(visR::Surv_CNSR() ~ SEX, data = adtte) #> Call: survfit(formula = visR::Surv_CNSR() ~ SEX, data = adtte) #> #> n events median 0.95LCL 0.95UCL #> SEX=F 143 80 64 47 96 #> SEX=M 111 72 41 30 57 survival::survreg(visR::Surv_CNSR() ~ SEX + AGE, data = adtte) %>% broom::tidy() #> # A tibble: 4 × 5 #> term estimate std.error statistic p.value #> #> 1 (Intercept) 3.97 0.993 4.00 0.0000645 #> 2 SEXM -0.412 0.226 -1.82 0.0689 #> 3 AGE 0.0131 0.0131 0.997 0.319 #> 4 Log(scale) 0.326 0.0676 4.83 0.00000139"},{"path":"https://openpharma.github.io/visR/reference/add_CI.html","id":null,"dir":"Reference","previous_headings":"","what":"Add confidence interval (CI) to visR object — add_CI","title":"Add confidence interval (CI) to visR object — add_CI","text":"Method add pointwise confidence intervals object created visR S3 method. method set use pipe %>%. two options display CI's, \"ribbon\" \"step\" lines. default method available moment.","code":""},{"path":"https://openpharma.github.io/visR/reference/add_CI.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Add confidence interval (CI) to visR object — add_CI","text":"","code":"add_CI(gg, ...) # S3 method for ggsurvfit add_CI(gg, alpha = 0.1, style = \"ribbon\", linetype, ...) # S3 method for ggtidycuminc add_CI(gg, alpha = 0.1, style = \"ribbon\", linetype, ...)"},{"path":"https://openpharma.github.io/visR/reference/add_CI.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Add confidence interval (CI) to visR object — add_CI","text":"gg ggplot created visR ... arguments passed method modify geom_ribbon alpha aesthetic ggplot2 geom_ribbon. Default 0.1. style aesthetic ggplot2 geom_ribbon. Default \"ribbon\". alternative option \"step\" uses line display interval bounds. linetype aesthetic ggplot2 geom_ribbon.","code":""},{"path":"https://openpharma.github.io/visR/reference/add_CI.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Add confidence interval (CI) to visR object — add_CI","text":"Pointwise confidence interval overlayed visR ggplot","code":""},{"path":"https://openpharma.github.io/visR/reference/add_CI.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Add confidence interval (CI) to visR object — add_CI","text":"","code":"library(visR) # Estimate KM curves by treatment group survfit_object <- survival::survfit(data = adtte, survival::Surv(AVAL, 1 - CNSR) ~ TRTP) ## plot without confidence intervals (CI) p <- visR::visr(survfit_object) p # add CI to plot with default settings p %>% add_CI() # change transparency of CI ribbon p %>% add_CI(alpha = 0.9, style = \"ribbon\") # plot CI as a step line instead of ribbon p %>% add_CI(alpha = 0.1, style = \"step\") # change linetype of CI p %>% add_CI(style = \"step\", linetype = 1)"},{"path":"https://openpharma.github.io/visR/reference/add_CNSR.html","id":null,"dir":"Reference","previous_headings":"","what":"Add censoring symbols to a visR object — add_CNSR","title":"Add censoring symbols to a visR object — add_CNSR","text":"Add censoring symbols visR ggplot S3 method. S3 method adding censoring symbols visR ggplot. method set use pipe %>%. default method available moment.","code":""},{"path":"https://openpharma.github.io/visR/reference/add_CNSR.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Add censoring symbols to a visR object — add_CNSR","text":"","code":"add_CNSR(gg, ...) # S3 method for ggsurvfit add_CNSR(gg, shape = 3, size = 2, ...) # S3 method for ggtidycuminc add_CNSR(gg, shape = 3, size = 2, ...)"},{"path":"https://openpharma.github.io/visR/reference/add_CNSR.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Add censoring symbols to a visR object — add_CNSR","text":"gg ggplot created visR ... arguments passed method modify geom_point shape aesthetic ggplot2 geom_point. Default 3. size aesthetic ggplot2 geom_point. Default 2.","code":""},{"path":"https://openpharma.github.io/visR/reference/add_CNSR.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Add censoring symbols to a visR object — add_CNSR","text":"Censoring symbols overlayed visR ggplot","code":""},{"path":"https://openpharma.github.io/visR/reference/add_CNSR.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Add censoring symbols to a visR object — add_CNSR","text":"","code":"library(visR) # Estimate KM curves by treatment group survfit_object <- survival::survfit(data = adtte, survival::Surv(AVAL, 1 - CNSR) ~ TRTP) ## plot without confidence intervals p <- visR::visr(survfit_object) p # add censoring to plot p %>% visR::add_CNSR() # change censor symbol shape p %>% visR::add_CNSR(shape = 1) # change size and shape p %>% visR::add_CNSR(size = 4, shape = 2)"},{"path":"https://openpharma.github.io/visR/reference/add_annotation.html","id":null,"dir":"Reference","previous_headings":"","what":"Add annotations to a visR object — add_annotation","title":"Add annotations to a visR object — add_annotation","text":"Wrapper around ggplot2::annotation_custom simplified annotation ggplot2 plots. function accepts string, dataframe, data.table, tibble customized objects class gtable places specified location ggplot. layout fixed: bold column headers plain body. font size type can chosen. initial plot individual annotation stored attribute component final object.","code":""},{"path":"https://openpharma.github.io/visR/reference/add_annotation.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Add annotations to a visR object — add_annotation","text":"","code":"add_annotation( gg = NULL, label = NULL, base_family = \"sans\", base_size = 11, xmin = -Inf, xmax = Inf, ymin = -Inf, ymax = Inf )"},{"path":"https://openpharma.github.io/visR/reference/add_annotation.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Add annotations to a visR object — add_annotation","text":"gg Object class ggplot. label String, dataframe, data.table, tibble used annotate ggplot. base_family character. Base font family base_size numeric. Base font size pt xmin x coordinates giving horizontal location raster fit annotation. xmax x coordinates giving horizontal location raster fit annotation. ymin y coordinates giving vertical location raster fit annotation. ymax y coordinates giving vertical location raster fit annotation.","code":""},{"path":"https://openpharma.github.io/visR/reference/add_annotation.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Add annotations to a visR object — add_annotation","text":"Object class ggplot added annotation object class gtable.","code":""},{"path":[]},{"path":"https://openpharma.github.io/visR/reference/add_annotation.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Add annotations to a visR object — add_annotation","text":"","code":"## Estimate survival surv_object <- visR::estimate_KM(data = adtte, strata = \"TRTP\") ## We want to annotate the survival KM plot with a simple string comment visR::visr(surv_object) %>% visR::add_annotation( label = \"My simple comment\", base_family = \"sans\", base_size = 15, xmin = 110, xmax = 180, ymin = 0.80 ) ## Currently, care needs to be taken on the x-y values relative ## to the plot data area. Here we are plotting outside of the data area. visR::visr(surv_object) %>% visR::add_annotation( label = \"My simple comment\", base_family = \"sans\", base_size = 15, xmin = 210, xmax = 380, ymin = 1.0 ) ## We may also want to annotate a KM plot with information ## from additional tests or estimates. This example we annotate ## with p-values contained in a tibble ## we calculate p-values for \"Equality across strata\" lbl <- visR::get_pvalue(surv_object, statlist = c(\"test\", \"pvalue\"), type = \"All\" ) ## display p-values lbl #> Equality across strata p-value #> 1 Log-Rank <0.001 #> 2 Wilcoxon <0.001 #> 3 Tarone-Ware <0.001 ## Now annotate survival KM plot with the p-values visR::visr(surv_object) %>% visR::add_annotation( label = lbl, base_family = \"sans\", base_size = 9, xmin = 100, xmax = 180, ymin = 0.80 )"},{"path":"https://openpharma.github.io/visR/reference/add_highlight.html","id":null,"dir":"Reference","previous_headings":"","what":"Highlight a specific strata — add_highlight","title":"Highlight a specific strata — add_highlight","text":"S3 method highlighting specific strata lowering opacity strata.","code":""},{"path":"https://openpharma.github.io/visR/reference/add_highlight.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Highlight a specific strata — add_highlight","text":"","code":"add_highlight(gg, ...) # S3 method for ggsurvfit add_highlight(gg = NULL, strata = NULL, bg_alpha = 0.2, ...)"},{"path":"https://openpharma.github.io/visR/reference/add_highlight.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Highlight a specific strata — add_highlight","text":"gg ggplot created visR ... arguments passed method strata String representing name value strata highlighted shown legend. bg_alpha numerical value 0 1 used decrease opacity strata chosen highlighted strata. strata's existing alpha values multiplied bg_alpha decrease opacity, highlighting target strata. works colour fill properties, example present applying visR::add_CI().","code":""},{"path":"https://openpharma.github.io/visR/reference/add_highlight.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Highlight a specific strata — add_highlight","text":"input ggsurvfit object adjusted alpha values","code":""},{"path":"https://openpharma.github.io/visR/reference/add_highlight.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Highlight a specific strata — add_highlight","text":"","code":"adtte %>% visR::estimate_KM(strata = \"SEX\") %>% visR::visr() %>% visR::add_CI(alpha = 0.4) %>% visR::add_highlight(strata = \"M\", bg_alpha = 0.2) strata <- c(\"Placebo\", \"Xanomeline Low Dose\") adtte %>% visR::estimate_KM(strata = \"TRTP\") %>% visR::visr() %>% visR::add_CI(alpha = 0.4) %>% visR::add_highlight(strata = strata, bg_alpha = 0.2)"},{"path":"https://openpharma.github.io/visR/reference/add_quantiles.html","id":null,"dir":"Reference","previous_headings":"","what":"Add quantile indicators to visR plot — add_quantiles","title":"Add quantile indicators to visR plot — add_quantiles","text":"Method add quantile lines plot.","code":""},{"path":"https://openpharma.github.io/visR/reference/add_quantiles.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Add quantile indicators to visR plot — add_quantiles","text":"","code":"add_quantiles(gg, ...) # S3 method for ggsurvfit add_quantiles( gg, quantiles = 0.5, linetype = \"dashed\", linecolour = \"grey50\", alpha = 1, ... )"},{"path":"https://openpharma.github.io/visR/reference/add_quantiles.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Add quantile indicators to visR plot — add_quantiles","text":"gg ggplot created visR ... arguments passed method modify geom_line quantiles vector quantiles displayed probability scale, default: 0.5 linetype string indicating linetype described aesthetics ggplot2 geom_line, default: dashed (also supports \"mixed\" -> horizontal lines solid, vertical ones dashed) linecolour string indicating linetype described aesthetics ggplot2 geom_line, default: grey, (also supports \"strata\" -> horizontal lines grey50, vertical ones colour respective strata) alpha numeric value 0 1 described aesthetics ggplot2 geom_line, default: 1","code":""},{"path":"https://openpharma.github.io/visR/reference/add_quantiles.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Add quantile indicators to visR plot — add_quantiles","text":"Lines indicating quantiles overlayed visR ggplot","code":""},{"path":"https://openpharma.github.io/visR/reference/add_quantiles.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Add quantile indicators to visR plot — add_quantiles","text":"","code":"library(visR) adtte %>% estimate_KM(\"SEX\") %>% visr() %>% add_quantiles() #> Warning: no non-missing arguments to min; returning Inf adtte %>% estimate_KM(\"SEX\") %>% visr() %>% add_quantiles(quantiles = c(0.25, 0.50)) #> Warning: no non-missing arguments to min; returning Inf adtte %>% estimate_KM(\"SEX\") %>% visr() %>% add_quantiles( quantiles = c(0.25, 0.50), linetype = \"solid\", linecolour = \"grey\" ) #> Warning: no non-missing arguments to min; returning Inf adtte %>% estimate_KM(\"SEX\") %>% visr() %>% add_quantiles( quantiles = c(0.25, 0.50), linetype = \"mixed\", linecolour = \"strata\" ) #> Warning: no non-missing arguments to min; returning Inf"},{"path":"https://openpharma.github.io/visR/reference/add_risktable.html","id":null,"dir":"Reference","previous_headings":"","what":"Add risk tables to visR plots through an S3 method — add_risktable","title":"Add risk tables to visR plots through an S3 method — add_risktable","text":"S3 method adding risk tables visR plots. function following workflow: risktables calculated using get_risktable risktables placed underneath visR plots using plot_grid initial visR plot individual risktables stored attribute component final object allow post-modification individual plots desired","code":""},{"path":"https://openpharma.github.io/visR/reference/add_risktable.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Add risk tables to visR plots through an S3 method — add_risktable","text":"","code":"add_risktable(gg, ...) # S3 method for ggsurvfit add_risktable( gg, times = NULL, statlist = \"n.risk\", label = NULL, group = \"strata\", collapse = FALSE, rowgutter = 0.16, ... ) # S3 method for ggtidycuminc add_risktable( gg, times = NULL, statlist = \"n.risk\", label = NULL, group = \"strata\", collapse = FALSE, rowgutter = 0.16, ... )"},{"path":"https://openpharma.github.io/visR/reference/add_risktable.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Add risk tables to visR plots through an S3 method — add_risktable","text":"gg visR plot class ggsurvfit ggtidycmprsk ... arguments passed method add_risktable times Numeric vector indicating times risk set, censored subjects, events calculated. statlist Character vector indicating summary data present. Current choices \"n.risk\" \"n.event\" \"n.censor\", \"cum.event\", \"cum.censor\". Default \"n.risk\". label Character vector labels statlist. Default matches \"n.risk\" \"risk\", \"n.event\" \"Events\", \"n.censor\" \"Censored\", \"cum.event\" \"Cum. Event\", \"cum.censor\" \"Cum. Censor\". group String indicating grouping variable risk tables. Current options : \"strata\": groups risk tables per stratum. label specifies label within risk table. strata levels used titles risk tables. default \"statlist\": groups risk tables per statlist. label specifies title risk table. strata levels used labeling within risk table. Default \"strata\". collapse Boolean, indicates whether present data overall. Default FALSE. rowgutter numeric relative value 0 1 indicates height used table versus height used plot, described cowplot::plot_grid(rel_heights=). default 0.16.","code":""},{"path":"https://openpharma.github.io/visR/reference/add_risktable.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Add risk tables to visR plots through an S3 method — add_risktable","text":"Object class ggplot added risk table.","code":""},{"path":[]},{"path":"https://openpharma.github.io/visR/reference/add_risktable.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Add risk tables to visR plots through an S3 method — add_risktable","text":"","code":"## Display 2 risk tables, 1 per statlist adtte %>% visR::estimate_KM(strata = \"TRTP\") %>% visR::visr() %>% visR::add_risktable( label = c(\"Subjects at Risk\", \"Censored\"), statlist = c(\"n.risk\", \"n.censor\", \"n.event\"), group = \"statlist\" ) ## Display overall risk table at selected times adtte %>% visR::estimate_KM(strata = \"TRTP\") %>% visR::visr() %>% visR::add_risktable( label = c(\"Subjects at Risk\", \"Censored\"), statlist = c(\"n.risk\", \"n.censor\"), collapse = TRUE, times = c(0, 20, 40, 60) ) ## Add risk set as specified times adtte %>% visR::estimate_KM(strata = \"TRTP\") %>% visR::visr() %>% visR::add_risktable(times = c(0, 20, 40, 100, 111, 200))"},{"path":"https://openpharma.github.io/visR/reference/adtte.html","id":null,"dir":"Reference","previous_headings":"","what":"adtte - CDISC ADaM compliant time to event data set — adtte","title":"adtte - CDISC ADaM compliant time to event data set — adtte","text":"ADTTE data copied 2013 CDISC Pilot","code":""},{"path":"https://openpharma.github.io/visR/reference/adtte.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"adtte - CDISC ADaM compliant time to event data set — adtte","text":"","code":"adtte"},{"path":"https://openpharma.github.io/visR/reference/adtte.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"adtte - CDISC ADaM compliant time to event data set — adtte","text":"data frame 254 rows 26 variables: STUDYID Study Identifier SITEID Study Site Identifier USUBJID Unique Subject Identifier AGE Age AGEGR1 Pooled Age Group 1 AGEGR1N Pooled Age Group 1 (N) RACE Race RACEN Race (N) SEX Sex TRTSDT Date First Exposure Treatment TRTEDT Date Last Exposure Treatment TRTDUR Duration treatment (days) TRTP Planned Treatment TRTA Actual Treatment TRTAN Actual Treatment (N) PARAM Parameter Description PARAMCD Parameter Code AVAL Analysis Value STARTDT Time Event Origin Date Subject ADT Analysis Date CNSR Censor EVNTDESC Event Censoring Description SRCDOM Source Domain SRCVAR Source Variable SRCSEQ Source Sequence Number SAFFL Safety Population Flag","code":""},{"path":"https://openpharma.github.io/visR/reference/adtte.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"adtte - CDISC ADaM compliant time to event data set — adtte","text":"CDISC SDTM/ADAM Pilot Project. https://github.com/phuse-org/phuse-scripts/tree/master/data","code":""},{"path":"https://openpharma.github.io/visR/reference/adtte.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"adtte - CDISC ADaM compliant time to event data set — adtte","text":"","code":"data(\"adtte\")"},{"path":"https://openpharma.github.io/visR/reference/align_plots.html","id":null,"dir":"Reference","previous_headings":"","what":"Align multiple ggplot graphs, taking into account the legend — align_plots","title":"Align multiple ggplot graphs, taking into account the legend — align_plots","text":"function aligns multiple ggplot graphs making width taking account legend width.","code":""},{"path":"https://openpharma.github.io/visR/reference/align_plots.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Align multiple ggplot graphs, taking into account the legend — align_plots","text":"","code":"align_plots(pltlist)"},{"path":"https://openpharma.github.io/visR/reference/align_plots.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Align multiple ggplot graphs, taking into account the legend — align_plots","text":"pltlist list plots","code":""},{"path":"https://openpharma.github.io/visR/reference/align_plots.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Align multiple ggplot graphs, taking into account the legend — align_plots","text":"List ggplot equal width.","code":""},{"path":"https://openpharma.github.io/visR/reference/align_plots.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Align multiple ggplot graphs, taking into account the legend — align_plots","text":"https://stackoverflow.com/questions/26159495","code":""},{"path":"https://openpharma.github.io/visR/reference/align_plots.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Align multiple ggplot graphs, taking into account the legend — align_plots","text":"","code":"# \\donttest{ ## create 2 graphs p1 <- ggplot2::ggplot(adtte, ggplot2::aes(x = as.numeric(AGE), fill = \"Age\")) + ggplot2::geom_histogram(bins = 15) p2 <- ggplot2::ggplot(adtte, ggplot2::aes(x = as.numeric(AGE))) + ggplot2::geom_histogram(bins = 15) ## default alignment does not take into account legend size cowplot::plot_grid( plotlist = list(p1, p2), align = \"none\", nrow = 2 ) ## align_plots() takes into account legend width cowplot::plot_grid( plotlist = visR::align_plots(pltlist = list(p1, p2)), align = \"none\", nrow = 2 ) # }"},{"path":"https://openpharma.github.io/visR/reference/apply_attrition.html","id":null,"dir":"Reference","previous_headings":"","what":"Apply list of inclusion/exclusion criteria to a patient-level dataframe — apply_attrition","title":"Apply list of inclusion/exclusion criteria to a patient-level dataframe — apply_attrition","text":"Apply list inclusion/exclusion criteria patient-level dataframe","code":""},{"path":"https://openpharma.github.io/visR/reference/apply_attrition.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Apply list of inclusion/exclusion criteria to a patient-level dataframe — apply_attrition","text":"","code":"apply_attrition(data, criteria_conditions)"},{"path":"https://openpharma.github.io/visR/reference/apply_attrition.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Apply list of inclusion/exclusion criteria to a patient-level dataframe — apply_attrition","text":"data data.frame. Data set filtered criteria_conditions character dplyr-filter compatible conditions filtering criteria. conditions applied filter input data set obtain final analysis data set","code":""},{"path":"https://openpharma.github.io/visR/reference/apply_attrition.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Apply list of inclusion/exclusion criteria to a patient-level dataframe — apply_attrition","text":"Filtered data frame","code":""},{"path":"https://openpharma.github.io/visR/reference/apply_attrition.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Apply list of inclusion/exclusion criteria to a patient-level dataframe — apply_attrition","text":"","code":"adtte_filtered <- visR::apply_attrition(adtte, criteria_conditions = c( \"TRTP=='Placebo'\", \"AGE>=75\", \"RACE=='WHITE'\", \"SITEID==709\" ) )"},{"path":"https://openpharma.github.io/visR/reference/apply_theme.html","id":null,"dir":"Reference","previous_headings":"","what":"Applies a theme to a ggplot object. — apply_theme","title":"Applies a theme to a ggplot object. — apply_theme","text":"Takes styling options defined visR::define_theme applies plot.","code":""},{"path":"https://openpharma.github.io/visR/reference/apply_theme.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Applies a theme to a ggplot object. — apply_theme","text":"","code":"apply_theme(gg, visR_theme_dict = NULL)"},{"path":"https://openpharma.github.io/visR/reference/apply_theme.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Applies a theme to a ggplot object. — apply_theme","text":"gg object class ggplot visR_theme_dict nested list containing possible font options","code":""},{"path":"https://openpharma.github.io/visR/reference/apply_theme.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Applies a theme to a ggplot object. — apply_theme","text":"object class ggplot","code":""},{"path":"https://openpharma.github.io/visR/reference/apply_theme.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Applies a theme to a ggplot object. — apply_theme","text":"","code":"library(visR) theme <- visR::define_theme( strata = list( \"SEX\" = list( \"F\" = \"red\", \"M\" = \"blue\" ), \"TRTA\" = list( \"Placebo\" = \"cyan\", \"Xanomeline High Dose\" = \"purple\", \"Xanomeline Low Dose\" = \"brown\" ) ), fontsizes = list( \"axis\" = 12, \"ticks\" = 10, \"legend_title\" = 10, \"legend_text\" = 8 ), fontfamily = \"Helvetica\", grid = FALSE, bg = \"transparent\", legend_position = \"top\" ) gg <- adtte %>% visR::estimate_KM(strata = \"SEX\") %>% visR::visr() %>% visR::apply_theme(theme) gg"},{"path":"https://openpharma.github.io/visR/reference/brca_cohort.html","id":null,"dir":"Reference","previous_headings":"","what":"Cancer survival data — brca_cohort","title":"Cancer survival data — brca_cohort","text":"Creation script data-raw","code":""},{"path":"https://openpharma.github.io/visR/reference/brca_cohort.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Cancer survival data — brca_cohort","text":"","code":"brca_cohort"},{"path":"https://openpharma.github.io/visR/reference/brca_cohort.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Cancer survival data — brca_cohort","text":"object class data.frame 1098 rows 10 columns.","code":""},{"path":"https://openpharma.github.io/visR/reference/define_theme.html","id":null,"dir":"Reference","previous_headings":"","what":"Provides a simple wrapper for themes — define_theme","title":"Provides a simple wrapper for themes — define_theme","text":"function collects several lists present. absent, reasonable defaults used. strata defined theme, default grey50 presented legend.","code":""},{"path":"https://openpharma.github.io/visR/reference/define_theme.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Provides a simple wrapper for themes — define_theme","text":"","code":"define_theme( strata = NULL, fontsizes = NULL, fontfamily = \"Helvetica\", grid = FALSE, bg = \"transparent\", legend_position = NULL )"},{"path":"https://openpharma.github.io/visR/reference/define_theme.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Provides a simple wrapper for themes — define_theme","text":"strata named list containing different strata name:colour value pairs fontsizes named list containing font sizes different options fontfamily string name supported font grid boolean specifies whether major minor grid drawn. drawing major minor gridlines can manipulated separately using boolean indicator named list elements major minor. bg string defining colour background plot legend_position string defining legend position. Valid options NULL, 'top' 'bottom' 'right' 'left'","code":""},{"path":"https://openpharma.github.io/visR/reference/define_theme.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Provides a simple wrapper for themes — define_theme","text":"Nested list styling preferences ggplot object","code":""},{"path":"https://openpharma.github.io/visR/reference/define_theme.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Provides a simple wrapper for themes — define_theme","text":"","code":"theme <- visR::define_theme( strata = list(\"SEX\" = list( \"F\" = \"red\", \"M\" = \"blue\" )), fontsizes = list( \"axis\" = 12, \"ticks\" = 10, \"legend_title\" = 10, \"legend_text\" = 8 ), fontfamily = \"Helvetica\", grid = list( \"major\" = FALSE, \"minor\" = FALSE ), bg = \"transparent\", legend_position = \"top\" )"},{"path":"https://openpharma.github.io/visR/reference/dot-convert_alpha.html","id":null,"dir":"Reference","previous_headings":"","what":"Converts an alpha value between its numeric and its hex-encoded form. — .convert_alpha","title":"Converts an alpha value between its numeric and its hex-encoded form. — .convert_alpha","text":"function accepts numeric (NULL/NA) two-character hex encoded alpha representation returns respective representation.","code":""},{"path":"https://openpharma.github.io/visR/reference/dot-convert_alpha.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Converts an alpha value between its numeric and its hex-encoded form. — .convert_alpha","text":"","code":".convert_alpha(numeric_alpha = NULL, hex_alpha = NULL)"},{"path":"https://openpharma.github.io/visR/reference/dot-convert_alpha.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Converts an alpha value between its numeric and its hex-encoded form. — .convert_alpha","text":"numeric_alpha numerical value 0 1. hex_alpha two-letter character string.","code":""},{"path":"https://openpharma.github.io/visR/reference/dot-convert_alpha.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Converts an alpha value between its numeric and its hex-encoded form. — .convert_alpha","text":"numeric_alpha specified, two-letter representation returned. hex_alpha specified, numeric representation returned.","code":""},{"path":"https://openpharma.github.io/visR/reference/dot-get_alpha_from_hex_colour.html","id":null,"dir":"Reference","previous_headings":"","what":"Extract the numerical alpha representation of #RRGGBBAA colour — .get_alpha_from_hex_colour","title":"Extract the numerical alpha representation of #RRGGBBAA colour — .get_alpha_from_hex_colour","text":"RGB colours can encoded hexadecimal values, example internally used ggplot2. , numerical RGB values mapped 0-255 value range two-character hex-values. yields string form '#RRGGBB'. Additionally, fourth optional block can present encoding alpha transparency colour. extends string '#RRGGBBAA'. function takes string input hex_colour, extracts 'AA' part returns numerical representation .","code":""},{"path":"https://openpharma.github.io/visR/reference/dot-get_alpha_from_hex_colour.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extract the numerical alpha representation of #RRGGBBAA colour — .get_alpha_from_hex_colour","text":"","code":".get_alpha_from_hex_colour(hex_colour = NULL)"},{"path":"https://openpharma.github.io/visR/reference/dot-get_alpha_from_hex_colour.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extract the numerical alpha representation of #RRGGBBAA colour — .get_alpha_from_hex_colour","text":"hex_colour string format '#RRGGBBAA'","code":""},{"path":"https://openpharma.github.io/visR/reference/dot-get_alpha_from_hex_colour.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extract the numerical alpha representation of #RRGGBBAA colour — .get_alpha_from_hex_colour","text":"numeric representation colors' alpha value, rounded 2 digits.","code":""},{"path":"https://openpharma.github.io/visR/reference/dot-get_strata.html","id":null,"dir":"Reference","previous_headings":"","what":"Get strata level combinations — .get_strata","title":"Get strata level combinations — .get_strata","text":"Extracts strata level combinations survival objects without specified strata.","code":""},{"path":"https://openpharma.github.io/visR/reference/dot-get_strata.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get strata level combinations — .get_strata","text":"","code":".get_strata(strata)"},{"path":"https://openpharma.github.io/visR/reference/dot-get_strata.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get strata level combinations — .get_strata","text":"strata strata survival object","code":""},{"path":"https://openpharma.github.io/visR/reference/dot-get_strata.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get strata level combinations — .get_strata","text":"strata level combinations survival objects without specified strata.","code":""},{"path":"https://openpharma.github.io/visR/reference/dot-replace_hex_alpha.html","id":null,"dir":"Reference","previous_headings":"","what":"Replaces the AA part of a #RRGGBBAA hex-colour. — .replace_hex_alpha","title":"Replaces the AA part of a #RRGGBBAA hex-colour. — .replace_hex_alpha","text":"RGB colours can encoded hexadecimal values, example internally used ggplot2. , numerical RGB values mapped 0-255 value range two-character hex-values. yields string form '#RRGGBB'. Additionally, fourth optional block can present encoding alpha transparency colour. extends string '#RRGGBBAA'. function takes '#RRGGBBAA' string input colour two-character hex-representation alpha value input new_alpha, replaces 'AA' part colour new_alpha returns new colour.","code":""},{"path":"https://openpharma.github.io/visR/reference/dot-replace_hex_alpha.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Replaces the AA part of a #RRGGBBAA hex-colour. — .replace_hex_alpha","text":"","code":".replace_hex_alpha(colour, new_alpha)"},{"path":"https://openpharma.github.io/visR/reference/dot-replace_hex_alpha.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Replaces the AA part of a #RRGGBBAA hex-colour. — .replace_hex_alpha","text":"colour character string format #RRGGBBAA. new_alpha two-character string new alpha value.","code":""},{"path":"https://openpharma.github.io/visR/reference/dot-replace_hex_alpha.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Replaces the AA part of a #RRGGBBAA hex-colour. — .replace_hex_alpha","text":"hex-encoded RGBA colour.","code":""},{"path":"https://openpharma.github.io/visR/reference/estimate_KM.html","id":null,"dir":"Reference","previous_headings":"","what":"Wrapper for Kaplan-Meier Time-to-Event analysis — estimate_KM","title":"Wrapper for Kaplan-Meier Time-to-Event analysis — estimate_KM","text":"function wrapper around survival::survfit.formula() perform Kaplan-Meier analysis, assuming right-censored data. result object class survfit can used downstream functions methods rely survfit class. function can leverage conventions controlled vocabulary CDISC ADaM ADTTE data model, also works standard, non-CDISC datasets formula argument.","code":""},{"path":"https://openpharma.github.io/visR/reference/estimate_KM.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Wrapper for Kaplan-Meier Time-to-Event analysis — estimate_KM","text":"","code":"estimate_KM( data = NULL, strata = NULL, CNSR = \"CNSR\", AVAL = \"AVAL\", formula = NULL, ... )"},{"path":"https://openpharma.github.io/visR/reference/estimate_KM.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Wrapper for Kaplan-Meier Time-to-Event analysis — estimate_KM","text":"data data frame. dataset expected one record per subject per analysis parameter. Rows missing observations included analysis removed. AVAL, CNSR, strata arguments used construct formula passed survival::survfit(formula=Surv(AVAL, 1-CNSR)~strata). arguments' default values follow naming conventions CDISC. AVAL Analysis value Time--Event analysis. Default \"AVAL\", per CDISC ADaM guiding principles. CNSR Censor Time--Event analysis. Default \"CNSR\", per CDISC ADaM guiding principles. expected CNSR = 1 censoring CNSR = 0 event interest. strata Character vector, representing strata Time--Event analysis. NULL, overall analysis performed. Default NULL. formula formula Surv() RHS stratifying variables LHS. Use ~1 LHS unstratified estimates. argument passed survival::survfit(formula=). argument used, arguments AVAL, CNSR, strata ignored. ... additional arguments passed ellipsis call survival::survfit.formula(...). Use ?survival::survfit.formula ?survival::survfitCI information.","code":""},{"path":"https://openpharma.github.io/visR/reference/estimate_KM.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Wrapper for Kaplan-Meier Time-to-Event analysis — estimate_KM","text":"survfit object ready downstream processing estimation visualization functions methods.","code":""},{"path":"https://openpharma.github.io/visR/reference/estimate_KM.html","id":"estimation-of-survfit-object","dir":"Reference","previous_headings":"","what":"Estimation of 'survfit' object","title":"Wrapper for Kaplan-Meier Time-to-Event analysis — estimate_KM","text":"estimate_KM() function utilizes defaults survival::survfit(): Kaplan Meier estimate estimated directly (stype = 1). cumulative hazard estimated using Nelson-Aalen estimator (ctype = 1): H.tilde = cumsum(x$n.event/x$n.risk). MLE (H.hat(t) = -log(S.hat(t))) requested. two-sided pointwise 0.95 confidence interval estimated using log transformation (conf.type = \"log\"). strata present, returned survfit object supplemented named list stratum associated label. support full traceability, data set name captured named list call captured within corresponding environment.","code":""},{"path":"https://openpharma.github.io/visR/reference/estimate_KM.html","id":"param-paramcd-and-cdisc","dir":"Reference","previous_headings":"","what":"PARAM/PARAMCD and CDISC","title":"Wrapper for Kaplan-Meier Time-to-Event analysis — estimate_KM","text":"data frame includes columns PARAM/PARAMCD (part CDISC format), function expects data filtered parameter interest.","code":""},{"path":"https://openpharma.github.io/visR/reference/estimate_KM.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Wrapper for Kaplan-Meier Time-to-Event analysis — estimate_KM","text":"https://github.com/therneau/survival","code":""},{"path":[]},{"path":"https://openpharma.github.io/visR/reference/estimate_KM.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Wrapper for Kaplan-Meier Time-to-Event analysis — estimate_KM","text":"","code":"## No stratification visR::estimate_KM(data = adtte) #> Call: ~survival::survfit(formula = survival::Surv(AVAL, 1 - CNSR) ~ #> 1, data = data) #> #> n events median 0.95LCL 0.95UCL #> [1,] 254 152 51 44 70 ## Stratified Kaplan-Meier analysis by `TRTP` visR::estimate_KM(data = adtte, strata = \"TRTP\") #> Call: ~survival::survfit(formula = survival::Surv(AVAL, 1 - CNSR) ~ #> TRTP, data = data) #> #> n events median 0.95LCL 0.95UCL #> TRTP=Placebo 86 29 NA NA NA #> TRTP=Xanomeline High Dose 84 61 36 25 47 #> TRTP=Xanomeline Low Dose 84 62 33 28 51 ## Stratified Kaplan-Meier analysis by `TRTP` and `SEX` visR::estimate_KM(data = adtte, strata = c(\"TRTP\", \"SEX\")) #> Call: ~survival::survfit(formula = survival::Surv(AVAL, 1 - CNSR) ~ #> TRTP + SEX, data = data) #> #> n events median 0.95LCL 0.95UCL #> TRTP=Placebo, SEX=F 53 19 NA 90 NA #> TRTP=Placebo, SEX=M 33 10 NA NA NA #> TRTP=Xanomeline High Dose, SEX=F 40 27 46 30 70 #> TRTP=Xanomeline High Dose, SEX=M 44 34 25 20 46 #> TRTP=Xanomeline Low Dose, SEX=F 50 34 43 29 100 #> TRTP=Xanomeline Low Dose, SEX=M 34 28 27 21 51 ## Stratification with one level visR::estimate_KM(data = adtte, strata = \"PARAMCD\") #> Call: ~survival::survfit(formula = survival::Surv(AVAL, 1 - CNSR) ~ #> PARAMCD, data = data) #> #> n events median 0.95LCL 0.95UCL #> [1,] 254 152 51 44 70 ## Analysis on subset of adtte visR::estimate_KM(data = adtte[adtte$SEX == \"F\", ]) #> Call: ~survival::survfit(formula = survival::Surv(AVAL, 1 - CNSR) ~ #> 1, data = data) #> #> n events median 0.95LCL 0.95UCL #> [1,] 143 80 64 47 96 ## Modify the default analysis by using the ellipsis visR::estimate_KM( data = adtte, strata = NULL, type = \"kaplan-meier\", conf.int = FALSE, timefix = TRUE ) #> Call: ~survival::survfit(formula = survival::Surv(AVAL, 1 - CNSR) ~ #> 1, data = data, timefix = TRUE, type = \"kaplan-meier\", conf.int = FALSE) #> #> n events median #> [1,] 254 152 51 ## Example working with non CDISC data head(survival::veteran[c(\"time\", \"status\", \"trt\")]) #> time status trt #> 1 72 1 1 #> 2 411 1 1 #> 3 228 1 1 #> 4 126 1 1 #> 5 118 1 1 #> 6 10 1 1 # Using non-CDSIC data visR::estimate_KM(data = survival::veteran, formula = Surv(time, status) ~ trt) #> Call: ~survival::survfit(formula = Surv(time, status) ~ trt, data = data) #> #> n events median 0.95LCL 0.95UCL #> trt=1 69 64 103.0 59 132 #> trt=2 68 64 52.5 44 95"},{"path":"https://openpharma.github.io/visR/reference/estimate_cuminc.html","id":null,"dir":"Reference","previous_headings":"","what":"Competing Events Cumulative Incidence — estimate_cuminc","title":"Competing Events Cumulative Incidence — estimate_cuminc","text":"Function creates cumulative incidence object using tidycmprsk::cuminc() function.","code":""},{"path":"https://openpharma.github.io/visR/reference/estimate_cuminc.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Competing Events Cumulative Incidence — estimate_cuminc","text":"","code":"estimate_cuminc( data = NULL, strata = NULL, CNSR = \"CNSR\", AVAL = \"AVAL\", conf.int = 0.95, ... )"},{"path":"https://openpharma.github.io/visR/reference/estimate_cuminc.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Competing Events Cumulative Incidence — estimate_cuminc","text":"data data frame. dataset expected one record per subject per analysis parameter. Rows missing observations included analysis removed. AVAL, CNSR, strata arguments used construct formula passed tidycmprsk::cuminc(formula=). AVAL Analysis value Time--Event analysis. Default \"AVAL\", per CDISC ADaM guiding principles. CNSR Column name indicating outcome censoring statuses. Column must factor first level indicates censoring, next level outcome interest, remaining levels competing events. Default \"CNSR\" strata Character vector, representing strata Time--Event analysis. NULL, overall analysis performed. Default NULL. conf.int Confidence internal level. Default 0.95. Parameter passed tidycmprsk::cuminc(conf.level=) ... Additional argument passed tidycmprsk::cuminc()","code":""},{"path":"https://openpharma.github.io/visR/reference/estimate_cuminc.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Competing Events Cumulative Incidence — estimate_cuminc","text":"cumulative incidence object explained https://mskcc-epi-bio.github.io/tidycmprsk/reference/cuminc.html","code":""},{"path":"https://openpharma.github.io/visR/reference/estimate_cuminc.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Competing Events Cumulative Incidence — estimate_cuminc","text":"","code":"cuminc <- visR::estimate_cuminc( data = tidycmprsk::trial, strata = \"trt\", CNSR = \"death_cr\", AVAL = \"ttdeath\" ) cuminc #> #> ── cuminc() ──────────────────────────────────────────────────────────────────── #> #> • Failure type \"death from cancer\" #> strata time n.risk estimate std.error 95% CI #> Drug A 5.00 97 0.000 0.000 NA, NA #> Drug A 10.0 94 0.020 0.014 0.004, 0.065 #> Drug A 15.0 83 0.071 0.026 0.031, 0.134 #> Drug A 20.0 61 0.173 0.039 0.106, 0.255 #> Drug B 5.00 102 0.000 0.000 NA, NA #> Drug B 10.0 95 0.039 0.019 0.013, 0.090 #> Drug B 15.0 75 0.167 0.037 0.102, 0.246 #> Drug B 20.0 55 0.255 0.043 0.175, 0.343 #> #> • Failure type \"death other causes\" #> strata time n.risk estimate std.error 95% CI #> Drug A 5.00 97 0.010 0.010 0.001, 0.050 #> Drug A 10.0 94 0.020 0.014 0.004, 0.065 #> Drug A 15.0 83 0.082 0.028 0.038, 0.147 #> Drug A 20.0 61 0.204 0.041 0.131, 0.289 #> Drug B 5.00 102 0.000 0.000 NA, NA #> Drug B 10.0 95 0.029 0.017 0.008, 0.077 #> Drug B 15.0 75 0.098 0.030 0.050, 0.165 #> Drug B 20.0 55 0.206 0.040 0.133, 0.289 #> #> • Tests #> outcome statistic df p.value #> death from cancer 1.99 1.00 0.16 #> death other causes 0.089 1.00 0.77 cuminc %>% visR::visr() %>% visR::add_CI() %>% visR::add_risktable(statlist = c(\"n.risk\", \"cum.event\"))"},{"path":"https://openpharma.github.io/visR/reference/get_COX_HR.html","id":null,"dir":"Reference","previous_headings":"","what":"Summarize Hazard Ratio from a survival object using S3 method — get_COX_HR","title":"Summarize Hazard Ratio from a survival object using S3 method — get_COX_HR","text":"S3 method extracting information regarding Hazard Ratios. function allows survival object's formula updated. default method available moment.","code":""},{"path":"https://openpharma.github.io/visR/reference/get_COX_HR.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Summarize Hazard Ratio from a survival object using S3 method — get_COX_HR","text":"","code":"get_COX_HR(x, ...) # S3 method for survfit get_COX_HR(x, update_formula = NULL, ...)"},{"path":"https://openpharma.github.io/visR/reference/get_COX_HR.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Summarize Hazard Ratio from a survival object using S3 method — get_COX_HR","text":"x object class survfit ... arguments passed method survival::coxph update_formula Template specifies update formula survfit object update.formula","code":""},{"path":"https://openpharma.github.io/visR/reference/get_COX_HR.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Summarize Hazard Ratio from a survival object using S3 method — get_COX_HR","text":"tidied object class coxph containing Hazard Ratios","code":""},{"path":[]},{"path":"https://openpharma.github.io/visR/reference/get_COX_HR.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Summarize Hazard Ratio from a survival object using S3 method — get_COX_HR","text":"","code":"## treatment effect survfit_object_trt <- visR::estimate_KM(data = adtte, strata = c(\"TRTP\")) visR::get_COX_HR(survfit_object_trt) #> tidyme S3 default method (broom::tidy) used. #> term estimate std.error statistic p.value #> 1 TRTPXanomeline High Dose 1.614618 0.2332605 6.921953 4.454580e-12 #> 2 TRTPXanomeline Low Dose 1.422555 0.2295098 6.198232 5.710099e-10 ## treatment and gender effect survfit_object_trt_sex <- visR::estimate_KM(data = adtte, strata = c(\"TRTP\", \"SEX\")) visR::get_COX_HR(survfit_object_trt_sex) #> tidyme S3 default method (broom::tidy) used. #> term estimate std.error statistic p.value #> 1 TRTPXanomeline High Dose 1.6159986 0.2339757 6.906695 4.960732e-12 #> 2 TRTPXanomeline Low Dose 1.4755033 0.2317331 6.367252 1.924446e-10 #> 3 SEXM 0.3745729 0.1651854 2.267591 2.335412e-02 ## update formula of KM estimates by treatment to include \"SEX\" for HR estimation visR::get_COX_HR(survfit_object_trt, update_formula = \". ~ . + SEX\") #> tidyme S3 default method (broom::tidy) used. #> term estimate std.error statistic p.value #> 1 TRTPXanomeline High Dose 1.6159986 0.2339757 6.906695 4.960732e-12 #> 2 TRTPXanomeline Low Dose 1.4755033 0.2317331 6.367252 1.924446e-10 #> 3 SEXM 0.3745729 0.1651854 2.267591 2.335412e-02 ## update formula of KM estimates by treatment to include \"AGE\" for ## HR estimation with ties considered via the efron method visR::get_COX_HR(survfit_object_trt, update_formula = \". ~ . + survival::strata(AGE)\", ties = \"efron\" ) #> Warning: Loglik converged before variable 3,7,18,36,37 ; coefficient may be infinite. #> tidyme S3 default method (broom::tidy) used. #> term estimate std.error statistic #> 1 TRTPXanomeline High Dose 1.5676387 2.555278e-01 6.1349054151 #> 2 TRTPXanomeline Low Dose 1.3216405 2.530283e-01 5.2232906436 #> 3 survival::strata(AGE)AGE=52 -18.1640265 5.298844e+03 -0.0034279227 #> 4 survival::strata(AGE)AGE=54 -0.2090228 1.415797e+00 -0.1476361992 #> 5 survival::strata(AGE)AGE=56 -1.6206873 1.097690e+00 -1.4764526121 #> 6 survival::strata(AGE)AGE=57 -1.1398148 1.166518e+00 -0.9771082854 #> 7 survival::strata(AGE)AGE=59 -18.1578569 3.767502e+03 -0.0048196009 #> 8 survival::strata(AGE)AGE=60 -1.3242727 1.241054e+00 -1.0670547450 #> 9 survival::strata(AGE)AGE=61 -1.4515246 1.133242e+00 -1.2808598926 #> 10 survival::strata(AGE)AGE=62 -1.4077265 1.428274e+00 -0.9856138035 #> 11 survival::strata(AGE)AGE=63 -1.7199741 1.245995e+00 -1.3804019425 #> 12 survival::strata(AGE)AGE=64 -1.4654615 1.256398e+00 -1.1663993068 #> 13 survival::strata(AGE)AGE=65 -1.8714042 1.236610e+00 -1.5133340637 #> 14 survival::strata(AGE)AGE=66 -0.7392248 1.443026e+00 -0.5122740113 #> 15 survival::strata(AGE)AGE=67 -1.7065320 1.132933e+00 -1.5062959259 #> 16 survival::strata(AGE)AGE=68 -1.5389556 1.104752e+00 -1.3930331338 #> 17 survival::strata(AGE)AGE=69 -1.1214615 1.136235e+00 -0.9869979981 #> 18 survival::strata(AGE)AGE=70 -18.2495027 2.607234e+03 -0.0069995634 #> 19 survival::strata(AGE)AGE=71 -1.3835479 1.085266e+00 -1.2748469333 #> 20 survival::strata(AGE)AGE=72 -1.5861528 1.109620e+00 -1.4294562988 #> 21 survival::strata(AGE)AGE=73 -1.3311583 1.078529e+00 -1.2342349648 #> 22 survival::strata(AGE)AGE=74 -1.8664225 1.086626e+00 -1.7176312590 #> 23 survival::strata(AGE)AGE=75 -1.0701874 1.094268e+00 -0.9779939016 #> 24 survival::strata(AGE)AGE=76 -1.5673346 1.094736e+00 -1.4317009758 #> 25 survival::strata(AGE)AGE=77 -1.6854602 1.064611e+00 -1.5831705057 #> 26 survival::strata(AGE)AGE=78 -1.3770729 1.070742e+00 -1.2860927604 #> 27 survival::strata(AGE)AGE=79 -1.4209295 1.057330e+00 -1.3438841443 #> 28 survival::strata(AGE)AGE=80 -1.0569092 1.073982e+00 -0.9841035589 #> 29 survival::strata(AGE)AGE=81 -2.4638433 1.083968e+00 -2.2729862787 #> 30 survival::strata(AGE)AGE=82 -1.9384962 1.095070e+00 -1.7702034739 #> 31 survival::strata(AGE)AGE=83 -0.9201888 1.089830e+00 -0.8443416072 #> 32 survival::strata(AGE)AGE=84 -1.4853330 1.059185e+00 -1.4023361544 #> 33 survival::strata(AGE)AGE=85 -1.5477944 1.140473e+00 -1.3571508894 #> 34 survival::strata(AGE)AGE=86 -2.2322079 1.172337e+00 -1.9040670529 #> 35 survival::strata(AGE)AGE=87 -2.6816908 1.423263e+00 -1.8841844010 #> 36 survival::strata(AGE)AGE=88 -18.7682740 2.704813e+03 -0.0069388434 #> 37 survival::strata(AGE)AGE=89 -18.1983764 1.889752e+04 -0.0009630034 #> p.value #> 1 8.520988e-10 #> 2 1.757712e-07 #> 3 9.972649e-01 #> 4 8.826299e-01 #> 5 1.398224e-01 #> 6 3.285155e-01 #> 7 9.961545e-01 #> 8 2.859471e-01 #> 9 2.002429e-01 #> 10 3.243227e-01 #> 11 1.674629e-01 #> 12 2.434530e-01 #> 13 1.301948e-01 #> 14 6.084593e-01 #> 15 1.319912e-01 #> 16 1.636098e-01 #> 17 3.236436e-01 #> 18 9.944152e-01 #> 19 2.023634e-01 #> 20 1.528731e-01 #> 21 2.171154e-01 #> 22 8.586389e-02 #> 23 3.280773e-01 #> 24 1.522294e-01 #> 25 1.133826e-01 #> 26 1.984107e-01 #> 27 1.789859e-01 #> 28 3.250646e-01 #> 29 2.302701e-02 #> 30 7.669325e-02 #> 31 3.984785e-01 #> 32 1.608149e-01 #> 33 1.747333e-01 #> 34 5.690145e-02 #> 35 5.954004e-02 #> 36 9.944636e-01 #> 37 9.992316e-01"},{"path":"https://openpharma.github.io/visR/reference/get_attrition.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate cohort attrition table — get_attrition","title":"Generate cohort attrition table — get_attrition","text":"experimental function may developed time. function calculates subjects counts excluded included step cohort selection process.","code":""},{"path":"https://openpharma.github.io/visR/reference/get_attrition.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate cohort attrition table — get_attrition","text":"","code":"get_attrition(data, criteria_descriptions, criteria_conditions, subject_column_name)"},{"path":"https://openpharma.github.io/visR/reference/get_attrition.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate cohort attrition table — get_attrition","text":"data Dataframe. used input data count subjects meets criteria interest criteria_descriptions character contains descriptions inclusion/exclusion criteria. element vector corresponds description criterion. criteria_conditions character contains corresponding conditions criteria. conditions used table compute counts subjects. subject_column_name character column name table contains subject id.","code":""},{"path":"https://openpharma.github.io/visR/reference/get_attrition.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate cohort attrition table — get_attrition","text":"counts percentages remaining excluded subjects step cohort selection table format.","code":""},{"path":"https://openpharma.github.io/visR/reference/get_attrition.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Generate cohort attrition table — get_attrition","text":"criteria_descriptions criteria_conditions need length","code":""},{"path":"https://openpharma.github.io/visR/reference/get_attrition.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Generate cohort attrition table — get_attrition","text":"","code":"visR::get_attrition(adtte, criteria_descriptions = c( \"1. Placebo Group\", \"2. Be 75 years of age or older.\", \"3. White\", \"4. Site 709\" ), criteria_conditions = c( \"TRTP=='Placebo'\", \"AGE>=75\", \"RACE=='WHITE'\", \"SITEID==709\" ), subject_column_name = \"USUBJID\" ) #> # A tibble: 5 × 6 #> Criteria Condition `Remaining N` `Remaining %` `Excluded N` `Excluded %` #> #> 1 Total cohort … none 254 100 0 0 #> 2 1. Placebo Gr… TRTP=='P… 86 33.9 168 66.1 #> 3 2. Be 75 year… AGE>=75 48 18.9 38 15.0 #> 4 3. White RACE=='W… 45 17.7 3 1.18 #> 5 4. Site 709 SITEID==… 3 1.18 42 16.5"},{"path":"https://openpharma.github.io/visR/reference/get_pvalue.html","id":null,"dir":"Reference","previous_headings":"","what":"Summarize the test for equality across strata from a survival object using S3 method — get_pvalue","title":"Summarize the test for equality across strata from a survival object using S3 method — get_pvalue","text":"Wrapper around survival::survdiff tests null hypothesis equality across strata.","code":""},{"path":"https://openpharma.github.io/visR/reference/get_pvalue.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Summarize the test for equality across strata from a survival object using S3 method — get_pvalue","text":"","code":"get_pvalue( survfit_object, ptype = \"All\", rho = NULL, statlist = c(\"test\", \"Chisq\", \"df\", \"pvalue\"), ... )"},{"path":"https://openpharma.github.io/visR/reference/get_pvalue.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Summarize the test for equality across strata from a survival object using S3 method — get_pvalue","text":"survfit_object object class survfit ptype Character vector containing type p-value desired. Current options \"Log-Rank\" \"Wilcoxon\" \"Tarone-Ware\" \"Custom\" \"\". \"Custom\" allows user specify weights Kaplan-Meier estimates using argument rho. default \"\" displaying types possible. rho specified context \"\", also custom p-value displayed. rho scalar parameter controls type test. statlist Character vector containing desired information displayed. order arguments determines order displayed final result. Default test name (\"test\"), Chi-squared test statistic (\"Chisq\"), degrees freedom (\"df\") p-value (\"pvalue\"). ... arguments passed method","code":""},{"path":"https://openpharma.github.io/visR/reference/get_pvalue.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Summarize the test for equality across strata from a survival object using S3 method — get_pvalue","text":"data frame summary measures Test Equality Across Strata","code":""},{"path":[]},{"path":"https://openpharma.github.io/visR/reference/get_pvalue.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Summarize the test for equality across strata from a survival object using S3 method — get_pvalue","text":"","code":"## general examples survfit_object <- visR::estimate_KM(data = adtte, strata = \"TRTP\") visR::get_pvalue(survfit_object) #> Equality across strata Chisq df p-value #> 1 Log-Rank 60.270 2 <0.001 #> 2 Wilcoxon 48.023 2 <0.001 #> 3 Tarone-Ware 41.850 2 <0.001 visR::get_pvalue(survfit_object, ptype = \"All\") #> Equality across strata Chisq df p-value #> 1 Log-Rank 60.270 2 <0.001 #> 2 Wilcoxon 48.023 2 <0.001 #> 3 Tarone-Ware 41.850 2 <0.001 ## examples to obtain specific tests visR::get_pvalue(survfit_object, ptype = \"Log-Rank\") #> Equality across strata Chisq df p-value #> 1 Log-Rank 60.270 2 <0.001 visR::get_pvalue(survfit_object, ptype = \"Wilcoxon\") #> Equality across strata Chisq df p-value #> 1 Wilcoxon 48.023 2 <0.001 visR::get_pvalue(survfit_object, ptype = \"Tarone-Ware\") #> Equality across strata Chisq df p-value #> 1 Tarone-Ware 41.850 2 <0.001 ## Custom example - obtain Harrington and Fleming test visR::get_pvalue(survfit_object, ptype = \"Custom\", rho = 1) #> Equality across strata Chisq df p-value #> 1 Harrington and Fleming test (rho = 1) 48.023 2 <0.001 ## Get specific information and statistics visR::get_pvalue(survfit_object, ptype = \"Log-Rank\", statlist = c(\"test\", \"Chisq\", \"df\", \"pvalue\")) #> Equality across strata Chisq df p-value #> 1 Log-Rank 60.270 2 <0.001 visR::get_pvalue(survfit_object, ptype = \"Wilcoxon\", statlist = c(\"pvalue\")) #> p-value #> 1 <0.001"},{"path":"https://openpharma.github.io/visR/reference/get_quantile.html","id":null,"dir":"Reference","previous_headings":"","what":"Wrapper around quantile methods — get_quantile","title":"Wrapper around quantile methods — get_quantile","text":"S3 method extracting quantiles. default method available moment.","code":""},{"path":"https://openpharma.github.io/visR/reference/get_quantile.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Wrapper around quantile methods — get_quantile","text":"","code":"get_quantile(x, ...) # S3 method for survfit get_quantile( x, ..., probs = c(0.25, 0.5, 0.75), conf.int = TRUE, tolerance = sqrt(.Machine$double.eps) )"},{"path":"https://openpharma.github.io/visR/reference/get_quantile.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Wrapper around quantile methods — get_quantile","text":"x object class survfit ... arguments passed method probs probabilities Default = c(0.25,0.50,0.75) conf.int lower upper confidence limits returned? tolerance tolerance checking survival curve exactly equals one quantiles","code":""},{"path":"https://openpharma.github.io/visR/reference/get_quantile.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Wrapper around quantile methods — get_quantile","text":"data frame quantiles object","code":""},{"path":[]},{"path":"https://openpharma.github.io/visR/reference/get_quantile.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Wrapper around quantile methods — get_quantile","text":"","code":"## Kaplan-Meier estimates survfit_object <- visR::estimate_KM(data = adtte, strata = c(\"TRTP\")) ## visR quantiles visR::get_quantile(survfit_object) #> strata quantity 25 50 75 #> 4 TRTP=Placebo lower 35 NA NA #> 1 TRTP=Placebo quantile 70 NA NA #> 7 TRTP=Placebo upper 177 NA NA #> 5 TRTP=Xanomeline High Dose lower 5 25 50 #> 2 TRTP=Xanomeline High Dose quantile 14 36 58 #> 8 TRTP=Xanomeline High Dose upper 22 47 94 #> 6 TRTP=Xanomeline Low Dose lower 15 28 57 #> 3 TRTP=Xanomeline Low Dose quantile 19 33 80 #> 9 TRTP=Xanomeline Low Dose upper 27 51 126 ## survival quantiles quantile(survfit_object) #> $quantile #> 25 50 75 #> TRTP=Placebo 70 NA NA #> TRTP=Xanomeline High Dose 14 36 58 #> TRTP=Xanomeline Low Dose 19 33 80 #> #> $lower #> 25 50 75 #> TRTP=Placebo 35 NA NA #> TRTP=Xanomeline High Dose 5 25 50 #> TRTP=Xanomeline Low Dose 15 28 57 #> #> $upper #> 25 50 75 #> TRTP=Placebo 177 NA NA #> TRTP=Xanomeline High Dose 22 47 94 #> TRTP=Xanomeline Low Dose 27 51 126 #>"},{"path":"https://openpharma.github.io/visR/reference/get_risktable.html","id":null,"dir":"Reference","previous_headings":"","what":"Obtain risk tables for tables and plots — get_risktable","title":"Obtain risk tables for tables and plots — get_risktable","text":"Create risk table object using S3 method. Currently, default method defined.","code":""},{"path":"https://openpharma.github.io/visR/reference/get_risktable.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Obtain risk tables for tables and plots — get_risktable","text":"","code":"get_risktable(x, ...) # S3 method for survfit get_risktable( x, times = NULL, statlist = \"n.risk\", label = NULL, group = c(\"strata\", \"statlist\"), collapse = FALSE, ... ) # S3 method for tidycuminc get_risktable( x, times = pretty(x$tidy$time, 10), statlist = \"n.risk\", label = NULL, group = c(\"strata\", \"statlist\"), collapse = FALSE, ... )"},{"path":"https://openpharma.github.io/visR/reference/get_risktable.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Obtain risk tables for tables and plots — get_risktable","text":"x object class survfit tidycuminc ... arguments passed method times Numeric vector indicating times risk set, censored subjects, events calculated. statlist Character vector indicating summary data present. Current choices \"n.risk\" \"n.event\" \"n.censor\", \"cum.event\", \"cum.censor\". Default \"n.risk\". label Character vector labels statlist. Default matches \"n.risk\" \"risk\", \"n.event\" \"Events\", \"n.censor\" \"Censored\", \"cum.event\" \"Cum. Event\", \"cum.censor\" \"Cum. Censor\". group String indicating grouping variable risk tables. Current options : \"strata\": groups risk tables per stratum. label specifies label within risk table. strata levels used titles risk tables. default \"statlist\": groups risk tables per statlist. label specifies title risk table. strata levels used labeling within risk table. Default \"strata\". collapse Boolean, indicates whether present data overall. Default FALSE.","code":""},{"path":"https://openpharma.github.io/visR/reference/get_risktable.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Obtain risk tables for tables and plots — get_risktable","text":"return list attributes form risk table .e. number patients risk per strata","code":""},{"path":[]},{"path":"https://openpharma.github.io/visR/reference/get_summary.html","id":null,"dir":"Reference","previous_headings":"","what":"Summarize the descriptive statistics across strata from a survival object using S3 method — get_summary","title":"Summarize the descriptive statistics across strata from a survival object using S3 method — get_summary","text":"S3 method extracting descriptive statistics across strata. default method available moment.","code":""},{"path":"https://openpharma.github.io/visR/reference/get_summary.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Summarize the descriptive statistics across strata from a survival object using S3 method — get_summary","text":"","code":"get_summary(x, ...) # S3 method for survfit get_summary( x, statlist = c(\"strata\", \"records\", \"events\", \"median\", \"LCL\", \"UCL\", \"CI\"), ... )"},{"path":"https://openpharma.github.io/visR/reference/get_summary.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Summarize the descriptive statistics across strata from a survival object using S3 method — get_summary","text":"x object class survfit ... arguments passed method statlist Character vector containing desired information displayed. order arguments determines order displayed final result. Default strata (\"strata\"), number subjects (\"records\"), number events (\"events\"), median survival time (\"median\"), Confidence Interval (\"CI\"), Lower Confidence Limit (\"UCL\") Upper Confidence Limit (\"UCL\").","code":""},{"path":"https://openpharma.github.io/visR/reference/get_summary.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Summarize the descriptive statistics across strata from a survival object using S3 method — get_summary","text":"list summary statistics survfit object data frame summary measures survfit object","code":""},{"path":"https://openpharma.github.io/visR/reference/get_summary.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Summarize the descriptive statistics across strata from a survival object using S3 method — get_summary","text":"","code":"survfit_object <- survival::survfit(data = adtte, survival::Surv(AVAL, 1 - CNSR) ~ TRTP) get_summary(survfit_object) #> strata No. of subjects #> TRTP=Placebo TRTP=Placebo 86 #> TRTP=Xanomeline High Dose TRTP=Xanomeline High Dose 84 #> TRTP=Xanomeline Low Dose TRTP=Xanomeline Low Dose 84 #> No. of events Median(surv.time) 0.95LCL 0.95UCL #> TRTP=Placebo 29 NA NA NA #> TRTP=Xanomeline High Dose 61 36 25 47 #> TRTP=Xanomeline Low Dose 62 33 28 51 #> 0.95CI #> TRTP=Placebo (NA;NA) #> TRTP=Xanomeline High Dose (25;47) #> TRTP=Xanomeline Low Dose (28;51)"},{"path":"https://openpharma.github.io/visR/reference/get_tableone.html","id":null,"dir":"Reference","previous_headings":"","what":"Calculate summary statistics — get_tableone","title":"Calculate summary statistics — get_tableone","text":"S3 method creating table summary statistics. summary statistics can used presentation tables table one baseline demography tables. summary statistics estimated conditional variable type: continuous, binary, categorical, etc. default following summary stats calculated: Numeric variables: mean, min, 25th-percentile, median, 75th-percentile, maximum, standard deviation Factor variables: proportion factor level overall dataset Default: number unique values number missing values","code":""},{"path":"https://openpharma.github.io/visR/reference/get_tableone.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Calculate summary statistics — get_tableone","text":"","code":"get_tableone( data, strata = NULL, overall = TRUE, summary_function = summarize_short ) # S3 method for default get_tableone( data, strata = NULL, overall = TRUE, summary_function = summarize_short )"},{"path":"https://openpharma.github.io/visR/reference/get_tableone.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Calculate summary statistics — get_tableone","text":"data dataset summarize dataframe tibble strata Stratifying/Grouping variable name(s) character vector. NULL, overall results returned overall TRUE, summary statistics overall dataset also calculated summary_function function defining summary statistics numeric categorical values","code":""},{"path":"https://openpharma.github.io/visR/reference/get_tableone.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Calculate summary statistics — get_tableone","text":"object class tableone. list data specified summaries input variables.","code":""},{"path":"https://openpharma.github.io/visR/reference/get_tableone.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Calculate summary statistics — get_tableone","text":"possible provide summary function. Please loot summary inspiration.","code":""},{"path":"https://openpharma.github.io/visR/reference/get_tableone.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Calculate summary statistics — get_tableone","text":"columns table summarized. columns shall used, please select variables prior creating summary table using dplyr::select()","code":""},{"path":"https://openpharma.github.io/visR/reference/get_tableone.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Calculate summary statistics — get_tableone","text":"","code":"# Example using the ovarian data set survival::ovarian %>% dplyr::select(-fustat) %>% dplyr::mutate( age_group = factor( dplyr::case_when( age <= 50 ~ \"<= 50 years\", age <= 60 ~ \"<= 60 years\", age <= 70 ~ \"<= 70 years\", TRUE ~ \"> 70 years\" ) ), rx = factor(rx), ecog.ps = factor(ecog.ps) ) %>% dplyr::select(age, age_group, everything()) %>% visR::get_tableone() #> # A tibble: 21 × 3 #> variable statistic Total #> #> 1 Sample N 26 #> 2 age Mean (SD) 56.2 (10.1) #> 3 age Median (IQR) 56.8 (50.2-62.4) #> 4 age Min-max 38.9-74.5 #> 5 age Missing 0 (0%) #> 6 age_group <= 50 years 6 (23.1%) #> 7 age_group <= 60 years 13 (50.0%) #> 8 age_group <= 70 years 4 (15.4%) #> 9 age_group > 70 years 3 (11.5%) #> 10 futime Mean (SD) 600 (340) #> # ℹ 11 more rows # Examples using ADaM data # display patients in an analysis set adtte %>% dplyr::filter(SAFFL == \"Y\") %>% dplyr::select(TRTA) %>% visR::get_tableone() #> # A tibble: 4 × 3 #> variable statistic Total #> #> 1 Sample N 254 #> 2 TRTA Placebo 86 (33.9%) #> 3 TRTA Xanomeline High Dose 84 (33.1%) #> 4 TRTA Xanomeline Low Dose 84 (33.1%) ## display overall summaries for demog adtte %>% dplyr::filter(SAFFL == \"Y\") %>% dplyr::select(AGE, AGEGR1, SEX, RACE) %>% visR::get_tableone() #> # A tibble: 13 × 3 #> variable statistic Total #> #> 1 Sample N 254 #> 2 AGE Mean (SD) 75.1 (8.25) #> 3 AGE Median (IQR) 77 (70-81) #> 4 AGE Min-max 51-89 #> 5 AGE Missing 0 (0%) #> 6 AGEGR1 <65 33 (13.0%) #> 7 AGEGR1 >80 77 (30.3%) #> 8 AGEGR1 65-80 144 (56.7%) #> 9 SEX F 143 (56.3%) #> 10 SEX M 111 (43.7%) #> 11 RACE AMERICAN INDIAN OR ALASKA NATIVE 1 (0.394%) #> 12 RACE BLACK OR AFRICAN AMERICAN 23 (9.055%) #> 13 RACE WHITE 230 (90.551%) ## By actual treatment adtte %>% dplyr::filter(SAFFL == \"Y\") %>% dplyr::select(AGE, AGEGR1, SEX, RACE, TRTA) %>% visR::get_tableone(strata = \"TRTA\") #> # A tibble: 13 × 6 #> variable statistic Total Placebo `Xanomeline High Dose` `Xanomeline Low Dose` #> #> 1 Sample N 254 86 84 84 #> 2 AGE Mean (SD) 75.1… 75.2 (… 74.4 (7.89) 75.7 (8.29) #> 3 AGE Median (… 77 (… 76 (69… 76 (70.8-80) 77.5 (71-82) #> 4 AGE Min-max 51-89 52-89 56-88 51-88 #> 5 AGE Missing 0 (0… 0 (0%) 0 (0%) 0 (0%) #> 6 AGEGR1 <65 33 (… 14 (16… 11 (13.1%) 8 (9.52%) #> 7 AGEGR1 >80 77 (… 30 (34… 18 (21.4%) 29 (34.52%) #> 8 AGEGR1 65-80 144 … 42 (48… 55 (65.5%) 47 (55.95%) #> 9 SEX F 143 … 53 (61… 40 (47.6%) 50 (59.5%) #> 10 SEX M 111 … 33 (38… 44 (52.4%) 34 (40.5%) #> 11 RACE AMERICAN… 1 (0… NA 1 (1.19%) NA #> 12 RACE BLACK OR… 23 (… 8 (9.3… 9 (10.71%) 6 (7.14%) #> 13 RACE WHITE 230 … 78 (90… 74 (88.10%) 78 (92.86%) ## By actual treatment, without overall adtte %>% dplyr::filter(SAFFL == \"Y\") %>% dplyr::select(AGE, AGEGR1, SEX, EVNTDESC, TRTA) %>% visR::get_tableone(strata = \"TRTA\", overall = FALSE) #> # A tibble: 12 × 5 #> variable statistic Placebo `Xanomeline High Dose` `Xanomeline Low Dose` #> #> 1 Sample N 86 84 84 #> 2 AGE Mean (SD) 75.2 (… 74.4 (7.89) 75.7 (8.29) #> 3 AGE Median (IQR) 76 (69… 76 (70.8-80) 77.5 (71-82) #> 4 AGE Min-max 52-89 56-88 51-88 #> 5 AGE Missing 0 (0%) 0 (0%) 0 (0%) #> 6 AGEGR1 <65 14 (16… 11 (13.1%) 8 (9.52%) #> 7 AGEGR1 >80 30 (34… 18 (21.4%) 29 (34.52%) #> 8 AGEGR1 65-80 42 (48… 55 (65.5%) 47 (55.95%) #> 9 SEX F 53 (61… 40 (47.6%) 50 (59.5%) #> 10 SEX M 33 (38… 44 (52.4%) 34 (40.5%) #> 11 EVNTDESC Dematologic Ev… 29 (33… 61 (72.6%) 62 (73.8%) #> 12 EVNTDESC Study Completi… 57 (66… 23 (27.4%) 22 (26.2%)"},{"path":"https://openpharma.github.io/visR/reference/legendopts.html","id":null,"dir":"Reference","previous_headings":"","what":"Translates options for legend into a list that can be passed to ggplot2 — legendopts","title":"Translates options for legend into a list that can be passed to ggplot2 — legendopts","text":"function takes legend position orientation, defined user puts list ggplot2.","code":""},{"path":"https://openpharma.github.io/visR/reference/legendopts.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Translates options for legend into a list that can be passed to ggplot2 — legendopts","text":"","code":"legendopts(legend_position = \"right\", legend_orientation = NULL)"},{"path":"https://openpharma.github.io/visR/reference/legendopts.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Translates options for legend into a list that can be passed to ggplot2 — legendopts","text":"legend_position Default = \"right\". legend_orientation Default = NULL.","code":""},{"path":"https://openpharma.github.io/visR/reference/legendopts.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Translates options for legend into a list that can be passed to ggplot2 — legendopts","text":"List legend options ggplot2.","code":""},{"path":"https://openpharma.github.io/visR/reference/reexports.html","id":null,"dir":"Reference","previous_headings":"","what":"Objects exported from other packages — reexports","title":"Objects exported from other packages — reexports","text":"objects imported packages. Follow links see documentation. dplyr %>% survival Surv","code":""},{"path":"https://openpharma.github.io/visR/reference/render.html","id":null,"dir":"Reference","previous_headings":"","what":"Render a data.frame, risktable, or tableone object as a table — render","title":"Render a data.frame, risktable, or tableone object as a table — render","text":"Render previously created data.frame, tibble tableone object html, rtf latex","code":""},{"path":"https://openpharma.github.io/visR/reference/render.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Render a data.frame, risktable, or tableone object as a table — render","text":"","code":"render( data, title = \"\", datasource, footnote = \"\", output_format = \"html\", engine = \"gt\", download_format = c(\"copy\", \"csv\", \"excel\") )"},{"path":"https://openpharma.github.io/visR/reference/render.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Render a data.frame, risktable, or tableone object as a table — render","text":"data Input data.frame tibble visualize title Specify title text string displayed rendered table. Default title. datasource String specifying data source underlying data set. Default title. footnote String specifying additional information displayed footnote alongside data source specifications statistical tests. output_format Type output returned, can \"html\" \"latex\". Default \"html\". engine \"html\" selected output_format, one can chose using kable, gt DT engine render output table. Default \"gt\". download_format Options formats generated downloading data. Default list \"c('copy', 'csv', 'excel')\".","code":""},{"path":"https://openpharma.github.io/visR/reference/render.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Render a data.frame, risktable, or tableone object as a table — render","text":"table data structure possible interactive functionality depending choice engine.","code":""},{"path":"https://openpharma.github.io/visR/reference/stat_stepribbon.html","id":null,"dir":"Reference","previous_headings":"","what":"Step ribbon statistic — stat_stepribbon","title":"Step ribbon statistic — stat_stepribbon","text":"Provides stair-step values ribbon plots, often using conjunction ggplot2::geom_step(). step ribbon can added stat_stepribbon() identically ggplot2::geom_ribbon(stat = \"stepribbon\")","code":""},{"path":"https://openpharma.github.io/visR/reference/stat_stepribbon.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Step ribbon statistic — stat_stepribbon","text":"","code":"stat_stepribbon( mapping = NULL, data = NULL, geom = \"ribbon\", position = \"identity\", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, direction = \"hv\", ... ) StatStepribbon"},{"path":"https://openpharma.github.io/visR/reference/stat_stepribbon.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Step ribbon statistic — stat_stepribbon","text":"object class StatStepRibbon (inherits Stat, ggproto, gg) length 3.","code":""},{"path":"https://openpharma.github.io/visR/reference/stat_stepribbon.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Step ribbon statistic — stat_stepribbon","text":"mapping Set aesthetic mappings created aes(). specified inherit.aes = TRUE (default), combined default mapping top level plot. must supply mapping plot mapping. data data displayed layer. three options: NULL, default, data inherited plot data specified call ggplot(). data.frame, object, override plot data. objects fortified produce data frame. See fortify() variables created. function called single argument, plot data. return value must data.frame, used layer data. function can created formula (e.g. ~ head(.x, 10)). geom geom use; defaults \"ribbon\" position Position adjustment, either string naming adjustment (e.g. \"jitter\" use position_jitter), result call position adjustment function. Use latter need change settings adjustment. na.rm FALSE, default, missing values removed warning. TRUE, missing values silently removed. show.legend logical. layer included legends? NA, default, includes aesthetics mapped. FALSE never includes, TRUE always includes. can also named logical vector finely select aesthetics display. inherit.aes FALSE, overrides default aesthetics, rather combining . useful helper functions define data aesthetics inherit behaviour default plot specification, e.g. borders(). direction hv horizontal-vertical steps, vh vertical-horizontal steps ... arguments passed layer(). often aesthetics, used set aesthetic fixed value, like colour = \"red\" size = 3. may also parameters paired geom/stat.","code":""},{"path":"https://openpharma.github.io/visR/reference/stat_stepribbon.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Step ribbon statistic — stat_stepribbon","text":"ggplot","code":""},{"path":"https://openpharma.github.io/visR/reference/stat_stepribbon.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Step ribbon statistic — stat_stepribbon","text":"https://groups.google.com/forum/?fromgroups=#!topic/ggplot2/9cFWHaH1CPs","code":""},{"path":"https://openpharma.github.io/visR/reference/stat_stepribbon.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Step ribbon statistic — stat_stepribbon","text":"","code":"# using ggplot2::geom_ribbon() survival::survfit(survival::Surv(time, status) ~ 1, data = survival::lung) %>% survival::survfit0() %>% broom::tidy() %>% ggplot2::ggplot(ggplot2::aes(x = time, y = estimate, ymin = conf.low, ymax = conf.high)) + ggplot2::geom_step() + ggplot2::geom_ribbon(stat = \"stepribbon\", alpha = 0.2) # using stat_stepribbon() with the same result survival::survfit(survival::Surv(time, status) ~ 1, data = survival::lung) %>% survival::survfit0() %>% broom::tidy() %>% ggplot2::ggplot(ggplot2::aes(x = time, y = estimate, ymin = conf.low, ymax = conf.high)) + ggplot2::geom_step() + visR::stat_stepribbon(alpha = 0.2)"},{"path":"https://openpharma.github.io/visR/reference/summarize_long.html","id":null,"dir":"Reference","previous_headings":"","what":"Calculate summary statistics from a vector — summarize_long","title":"Calculate summary statistics from a vector — summarize_long","text":"Calculates several summary statistics. summary statistics depend vector class","code":""},{"path":"https://openpharma.github.io/visR/reference/summarize_long.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Calculate summary statistics from a vector — summarize_long","text":"","code":"summarize_long(x) # S3 method for factor summarize_long(x) # S3 method for integer summarize_long(x) # S3 method for numeric summarize_long(x) # S3 method for default summarize_long(x)"},{"path":"https://openpharma.github.io/visR/reference/summarize_long.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Calculate summary statistics from a vector — summarize_long","text":"x object","code":""},{"path":"https://openpharma.github.io/visR/reference/summarize_long.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Calculate summary statistics from a vector — summarize_long","text":"summarized version input.","code":""},{"path":"https://openpharma.github.io/visR/reference/summarize_short.html","id":null,"dir":"Reference","previous_headings":"","what":"Create abbreviated variable summary for table1 — summarize_short","title":"Create abbreviated variable summary for table1 — summarize_short","text":"function creates summaries combines multiple summary measures single formatted string. Create variable summary numeric variables. Calculates mean (standard deviation), median (IQR), min-max range N/% missing elements numeric vector. Create variable summary integer variables Calculates mean (standard deviation), median (IQR), min-max range N/% missing elements integer vector.","code":""},{"path":"https://openpharma.github.io/visR/reference/summarize_short.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create abbreviated variable summary for table1 — summarize_short","text":"","code":"summarize_short(x) # S3 method for factor summarize_short(x) # S3 method for numeric summarize_short(x) # S3 method for integer summarize_short(x) # S3 method for default summarize_short(x)"},{"path":"https://openpharma.github.io/visR/reference/summarize_short.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create abbreviated variable summary for table1 — summarize_short","text":"x vector summarized","code":""},{"path":"https://openpharma.github.io/visR/reference/summarize_short.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create abbreviated variable summary for table1 — summarize_short","text":"summarized less detailed version input.","code":""},{"path":"https://openpharma.github.io/visR/reference/tableone.html","id":null,"dir":"Reference","previous_headings":"","what":"Display a summary Table (i.e. table one) — tableone","title":"Display a summary Table (i.e. table one) — tableone","text":"Wrapper function produce summary table (.e. Table One). Create render summary table dataset. typical example summary table \"table one\", first table applied medical research manuscript. Calculate summary statistics present formatted table","code":""},{"path":"https://openpharma.github.io/visR/reference/tableone.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Display a summary Table (i.e. table one) — tableone","text":"","code":"tableone( data, title, datasource, footnote = \"\", strata = NULL, overall = TRUE, summary_function = summarize_short, ... )"},{"path":"https://openpharma.github.io/visR/reference/tableone.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Display a summary Table (i.e. table one) — tableone","text":"data dataframe tibble visualize title Table title include rendered table. Input text string. datasource String specifying datasource underlying data set footnote Table footnote include rendered table. Input text string. strata Character vector column names use stratification summary table. Default: NULL , indicates stratification. overall TRUE, summary statistics overall dataset also calculated summary_function function defining summary statistics numeric categorical values Pre-implemented functions summarize_long summarize_short ... Pass options render_table","code":""},{"path":"https://openpharma.github.io/visR/reference/tableone.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Display a summary Table (i.e. table one) — tableone","text":"table-like data structure, possibly interactive depending choice engine","code":""},{"path":"https://openpharma.github.io/visR/reference/tableone.html","id":"example-output","dir":"Reference","previous_headings":"","what":"Example Output","title":"Display a summary Table (i.e. table one) — tableone","text":"tableone(engine = \"gt\") tableone(engine = \"DT\") tableone(engine = \"kable\") tableone(engine = \"kable\", output_format = \"latex\")","code":""},{"path":"https://openpharma.github.io/visR/reference/tableone.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Display a summary Table (i.e. table one) — tableone","text":"","code":"# metadata for table t1_title <- \"Cohort Summary\" t1_ds <- \"ADaM Interim Dataset for Time-to-Event Analysis\" t1_fn <- \"My table one footnote\" ## table by treatment - without overall and render with GT tbl_gt <- adtte %>% dplyr::filter(SAFFL == \"Y\") %>% dplyr::select(AGE, AGEGR1, SEX, EVNTDESC, TRTA) %>% visR::tableone( strata = \"TRTA\", overall = FALSE, title = t1_title, datasource = t1_ds, footnote = t1_fn, engine = \"gt\" ) ## table by treatment - without overall and render with DT tbl_DT <- adtte %>% dplyr::filter(SAFFL == \"Y\") %>% dplyr::select(AGE, AGEGR1, SEX, EVNTDESC, TRTA) %>% visR::tableone( strata = \"TRTA\", overall = FALSE, title = t1_title, datasource = t1_ds, footnote = t1_fn, engine = \"DT\" ) ## table by treatment - without overall and render with kable tbl_kable_html <- adtte %>% dplyr::filter(SAFFL == \"Y\") %>% dplyr::select(AGE, AGEGR1, SEX, EVNTDESC, TRTA) %>% visR::tableone( strata = \"TRTA\", overall = FALSE, title = t1_title, datasource = t1_ds, footnote = t1_fn, engine = \"kable\" ) ## table by treatment - without overall and render with kable as ## a latex table format rather than html tbl_kable_latex <- adtte %>% dplyr::filter(SAFFL == \"Y\") %>% dplyr::select(AGE, AGEGR1, SEX, EVNTDESC, TRTA) %>% visR::tableone( strata = \"TRTA\", overall = FALSE, title = t1_title, datasource = t1_ds, footnote = t1_fn, output_format = \"latex\", engine = \"kable\" )"},{"path":"https://openpharma.github.io/visR/reference/the_lhs.html","id":null,"dir":"Reference","previous_headings":"","what":"Find the ","title":"Find the ","text":"function finds left-hand sided symbol magrittr pipe returns character.","code":""},{"path":"https://openpharma.github.io/visR/reference/the_lhs.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Find the ","text":"","code":"the_lhs()"},{"path":"https://openpharma.github.io/visR/reference/the_lhs.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Find the ","text":"Left-hand sided symbol string magrittr pipe.","code":""},{"path":"https://openpharma.github.io/visR/reference/the_lhs.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Find the ","text":"https://github.com/tidyverse/magrittr/issues/115#issuecomment-173894787","code":""},{"path":"https://openpharma.github.io/visR/reference/the_lhs.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Find the ","text":"","code":"blah <- function(x) the_lhs() adtte %>% blah() #> [1] \"adtte\""},{"path":"https://openpharma.github.io/visR/reference/tidyme.html","id":null,"dir":"Reference","previous_headings":"","what":"Extended tidy cleaning of selected objects using S3 method — tidyme","title":"Extended tidy cleaning of selected objects using S3 method — tidyme","text":"S3 method extended tidying selected model outputs. Note visR method retains original nomenclature objects, adds one broom::tidy ensure compatibility tidy workflows. default method relies broom::tidy return tidied object","code":""},{"path":"https://openpharma.github.io/visR/reference/tidyme.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extended tidy cleaning of selected objects using S3 method — tidyme","text":"","code":"tidyme(x, ...) # S3 method for default tidyme(x, ...) # S3 method for survfit tidyme(x, ...)"},{"path":"https://openpharma.github.io/visR/reference/tidyme.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extended tidy cleaning of selected objects using S3 method — tidyme","text":"x S3 object ... arguments passed method","code":""},{"path":"https://openpharma.github.io/visR/reference/tidyme.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extended tidy cleaning of selected objects using S3 method — tidyme","text":"Data frame containing list elements S3 object columns. column 'strata' factor ensure strata sorted agreement order survfit object","code":""},{"path":[]},{"path":"https://openpharma.github.io/visR/reference/tidyme.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Extended tidy cleaning of selected objects using S3 method — tidyme","text":"","code":"## Extended tidying for a survfit object surv_object <- visR::estimate_KM(data = adtte, strata = \"TRTA\") tidied <- visR::tidyme(surv_object) ## Tidyme for non-included classes data <- cars lm_object <- stats::lm(data = cars, speed ~ dist) lm_tidied <- visR::tidyme(lm_object) #> tidyme S3 default method (broom::tidy) used. lm_tidied #> term estimate std.error statistic p.value #> 1 (Intercept) 8.2839056 0.87438449 9.473985 1.440974e-12 #> 2 dist 0.1655676 0.01749448 9.463990 1.489836e-12"},{"path":"https://openpharma.github.io/visR/reference/visR-Global.html","id":null,"dir":"Reference","previous_headings":"","what":"visR package — visR Global","title":"visR package — visR Global","text":"Set global variables","code":""},{"path":"https://openpharma.github.io/visR/reference/visR-package.html","id":null,"dir":"Reference","previous_headings":"","what":"visR: Clinical Graphs and Tables Adhering to Graphical Principles — visR-package","title":"visR: Clinical Graphs and Tables Adhering to Graphical Principles — visR-package","text":"enable fit--purpose, reusable clinical medical research focused visualizations tables sensible defaults based graphical principles described : \"Vandemeulebroecke et al. (2018)\" doi:10.1002/pst.1912 , \"Vandemeulebroecke et al. (2019)\" doi:10.1002/psp4.12455 , \"Morris et al. (2019)\" doi:10.1136/bmjopen-2019-030215 .","code":""},{"path":[]},{"path":"https://openpharma.github.io/visR/reference/visR-package.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"visR: Clinical Graphs and Tables Adhering to Graphical Principles — visR-package","text":"Maintainer: Mark Baillie bailliem@gmail.com [copyright holder] Authors: Diego Saldana diego.saldana@roche.com Charlotta Fruechtenicht charlotta.fruechtenicht@roche.com Marc Vandemeulebroecke marc.vandemeulebroecke@novartis.com Thanos Siadimas thanos.siadimas@roche.com Pawel Kawski pawel.kawski@contractors.roche.com Steven Haesendonckx shaesen2@.jnj.com James Black james.black.jb2@roche.com Pelagia Alexandra Papadopoulou PPapadop@.jnj.com Tim Treis tim.treis@outlook.de Rebecca Albrecht rebecca.albrecht.dietsch@gmail.com Daniel D. Sjoberg danield.sjoberg@gmail.com (ORCID) contributors: Ardalan Mirshani ardeeshany@gmail.com [contributor]","code":""},{"path":"https://openpharma.github.io/visR/reference/visr.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot a supported S3 object — visr","title":"Plot a supported S3 object — visr","text":"S3 method creating plots directly objects using ggplot2, similar base R plot() function. Methods visr.survfit() visr.tidycuminc() deprecated favor ggsurvfit::ggsurvfit() ggsurvfit::ggcuminc(), respectively. visr.attrition() function draw Consort flow diagram chart currently questioned.","code":""},{"path":"https://openpharma.github.io/visR/reference/visr.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot a supported S3 object — visr","text":"","code":"visr(x, ...) # S3 method for default visr(x, ...) # S3 method for survfit visr( x = NULL, x_label = NULL, y_label = NULL, x_units = NULL, x_ticks = NULL, y_ticks = NULL, fun = \"surv\", legend_position = \"right\", ... ) # S3 method for attrition visr( x, description_column_name = \"Criteria\", value_column_name = \"Remaining N\", complement_column_name = \"\", box_width = 50, font_size = 12, fill = \"white\", border = \"black\", ... ) # S3 method for tidycuminc visr( x = NULL, x_label = \"Time\", y_label = \"Cumulative Incidence\", x_units = NULL, x_ticks = pretty(x$tidy$time, 10), y_ticks = pretty(c(0, 1), 5), legend_position = \"right\", ... )"},{"path":"https://openpharma.github.io/visR/reference/visr.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot a supported S3 object — visr","text":"x Object class attritiontable ... arguments passed method x_label character Label x-axis. specified, function look \"PARAM\" \"PARAMCD\" information original data set (CDISC standards). \"PARAM\"/\"PARAMCD\" information available, default x-axis label \"Time\". y_label character Label y-axis. specified, default proposal, depending fun argument. x_units Unit added x_label (x_label (x_unit)). Default NULL. x_ticks Ticks x-axis. specified, default proposal. y_ticks Ticks y-axis. specified, default proposal based fun argument. fun Function represents scale estimate. current options : legend_position Specifies legend position plot. Character values allowed \"top\" \"left\" \"bottom\" \"right\". Numeric coordinates also allowed. Default \"right\". description_column_name character Name column containing inclusion descriptions value_column_name character Name column containing remaining sample counts complement_column_name character Optional: Name column containing exclusion descriptions box_width character box width box flow chart font_size character fontsize pt fill color (string hexcode) use fill boxes flowchart border color (string hexcode) use borders boxes flowchart","code":""},{"path":"https://openpharma.github.io/visR/reference/visr.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot a supported S3 object — visr","text":"Object class ggplot ggsurvplot survfit objects.","code":""},{"path":[]},{"path":"https://openpharma.github.io/visR/reference/visr.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Plot a supported S3 object — visr","text":"","code":"# fit KM km_fit <- survival::survfit(survival::Surv(AVAL, 1 - CNSR) ~ TRTP, data = adtte) # plot curves using survival plot function plot(km_fit) # plot same curves using visR::visr plotting function visR::visr(km_fit) # estimate KM using visR wrapper survfit_object <- visR::estimate_KM(data = adtte, strata = \"TRTP\") # Plot survival probability visR::visr(survfit_object, fun = \"surv\") # Plot survival percentage visR::visr(survfit_object, fun = \"pct\") # Plot cumulative hazard visR::visr(survfit_object, fun = \"cloglog\") #> Warning: NAs introduced by y-axis transformation. ## Create attrition attrition <- visR::get_attrition(adtte, criteria_descriptions = c( \"1. Not in Placebo Group\", \"2. Be 75 years of age or older.\", \"3. White\", \"4. Female\" ), criteria_conditions = c( \"TRTP != 'Placebo'\", \"AGE >= 75\", \"RACE=='WHITE'\", \"SEX=='F'\" ), subject_column_name = \"USUBJID\" ) ## Draw a CONSORT attrition chart without specifying extra text for the complement attrition %>% visr(\"Criteria\", \"Remaining N\") ## Add detailed complement descriptions to the \"exclusion\" part of the CONSORT diagram # Step 1. Add new column to attrition dataframe attrition$Complement <- c( \"NA\", \"Placebo Group\", \"Younger than 75 years\", \"Non-White\", \"Male\" ) # Step 2. Define the name of the column in the call to the plotting function attrition %>% visr(\"Criteria\", \"Remaining N\", \"Complement\") ## Styling the CONSORT flowchart # Change the fill and outline of the boxes in the flowchart attrition %>% visr(\"Criteria\", \"Remaining N\", \"Complement\", fill = \"lightblue\", border = \"grey\") ## Adjust the font size in the boxes attrition %>% visr(\"Criteria\", \"Remaining N\", font_size = 10)"},{"path":"https://openpharma.github.io/visR/news/index.html","id":"visr-040","dir":"Changelog","previous_headings":"","what":"visR 0.4.0","title":"visR 0.4.0","text":"CRAN release: 2023-11-20 Functions estimate_KM() visr.survfit() deprecated favor ggsurvfit::ggsurvfit().","code":""},{"path":"https://openpharma.github.io/visR/news/index.html","id":"visr-031","dir":"Changelog","previous_headings":"","what":"visR 0.3.1","title":"visR 0.3.1","text":"CRAN release: 2022-08-17 now zoom figure (e.g. Kaplan-Meier figure) ggplot2::coord_cartesian() instead using scale_x_continuous(limits=) scale_y_continuous(limits=). latter first removes data outside limits, constructs line. Zooming constructs full line, zooms limits. useful risktable often reports estimates near end KM figure, line cutoff shown last time point. (#402) README update contributor listing. (#435)","code":""},{"path":"https://openpharma.github.io/visR/news/index.html","id":"visr-030","dir":"Changelog","previous_headings":"","what":"visR 0.3.0","title":"visR 0.3.0","text":"CRAN release: 2022-06-24","code":""},{"path":"https://openpharma.github.io/visR/news/index.html","id":"new-functions-0-3-0","dir":"Changelog","previous_headings":"","what":"New functions","title":"visR 0.3.0","text":"Highlight specific strata survival plots using add_highlight(). Indicate quantiles survival plots using add_quantiles(). Estimation cumulative incidence presence competing risks now possible estimate_cuminc(). risk estimates can plotted similarly estimates estimate_KM() using visr() function. Function Surv_CNSR() used CDISC ADTTE conventions default values time status indicators time--event analyses. note, status variable must coded 0/1 1 indicating observation censored. (#391)","code":""},{"path":"https://openpharma.github.io/visR/news/index.html","id":"breaking-changes-0-3-0","dir":"Changelog","previous_headings":"","what":"Breaking Changes","title":"visR 0.3.0","text":"AlignPlots() renamed align_plots().","code":""},{"path":"https://openpharma.github.io/visR/news/index.html","id":"bug-fixes-0-3-0","dir":"Changelog","previous_headings":"","what":"Bug Fixes","title":"visR 0.3.0","text":"Fix get_pvalue() estimate_KM() objects data piped modifications (e.g. dplyr::filter(), dplyr::mutate()). Fix add_risktable() estimates assigned incorrect label. Review unit testing estimate_KM(formula=) argument. (#399) Fixed bug define_theme(strata=). (#388) Fix discrepancy issue saving survfit() call estimate_KM(). (#365) Added check class(x)==. (#358) Fix documentation S3 method visr(). (#301)","code":""},{"path":"https://openpharma.github.io/visR/news/index.html","id":"other-updates-0-3-0","dir":"Changelog","previous_headings":"","what":"Other Updates","title":"visR 0.3.0","text":"Stratifying variable names removed legend visr.survfit() figures, legend title now describes stratifying variable(s). (#343) estimate_KM() function gains experimental formula= argument. argument used, AVAL, CNSR, strata arguments typically used construct formula ignored. (#379) add_risktable rowgutter argument allow spacing plot risktables strata variable now removed body tableone() results. (#254) visr.survfit() function longer warns x-axis label PARAM column found original data set. (#378) call saved estimate_KM() object updated quosure–ensuring original function call can always recalled. define_theme()updated ensure strata present theme displayed. (#388) Removed external dependency easyalluvial package. (#383) Reduced number exported functions. (#381) Improved documentation visr() generic functions. (#301) (#357) Unit testing updated relevant 100% code coverage function requirements tested. README page updated additional examples. (#425) lifecycle badges added function level indicate functions still experimental questioning phases. (#398)","code":""},{"path":"https://openpharma.github.io/visR/news/index.html","id":"visr-020","dir":"Changelog","previous_headings":"","what":"visR 0.2.0","title":"visR 0.2.0","text":"CRAN release: 2021-06-14 Initial CRAN release.","code":""}] +[{"path":"https://openpharma.github.io/visR/CODE_OF_CONDUCT.html","id":null,"dir":"","previous_headings":"","what":"Contributor Code of Conduct","title":"Contributor Code of Conduct","text":"contributors maintainers project, pledge respect people contribute reporting issues, posting feature requests, updating documentation, submitting pull requests patches, activities. committed making participation project harassment-free experience everyone, regardless level experience, gender, gender identity expression, sexual orientation, disability, personal appearance, body size, race, ethnicity, age, religion. Examples unacceptable behavior participants include use sexual language imagery, derogatory comments personal attacks, trolling, public private harassment, insults, unprofessional conduct. Project maintainers right responsibility remove, edit, reject comments, commits, code, wiki edits, issues, contributions aligned Code Conduct. Project maintainers follow Code Conduct may removed project team. Instances abusive, harassing, otherwise unacceptable behavior may reported opening issue contacting one project maintainers. Code Conduct adapted Contributor Covenant (https://www.contributor-covenant.org), version 1.0.0, available https://contributor-covenant.org/version/1/0/0/.","code":""},{"path":"https://openpharma.github.io/visR/LICENSE.html","id":null,"dir":"","previous_headings":"","what":"MIT License","title":"MIT License","text":"Copyright (c) 2022 visR authors Permission hereby granted, free charge, person obtaining copy software associated documentation files (“Software”), deal Software without restriction, including without limitation rights use, copy, modify, merge, publish, distribute, sublicense, /sell copies Software, permit persons Software furnished , subject following conditions: copyright notice permission notice shall included copies substantial portions Software. SOFTWARE PROVIDED “”, WITHOUT WARRANTY KIND, EXPRESS IMPLIED, INCLUDING LIMITED WARRANTIES MERCHANTABILITY, FITNESS PARTICULAR PURPOSE NONINFRINGEMENT. EVENT SHALL AUTHORS COPYRIGHT HOLDERS LIABLE CLAIM, DAMAGES LIABILITY, WHETHER ACTION CONTRACT, TORT OTHERWISE, ARISING , CONNECTION SOFTWARE USE DEALINGS SOFTWARE.","code":""},{"path":"https://openpharma.github.io/visR/articles/CDISC_ADaM.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Survival Analysis with visR using CDISC ADaM Time-To-Event Analysis Dataset (ADTTE)","text":"tutorial illustrates standard time--event analysis can done efficiently data set adheres CDISC ADaM standard. detailed time--event analysis broad overview visR’s functionality presented another vignette.","code":"library(ggplot2) library(visR)"},{"path":"https://openpharma.github.io/visR/articles/CDISC_ADaM.html","id":"global-document-setup","dir":"Articles","previous_headings":"","what":"Global Document Setup","title":"Survival Analysis with visR using CDISC ADaM Time-To-Event Analysis Dataset (ADTTE)","text":"","code":"# Metadata Title DATASET <- paste0(\"Analyis Data Time-To-Event (ADTTE)\") # Save original options() old <- options() # Global formatting options options(digits = 3) # Global ggplot settings theme_set(theme_bw()) # Global table settings options(DT.options = list(pageLength = 10, language = list(search = 'Filter:'), scrollX = TRUE)) # load ADTTE from CDISC pilot data(adtte) # Restore original options() options(old)"},{"path":"https://openpharma.github.io/visR/articles/CDISC_ADaM.html","id":"time-to-event-analysis","dir":"Articles","previous_headings":"","what":"Time-to-event analysis","title":"Survival Analysis with visR using CDISC ADaM Time-To-Event Analysis Dataset (ADTTE)","text":"visR includes wrapper function easily display summary tables (e.g. tableone) wrapper function estimate Kaplan-Meier curve compatible %>% purrr::map functions without losing traceability dataset name inside call object. data set adheres CDISC ADaM standards, stratifier needs specified. Given survival object, visR includes several functions quickly extract additional information survival object (e.g. test statistics p-values) general function display table (render). survival object can plotted using visR function visr. Additional information like confidence intervals risktable can added plot.","code":"# Display a summary table (e.g. tableone) visR::tableone(adtte[,c(\"TRTP\", \"AGE\")], title = \"Demographic summary\" , datasource = DATASET) #> Warning: There was 1 warning in `summarise()`. #> ℹ In argument: `TRTP = (function (x) ...`. #> ℹ In group 1: `all = \"Total\"`. #> Caused by warning: #> ! `fct_explicit_na()` was deprecated in forcats 1.0.0. #> ℹ Please use `fct_na_value_to_level()` instead. #> ℹ The deprecated feature was likely used in the visR package. #> Please report the issue at . # Estimate a survival object survfit_object <- adtte %>% visR::estimate_KM(data = ., strata = \"TRTP\") #> Warning: `estimate_KM()` was deprecated in visR 0.4.0. #> ℹ Please use `ggsurvfit::ggsurvfit()` instead. #> This warning is displayed once every 8 hours. #> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was #> generated. survfit_object #> Call: ~survival::survfit(formula = survival::Surv(AVAL, 1 - CNSR) ~ #> TRTP, data = data) #> #> n events median 0.95LCL 0.95UCL #> TRTP=Placebo 86 29 NA NA NA #> TRTP=Xanomeline High Dose 84 61 36 25 47 #> TRTP=Xanomeline Low Dose 84 62 33 28 51 # Display test statistics associated with the survival estimate visR::render(survfit_object %>% get_pvalue(), title = \"P-values\", datasource = DATASET) # Create and display a Kaplan-Meier from the survival object and add a risktable visr(survfit_object) %>% visR::add_CI() %>% visR::add_risktable() #> Warning: `visr.survfit()` was deprecated in visR 0.4.0. #> ℹ Please use `ggsurvfit::ggsurvfit()` instead. #> This warning is displayed once every 8 hours. #> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was #> generated."},{"path":[]},{"path":"https://openpharma.github.io/visR/articles/Consort_flow_diagram.html","id":"data-preparation","dir":"Articles","previous_headings":"Attrition example","what":"Data preparation","title":"Creating consort flow diagram with visR","text":"Prepare data using attrition function.","code":"attrition <- visR::get_attrition(adtte, criteria_descriptions = c(\"1. Not in Placebo Group\", \"2. Be 75 years of age or older.\", \"3. White\", \"4. Female\"), criteria_conditions = c(\"TRTP != 'Placebo'\", \"AGE >= 75\", \"RACE=='WHITE'\", \"SEX=='F'\"), subject_column_name = \"USUBJID\")"},{"path":"https://openpharma.github.io/visR/articles/Consort_flow_diagram.html","id":"render-chart","dir":"Articles","previous_headings":"Attrition example","what":"Render chart","title":"Creating consort flow diagram with visR","text":"Draw CONSORT attrition chart without specifying extra text complement","code":"attrition %>% visR::visr(\"Criteria\", \"Remaining N\")"},{"path":"https://openpharma.github.io/visR/articles/Consort_flow_diagram.html","id":"adding-more-detail","dir":"Articles","previous_headings":"Attrition example","what":"Adding more detail","title":"Creating consort flow diagram with visR","text":"Adding detailed complement descriptions “exclusion” part CONSORT diagram","code":""},{"path":"https://openpharma.github.io/visR/articles/Consort_flow_diagram.html","id":"add-the-control-group","dir":"Articles","previous_headings":"Attrition example > Adding more detail","what":"Add the control group","title":"Creating consort flow diagram with visR","text":"Step 1. Add new column attrition dataframe","code":"attrition$Complement <- c(\"NA\", \"Placebo Group\", \"Younger than 75 years\", \"Non-White\", \"Male\")"},{"path":"https://openpharma.github.io/visR/articles/Consort_flow_diagram.html","id":"define-metadata","dir":"Articles","previous_headings":"Attrition example > Adding more detail","what":"Define metadata","title":"Creating consort flow diagram with visR","text":"Step 2. Define name column call plotting function","code":"attrition %>% visR::visr(\"Criteria\", \"Remaining N\", \"Complement\")"},{"path":[]},{"path":"https://openpharma.github.io/visR/articles/Consort_flow_diagram.html","id":"styling-the-consort-flowchart-","dir":"Articles","previous_headings":"Additional features","what":"Styling the CONSORT flowchart.","title":"Creating consort flow diagram with visR","text":"Change fill outline boxes flowchart","code":"attrition %>% visR::visr(\"Criteria\", \"Remaining N\", \"Complement\", fill = \"lightblue\", border=\"grey\")"},{"path":"https://openpharma.github.io/visR/articles/Consort_flow_diagram.html","id":"adjusting-size","dir":"Articles","previous_headings":"Additional features","what":"Adjusting size","title":"Creating consort flow diagram with visR","text":"Adjust font size boxes","code":"attrition %>% visR::visr(\"Criteria\", \"Remaining N\", font_size = 10)"},{"path":"https://openpharma.github.io/visR/articles/Styling_KM_plots.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Styling survival plots","text":"tutorial illustrates usage styling function visR provides. default, visR::visr() apply form visual changes generated survival plots. Therefore, default output looks like expect standard ggplot2::ggplot() plot. examples visualize results estimate_KM(), principles apply competing risks cumulative incidence objects created estimate_cuminc() well.","code":"library(visR)"},{"path":"https://openpharma.github.io/visR/articles/Styling_KM_plots.html","id":"preparation-of-the-data","dir":"Articles","previous_headings":"Introduction","what":"Preparation of the data","title":"Styling survival plots","text":"example, work patient data NCCTG Lung Cancer dataset part survival package. data also used demonstrate functions visR another vignette. However, particular one, used demonstrate adjustments aesthetics.","code":""},{"path":"https://openpharma.github.io/visR/articles/Styling_KM_plots.html","id":"generation-of-a-survfit-object","dir":"Articles","previous_headings":"Introduction","what":"Generation of a survfit object","title":"Styling survival plots","text":"","code":"lung_cohort <- survival::lung lung_cohort <- lung_cohort %>% dplyr::mutate(sex = as.factor(ifelse(sex == 1, \"Male\", \"Female\"))) %>% dplyr::mutate(status = status - 1) %>% dplyr::rename(Age = \"age\", Sex = \"sex\", Status = \"status\", Days = \"time\") lung_suvival_object <- lung_cohort %>% visR::estimate_KM(strata = \"Sex\", CNSR = \"Status\", AVAL = \"Days\") #> Warning: `estimate_KM()` was deprecated in visR 0.4.0. #> ℹ Please use `ggsurvfit::ggsurvfit()` instead. #> This warning is displayed once every 8 hours. #> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was #> generated."},{"path":[]},{"path":"https://openpharma.github.io/visR/articles/Styling_KM_plots.html","id":"plotting-the-generated-survfit-object-without-adjustments","dir":"Articles","previous_headings":"Styling","what":"Plotting the generated survfit object without adjustments","title":"Styling survival plots","text":"can, plot shows default ggplot2::theme_grey() style grey background, visible grid default ggplot2 colours.","code":"p <- lung_suvival_object %>% visR::visr() #> Warning: `visr.survfit()` was deprecated in visR 0.4.0. #> ℹ Please use `ggsurvfit::ggsurvfit()` instead. #> This warning is displayed once every 8 hours. #> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was #> generated. p"},{"path":"https://openpharma.github.io/visR/articles/Styling_KM_plots.html","id":"using-ggplot2-to-style-the-plot","dir":"Articles","previous_headings":"Styling","what":"Using ggplot2 to style the plot","title":"Styling survival plots","text":"Since visR::visr() also generates valid ggplot object output, can use conventional styling logic options ggplot2 provides, shown . However, visR also provides functions adjust common aesthetics easily less code.","code":"p + ggplot2::theme_bw() + ggplot2::theme(legend.position = \"top\") + ggplot2::scale_color_manual(values = c(\"red\", \"blue\"))"},{"path":"https://openpharma.github.io/visR/articles/Styling_KM_plots.html","id":"using-visr-to-style-the-plot","dir":"Articles","previous_headings":"Styling","what":"Using visR to style the plot","title":"Styling survival plots","text":"direct option style plots generated visR::visr() using parameters function provides. Internally, parameters like y-axis label automatically deducted used function. following example demonstrates options exposed. However, rather minimal adjustments usually don’t cover things user wants modify. Therefore, provide two additional functions adjust aesthetics: visR::define_theme() visR::apply_theme(). first one provides easy wrapper create nested list list styling options applied plot second function.","code":"lung_suvival_object %>% visR::visr(x_label = \"Time\", y_label = NULL, # NULL (default) causes the label to be deducted from the used function x_ticks = seq(0, 1200, 200), y_ticks = seq(0, 100, 20), fun = \"pct\", legend_position = \"top\")"},{"path":[]},{"path":"https://openpharma.github.io/visR/articles/Styling_KM_plots.html","id":"defining-a-visr_theme-using-visrdefine_theme","dir":"Articles","previous_headings":"New themes","what":"Defining a visR_theme using visR::define_theme()","title":"Styling survival plots","text":"options provided visR::define_theme(), nonetheless returns minimal list reasonable defaults. However, function also takes several styling options. currently usable ones displayed . One particular use mind writing function , wanted option define different colours strata worry present.","code":"visR::define_theme() #> $fontfamily #> [1] \"Helvetica\" #> #> $grid #> [1] FALSE #> #> $bg #> [1] \"transparent\" #> #> attr(,\"class\") #> [1] \"visR_theme\" \"list\" theme <- visR::define_theme( strata = list( \"Sex\" = list(\"Female\" = \"red\", \"Male\" = \"blue\"), \"ph.ecog\" = list(\"0\" = \"cyan\", \"1\" = \"purple\", \"2\" = \"brown\") ), fontsizes = list( \"axis\" = 12, \"ticks\" = 10, \"legend_title\" = 10, \"legend_text\" = 8 ), fontfamily = \"Helvetica\", grid = list(\"major\" = FALSE, \"minor\" = FALSE), #grid = TRUE/FALSE # <- can also be used instead of the named list above bg = \"transparent\", legend_position = \"top\" )"},{"path":"https://openpharma.github.io/visR/articles/Styling_KM_plots.html","id":"apply-styling-using-visrapply_theme","dir":"Articles","previous_headings":"New themes","what":"Apply styling using visR::apply_theme()","title":"Styling survival plots","text":"visR::apply_theme() function exposes user two ways style plot. direct one just apply function plot without specifying options. applies several reasonable defaults plot. second one apply nested list lists , ideally generated visR::define_theme() plot. serves purpose generate detailed visR_theme object apply one several plots single line. lists also easily saved shared. usage theme generated shown .","code":"lung_suvival_object %>% visR::visr() %>% visR::apply_theme() lung_suvival_object %>% visR::visr() %>% visR::apply_theme(theme)"},{"path":"https://openpharma.github.io/visR/articles/Time_to_event_analysis.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Survival Analysis with visR","text":"tutorial illustrates typical use case clinical development - analysis time certain event (e.g., death) different groups. Typically, data obtained randomized clinical trials (RCT) can used estimate overall survival patients one group (e.g., treated drug X) vs another group (e.g., treated drug Y) thus determine treatment difference. thorough introduction Survival Analysis, recommend following tutorial. example, work patient data NCCTG Lung Cancer dataset part survival package. Another vignette presents example using data set following CDISC ADaM standard.","code":"library(ggplot2) library(visR)"},{"path":"https://openpharma.github.io/visR/articles/Time_to_event_analysis.html","id":"global-document-setup","dir":"Articles","previous_headings":"","what":"Global Document Setup","title":"Survival Analysis with visR","text":"","code":"# Metadata Title DATASET <- paste0(\"NCCTG Lung Cancer Dataset (from survival package \", packageVersion(\"survival\"), \")\") # Save original options() old <- options() # Global formatting options options(digits = 3) # Global ggplot settings theme_set(theme_bw()) # Global table settings options(DT.options = list(pageLength = 10, language = list(search = 'Filter:'), scrollX = TRUE)) lung_cohort <- survival::lung # Change gender to be a factor and rename some variables to make output look nicer lung_cohort <- lung_cohort %>% dplyr::mutate(sex = as.factor(ifelse(sex == 1, \"Male\", \"Female\"))) %>% dplyr::rename(Age = \"age\", Sex = \"sex\", Status = \"status\", Days = \"time\") # Restore original options() options(old)"},{"path":"https://openpharma.github.io/visR/articles/Time_to_event_analysis.html","id":"cohort-overview-table-one","dir":"Articles","previous_headings":"","what":"Cohort Overview (Table one)","title":"Survival Analysis with visR","text":"Visualizing tables, like table one risk tables, two-step process visR . First, data.frame (tibble) created get_XXX() function (e.g. get_tableone()). Secondly, data.frame can displayed calling function render(). advantage process data summaries can created, used adjusted throughout analysis, every step data summaries can displayed even downloaded. Populations usually displayed -called table one. Function get_tableone creates tibble includes populations summaries. Function render nicely displays tableone. Additionally, visR includes wrapper function create display tableone one function call. Creating visualizing tableone default settings simple can done one line code. However, customization options. get wrapper functions, stratifier can defined column displaying total information can removed. visR’s render supports three different rendering engines flexible possible. default, render uses gt. Additional engines datatable (dt) include easy downloading options… …kable flexible displaying various output formats (html default, latex supported). Overview Lung Cancer patients Called html output format, html view displayed; called latex string containing latex code printed.","code":"# Select variables of interest and change names to look nicer lung_cohort_tab1 <- lung_cohort %>% dplyr::select(Age, Sex) # Create a table one tab1 <- visR::get_tableone(lung_cohort_tab1) #> Warning: There was 1 warning in `summarise()`. #> ℹ In argument: `Sex = (function (x) ...`. #> ℹ In group 1: `all = \"Total\"`. #> Caused by warning: #> ! `fct_explicit_na()` was deprecated in forcats 1.0.0. #> ℹ Please use `fct_na_value_to_level()` instead. #> ℹ The deprecated feature was likely used in the visR package. #> Please report the issue at . # Render the tableone visR::render(tab1, title = \"Overview over Lung Cancer patients\", datasource = DATASET) # Use wrapper functionality to create and display a tableone visR::tableone(lung_cohort_tab1, title = \"Overview over Lung Cancer patients\", datasource = DATASET) # Create and render a tableone with a stratifier and without displaying the total visR::tableone(lung_cohort_tab1, strata = \"Sex\", overall = FALSE, title = \"Overview over Lung Cancer patients\", datasource = DATASET) # Create and render a tableone with with dt as an engine visR::tableone(lung_cohort_tab1, strata = \"Sex\", overall = FALSE, title = \"Overview over Lung Cancer patients\", datasource = DATASET, engine = \"dt\") # Create and render a tableone with with kable as an engine and html as output format visR::tableone(lung_cohort_tab1, strata = \"Sex\", overall = FALSE, title = \"Overview over Lung Cancer patients\", datasource = DATASET, engine = \"kable\", output_format=\"html\")"},{"path":[]},{"path":"https://openpharma.github.io/visR/articles/Time_to_event_analysis.html","id":"survival-estimation","dir":"Articles","previous_headings":"Time-to-event analysis","what":"Survival estimation","title":"Survival Analysis with visR","text":"visR provides wrapper function estimate Kaplan-Meier curve several functions visualize results. wrapper function compatible %>% purrr::map functions without losing traceability dataset name.","code":"# Select variables of interest and change names to look nicer lung_cohort_survival <- lung_cohort %>% dplyr::select(Age, Sex, Status, Days) # For the survival estimate, the censor must be 0 or 1 lung_cohort_survival$Status <- lung_cohort_survival$Status - 1 # Estimate the survival curve lung_suvival_object <- lung_cohort_survival %>% visR::estimate_KM(strata = \"Sex\", CNSR = \"Status\", AVAL = \"Days\") #> Warning: `estimate_KM()` was deprecated in visR 0.4.0. #> ℹ Please use `ggsurvfit::ggsurvfit()` instead. #> This warning is displayed once every 8 hours. #> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was #> generated. lung_suvival_object #> Call: ~survival::survfit(formula = survival::Surv(Days, 1 - Status) ~ #> Sex, data = data) #> #> n events median 0.95LCL 0.95UCL #> Sex=Female 90 37 529 376 NA #> Sex=Male 138 26 840 806 NA"},{"path":"https://openpharma.github.io/visR/articles/Time_to_event_analysis.html","id":"survival-visualization","dir":"Articles","previous_headings":"Time-to-event analysis","what":"Survival visualization","title":"Survival Analysis with visR","text":"two frequently used ways estimate time--event data: risk table Kaplan-Meier curve. principle, visR allows either visualize risk table Kaplan-Meier curve separately, together one plot.","code":""},{"path":"https://openpharma.github.io/visR/articles/Time_to_event_analysis.html","id":"displaying-the-risktable","dir":"Articles","previous_headings":"Time-to-event analysis > Survival visualization","what":"Displaying the risktable","title":"Survival Analysis with visR","text":"Creating visualizing risk table separately works exact way tableone (): First, get_risktable() creates tibble risk information can still changed. Secondly, risk table can rendered displayed. risktable one piece information can extracted survival object get_XXX rendered.","code":"# Create a risktable rt <- visR::get_risktable(lung_suvival_object) # Display the risktable visR::render(rt, title = \"Overview over survival rates of Lung Cancer patients\", datasource = DATASET) # Display a summary of the survival estimate visR::render(lung_suvival_object %>% visR::get_summary(), title = \"Summary\", datasource = DATASET) # Display test statistics associated with the survival estimate visR::render(lung_suvival_object %>% visR::get_pvalue(), title = \"P-values\", datasource = DATASET) # Display qunatile information of the survival estimate visR::render(lung_suvival_object %>% visR::get_quantile(), title = \"Quantile Information\", datasource = DATASET) # Display a cox model estimate associated with the survival estimate visR::render(lung_suvival_object %>% visR::get_COX_HR(), title = \"COX estimate\", datasource = DATASET) #> tidyme S3 default method (broom::tidy) used."},{"path":"https://openpharma.github.io/visR/articles/Time_to_event_analysis.html","id":"plotting-the-kaplan-meier","dir":"Articles","previous_headings":"Time-to-event analysis > Survival visualization","what":"Plotting the Kaplan-Meier","title":"Survival Analysis with visR","text":"Alternatively, survival data can plotted Kaplan-Meier curve. visR, plot cases ggplot object adapting plot follows general principle creating plot adding visual contents step--step. visR includes wrapper function create risktable add directly Kaplan-Meier plot.","code":"# Create and display a Kaplan-Meier from the survival object gg <- visR::visr(lung_suvival_object) #> Warning: `visr.survfit()` was deprecated in visR 0.4.0. #> ℹ Please use `ggsurvfit::ggsurvfit()` instead. #> This warning is displayed once every 8 hours. #> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was #> generated. gg # Add a confidence interval to the Kaplan-Meier and display the plot gg %>% visR::add_CI() # Add a confidence interval and the censor ticks to the Kaplan-Meier and display the plot gg %>% visR::add_CI() %>% visR::add_CNSR(shape = 3, size = 2) # Add a confidence interval and the censor ticks and a risktable to the Kaplan-Meier and display the plot gg %>% visR::add_CI() %>% visR::add_CNSR(shape = 3, size = 2) %>% visR::add_risktable()"},{"path":"https://openpharma.github.io/visR/articles/Time_to_event_analysis.html","id":"competing-risks","dir":"Articles","previous_headings":"","what":"Competing Risks","title":"Survival Analysis with visR","text":"addition classic right-censored data, {visR} package supports estimation time--event outcomes presence competing events. package wraps {tidycmprsk} package, exports functions cumulative incidence estimation visualization. function estimate_cuminc() estimates cumulative incidence competing event outcome interest. syntax nearly identical estimate_KM(); however, outcome status variable (passed CNSR= argument) must factor first level indicates censoring, second level competing event interest, subsequent levels competing events. Visualization functions, visr(), add_CI(), add_CNSR(), add_risktable() share syntax Kaplan-Meier variants.","code":"visR::estimate_cuminc( tidycmprsk::trial, strata = \"trt\", CNSR = \"death_cr\", AVAL = \"ttdeath\" ) %>% visR::visr( legend_position = \"bottom\", x_label = \"Months from Treatment\", y_label = \"Risk of Death\" ) %>% visR::add_CI() %>% visR::add_risktable(statlist = c(\"n.risk\", \"cum.event\")) #> Warning: `visr.tidycuminc()` was deprecated in visR 0.4.0. #> ℹ Please use `ggsurvfit::ggcuminc()` instead. #> This warning is displayed once every 8 hours. #> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was #> generated."},{"path":[]},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-visr---a-package-for-effective-visualizations-in-pharma","dir":"Articles > Interactive_tte_tutorial","previous_headings":"Welcome","what":"visR - A package for Effective Visualizations in Pharma","title":"visR","text":"tutorial introduce basic usage visR, R package effective visual communication. package presents easy--use interface visualizations relevant clinical development process, implementing several best practices. developed part openpharma initiative, effort open-source cross-industry collaboration.","code":""},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-further-reading","dir":"Articles > Interactive_tte_tutorial","previous_headings":"Welcome","what":"Further reading","title":"visR","text":"graphical principles visR aims implement [graphicsprinciples.github.io] visR Documentation [openpharma.github.io/visR] visR @ GitHub [github.com/openpharma/visR] visR @ CRAN [cran.r-project.org/web/packages/visR] openpharma overview [openpharma.github.io]","code":""},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-package-architecture","dir":"Articles > Interactive_tte_tutorial","previous_headings":"","what":"Package architecture","title":"visR","text":"visR package implements simple--use interface adhering consistent naming conventions.","code":""},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-overview","dir":"Articles > Interactive_tte_tutorial","previous_headings":"Package architecture","what":"Overview","title":"visR","text":"principle, extimate_XXX functions allow estimate statistical models data (e.g. estimate_KM estimates survival model), get_XXX functions get kinds summary statistics (e.g. get_tableone get_pvalue), render visr display plots tables, add_XXX functions add specific information plot table (e.g. add_CI adds confidence intervals plot.)","code":""},{"path":[]},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-outline","dir":"Articles > Interactive_tte_tutorial","previous_headings":"Package architecture","what":"Outline","title":"visR","text":"tutorial walk basic survival analysis show-casing principles features visR. start introducing data set provided COVID-19 India Org Data Operations Group use throughout tutorial. introduce -called table 1 gives overview patient population. estimate_ survival model introduce functions get_ summary statistics. plot survival model show can add_ additional information . integrate summary statistics plots.","code":""},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-the-study-and-the-data","dir":"Articles > Interactive_tte_tutorial","previous_headings":"","what":"The study and the data","title":"visR","text":"Risk Survival Analysis COVID Outbreak Data :Lessons India goal paper assess mortality India due COVID-19. understand survival COVID-19 patients, time--event analysis performed based Kaplan-Meier estimates using gender age group (separately combined) strata. According authors (Bankar et al., 2021), probably biggest retrospective-cohort survival analysis conducted India, according authors. paper used publicly available data COVID-19 India Org Data Operations Group. figure roughly described trends distributions patient population.","code":""},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-the-data","dir":"Articles > Interactive_tte_tutorial","previous_headings":"The study and the data","what":"The data","title":"visR","text":"Patients admitted Karnakata, South India, recruited. final dataset consists 26,741 patients. Age gender patient, number days hospital per stay, status patient (1=censored/alive, 2=dead) age category (<18 yr, 18 yr – 60 yr, >60 yr) collected. [Publication] [GitHub] [Raw data]","code":"# First, we set the default ggplot2 theme theme_set(theme_bw()) # Then, we directly load the data from their GitHub repository data = read.csv(\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\") data Age Sex Stay Status Age_Cat 1 46.00 M 2 2 2 2 90.00 M 7 2 3 3 72.00 F 1 2 3 4 54.00 M 0 2 2 5 51.00 F 4 2 2 6 65.00 M 0 2 3 7 56.00 M 0 2 2 8 39.00 M 1 2 2 9 66.00 F 0 2 3 10 53.00 F 10 2 2 11 62.00 M 0 2 3 12 55.00 M 2 2 2 13 70.00 M 0 2 3 14 46.00 M 1 2 2 15 60.00 F 5 2 3 16 90.00 M 0 2 3 17 45.00 M 3 2 2 18 38.00 F 1 2 2 19 70.00 M 0 2 3 20 70.00 M 13 2 3 21 47.00 F 6 2 2 22 85.00 F 5 2 3 23 81.00 M 3 2 3 24 32.00 M 0 2 2 25 67.00 M 1 2 3 26 40.00 M 1 2 2 27 85.00 F 5 2 3 28 59.00 F 14 2 2 29 54.00 F 6 2 2 30 59.00 M 3 2 2 31 73.00 M 2 2 3 32 78.00 M 1 2 3 33 55.00 M 1 2 2 34 43.00 M 0 2 2 35 28.00 M 1 2 2 36 56.00 M 1 2 2 37 53.00 M 0 2 2 38 60.00 M 3 2 3 39 70.00 F 0 2 3 40 50.00 F 0 2 2 41 68.00 M 0 2 3 42 61.00 M 1 2 3 43 68.00 F 2 2 3 44 87.00 M 0 2 3 45 80.00 F 3 2 3 46 60.00 F 0 2 3 47 38.00 M 3 2 2 48 43.00 F 7 2 2 49 42.00 M 4 2 2 50 75.00 F 2 2 3 51 57.00 M 0 2 2 52 71.00 M 0 2 3 53 55.00 M 1 2 2 54 65.00 F 0 2 3 55 45.00 M 0 2 2 56 63.00 F 3 2 3 57 66.00 F 9 2 3 58 83.00 M 16 2 3 59 65.00 M 10 2 3 60 70.00 M 8 2 3 61 72.00 M 3 2 3 62 74.00 F 5 2 3 63 95.00 F 2 2 3 64 50.00 M 1 2 2 65 75.00 M 0 2 3 66 73.00 M 2 2 3 67 65.00 M 0 2 3 68 73.00 F 0 2 3 69 71.00 F 18 2 3 70 60.00 F 12 2 3 71 66.00 M 4 2 3 72 62.00 M 7 2 3 73 55.00 M 9 2 2 74 55.00 M 6 2 2 75 48.00 F 2 2 2 76 70.00 M 1 2 3 77 76.00 F 1 2 3 78 40.00 M 0 2 2 79 65.00 M 5 2 3 80 50.00 M 1 2 2 81 57.00 M 0 2 2 82 65.00 M 1 2 3 83 31.00 M 1 2 2 84 51.00 F 2 2 2 85 67.00 M 15 2 3 86 80.00 F 1 2 3 87 60.00 M 5 2 3 88 60.00 F 4 2 3 89 59.00 M 4 2 2 90 48.00 M 1 2 2 91 60.00 M 1 2 3 92 50.00 M 1 2 2 93 70.00 M 3 2 3 94 63.00 F 0 2 3 95 40.00 M 0 2 2 96 49.00 F 1 2 2 97 60.00 F 0 2 3 98 56.00 M 2 2 2 99 31.00 M 0 2 2 100 41.00 M 1 2 2 101 56.00 M 0 2 2 102 43.00 M 0 2 2 103 42.00 F 1 2 2 104 31.00 F 1 2 2 105 75.00 F 6 2 3 106 85.00 F 7 2 3 107 83.00 M 6 2 3 108 44.00 M 6 2 2 109 63.00 M 3 2 3 110 55.00 F 2 2 2 111 45.00 M 2 2 2 112 60.00 F 6 2 3 113 63.00 F 1 2 3 114 64.00 F 0 2 3 115 50.00 M 0 2 2 116 50.00 F 1 2 2 117 52.00 M 4 2 2 118 69.00 M 0 2 3 119 32.00 M 0 2 2 120 36.00 M 0 2 2 121 56.00 M 1 2 2 122 58.00 F 2 2 2 123 58.00 F 0 2 2 124 50.00 F 1 2 2 125 50.00 M 4 2 2 126 72.00 M 0 2 3 127 72.00 M 0 2 3 128 80.00 M 3 2 3 129 63.00 M 11 2 3 130 30.00 M 1 2 2 131 66.00 F 12 2 3 132 75.00 M 0 2 3 133 43.00 M 7 2 2 134 79.00 M 8 2 3 135 76.00 M 6 2 3 136 48.00 M 4 2 2 137 75.00 F 3 2 3 138 48.00 M 13 2 2 139 74.00 M 7 2 3 140 61.00 M 1 2 3 141 50.00 M 2 2 2 142 70.00 F 2 2 3 143 65.00 M 1 2 3 144 60.00 M 0 2 3 145 36.00 M 1 2 2 146 55.00 M 0 2 2 147 45.00 M 1 2 2 148 68.00 F 5 2 3 149 31.00 M 0 2 2 150 50.00 F 8 2 2 151 58.00 M 6 2 2 152 73.00 M 14 2 3 153 56.00 M 0 2 2 154 55.00 M 0 2 2 155 63.00 M 0 2 3 156 52.00 M 6 2 2 157 54.00 M 4 2 2 158 87.00 M 3 2 3 159 60.00 M 0 2 3 160 58.00 M 0 2 2 161 65.00 F 2 2 3 162 75.00 F 5 2 3 163 73.00 F 1 2 3 164 80.00 M 8 2 3 165 25.00 F 5 2 2 166 62.00 M 1 2 3 167 70.00 F 1 2 3 168 75.00 M 1 2 3 169 46.00 F 1 2 2 170 48.00 M 0 2 2 171 80.00 F 3 2 3 172 72.00 F 1 2 3 173 66.00 M 2 2 3 174 51.00 M 0 2 2 175 84.00 M 2 2 3 176 82.00 M 6 2 3 177 29.00 M 10 2 2 178 45.00 M 0 2 2 179 57.00 M 4 2 2 180 63.00 M 1 2 3 181 68.00 M 5 2 3 182 65.00 M 4 2 3 183 66.00 F 0 2 3 184 50.00 F 1 2 2 185 52.00 F 7 2 2 186 42.00 F 3 2 2 187 60.00 F 0 2 3 188 39.00 M 0 2 2 189 56.00 M 2 2 2 190 66.00 F 3 2 3 191 53.00 M 4 2 2 192 78.00 F 3 2 3 193 62.00 M 0 2 3 194 60.00 M 1 2 3 195 68.00 F 1 2 3 196 73.00 M 1 2 3 197 47.00 M 3 2 2 198 84.00 M 1 2 3 199 32.00 M 2 2 2 200 80.00 M 0 2 3 201 60.00 F 0 2 3 202 67.00 M 0 2 3 203 65.00 F 0 2 3 204 45.00 F 2 2 2 205 75.00 M 1 2 3 206 73.00 M 1 2 3 207 55.00 M 0 2 2 208 24.00 F 0 2 2 209 70.00 F 2 2 3 210 50.00 M 0 2 2 211 70.00 F 1 2 3 212 31.00 M 1 2 2 213 57.00 M 14 2 2 214 70.00 M 4 2 3 215 55.00 F 17 2 2 216 50.00 F 9 2 2 217 64.00 M 5 2 3 218 58.00 M 0 2 2 219 73.00 M 0 2 3 220 95.00 M 2 2 3 221 48.00 M 1 2 2 222 63.00 M 3 2 3 223 64.00 F 27 2 3 224 54.00 M 8 2 2 225 48.00 M 1 2 2 226 71.00 M 8 2 3 227 62.00 M 0 2 3 228 68.00 M 3 2 3 229 58.00 F 2 2 2 230 77.00 M 1 2 3 231 69.00 M 1 2 3 232 64.00 M 0 2 3 233 50.00 F 5 2 2 234 53.00 M 1 2 2 235 48.00 M 0 2 2 236 78.00 M 0 2 3 237 67.00 F 4 2 3 238 66.00 M 0 2 3 239 70.00 M 0 2 3 240 25.00 F 2 2 2 241 45.00 M 0 2 2 242 54.00 M 2 2 2 243 63.00 M 1 2 3 244 45.00 M 1 2 2 245 60.00 F 0 2 3 246 65.00 M 6 2 3 247 32.00 F 1 2 2 248 59.00 M 0 2 2 249 60.00 M 0 2 3 250 65.00 M 0 2 3 251 44.00 M 11 2 2 252 58.00 M 12 2 2 253 54.00 M 7 2 2 254 79.00 M 4 2 3 255 62.00 M 6 2 3 256 59.00 F 7 2 2 257 59.00 M 12 2 2 258 74.00 M 7 2 3 259 68.00 M 7 2 3 260 73.00 M 3 2 3 261 52.00 M 6 2 2 262 49.00 M 4 2 2 263 60.00 F 3 2 3 264 50.00 M 3 2 2 265 64.00 M 2 2 3 266 78.00 M 1 2 3 267 60.00 M 0 2 3 268 80.00 M 0 2 3 269 90.00 F 0 2 3 270 75.00 M 0 2 3 271 70.00 M 0 2 3 272 22.00 M 1 2 2 273 65.00 F 0 2 3 274 65.00 F 1 2 3 275 40.00 M 0 2 2 276 46.00 M 2 2 2 277 75.00 M 2 2 3 278 38.00 F 0 2 2 279 58.00 M 0 2 2 280 30.00 M 0 2 2 281 80.00 M 2 2 3 282 48.00 M 2 2 2 283 68.00 M 1 2 3 284 75.00 F 2 2 3 285 47.00 M 1 2 2 286 52.00 M 0 2 2 287 55.00 F 0 2 2 288 55.00 M 1 2 2 289 71.00 M 0 2 3 290 40.00 M 2 2 2 291 68.00 F 1 2 3 292 70.00 M 0 2 3 293 70.00 F 0 2 3 294 65.00 M 1 2 3 295 90.00 F 16 2 3 296 42.00 M 4 2 2 297 73.00 M 11 2 3 298 56.00 F 6 2 2 299 37.00 M 10 2 2 300 44.00 M 6 2 2 301 34.00 M 10 2 2 302 60.00 M 7 2 3 303 70.00 M 0 2 3 304 67.00 F 12 2 3 305 60.00 M 5 2 3 306 68.00 M 2 2 3 307 65.00 M 1 2 3 308 55.00 M 8 2 2 309 58.00 F 8 2 2 310 58.00 F 11 2 2 311 70.00 M 5 2 3 312 36.00 M 6 2 2 313 14.00 M 2 2 1 314 50.00 F 10 2 2 315 67.00 M 7 2 3 316 85.00 M 8 2 3 317 65.00 M 1 2 3 318 58.00 M 0 2 2 319 61.00 F 1 2 3 320 29.00 M 4 2 2 321 57.00 M 7 2 2 322 60.00 F 6 2 3 323 35.00 M 13 2 2 324 69.00 M 3 2 3 325 47.00 M 2 2 2 326 34.00 M 5 2 2 327 65.00 M 6 2 3 328 65.00 M 5 2 3 329 65.00 M 13 2 3 330 56.00 M 0 2 2 331 60.00 F 3 2 3 332 70.00 F 8 2 3 333 40.00 M 6 2 2 334 50.00 M 1 2 2 335 80.00 M 3 2 3 336 54.00 M 1 2 2 337 52.00 F 0 2 2 338 48.00 F 1 2 2 339 58.00 F 0 2 2 340 55.00 F 0 2 2 341 48.00 F 1 2 2 342 85.00 F 0 2 3 343 62.00 M 0 2 3 344 65.00 M 1 2 3 345 54.00 F 1 2 2 346 70.00 M 1 2 3 347 65.00 M 0 2 3 348 45.00 F 12 2 2 349 55.00 M 6 2 2 350 88.00 M 2 2 3 351 42.00 M 0 2 2 352 65.00 M 5 2 3 353 77.00 M 3 2 3 354 67.00 M 4 2 3 355 50.00 F 3 2 2 356 78.00 F 0 2 3 357 76.00 F 3 2 3 358 64.00 M 0 2 3 359 52.00 M 0 2 2 360 53.00 M 1 2 2 361 73.00 M 1 2 3 362 54.00 M 3 2 2 363 85.00 M 2 2 3 364 53.00 M 4 2 2 365 59.00 F 15 2 2 366 75.00 M 9 2 3 367 32.00 F 2 2 2 368 70.00 F 9 2 3 369 51.00 M 0 2 2 370 37.00 M 6 2 2 371 71.00 M 4 2 3 372 51.00 M 0 2 2 373 65.00 M 5 2 3 374 65.00 M 2 2 3 375 52.00 M 0 2 2 376 45.00 M 0 2 2 377 90.00 M 1 2 3 378 72.00 M 8 2 3 379 48.00 F 1 2 2 380 65.00 M 0 2 3 381 56.00 M 0 2 2 382 69.00 F 0 2 3 383 31.00 F 1 2 2 384 51.00 M 4 2 2 385 63.00 M 4 2 3 386 55.00 F 0 2 2 387 55.00 M 0 2 2 388 48.00 M 10 2 2 389 45.00 M 3 2 2 390 47.00 M 9 2 2 391 70.00 M 1 2 3 392 42.00 M 7 2 2 393 72.00 M 1 2 3 394 62.00 M 0 2 3 395 68.00 F 0 2 3 396 55.00 F 3 2 2 397 44.00 F 4 2 2 398 66.00 M 6 2 3 399 83.00 M 6 2 3 400 75.00 M 7 2 3 401 62.00 M 8 2 3 402 58.00 F 2 2 2 403 52.00 M 3 2 2 404 40.00 M 3 2 2 405 57.00 M 4 2 2 406 61.00 M 5 2 3 407 61.00 M 4 2 3 408 72.00 M 2 2 3 409 71.00 F 1 2 3 410 55.00 M 1 2 2 411 42.00 M 1 2 2 412 60.00 M 33 2 3 413 35.00 M 1 2 2 414 52.00 M 0 2 2 415 50.00 F 1 2 2 416 57.00 M 1 2 2 417 65.00 F 0 2 3 418 72.00 M 1 2 3 419 49.00 M 1 2 2 420 48.00 M 0 2 2 421 82.00 M 0 2 3 422 65.00 M 14 2 3 423 30.00 M 14 2 2 424 66.00 M 0 2 3 425 58.00 M 2 2 2 426 58.00 F 0 2 2 427 68.00 M 2 2 3 428 63.00 F 3 2 3 429 68.00 M 0 2 3 430 76.00 M 8 2 3 431 62.00 M 5 2 3 432 65.00 F 2 2 3 433 60.00 F 0 2 3 434 83.00 M 1 2 3 435 59.00 M 1 2 2 436 59.00 F 1 2 2 437 58.00 M 0 2 2 438 57.00 F 0 2 2 439 67.00 M 0 2 3 440 54.00 M 4 2 2 441 70.00 F 1 2 3 442 56.00 F 1 2 2 443 49.00 F 0 2 2 444 73.00 M 0 2 3 445 88.00 M 0 2 3 446 54.00 M 1 2 2 447 61.00 M 0 2 3 448 65.00 M 0 2 3 449 79.00 M 1 2 3 450 51.00 F 0 2 2 451 73.00 F 5 2 3 452 40.00 M 8 2 2 453 55.00 F 1 2 2 454 80.00 M 6 2 3 455 51.00 M 4 2 2 456 75.00 M 6 2 3 457 78.00 F 5 2 3 458 84.00 M 6 2 3 459 59.00 M 2 2 2 460 68.00 M 5 2 3 461 73.00 M 1 2 3 462 65.00 M 2 2 3 463 67.00 M 0 2 3 464 55.00 M 2 2 2 465 51.00 F 1 2 2 466 65.00 M 3 2 3 467 58.00 F 0 2 2 468 31.00 M 14 2 2 469 72.00 M 4 2 3 470 65.00 F 0 2 3 471 55.00 M 0 2 2 472 45.00 F 6 2 2 473 58.00 F 1 2 2 474 47.00 M 1 2 2 475 65.00 M 0 2 3 476 54.00 M 1 2 2 477 58.00 M 1 2 2 478 66.00 M 2 2 3 479 55.00 M 11 2 2 480 62.00 M 0 2 3 481 12.00 F 1 2 1 482 46.00 F 0 2 2 483 26.00 F 0 2 2 484 57.00 F 1 2 2 485 62.00 F 5 2 3 486 70.00 M 4 2 3 487 60.00 F 0 2 3 488 68.00 M 1 2 3 489 50.00 M 0 2 2 490 71.00 M 0 2 3 491 58.00 M 1 2 2 492 46.00 M 6 2 2 493 0.00 F 0 2 1 494 70.00 M 11 2 3 495 65.00 M 3 2 3 496 17.00 F 8 2 1 497 45.00 F 13 2 2 498 64.00 M 11 2 3 499 61.00 M 7 2 3 500 59.00 F 2 2 2 501 63.00 M 0 2 3 502 36.00 M 14 2 2 503 60.00 M 3 2 3 504 49.00 F 2 2 2 505 60.00 M 11 2 3 506 45.00 M 3 2 2 507 71.00 F 2 2 3 508 42.00 F 6 2 2 509 84.00 M 0 2 3 510 57.00 M 1 2 2 511 60.00 M 9 2 3 512 33.00 M 23 2 2 513 75.00 F 1 2 3 514 50.00 F 1 2 2 515 60.00 F 6 2 3 516 45.00 F 7 2 2 517 70.00 F 0 2 3 518 60.00 M 9 2 3 519 69.00 M 13 2 3 520 82.00 M 10 2 3 521 68.00 M 0 2 3 522 49.00 M 1 2 2 523 56.00 M 4 2 2 524 33.00 F 2 2 2 525 80.00 F 3 2 3 526 74.00 M 1 2 3 527 65.00 M 2 2 3 528 48.00 M 0 2 2 529 52.00 F 11 2 2 530 75.00 F 0 2 3 531 26.00 M 3 2 2 532 57.00 M 5 2 2 533 62.00 M 7 2 3 534 65.00 M 3 2 3 535 71.00 M 1 2 3 536 56.00 M 1 2 2 537 76.00 F 1 2 3 538 49.00 F 0 2 2 539 57.00 M 1 2 2 540 79.00 M 3 2 3 541 59.00 F 0 2 2 542 54.00 F 0 2 2 543 65.00 F 0 2 3 544 48.00 M 1 2 2 545 70.00 F 8 2 3 546 72.00 M 6 2 3 547 78.00 M 4 2 3 548 53.00 M 2 2 2 549 45.00 F 1 2 2 550 52.00 M 3 2 2 551 50.00 M 2 2 2 552 42.00 M 1 2 2 553 68.00 M 0 2 3 554 58.00 M 3 2 2 555 47.00 M 0 2 2 556 55.00 F 1 2 2 557 60.00 F 1 2 3 558 58.00 F 0 2 2 559 42.00 F 0 2 2 560 60.00 M 1 2 3 561 80.00 F 0 2 3 562 57.00 M 2 2 2 563 45.00 F 10 2 2 564 55.00 F 3 2 2 565 61.00 F 1 2 3 566 52.00 M 4 2 2 567 57.00 M 11 2 2 568 35.00 M 0 2 2 569 36.00 F 1 2 2 570 50.00 F 3 2 2 571 55.00 F 17 2 2 572 48.00 M 0 2 2 573 52.00 M 2 2 2 574 36.00 M 0 2 2 575 48.00 M 0 2 2 576 59.00 M 1 2 2 577 46.00 F 8 2 2 578 45.00 M 0 2 2 579 72.00 F 1 2 3 580 84.00 M 2 2 3 581 29.00 M 10 2 2 582 45.00 M 0 2 2 583 57.00 M 4 2 2 584 65.00 M 3 2 3 585 50.00 F 1 2 2 586 52.00 F 7 2 2 587 42.00 F 3 2 2 588 39.00 M 0 2 2 589 40.00 M 0 2 2 590 66.00 F 3 2 3 591 78.00 F 5 2 3 592 62.00 M 0 2 3 593 55.00 F 1 2 2 594 36.00 F 1 2 2 595 80.00 F 3 2 3 596 63.00 M 2 2 3 597 75.00 F 2 2 3 598 65.00 F 9 2 3 599 48.00 F 1 2 2 600 60.00 F 0 2 3 601 90.00 F 6 2 3 602 80.00 M 6 2 3 603 77.00 M 4 2 3 604 70.00 M 4 2 3 605 62.00 M 2 2 3 606 59.00 M 0 2 2 607 65.00 M 0 2 3 608 63.00 M 1 2 3 609 79.00 M 3 2 3 610 50.00 M 0 2 2 611 65.00 M 4 2 3 612 50.00 M 0 2 2 613 63.00 M 0 2 3 614 52.00 M 0 2 2 615 70.00 M 0 2 3 616 45.00 M 4 2 2 617 20.00 M 3 2 2 618 86.00 F 0 2 3 619 85.00 F 6 2 3 620 39.00 M 6 2 2 621 74.00 M 2 2 3 622 70.00 M 0 2 3 623 51.00 M 1 2 2 624 68.00 M 0 2 3 625 76.00 M 1 2 3 626 52.00 M 2 2 2 627 72.00 M 0 2 3 628 45.00 M 2 2 2 629 45.00 M 1 2 2 630 82.00 F 0 2 3 631 58.00 F 0 2 2 632 69.00 M 2 2 3 633 68.00 M 2 2 3 634 63.00 M 0 2 3 635 38.00 M 2 2 2 636 45.00 F 16 2 2 637 59.00 M 1 2 2 638 47.00 M 0 2 2 639 40.00 M 1 2 2 640 29.00 F 0 2 2 641 50.00 F 0 2 2 642 59.00 M 2 2 2 643 74.00 M 1 2 3 644 58.00 F 1 2 2 645 47.00 M 1 2 2 646 67.00 M 1 2 3 647 73.00 M 2 2 3 648 42.00 F 2 2 2 649 23.00 F 2 2 2 650 55.00 M 0 2 2 651 35.00 M 1 2 2 652 55.00 M 6 2 2 653 64.00 M 7 2 3 654 76.00 F 0 2 3 655 84.00 M 1 2 3 656 54.00 M 3 2 2 657 48.00 M 0 2 2 658 60.00 M 5 2 3 659 60.00 F 0 2 3 660 75.00 F 0 2 3 661 68.00 M 1 2 3 662 53.00 M 2 2 2 663 85.00 M 0 2 3 664 60.00 M 3 2 3 665 55.00 F 0 2 2 666 67.00 F 0 2 3 667 49.00 F 0 2 2 668 68.00 F 2 2 3 669 80.00 F 1 2 3 670 70.00 M 1 2 3 671 35.00 F 1 2 2 672 40.00 F 2 2 2 673 70.00 F 0 2 3 674 49.00 M 0 2 2 675 48.00 M 0 2 2 676 48.00 F 1 2 2 677 42.00 F 3 2 2 678 75.00 F 0 2 3 679 72.00 M 2 2 3 680 52.00 M 4 2 2 681 60.00 M 6 2 3 682 61.00 M 5 2 3 683 50.00 M 0 2 2 684 70.00 F 2 2 3 685 49.00 M 0 2 2 686 38.00 M 0 2 2 687 34.00 F 1 2 2 688 50.00 M 1 2 2 689 41.00 M 1 2 2 690 76.00 M 1 2 3 691 40.00 M 0 2 2 692 55.00 M 1 2 2 693 57.00 M 2 2 2 694 53.00 M 7 2 2 695 61.00 M 0 2 3 696 60.00 M 0 2 3 697 90.00 M 3 2 3 698 41.00 M 1 2 2 699 68.00 M 6 2 3 700 40.00 F 0 2 2 701 50.00 F 2 2 2 702 70.00 M 2 2 3 703 75.00 F 3 2 3 704 70.00 M 22 2 3 705 49.00 F 4 2 2 706 70.00 M 0 2 3 707 56.00 F 2 2 2 708 56.00 M 1 2 2 709 52.00 M 2 2 2 710 76.00 F 0 2 3 711 51.00 F 2 2 2 712 65.00 M 0 2 3 713 85.00 F 3 2 3 714 48.00 M 3 2 2 715 68.00 F 0 2 3 716 60.00 M 0 2 3 717 63.00 F 1 2 3 718 60.00 M 0 2 3 719 71.00 M 0 2 3 720 69.00 M 0 2 3 721 70.00 F 1 2 3 722 58.00 M 0 2 2 723 46.00 M 9 2 2 724 78.00 M 4 2 3 725 56.00 M 4 2 2 726 60.00 F 15 2 3 727 41.00 M 1 2 2 728 66.00 M 6 2 3 729 60.00 F 0 2 3 730 70.00 M 11 2 3 731 52.00 F 13 2 2 732 48.00 M 6 2 2 733 85.00 F 5 2 3 734 55.00 F 9 2 2 735 77.00 M 6 2 3 736 78.00 M 9 2 3 737 51.00 M 6 2 2 738 65.00 M 0 2 3 739 48.00 F 0 2 2 740 62.00 F 1 2 3 741 40.00 M 2 2 2 742 78.00 M 2 2 3 743 61.00 M 1 2 3 744 62.00 M 0 2 3 745 51.00 F 0 2 2 746 26.00 M 0 2 2 747 51.00 M 0 2 2 748 60.00 M 1 2 3 749 81.00 F 0 2 3 750 60.00 M 0 2 3 751 55.00 F 0 2 2 752 63.00 M 3 2 3 753 28.00 M 0 2 2 754 78.00 M 0 2 3 755 60.00 F 1 2 3 756 65.00 M 2 2 3 757 14.00 M 4 2 1 758 70.00 M 6 2 3 759 70.00 F 1 2 3 760 46.00 M 2 2 2 761 47.00 M 1 2 2 762 41.00 M 0 2 2 763 72.00 M 2 2 3 764 65.00 M 0 2 3 765 76.00 M 0 2 3 766 50.00 M 4 2 2 767 80.00 F 2 2 3 768 84.00 M 0 2 3 769 68.00 F 1 2 3 770 54.00 M 0 2 2 771 39.00 M 0 2 2 772 75.00 M 3 2 3 773 48.00 F 1 2 2 774 41.00 M 3 2 2 775 61.00 M 6 2 3 776 27.00 F 0 2 2 777 55.00 F 4 2 2 778 75.00 F 0 2 3 779 56.00 F 0 2 2 780 59.00 M 0 2 2 781 63.00 M 0 2 3 782 45.00 F 1 2 2 783 54.00 F 9 2 2 784 47.00 M 1 2 2 785 38.00 M 0 2 2 786 60.00 M 0 2 3 787 43.00 M 1 2 2 788 62.00 F 0 2 3 789 72.00 F 0 2 3 790 50.00 F 0 2 2 791 38.00 M 0 2 2 792 45.00 M 0 2 2 793 65.00 M 4 2 3 794 49.00 M 0 2 2 795 52.00 F 0 2 2 796 52.00 M 0 2 2 797 75.00 M 1 2 3 798 74.00 F 1 2 3 799 53.00 M 1 2 2 800 38.00 F 0 2 2 801 75.00 F 0 2 3 802 55.00 F 0 2 2 803 46.00 F 1 2 2 804 60.00 M 3 2 3 805 58.00 F 1 2 2 806 68.00 M 1 2 3 807 51.00 M 4 2 2 808 61.00 F 0 2 3 809 45.00 M 0 2 2 810 59.00 M 0 2 2 811 41.00 M 0 2 2 812 56.00 M 0 2 2 813 83.00 F 1 2 3 814 55.00 F 0 2 2 815 66.00 M 11 2 3 816 56.00 M 2 2 2 817 55.00 M 4 2 2 818 55.00 M 1 2 2 819 45.00 M 0 2 2 820 67.00 M 1 2 3 821 27.00 M 0 2 2 822 57.00 M 0 2 2 823 20.00 M 1 2 2 824 61.00 M 0 2 3 825 70.00 M 0 2 3 826 55.00 M 1 2 2 827 56.00 F 1 2 2 828 65.00 M 0 2 3 829 69.00 M 0 2 3 830 50.00 F 1 2 2 831 55.00 M 1 2 2 832 68.00 M 5 2 3 833 58.00 M 2 2 2 834 40.00 F 3 2 2 835 75.00 F 1 2 3 836 58.00 M 2 2 2 837 41.00 M 0 2 2 838 68.00 M 1 2 3 839 70.00 M 0 2 3 840 45.00 M 1 2 2 841 51.00 M 5 2 2 842 72.00 F 1 2 3 843 38.00 M 2 2 2 844 56.00 M 0 2 2 845 34.00 M 0 2 2 846 81.00 M 0 2 3 847 70.00 M 3 2 3 848 45.00 M 0 2 2 849 54.00 M 0 2 2 850 66.00 F 2 2 3 851 57.00 M 0 2 2 852 65.00 M 7 2 3 853 35.00 M 1 2 2 854 50.00 F 0 2 2 855 54.00 M 0 2 2 856 59.00 M 1 2 2 857 82.00 M 3 2 3 858 52.00 M 0 2 2 859 53.00 M 0 2 2 860 60.00 M 0 2 3 861 61.00 M 0 2 3 862 23.00 F 0 2 2 863 37.00 M 0 2 2 864 73.00 F 0 2 3 865 71.00 M 0 2 3 866 68.00 M 0 2 3 867 45.00 M 0 2 2 868 58.00 F 0 2 2 869 32.00 F 1 2 2 870 61.00 M 5 2 3 871 60.00 M 0 2 3 872 38.00 M 3 2 2 873 37.00 M 0 2 2 874 53.00 M 1 2 2 875 65.00 F 1 2 3 876 68.00 F 11 2 3 877 48.00 M 0 2 2 878 63.00 M 0 2 3 879 73.00 M 9 2 3 880 65.00 M 3 2 3 881 66.00 M 5 2 3 882 35.00 M 0 2 2 883 70.00 M 5 2 3 884 65.00 M 4 2 3 885 37.00 F 1 2 2 886 75.00 M 3 2 3 887 65.00 F 3 2 3 888 55.00 M 0 2 2 889 65.00 F 2 2 3 890 48.00 F 3 2 2 891 70.00 M 2 2 3 892 28.00 M 2 2 2 893 56.00 M 1 2 2 894 31.00 M 34 2 2 895 72.00 F 2 2 3 896 43.00 F 5 2 2 897 30.00 M 0 2 2 898 92.00 F 2 2 3 899 66.00 M 5 2 3 900 55.00 F 1 2 2 901 69.00 F 3 2 3 902 58.00 F 3 2 2 903 60.00 F 6 2 3 904 66.00 M 0 2 3 905 55.00 M 2 2 2 906 60.00 M 1 2 3 907 60.00 F 0 2 3 908 65.00 F 0 2 3 909 53.00 M 0 2 2 910 49.00 M 3 2 2 911 45.00 M 0 2 2 912 73.00 M 0 2 3 913 45.00 M 2 2 2 914 50.00 M 13 2 2 915 58.00 M 0 2 2 916 58.00 M 0 2 2 917 40.00 M 0 2 2 918 65.00 M 1 2 3 919 63.00 M 12 2 3 920 61.00 M 0 2 3 921 42.00 M 0 2 2 922 55.00 M 1 2 2 923 55.00 M 0 2 2 924 67.00 M 1 2 3 925 64.00 M 1 2 3 926 50.00 M 0 2 2 927 45.00 M 0 2 2 928 53.00 F 2 2 2 929 50.00 F 2 2 2 930 75.00 M 0 2 3 931 59.00 M 0 2 2 932 51.00 F 4 2 2 933 64.00 M 4 2 3 934 48.00 M 0 2 2 935 37.00 M 0 2 2 936 60.00 M 2 2 3 937 70.00 F 11 2 3 938 62.00 F 3 2 3 939 51.00 M 1 2 2 940 50.00 F 2 2 2 941 73.00 M 3 2 3 942 35.00 F 0 2 2 943 76.00 M 2 2 3 944 40.00 M 1 2 2 945 53.00 M 4 2 2 946 46.00 M 11 2 2 947 61.00 M 4 2 3 948 65.00 M 0 2 3 949 60.00 M 0 2 3 950 55.00 M 0 2 2 951 53.00 M 6 2 2 952 38.00 F 2 2 2 953 84.00 M 14 2 3 954 46.00 M 7 2 2 955 60.00 M 9 2 3 956 85.00 M 5 2 3 957 80.00 M 8 2 3 958 48.00 M 5 2 2 959 38.00 M 0 2 2 960 68.00 F 6 2 3 961 62.00 M 5 2 3 962 75.00 M 6 2 3 963 80.00 F 2 2 3 964 78.00 M 1 2 3 965 61.00 M 0 2 3 966 49.00 M 3 2 2 967 60.00 M 1 2 3 968 65.00 M 0 2 3 969 65.00 M 1 2 3 970 60.00 M 6 2 3 971 52.00 M 7 2 2 972 48.00 M 0 2 2 973 24.00 M 1 2 2 974 50.00 F 0 2 2 975 22.00 M 0 2 2 976 58.00 M 0 2 2 977 60.00 F 2 2 3 978 58.00 M 0 2 2 979 54.00 M 1 2 2 980 78.00 M 0 2 3 981 38.00 F 0 2 2 982 54.00 M 0 2 2 983 65.00 F 0 2 3 984 87.00 F 0 2 3 985 75.00 F 0 2 3 986 60.00 F 0 2 3 987 23.00 F 1 2 2 988 85.00 M 0 2 3 989 69.00 M 4 2 3 990 72.00 M 13 2 3 991 85.00 M 2 2 3 992 57.00 F 1 2 2 993 78.00 M 0 2 3 994 68.00 M 0 2 3 995 63.00 M 2 2 3 996 67.00 M 7 2 3 997 64.00 M 0 2 3 998 77.00 M 0 2 3 999 53.00 M 2 2 2 1000 66.00 M 2 2 3 1001 82.00 M 3 2 3 1002 63.00 M 0 2 3 1003 40.00 M 0 2 2 1004 55.00 F 0 2 2 1005 67.00 M 0 2 3 1006 49.00 M 0 2 2 1007 59.00 F 0 2 2 1008 75.00 F 1 2 3 1009 68.00 M 1 2 3 1010 72.00 M 0 2 3 1011 77.00 M 0 2 3 1012 47.00 M 1 2 2 1013 60.00 M 0 2 3 1014 72.00 M 2 2 3 1015 55.00 M 6 2 2 1016 43.00 F 1 2 2 1017 62.00 M 0 2 3 1018 55.00 M 4 2 2 1019 60.00 M 3 2 3 1020 45.00 F 3 2 2 1021 70.00 M 3 2 3 1022 90.00 F 0 2 3 1023 49.00 M 1 2 2 1024 55.00 F 2 2 2 1025 52.00 F 1 2 2 1026 63.00 M 1 2 3 1027 47.00 M 1 2 2 1028 69.00 M 1 2 3 1029 60.00 F 1 2 3 1030 60.00 M 0 2 3 1031 82.00 M 0 2 3 1032 61.00 M 2 2 3 1033 65.00 M 2 2 3 1034 65.00 M 0 2 3 1035 59.00 M 11 2 2 1036 26.00 M 10 2 2 1037 65.00 M 7 2 3 1038 69.00 M 13 2 3 1039 55.00 F 0 2 2 1040 79.00 M 3 2 3 1041 75.00 F 5 2 3 1042 51.00 M 6 2 2 1043 22.00 M 0 2 2 1044 50.00 M 0 2 2 1045 60.00 M 3 2 3 1046 67.00 F 1 2 3 1047 69.00 M 0 2 3 1048 55.00 F 0 2 2 1049 74.00 M 3 2 3 1050 65.00 M 0 2 3 1051 60.00 M 1 2 3 1052 65.00 M 0 2 3 1053 60.00 M 4 2 3 1054 55.00 M 3 2 2 1055 65.00 M 0 2 3 1056 48.00 M 0 2 2 1057 60.00 F 0 2 3 1058 38.00 M 0 2 2 1059 76.00 F 2 2 3 1060 62.00 F 5 2 3 1061 62.00 F 2 2 3 1062 63.00 M 0 2 3 1063 59.00 M 2 2 2 1064 52.00 M 2 2 2 1065 72.00 M 0 2 3 1066 58.00 M 1 2 2 1067 77.00 M 1 2 3 1068 59.00 M 1 2 2 1069 61.00 M 1 2 3 1070 61.00 F 1 2 3 1071 51.00 M 12 2 2 1072 47.00 F 0 2 2 1073 20.00 F 0 2 2 1074 53.00 M 3 2 2 1075 50.00 M 0 2 2 1076 70.00 M 3 2 3 1077 51.00 M 0 2 2 1078 73.00 M 0 2 3 1079 75.00 M 1 2 3 1080 86.00 F 2 2 3 1081 60.00 M 0 2 3 1082 73.00 F 1 2 3 1083 62.00 M 8 2 3 1084 48.00 F 3 2 2 1085 74.00 M 0 2 3 1086 45.00 M 0 2 2 1087 55.00 F 2 2 2 1088 35.00 F 2 2 2 1089 50.00 F 0 2 2 1090 44.00 M 0 2 2 1091 72.00 M 2 2 3 1092 47.00 M 7 2 2 1093 55.00 M 0 2 2 1094 47.00 F 1 2 2 1095 65.00 M 2 2 3 1096 72.00 M 1 2 3 1097 52.00 M 4 2 2 1098 45.00 F 1 2 2 1099 43.00 M 7 2 2 1100 62.00 M 3 2 3 1101 30.00 F 2 2 2 1102 66.00 F 2 2 3 1103 40.00 F 6 2 2 1104 20.00 F 14 2 2 1105 62.00 M 1 2 3 1106 70.00 M 2 2 3 1107 70.00 F 1 2 3 1108 39.00 M 4 2 2 1109 82.00 M 4 2 3 1110 48.00 F 1 2 2 1111 43.00 M 1 2 2 1112 60.00 F 1 2 3 1113 45.00 F 4 2 2 1114 58.00 F 0 2 2 1115 72.00 M 0 2 3 1116 70.00 F 1 2 3 1117 70.00 F 0 2 3 1118 45.00 F 1 2 2 1119 65.00 M 0 2 3 1120 23.00 F 4 2 2 1121 58.00 M 1 2 2 1122 67.00 M 9 2 3 1123 80.00 F 9 2 3 1124 77.00 M 4 2 3 1125 54.00 M 5 2 2 1126 82.00 M 3 2 3 1127 59.00 M 0 2 2 1128 82.00 M 1 2 3 1129 57.00 M 0 2 2 1130 55.00 F 0 2 2 1131 69.00 F 3 2 3 1132 65.00 M 0 2 3 1133 61.00 M 0 2 3 1134 69.00 M 0 2 3 1135 73.00 F 0 2 3 1136 72.00 M 10 2 3 1137 68.00 F 6 2 3 1138 57.00 M 16 2 2 1139 55.00 M 13 2 2 1140 71.00 M 4 2 3 1141 55.00 M 16 2 2 1142 48.00 M 4 2 2 1143 55.00 M 0 2 2 1144 39.00 M 0 2 2 1145 44.00 M 3 2 2 1146 68.00 F 0 2 3 1147 59.00 M 2 2 2 1148 57.00 F 7 2 2 1149 40.00 M 0 2 2 1150 57.00 M 5 2 2 1151 55.00 M 5 2 2 1152 59.00 M 4 2 2 1153 52.00 M 1 2 2 1154 75.00 F 5 2 3 1155 53.00 M 5 2 2 1156 56.00 F 4 2 2 1157 61.00 M 12 2 3 1158 84.00 M 1 2 3 1159 87.00 F 2 2 3 1160 48.00 F 4 2 2 1161 39.00 M 1 2 2 1162 48.00 M 1 2 2 1163 41.00 M 4 2 2 1164 62.00 M 5 2 3 1165 67.00 M 0 2 3 1166 53.00 F 4 2 2 1167 62.00 M 1 2 3 1168 60.00 M 0 2 3 1169 35.00 M 0 2 2 1170 67.00 M 13 2 3 1171 74.00 M 3 2 3 1172 60.00 M 2 2 3 1173 54.00 M 1 2 2 1174 51.00 F 1 2 2 1175 60.00 F 0 2 3 1176 53.00 M 0 2 2 1177 57.00 F 0 2 2 1178 86.00 F 16 2 3 1179 85.00 M 3 2 3 1180 54.00 F 1 2 2 1181 43.00 M 0 2 2 1182 54.00 M 2 2 2 1183 52.00 F 4 2 2 1184 50.00 F 0 2 2 1185 60.00 F 2 2 3 1186 67.00 M 3 2 3 1187 73.00 M 3 2 3 1188 70.00 F 1 2 3 1189 90.00 M 1 2 3 1190 52.00 F 0 2 2 1191 72.00 M 2 2 3 1192 62.00 M 1 2 3 1193 25.00 M 1 2 2 1194 52.00 M 0 2 2 1195 55.00 F 3 2 2 1196 60.00 M 4 2 3 1197 60.00 F 1 2 3 1198 45.00 M 4 2 2 1199 48.00 M 0 2 2 1200 78.00 M 0 2 3 1201 47.00 F 0 2 2 1202 40.00 M 2 2 2 1203 50.00 F 0 2 2 1204 60.00 M 0 2 3 1205 65.00 F 6 2 3 1206 52.00 M 6 2 2 1207 60.00 M 0 2 3 1208 70.00 F 9 2 3 1209 73.00 M 1 2 3 1210 45.00 M 0 2 2 1211 61.00 M 0 2 3 1212 65.00 F 1 2 3 1213 80.00 F 6 2 3 1214 79.00 M 8 2 3 1215 81.00 F 0 2 3 1216 80.00 F 0 2 3 1217 57.00 F 4 2 2 1218 65.00 M 11 2 3 1219 77.00 F 9 2 3 1220 40.00 M 3 2 2 1221 79.00 M 4 2 3 1222 61.00 F 14 2 3 1223 43.00 M 1 2 2 1224 50.00 F 3 2 2 1225 78.00 M 1 2 3 1226 78.00 M 6 2 3 1227 79.00 F 5 2 3 1228 65.00 M 1 2 3 1229 65.00 M 1 2 3 1230 54.00 M 0 2 2 1231 48.00 M 3 2 2 1232 53.00 M 4 2 2 1233 38.00 F 3 2 2 1234 70.00 M 0 2 3 1235 35.00 F 2 2 2 1236 49.00 F 2 2 2 1237 62.00 M 2 2 3 1238 62.00 M 1 2 3 1239 51.00 M 2 2 2 1240 21.00 F 0 2 2 1241 40.00 M 0 2 2 1242 64.00 M 0 2 3 1243 54.00 M 0 2 2 1244 22.00 F 0 2 2 1245 57.00 F 0 2 2 1246 52.00 M 0 2 2 1247 34.00 F 0 2 2 1248 70.00 F 4 2 3 1249 56.00 F 0 2 2 1250 72.00 M 1 2 3 1251 45.00 M 1 2 2 1252 60.00 F 0 2 3 1253 58.00 M 1 2 2 1254 67.00 F 0 2 3 1255 55.00 F 0 2 2 1256 72.00 M 1 2 3 1257 64.00 F 9 2 3 1258 58.00 M 3 2 2 1259 47.00 M 4 2 2 1260 56.00 M 0 2 2 1261 45.00 F 0 2 2 1262 52.00 M 0 2 2 1263 60.00 M 0 2 3 1264 52.00 F 0 2 2 1265 52.00 M 0 2 2 1266 58.00 F 1 2 2 1267 70.00 M 1 2 3 1268 70.00 M 0 2 3 1269 59.00 F 0 2 2 1270 64.00 M 1 2 3 1271 62.00 M 10 2 3 1272 58.00 M 1 2 2 1273 78.00 F 1 2 3 1274 75.00 F 0 2 3 1275 42.00 M 2 2 2 1276 68.00 M 0 2 3 1277 56.00 F 0 2 2 1278 42.00 M 0 2 2 1279 44.00 F 1 2 2 1280 52.00 M 0 2 2 1281 63.00 M 0 2 3 1282 70.00 M 2 2 3 1283 70.00 F 0 2 3 1284 65.00 M 2 2 3 1285 37.00 M 0 2 2 1286 51.00 M 0 2 2 1287 63.00 M 1 2 3 1288 39.00 F 0 2 2 1289 50.00 F 1 2 2 1290 48.00 M 4 2 2 1291 45.00 M 12 2 2 1292 58.00 M 12 2 2 1293 48.00 M 1 2 2 1294 65.00 M 12 2 3 1295 86.00 M 8 2 3 1296 70.00 F 2 2 3 1297 38.00 F 3 2 2 1298 50.00 M 5 2 2 1299 48.00 F 2 2 2 1300 70.00 F 2 2 3 1301 55.00 M 4 2 2 1302 76.00 M 1 2 3 1303 66.00 M 0 2 3 1304 51.00 F 0 2 2 1305 50.00 M 0 2 2 1306 60.00 M 1 2 3 1307 59.00 F 4 2 2 1308 55.00 M 2 2 2 1309 30.00 F 2 2 2 1310 0.00 M 1 2 1 1311 68.00 F 3 2 3 1312 65.00 M 2 2 3 1313 34.00 M 4 2 2 1314 48.00 M 1 2 2 1315 81.00 M 3 2 3 1316 30.00 F 1 2 2 1317 42.00 F 0 2 2 1318 70.00 F 0 2 3 1319 52.00 F 0 2 2 1320 88.00 F 1 2 3 1321 70.00 F 1 2 3 1322 40.00 M 0 2 2 1323 70.00 M 0 2 3 1324 75.00 M 3 2 3 1325 68.00 M 0 2 3 1326 91.00 F 2 2 3 1327 51.00 M 0 2 2 1328 68.00 M 3 2 3 1329 71.00 M 1 2 3 1330 49.00 M 0 2 2 1331 65.00 M 5 2 3 1332 53.00 F 4 2 2 1333 69.00 M 0 2 3 1334 68.00 M 0 2 3 1335 58.00 M 0 2 2 1336 62.00 M 0 2 3 1337 53.00 M 0 2 2 1338 50.00 M 0 2 2 1339 40.00 M 1 2 2 1340 70.00 F 0 2 3 1341 29.00 M 0 2 2 1342 62.00 M 1 2 3 1343 65.00 F 0 2 3 1344 60.00 F 0 2 3 1345 35.00 M 0 2 2 1346 70.00 M 11 2 3 1347 78.00 F 10 2 3 1348 68.00 M 6 2 3 1349 79.00 F 13 2 3 1350 68.00 M 9 2 3 1351 59.00 M 10 2 2 1352 74.00 M 9 2 3 1353 58.00 F 12 2 2 1354 67.00 M 8 2 3 1355 68.00 M 1 2 3 1356 65.00 M 1 2 3 1357 70.00 M 1 2 3 1358 69.00 M 4 2 3 1359 57.00 F 5 2 2 1360 75.00 M 5 2 3 1361 82.00 M 2 2 3 1362 48.00 F 0 2 2 1363 58.00 M 2 2 2 1364 56.00 F 2 2 2 1365 54.00 M 1 2 2 1366 46.00 M 0 2 2 1367 36.00 M 1 2 2 1368 76.00 M 2 2 3 1369 76.00 F 2 2 3 1370 47.00 M 1 2 2 1371 80.00 M 0 2 3 1372 55.00 M 0 2 2 1373 65.00 F 2 2 3 1374 48.00 F 0 2 2 1375 87.00 M 4 2 3 1376 85.00 M 0 2 3 1377 58.00 F 0 2 2 1378 57.00 M 0 2 2 1379 30.00 F 0 2 2 1380 58.00 F 3 2 2 1381 28.00 M 0 2 2 1382 50.00 M 1 2 2 1383 62.00 M 0 2 3 1384 69.00 M 0 2 3 1385 57.00 M 0 2 2 1386 53.00 M 0 2 2 1387 74.00 M 0 2 3 1388 65.00 M 24 2 3 1389 55.00 F 1 2 2 1390 74.00 F 0 2 3 1391 28.00 F 1 2 2 1392 55.00 M 0 2 2 1393 54.00 M 0 2 2 1394 52.00 M 0 2 2 1395 72.00 M 0 2 3 1396 20.00 F 0 2 2 1397 80.00 M 0 2 3 1398 42.00 F 0 2 2 1399 60.00 M 0 2 3 1400 65.00 M 0 2 3 1401 70.00 F 0 2 3 1402 45.00 F 2 2 2 1403 56.00 M 1 2 2 1404 47.00 M 7 2 2 1405 45.00 M 0 2 2 1406 52.00 M 0 2 2 1407 30.00 M 0 2 2 1408 49.00 F 0 2 2 1409 54.00 F 2 2 2 1410 53.00 M 5 2 2 1411 53.00 M 13 2 2 1412 49.00 M 0 2 2 1413 45.00 F 0 2 2 1414 70.00 M 0 2 3 1415 54.00 M 6 2 2 1416 47.00 M 1 2 2 1417 68.00 M 0 2 3 1418 71.00 M 0 2 3 1419 57.00 M 1 2 2 1420 68.00 M 2 2 3 1421 65.00 M 1 2 3 1422 59.00 F 0 2 2 1423 62.00 M 7 2 3 1424 50.00 M 3 2 2 1425 40.00 M 2 2 2 1426 45.00 M 2 2 2 1427 65.00 F 6 2 3 1428 65.00 M 3 2 3 1429 71.00 M 1 2 3 1430 68.00 F 3 2 3 1431 74.00 M 3 2 3 1432 68.00 M 6 2 3 1433 69.00 M 5 2 3 1434 58.00 F 5 2 2 1435 54.00 M 7 2 2 1436 55.00 M 7 2 2 1437 39.00 F 3 2 2 1438 60.00 M 1 2 3 1439 47.00 M 0 2 2 1440 70.00 M 2 2 3 1441 75.00 M 2 2 3 1442 55.00 M 2 2 2 1443 63.00 M 0 2 3 1444 61.00 M 0 2 3 1445 84.00 F 4 2 3 1446 61.00 M 0 2 3 1447 48.00 M 5 2 2 1448 55.00 F 8 2 2 1449 52.00 F 0 2 2 1450 49.00 M 3 2 2 1451 68.00 F 5 2 3 1452 55.00 M 6 2 2 1453 50.00 F 5 2 2 1454 62.00 M 8 2 3 1455 71.00 F 4 2 3 1456 60.00 M 0 2 3 1457 60.00 M 1 2 3 1458 52.00 M 3 2 2 1459 55.00 F 7 2 2 1460 71.00 M 6 2 3 1461 61.00 M 0 2 3 1462 78.00 M 5 2 3 1463 62.00 M 1 2 3 1464 55.00 M 4 2 2 1465 51.00 F 3 2 2 1466 94.00 F 1 2 3 1467 75.00 F 2 2 3 1468 52.00 F 1 2 2 1469 61.00 M 1 2 3 1470 70.00 M 13 2 3 1471 60.00 F 0 2 3 1472 71.00 M 0 2 3 1473 54.00 M 0 2 2 1474 35.00 F 3 2 2 1475 50.00 F 0 2 2 1476 68.00 M 0 2 3 1477 36.00 F 0 2 2 1478 28.00 M 1 2 2 1479 42.00 M 0 2 2 1480 65.00 F 0 2 3 1481 55.00 M 5 2 2 1482 70.00 M 0 2 3 1483 64.00 M 1 2 3 1484 46.00 F 0 2 2 1485 70.00 M 0 2 3 1486 48.00 M 1 2 2 1487 90.00 M 0 2 3 1488 54.00 M 1 2 2 1489 72.00 F 0 2 3 1490 60.00 M 0 2 3 1491 70.00 F 1 2 3 1492 42.00 M 2 2 2 1493 58.00 M 2 2 2 1494 72.00 M 0 2 3 1495 65.00 M 16 2 3 1496 70.00 F 2 2 3 1497 70.00 M 2 2 3 1498 61.00 M 11 2 3 1499 85.00 F 13 2 3 1500 65.00 M 10 2 3 1501 51.00 F 8 2 2 1502 65.00 M 0 2 3 1503 59.00 M 0 2 2 1504 58.00 F 11 2 2 1505 64.00 M 3 2 3 1506 65.00 F 9 2 3 1507 61.00 M 0 2 3 1508 66.00 F 0 2 3 1509 59.00 M 2 2 2 1510 65.00 M 8 2 3 1511 58.00 M 7 2 2 1512 46.00 F 10 2 2 1513 61.00 M 2 2 3 1514 67.00 M 10 2 3 1515 47.00 M 6 2 2 1516 63.00 F 6 2 3 1517 47.00 M 0 2 2 1518 69.00 M 1 2 3 1519 67.00 M 3 2 3 1520 57.00 M 4 2 2 1521 69.00 F 0 2 3 1522 61.00 M 12 2 3 1523 73.00 M 4 2 3 1524 37.00 F 1 2 2 1525 59.00 M 6 2 2 1526 63.00 M 7 2 3 1527 60.00 F 6 2 3 1528 40.00 F 7 2 2 1529 52.00 M 4 2 2 1530 40.00 M 0 2 2 1531 70.00 M 1 2 3 1532 55.00 M 0 2 2 1533 56.00 F 0 2 2 1534 80.00 M 0 2 3 1535 67.00 M 2 2 3 1536 83.00 F 4 2 3 1537 64.00 M 1 2 3 1538 59.00 F 1 2 2 1539 68.00 M 0 2 3 1540 51.00 M 0 2 2 1541 40.00 F 2 2 2 1542 64.00 F 0 2 3 1543 58.00 M 9 2 2 1544 70.00 M 1 2 3 1545 52.00 M 3 2 2 1546 44.00 M 3 2 2 1547 56.00 M 5 2 2 1548 83.00 M 8 2 3 1549 54.00 F 0 2 2 1550 55.00 F 1 2 2 1551 26.00 F 4 2 2 1552 58.00 M 4 2 2 1553 40.00 M 0 2 2 1554 50.00 M 0 2 2 1555 49.00 M 1 2 2 1556 56.00 M 0 2 2 1557 54.00 M 1 2 2 1558 57.00 M 0 2 2 1559 43.00 F 0 2 2 1560 61.00 M 1 2 3 1561 70.00 M 0 2 3 1562 21.00 M 2 2 2 1563 55.00 M 2 2 2 1564 79.00 F 2 2 3 1565 40.00 M 0 2 2 1566 40.00 M 3 2 2 1567 66.00 M 2 2 3 1568 85.00 M 0 2 3 1569 55.00 M 0 2 2 1570 59.00 F 0 2 2 1571 60.00 F 5 2 3 1572 42.00 M 3 2 2 1573 23.00 M 1 2 2 1574 83.00 M 0 2 3 1575 67.00 M 0 2 3 1576 64.00 M 2 2 3 1577 58.00 F 0 2 2 1578 60.00 M 1 2 3 1579 63.00 M 0 2 3 1580 55.00 M 3 2 2 1581 65.00 M 0 2 3 1582 58.00 M 0 2 2 1583 59.00 M 0 2 2 1584 71.00 F 1 2 3 1585 60.00 M 0 2 3 1586 74.00 M 0 2 3 1587 67.00 M 0 2 3 1588 75.00 M 1 2 3 1589 52.00 F 1 2 2 1590 45.00 M 1 2 2 1591 63.00 M 0 2 3 1592 65.00 M 0 2 3 1593 48.00 M 0 2 2 1594 59.00 M 0 2 2 1595 26.00 F 1 2 2 1596 54.00 M 2 2 2 1597 21.00 M 0 2 2 1598 59.00 M 1 2 2 1599 54.00 M 9 2 2 1600 65.00 F 0 2 3 1601 80.00 F 0 2 3 1602 68.00 M 3 2 3 1603 65.00 M 0 2 3 1604 65.00 F 0 2 3 1605 67.00 M 1 2 3 1606 52.00 F 4 2 2 1607 32.00 M 3 2 2 1608 65.00 F 0 2 3 1609 71.00 M 0 2 3 1610 59.00 F 0 2 2 1611 58.00 M 8 2 2 1612 83.00 M 9 2 3 1613 47.00 F 0 2 2 1614 80.00 F 4 2 3 1615 80.00 M 9 2 3 1616 76.00 F 5 2 3 1617 71.00 F 0 2 3 1618 66.00 M 4 2 3 1619 60.00 M 3 2 3 1620 65.00 M 7 2 3 1621 47.00 M 1 2 2 1622 60.00 M 7 2 3 1623 65.00 M 0 2 3 1624 72.00 M 6 2 3 1625 40.00 M 7 2 2 1626 75.00 M 0 2 3 1627 55.00 F 6 2 2 1628 64.00 F 5 2 3 1629 66.00 F 2 2 3 1630 40.00 M 1 2 2 1631 48.00 M 2 2 2 1632 59.00 M 8 2 2 1633 54.00 F 5 2 2 1634 41.00 M 10 2 2 1635 52.00 M 1 2 2 1636 50.00 F 0 2 2 1637 25.00 F 1 2 2 1638 42.00 M 0 2 2 1639 60.00 M 0 2 3 1640 67.00 M 30 2 3 1641 68.00 M 3 2 3 1642 72.00 M 6 2 3 1643 74.00 M 1 2 3 1644 76.00 M 2 2 3 1645 56.00 M 4 2 2 1646 37.00 M 0 2 2 1647 73.00 M 1 2 3 1648 63.00 M 1 2 3 1649 28.00 F 1 2 2 1650 49.00 F 1 2 2 1651 65.00 F 0 2 3 1652 70.00 F 0 2 3 1653 75.00 M 1 2 3 1654 81.00 M 2 2 3 1655 46.00 F 0 2 2 1656 65.00 M 0 2 3 1657 50.00 F 0 2 2 1658 68.00 M 1 2 3 1659 30.00 M 0 2 2 1660 58.00 M 0 2 2 1661 70.00 M 0 2 3 1662 65.00 F 1 2 3 1663 48.00 F 0 2 2 1664 66.00 M 0 2 3 1665 62.00 M 1 2 3 1666 67.00 M 0 2 3 1667 47.00 F 0 2 2 1668 53.00 M 0 2 2 1669 50.00 M 0 2 2 1670 44.00 M 0 2 2 1671 69.00 M 1 2 3 1672 60.00 F 0 2 3 1673 70.00 F 1 2 3 1674 49.00 M 1 2 2 1675 40.00 M 1 2 2 1676 46.00 M 0 2 2 1677 75.00 F 1 2 3 1678 55.00 F 1 2 2 1679 78.00 M 0 2 3 1680 70.00 F 17 2 3 1681 65.00 F 6 2 3 1682 34.00 M 1 2 2 1683 59.00 M 1 2 2 1684 61.00 M 2 2 3 1685 48.00 M 11 2 2 1686 65.00 M 11 2 3 1687 60.00 M 7 2 3 1688 60.00 M 0 2 3 1689 60.00 F 8 2 3 1690 76.00 M 9 2 3 1691 55.00 M 1 2 2 1692 57.00 M 7 2 2 1693 49.00 F 10 2 2 1694 34.00 M 5 2 2 1695 58.00 M 0 2 2 1696 58.00 F 2 2 2 1697 45.00 M 9 2 2 1698 31.00 M 6 2 2 1699 78.00 M 0 2 3 1700 64.00 M 6 2 3 1701 44.00 M 1 2 2 1702 60.00 M 4 2 3 1703 78.00 F 1 2 3 1704 47.00 F 2 2 2 1705 66.00 F 7 2 3 1706 55.00 M 3 2 2 1707 50.00 F 1 2 2 1708 65.00 M 7 2 3 1709 72.00 M 4 2 3 1710 63.00 M 4 2 3 1711 25.00 M 3 2 2 1712 48.00 F 1 2 2 1713 70.00 M 3 2 3 1714 70.00 M 2 2 3 1715 55.00 F 0 2 2 1716 57.00 M 1 2 2 1717 45.00 F 4 2 2 1718 64.00 M 5 2 3 1719 54.00 M 0 2 2 1720 47.00 M 5 2 2 1721 21.00 M 1 2 2 1722 79.00 M 1 2 3 1723 65.00 F 2 2 3 1724 76.00 M 4 2 3 1725 58.00 M 0 2 2 1726 45.00 F 0 2 2 1727 68.00 M 0 2 3 1728 58.00 M 4 2 2 1729 64.00 M 3 2 3 1730 78.00 M 0 2 3 1731 67.00 M 1 2 3 1732 81.00 F 1 2 3 1733 55.00 M 3 2 2 1734 55.00 M 3 2 2 1735 55.00 F 1 2 2 1736 52.00 M 0 2 2 1737 63.00 M 1 2 3 1738 55.00 M 0 2 2 1739 65.00 M 0 2 3 1740 66.00 M 0 2 3 1741 65.00 M 0 2 3 1742 70.00 F 1 2 3 1743 49.00 M 1 2 2 1744 59.00 F 1 2 2 1745 64.00 F 5 2 3 1746 57.00 M 1 2 2 1747 66.00 M 0 2 3 1748 48.00 M 3 2 2 1749 70.00 M 2 2 3 1750 82.00 M 0 2 3 1751 76.00 M 0 2 3 1752 73.00 M 4 2 3 1753 40.00 F 1 2 2 1754 45.00 M 4 2 2 1755 73.00 M 2 2 3 1756 53.00 M 0 2 2 1757 80.00 F 1 2 3 1758 69.00 M 1 2 3 1759 41.00 M 1 2 2 1760 75.00 F 0 2 3 1761 70.00 M 0 2 3 1762 72.00 M 16 2 3 1763 41.00 F 4 2 2 1764 38.00 F 2 2 2 1765 72.00 M 14 2 3 1766 45.00 M 0 2 2 1767 65.00 F 7 2 3 1768 58.00 M 13 2 2 1769 56.00 M 9 2 2 1770 59.00 F 7 2 2 1771 75.00 M 10 2 3 1772 80.00 M 0 2 3 1773 65.00 F 12 2 3 1774 73.00 M 7 2 3 1775 36.00 M 12 2 2 1776 47.00 M 3 2 2 1777 88.00 M 13 2 3 1778 53.00 F 9 2 2 1779 75.00 F 1 2 3 1780 50.00 M 5 2 2 1781 60.00 M 4 2 3 1782 65.00 M 8 2 3 1783 70.00 M 4 2 3 1784 93.00 M 8 2 3 1785 70.00 M 0 2 3 1786 70.00 F 6 2 3 1787 72.00 M 3 2 3 1788 75.00 M 6 2 3 1789 68.00 M 6 2 3 1790 54.00 M 6 2 2 1791 55.00 M 3 2 2 1792 71.00 M 4 2 3 1793 75.00 F 0 2 3 1794 55.00 M 1 2 2 1795 48.00 M 3 2 2 1796 76.00 F 3 2 3 1797 60.00 M 3 2 3 1798 71.00 F 3 2 3 1799 75.00 M 0 2 3 1800 63.00 F 1 2 3 1801 83.00 M 0 2 3 1802 76.00 M 0 2 3 1803 82.00 M 1 2 3 1804 65.00 F 5 2 3 1805 70.00 M 2 2 3 1806 60.00 M 1 2 3 1807 51.00 M 0 2 2 1808 65.00 F 1 2 3 1809 61.00 F 2 2 3 1810 64.00 M 3 2 3 1811 60.00 F 1 2 3 1812 65.00 M 0 2 3 1813 41.00 M 0 2 2 1814 35.00 M 0 2 2 1815 43.00 M 1 2 2 1816 63.00 M 1 2 3 1817 74.00 F 0 2 3 1818 60.00 M 3 2 3 1819 61.00 M 0 2 3 1820 75.00 M 7 2 3 1821 75.00 M 0 2 3 1822 35.00 M 0 2 2 1823 50.00 F 0 2 2 1824 73.00 M 0 2 3 1825 48.00 M 4 2 2 1826 75.00 F 1 2 3 1827 52.00 M 2 2 2 1828 63.00 M 0 2 3 1829 65.00 M 1 2 3 1830 65.00 M 0 2 3 1831 67.00 M 0 2 3 1832 65.00 M 3 2 3 1833 50.00 M 0 2 2 1834 55.00 M 0 2 2 1835 51.00 M 1 2 2 1836 39.00 M 0 2 2 1837 89.00 M 12 2 3 1838 46.00 M 16 2 2 1839 56.00 M 19 2 2 1840 52.00 F 1 2 2 1841 62.00 M 2 2 3 1842 58.00 M 10 2 2 1843 65.00 F 10 2 3 1844 63.00 M 10 2 3 1845 63.00 F 1 2 3 1846 67.00 M 0 2 3 1847 55.00 M 1 2 2 1848 38.00 M 2 2 2 1849 65.00 M 0 2 3 1850 60.00 M 11 2 3 1851 60.00 F 6 2 3 1852 75.00 F 6 2 3 1853 46.00 M 0 2 2 1854 74.00 M 0 2 3 1855 72.00 M 8 2 3 1856 68.00 M 2 2 3 1857 62.00 M 9 2 3 1858 51.00 M 0 2 2 1859 55.00 F 0 2 2 1860 60.00 F 6 2 3 1861 65.00 F 2 2 3 1862 66.00 F 2 2 3 1863 43.00 M 6 2 2 1864 58.00 F 5 2 2 1865 82.00 M 2 2 3 1866 63.00 M 7 2 3 1867 84.00 M 6 2 3 1868 65.00 F 7 2 3 1869 65.00 M 8 2 3 1870 68.00 M 0 2 3 1871 64.00 M 7 2 3 1872 46.00 M 6 2 2 1873 60.00 F 8 2 3 1874 48.00 M 5 2 2 1875 44.00 M 3 2 2 1876 61.00 F 0 2 3 1877 78.00 F 10 2 3 1878 55.00 M 5 2 2 1879 72.00 M 1 2 3 1880 58.00 M 11 2 2 1881 70.00 M 9 2 3 1882 56.00 M 12 2 2 1883 47.00 M 1 2 2 1884 52.00 M 0 2 2 1885 62.00 F 1 2 3 1886 74.00 F 1 2 3 1887 59.00 F 3 2 2 1888 38.00 F 0 2 2 1889 60.00 M 5 2 3 1890 68.00 F 3 2 3 1891 75.00 M 1 2 3 1892 70.00 M 2 2 3 1893 55.00 M 1 2 2 1894 50.00 M 2 2 2 1895 72.00 F 1 2 3 1896 64.00 F 2 2 3 1897 62.00 F 2 2 3 1898 58.00 F 1 2 2 1899 58.00 F 0 2 2 1900 69.00 M 20 2 3 1901 60.00 F 1 2 3 1902 76.00 F 6 2 3 1903 31.00 F 5 2 2 1904 40.00 F 0 2 2 1905 56.00 M 3 2 2 1906 59.00 F 5 2 2 1907 55.00 M 1 2 2 1908 71.00 F 2 2 3 1909 45.00 M 4 2 2 1910 53.00 M 0 2 2 1911 60.00 M 0 2 3 1912 50.00 M 2 2 2 1913 31.00 M 1 2 2 1914 50.00 F 2 2 2 1915 46.00 M 0 2 2 1916 60.00 M 1 2 3 1917 40.00 M 0 2 2 1918 62.00 F 2 2 3 1919 57.00 M 4 2 2 1920 60.00 F 1 2 3 1921 66.00 M 0 2 3 1922 55.00 F 1 2 2 1923 65.00 M 0 2 3 1924 63.00 M 20 2 3 1925 56.00 F 0 2 2 1926 60.00 M 0 2 3 1927 40.00 M 0 2 2 1928 50.00 F 0 2 2 1929 38.00 F 0 2 2 1930 65.00 M 0 2 3 1931 80.00 M 0 2 3 1932 55.00 M 0 2 2 1933 72.00 F 2 2 3 1934 50.00 M 7 2 2 1935 47.00 M 0 2 2 1936 47.00 M 2 2 2 1937 54.00 M 2 2 2 1938 65.00 F 0 2 3 1939 67.00 F 19 2 3 1940 60.00 M 0 2 3 1941 60.00 F 0 2 3 1942 50.00 F 0 2 2 1943 49.00 M 0 2 2 1944 50.00 M 9 2 2 1945 65.00 M 3 2 3 1946 54.00 M 2 2 2 1947 62.00 M 8 2 3 1948 45.00 M 2 2 2 1949 66.00 M 11 2 3 1950 59.00 M 5 2 2 1951 58.00 M 2 2 2 1952 60.00 M 25 2 3 1953 58.00 M 5 2 2 1954 60.00 F 3 2 3 1955 75.00 M 3 2 3 1956 50.00 F 9 2 2 1957 60.00 M 9 2 3 1958 55.00 F 1 2 2 1959 54.00 F 1 2 2 1960 26.00 F 3 2 2 1961 60.00 M 9 2 3 1962 53.00 F 7 2 2 1963 35.00 F 0 2 2 1964 59.00 M 8 2 2 1965 62.00 M 3 2 3 1966 55.00 M 8 2 2 1967 60.00 M 8 2 3 1968 63.00 F 2 2 3 1969 98.00 M 4 2 3 1970 68.00 F 1 2 3 1971 68.00 F 5 2 3 1972 72.00 M 4 2 3 1973 80.00 M 1 2 3 1974 72.00 M 2 2 3 1975 68.00 F 1 2 3 1976 60.00 F 5 2 3 1977 48.00 M 4 2 2 1978 50.00 M 6 2 2 1979 56.00 M 1 2 2 1980 56.00 M 4 2 2 1981 52.00 M 2 2 2 1982 60.00 M 1 2 3 1983 78.00 M 0 2 3 1984 48.00 M 2 2 2 1985 62.00 M 2 2 3 1986 62.00 M 4 2 3 1987 70.00 F 1 2 3 1988 75.00 M 2 2 3 1989 44.00 F 3 2 2 1990 62.00 M 2 2 3 1991 78.00 M 3 2 3 1992 52.00 M 0 2 2 1993 55.00 M 0 2 2 1994 75.00 F 17 2 3 1995 80.00 M 0 2 3 1996 43.00 M 1 2 2 1997 36.00 M 0 2 2 1998 65.00 M 5 2 3 1999 51.00 M 1 2 2 2000 34.00 M 1 2 2 2001 60.00 F 0 2 3 2002 47.00 M 1 2 2 2003 64.00 M 10 2 3 2004 51.00 M 3 2 2 2005 62.00 M 2 2 3 2006 82.00 M 1 2 3 2007 82.00 F 0 2 3 2008 72.00 M 0 2 3 2009 59.00 F 5 2 2 2010 65.00 F 0 2 3 2011 74.00 M 0 2 3 2012 86.00 F 0 2 3 2013 44.00 M 1 2 2 2014 70.00 F 1 2 3 2015 62.00 M 0 2 3 2016 46.00 F 2 2 2 2017 44.00 M 0 2 2 2018 50.00 F 1 2 2 2019 71.00 M 0 2 3 2020 30.00 F 1 2 2 2021 69.00 M 1 2 3 2022 65.00 F 2 2 3 2023 65.00 F 1 2 3 2024 75.00 M 0 2 3 2025 51.00 M 0 2 2 2026 58.00 M 0 2 2 2027 34.00 M 0 2 2 2028 56.00 M 0 2 2 2029 72.00 F 0 2 3 2030 65.00 M 1 2 3 2031 70.00 F 1 2 3 2032 66.00 M 16 2 3 2033 73.00 M 3 2 3 2034 68.00 F 0 2 3 2035 46.00 M 1 2 2 2036 60.00 F 0 2 3 2037 55.00 M 0 2 2 2038 59.00 M 10 2 2 2039 46.00 M 10 2 2 2040 72.00 F 5 2 3 2041 84.00 F 4 2 3 2042 74.00 F 7 2 3 2043 58.00 F 0 2 2 2044 70.00 F 14 2 3 2045 46.00 F 10 2 2 2046 71.00 M 8 2 3 2047 88.00 M 7 2 3 2048 68.00 M 0 2 3 2049 75.00 M 6 2 3 2050 52.00 M 1 2 2 2051 68.00 M 6 2 3 2052 60.00 M 7 2 3 2053 64.00 F 2 2 3 2054 67.00 M 1 2 3 2055 64.00 M 7 2 3 2056 58.00 M 4 2 2 2057 67.00 M 5 2 3 2058 52.00 M 0 2 2 2059 68.00 M 2 2 3 2060 50.00 M 5 2 2 2061 56.00 M 0 2 2 2062 85.00 F 4 2 3 2063 60.00 F 12 2 3 2064 66.00 M 5 2 3 2065 80.00 M 2 2 3 2066 65.00 F 0 2 3 2067 62.00 M 2 2 3 2068 87.00 M 2 2 3 2069 82.00 M 1 2 3 2070 66.00 M 2 2 3 2071 80.00 F 3 2 3 2072 85.00 F 3 2 3 2073 50.00 F 1 2 2 2074 54.00 M 4 2 2 2075 50.00 M 2 2 2 2076 56.00 F 1 2 2 2077 80.00 M 0 2 3 2078 80.00 F 0 2 3 2079 68.00 M 3 2 3 2080 65.00 F 0 2 3 2081 58.00 M 4 2 2 2082 55.00 M 6 2 2 2083 35.00 M 0 2 2 2084 55.00 M 1 2 2 2085 65.00 F 3 2 3 2086 58.00 M 0 2 2 2087 40.00 F 0 2 2 2088 67.00 M 3 2 3 2089 24.00 M 0 2 2 2090 36.00 F 4 2 2 2091 40.00 M 1 2 2 2092 39.00 M 3 2 2 2093 52.00 M 0 2 2 2094 66.00 F 2 2 3 2095 36.00 M 0 2 2 2096 55.00 M 3 2 2 2097 65.00 F 0 2 3 2098 42.00 M 0 2 2 2099 47.00 F 9 2 2 2100 55.00 M 1 2 2 2101 55.00 F 8 2 2 2102 73.00 F 2 2 3 2103 80.00 F 13 2 3 2104 39.00 M 0 2 2 2105 56.00 M 1 2 2 2106 52.00 M 0 2 2 2107 26.00 F 1 2 2 2108 63.00 F 5 2 3 2109 76.00 M 1 2 3 2110 50.00 M 0 2 2 2111 55.00 F 0 2 2 2112 58.00 F 1 2 2 2113 72.00 M 0 2 3 2114 62.00 F 23 2 3 2115 30.00 F 0 2 2 2116 72.00 M 12 2 3 2117 91.00 M 11 2 3 2118 59.00 M 12 2 2 2119 22.00 M 3 2 2 2120 81.00 F 10 2 3 2121 73.00 F 2 2 3 2122 53.00 M 0 2 2 2123 65.00 M 8 2 3 2124 67.00 M 15 2 3 2125 70.00 M 15 2 3 2126 87.00 F 11 2 3 2127 50.00 F 7 2 2 2128 60.00 M 12 2 3 2129 65.00 M 3 2 3 2130 30.00 M 1 2 2 2131 54.00 F 13 2 2 2132 72.00 F 22 2 3 2133 71.00 F 14 2 3 2134 52.00 F 7 2 2 2135 8.00 F 0 2 1 2136 64.00 F 3 2 3 2137 86.00 F 5 2 3 2138 86.00 M 4 2 3 2139 65.00 F 0 2 3 2140 77.00 M 1 2 3 2141 69.00 M 4 2 3 2142 54.00 F 0 2 2 2143 70.00 M 7 2 3 2144 60.00 M 1 2 3 2145 52.00 M 0 2 2 2146 70.00 M 5 2 3 2147 50.00 M 0 2 2 2148 80.00 F 2 2 3 2149 88.00 M 21 2 3 2150 76.00 M 1 2 3 2151 60.00 F 1 2 3 2152 41.00 M 3 2 2 2153 58.00 M 5 2 2 2154 54.00 M 5 2 2 2155 45.00 F 3 2 2 2156 60.00 M 1 2 3 2157 48.00 F 3 2 2 2158 63.00 M 3 2 3 2159 60.00 M 2 2 3 2160 92.00 M 3 2 3 2161 46.00 M 1 2 2 2162 65.00 F 2 2 3 2163 85.00 M 1 2 3 2164 55.00 F 2 2 2 2165 85.00 M 3 2 3 2166 64.00 F 0 2 3 2167 65.00 F 2 2 3 2168 38.00 M 1 2 2 2169 64.00 M 0 2 3 2170 69.00 M 1 2 3 2171 65.00 F 1 2 3 2172 51.00 F 3 2 2 2173 84.00 F 0 2 3 2174 57.00 F 0 2 2 2175 57.00 M 2 2 2 2176 49.00 M 4 2 2 2177 60.00 F 0 2 3 2178 63.00 F 0 2 3 2179 58.00 F 0 2 2 2180 56.00 M 0 2 2 2181 62.00 F 0 2 3 2182 83.00 F 1 2 3 2183 63.00 F 1 2 3 2184 55.00 M 0 2 2 2185 74.00 M 3 2 3 2186 56.00 F 18 2 2 2187 52.00 M 1 2 2 2188 78.00 M 1 2 3 2189 54.00 F 1 2 2 2190 53.00 M 2 2 2 2191 45.00 M 1 2 2 2192 19.00 M 1 2 2 2193 82.00 M 0 2 3 2194 58.00 M 0 2 2 2195 47.00 M 0 2 2 2196 65.00 M 1 2 3 2197 40.00 F 1 2 2 2198 60.00 F 1 2 3 2199 78.00 F 11 2 3 2200 66.00 M 10 2 3 2201 73.00 M 10 2 3 2202 60.00 F 12 2 3 2203 52.00 M 11 2 2 2204 74.00 M 3 2 3 2205 62.00 M 8 2 3 2206 65.00 M 4 2 3 2207 63.00 M 2 2 3 2208 60.00 M 2 2 3 2209 55.00 M 3 2 2 2210 52.00 M 3 2 2 2211 76.00 M 15 2 3 2212 73.00 M 5 2 3 2213 68.00 M 6 2 3 2214 62.00 M 6 2 3 2215 65.00 F 0 2 3 2216 72.00 M 4 2 3 2217 65.00 M 5 2 3 2218 52.00 M 6 2 2 2219 72.00 M 5 2 3 2220 62.00 M 5 2 3 2221 34.00 M 2 2 2 2222 72.00 M 2 2 3 2223 61.00 M 4 2 3 2224 36.00 M 4 2 2 2225 53.00 M 1 2 2 2226 39.00 M 6 2 2 2227 52.00 M 1 2 2 2228 96.00 M 1 2 3 2229 65.00 F 6 2 3 2230 45.00 M 6 2 2 2231 55.00 M 7 2 2 2232 56.00 M 0 2 2 2233 70.00 M 0 2 3 2234 81.00 F 2 2 3 2235 75.00 M 0 2 3 2236 61.00 M 0 2 3 2237 45.00 M 0 2 2 2238 57.00 M 3 2 2 2239 55.00 F 1 2 2 2240 56.00 M 0 2 2 2241 40.00 M 3 2 2 2242 66.00 M 1 2 3 2243 65.00 F 0 2 3 2244 70.00 M 0 2 3 2245 42.00 F 1 2 2 2246 50.00 M 1 2 2 2247 60.00 M 1 2 3 2248 63.00 M 0 2 3 2249 56.00 M 1 2 2 2250 56.00 M 4 2 2 2251 63.00 M 0 2 3 2252 60.00 F 0 2 3 2253 36.00 F 1 2 2 2254 59.00 M 1 2 2 2255 70.00 M 1 2 3 2256 58.00 F 0 2 2 2257 75.00 F 2 2 3 2258 90.00 M 3 2 3 2259 70.00 F 1 2 3 2260 49.00 F 0 2 2 2261 84.00 M 5 2 3 2262 60.00 M 4 2 3 2263 80.00 F 0 2 3 2264 72.00 M 0 2 3 2265 53.00 M 0 2 2 2266 69.00 M 0 2 3 2267 55.00 F 2 2 2 2268 87.00 M 2 2 3 2269 63.00 M 1 2 3 2270 56.00 M 3 2 2 2271 67.00 F 3 2 3 2272 65.00 F 0 2 3 2273 62.00 F 2 2 3 2274 51.00 M 4 2 2 2275 31.00 M 1 2 2 2276 65.00 M 2 2 3 2277 64.00 M 0 2 3 2278 94.00 M 1 2 3 2279 62.00 M 1 2 3 2280 35.00 M 0 2 2 2281 75.00 M 1 2 3 2282 70.00 F 0 2 3 2283 65.00 M 1 2 3 2284 60.00 F 0 2 3 2285 60.00 F 0 2 3 2286 59.00 M 0 2 2 2287 61.00 M 1 2 3 2288 65.00 M 0 2 3 2289 72.00 M 0 2 3 2290 60.00 F 1 2 3 2291 32.00 M 0 2 2 2292 78.00 F 0 2 3 2293 40.00 F 0 2 2 2294 55.00 F 0 2 2 2295 59.00 M 10 2 2 2296 80.00 M 19 2 3 2297 80.00 F 16 2 3 2298 67.00 M 21 2 3 2299 72.00 M 0 2 3 2300 87.00 M 3 2 3 2301 69.00 F 0 2 3 2302 65.00 M 2 2 3 2303 52.00 M 5 2 2 2304 65.00 M 8 2 3 2305 28.00 M 9 2 2 2306 61.00 M 2 2 3 2307 80.00 M 6 2 3 2308 68.00 M 9 2 3 2309 55.00 F 9 2 2 2310 65.00 M 10 2 3 2311 57.00 M 6 2 2 2312 65.00 F 11 2 3 2313 80.00 M 0 2 3 2314 50.00 M 0 2 2 2315 73.00 F 2 2 3 2316 78.00 M 3 2 3 2317 74.00 M 5 2 3 2318 82.00 M 1 2 3 2319 83.00 M 1 2 3 2320 72.00 M 22 2 3 2321 46.00 M 1 2 2 2322 36.00 M 0 2 2 2323 70.00 M 1 2 3 2324 75.00 M 3 2 3 2325 85.00 F 4 2 3 2326 85.00 M 2 2 3 2327 69.00 M 2 2 3 2328 70.00 M 6 2 3 2329 47.00 M 7 2 2 2330 66.00 M 0 2 3 2331 69.00 M 11 2 3 2332 70.00 F 3 2 3 2333 78.00 M 0 2 3 2334 56.00 M 1 2 2 2335 45.00 F 2 2 2 2336 61.00 M 1 2 3 2337 70.00 M 4 2 3 2338 51.00 M 3 2 2 2339 52.00 M 1 2 2 2340 42.00 F 0 2 2 2341 67.00 M 2 2 3 2342 77.00 F 2 2 3 2343 68.00 M 5 2 3 2344 45.00 F 1 2 2 2345 40.00 M 8 2 2 2346 68.00 M 0 2 3 2347 54.00 M 1 2 2 2348 67.00 M 3 2 3 2349 66.00 M 2 2 3 2350 66.00 M 0 2 3 2351 72.00 M 0 2 3 2352 75.00 M 0 2 3 2353 62.00 F 0 2 3 2354 57.00 M 1 2 2 2355 62.00 M 0 2 3 2356 72.00 F 3 2 3 2357 85.00 F 0 2 3 2358 58.00 M 1 2 2 2359 55.00 F 0 2 2 2360 57.00 F 8 2 2 2361 58.00 M 0 2 2 2362 75.00 M 0 2 3 2363 80.00 M 1 2 3 2364 84.00 M 0 2 3 2365 70.00 F 0 2 3 2366 66.00 M 2 2 3 2367 50.00 F 0 2 2 2368 54.00 F 0 2 2 2369 60.00 M 0 2 3 2370 80.00 M 2 2 3 2371 31.00 M 4 2 2 2372 80.00 M 5 2 3 2373 20.00 F 0 2 2 2374 40.00 M 0 2 2 2375 55.00 M 1 2 2 2376 81.00 M 0 2 3 2377 78.00 F 1 2 3 2378 62.00 M 2 2 3 2379 68.00 F 14 2 3 2380 73.00 M 16 2 3 2381 50.00 M 13 2 2 2382 31.00 F 4 2 2 2383 72.00 M 11 2 3 2384 54.00 M 5 2 2 2385 26.00 F 5 2 2 2386 35.00 M 10 2 2 2387 52.00 M 2 2 2 2388 58.00 M 0 2 2 2389 66.00 M 5 2 3 2390 70.00 F 8 2 3 2391 72.00 F 11 2 3 2392 64.00 M 0 2 3 2393 45.00 M 6 2 2 2394 86.00 M 9 2 3 2395 75.00 M 1 2 3 2396 60.00 M 9 2 3 2397 70.00 M 7 2 3 2398 75.00 M 0 2 3 2399 48.00 M 7 2 2 2400 50.00 M 9 2 2 2401 60.00 F 2 2 3 2402 80.00 F 6 2 3 2403 60.00 M 6 2 3 2404 33.00 M 0 2 2 2405 77.00 F 6 2 3 2406 54.00 M 6 2 2 2407 58.00 F 32 2 2 2408 55.00 F 0 2 2 2409 83.00 F 6 2 3 2410 64.00 M 6 2 3 2411 50.00 M 2 2 2 2412 58.00 M 1 2 2 2413 51.00 F 1 2 2 2414 74.00 F 6 2 3 2415 71.00 M 2 2 3 2416 36.00 M 6 2 2 2417 54.00 M 1 2 2 2418 58.00 M 4 2 2 2419 65.00 F 4 2 3 2420 61.00 F 2 2 3 2421 29.00 M 0 2 2 2422 62.00 F 1 2 3 2423 81.00 F 0 2 3 2424 47.00 F 6 2 2 2425 51.00 F 4 2 2 2426 64.00 M 4 2 3 2427 53.00 F 0 2 2 2428 47.00 M 3 2 2 2429 70.00 M 3 2 3 2430 76.00 F 4 2 3 2431 70.00 M 5 2 3 2432 76.00 M 0 2 3 2433 46.00 F 0 2 2 2434 51.00 M 3 2 2 2435 35.00 F 0 2 2 2436 56.00 M 6 2 2 2437 48.00 F 0 2 2 2438 40.00 M 1 2 2 2439 85.00 F 0 2 3 2440 53.00 F 4 2 2 2441 55.00 M 2 2 2 2442 85.00 M 3 2 3 2443 78.00 M 4 2 3 2444 54.00 F 2 2 2 2445 75.00 M 2 2 3 2446 59.00 M 0 2 2 2447 51.00 F 8 2 2 2448 70.00 M 2 2 3 2449 70.00 M 2 2 3 2450 65.00 M 0 2 3 2451 68.00 M 2 2 3 2452 70.00 F 2 2 3 2453 74.00 F 0 2 3 2454 70.00 M 0 2 3 2455 54.00 M 1 2 2 2456 66.00 M 2 2 3 2457 70.00 M 1 2 3 2458 70.00 M 0 2 3 2459 75.00 M 2 2 3 2460 79.00 M 0 2 3 2461 50.00 M 3 2 2 2462 68.00 F 5 2 3 2463 49.00 M 0 2 2 2464 60.00 M 2 2 3 2465 70.00 F 1 2 3 2466 55.00 F 1 2 2 2467 69.00 F 17 2 3 2468 70.00 F 0 2 3 2469 58.00 M 2 2 2 2470 86.00 M 2 2 3 2471 50.00 M 0 2 2 2472 70.00 M 0 2 3 2473 56.00 M 0 2 2 2474 51.00 M 2 2 2 2475 65.00 M 0 2 3 2476 68.00 M 1 2 3 2477 82.00 M 17 2 3 2478 62.00 M 5 2 3 2479 66.00 M 8 2 3 2480 62.00 M 2 2 3 2481 70.00 M 9 2 3 2482 49.00 F 16 2 2 2483 50.00 M 8 2 2 2484 55.00 F 2 2 2 2485 73.00 M 5 2 3 2486 70.00 F 4 2 3 2487 60.00 M 2 2 3 2488 62.00 M 0 2 3 2489 64.00 M 15 2 3 2490 55.00 F 0 2 2 2491 79.00 M 2 2 3 2492 65.00 M 8 2 3 2493 56.00 M 11 2 2 2494 67.00 M 11 2 3 2495 65.00 M 14 2 3 2496 55.00 F 2 2 2 2497 60.00 M 8 2 3 2498 58.00 M 2 2 2 2499 68.00 M 0 2 3 2500 52.00 M 10 2 2 2501 58.00 M 1 2 2 2502 80.00 F 9 2 3 2503 67.00 M 7 2 3 2504 57.00 M 7 2 2 2505 63.00 F 6 2 3 2506 68.00 M 7 2 3 2507 68.00 F 8 2 3 2508 38.00 M 0 2 2 2509 40.00 M 0 2 2 2510 54.00 M 0 2 2 2511 70.00 M 6 2 3 2512 45.00 M 1 2 2 2513 68.00 F 1 2 3 2514 65.00 M 2 2 3 2515 19.00 F 7 2 2 2516 40.00 F 4 2 2 2517 63.00 M 2 2 3 2518 56.00 F 7 2 2 2519 58.00 M 10 2 2 2520 61.00 M 1 2 3 2521 40.00 M 4 2 2 2522 52.00 F 6 2 2 2523 74.00 M 5 2 3 2524 78.00 F 5 2 3 2525 45.00 F 3 2 2 2526 55.00 F 3 2 2 2527 80.00 F 0 2 3 2528 55.00 F 5 2 2 2529 39.00 M 0 2 2 2530 74.00 M 2 2 3 2531 60.00 F 0 2 3 2532 81.00 F 2 2 3 2533 52.00 M 0 2 2 2534 60.00 F 0 2 3 2535 57.00 M 0 2 2 2536 54.00 M 1 2 2 2537 38.00 M 1 2 2 2538 45.00 M 1 2 2 2539 55.00 M 4 2 2 2540 84.00 M 1 2 3 2541 41.00 M 6 2 2 2542 68.00 F 2 2 3 2543 42.00 M 2 2 2 2544 40.00 M 3 2 2 2545 62.00 M 11 2 3 2546 65.00 M 3 2 3 2547 45.00 M 4 2 2 2548 35.00 F 0 2 2 2549 48.00 M 0 2 2 2550 62.00 M 0 2 3 2551 69.00 M 0 2 3 2552 70.00 M 3 2 3 2553 85.00 F 9 2 3 2554 60.00 F 2 2 3 2555 64.00 M 0 2 3 2556 45.00 F 1 2 2 2557 54.00 M 0 2 2 2558 67.00 M 1 2 3 2559 69.00 M 16 2 3 2560 62.00 F 2 2 3 2561 45.00 F 2 2 2 2562 65.00 M 1 2 3 2563 85.00 M 2 2 3 2564 68.00 F 1 2 3 2565 72.00 M 0 2 3 2566 44.00 M 1 2 2 2567 60.00 F 2 2 3 2568 57.00 F 1 2 2 2569 40.00 M 0 2 2 2570 76.00 F 1 2 3 2571 58.00 M 0 2 2 2572 60.00 M 2 2 3 2573 60.00 F 2 2 3 2574 69.00 M 0 2 3 2575 79.00 M 0 2 3 2576 68.00 F 9 2 3 2577 54.00 M 1 2 2 2578 60.00 M 1 2 3 2579 58.00 M 1 2 2 2580 70.00 M 0 2 3 2581 46.00 M 0 2 2 2582 60.00 M 2 2 3 2583 3.00 F 0 2 1 2584 23.00 F 0 2 2 2585 52.00 F 0 2 2 2586 55.00 F 4 2 2 2587 65.00 M 18 2 3 2588 40.00 M 20 2 2 2589 70.00 M 12 2 3 2590 39.00 M 14 2 2 2591 75.00 F 2 2 3 2592 62.00 F 1 2 3 2593 69.00 M 0 2 3 2594 70.00 M 13 2 3 2595 45.00 F 0 2 2 2596 54.00 M 0 2 2 2597 77.00 M 9 2 3 2598 58.00 F 3 2 2 2599 85.00 F 4 2 3 2600 48.00 F 4 2 2 2601 48.00 M 6 2 2 2602 35.00 M 3 2 2 2603 77.00 M 9 2 3 2604 75.00 M 7 2 3 2605 56.00 M 12 2 2 2606 73.00 M 0 2 3 2607 65.00 M 7 2 3 2608 58.00 M 1 2 2 2609 88.00 M 1 2 3 2610 63.00 M 1 2 3 2611 76.00 F 5 2 3 2612 80.00 F 1 2 3 2613 64.00 F 9 2 3 2614 72.00 M 7 2 3 2615 30.00 F 8 2 2 2616 30.00 M 10 2 2 2617 73.00 F 8 2 3 2618 62.00 F 8 2 3 2619 46.00 M 1 2 2 2620 66.00 F 0 2 3 2621 74.00 F 8 2 3 2622 55.00 F 7 2 2 2623 65.00 M 10 2 3 2624 65.00 M 2 2 3 2625 50.00 M 0 2 2 2626 60.00 F 6 2 3 2627 75.00 F 4 2 3 2628 68.00 M 6 2 3 2629 62.00 M 5 2 3 2630 65.00 M 5 2 3 2631 58.00 F 0 2 2 2632 53.00 F 6 2 2 2633 60.00 F 4 2 3 2634 23.00 F 0 2 2 2635 38.00 M 6 2 2 2636 53.00 M 0 2 2 2637 36.00 F 4 2 2 2638 49.00 M 3 2 2 2639 82.00 M 0 2 3 2640 70.00 M 3 2 3 2641 43.00 M 1 2 2 2642 67.00 M 1 2 3 2643 38.00 F 0 2 2 2644 62.00 M 3 2 3 2645 70.00 M 3 2 3 2646 42.00 M 0 2 2 2647 70.00 M 3 2 3 2648 68.00 M 1 2 3 2649 73.00 M 2 2 3 2650 40.00 M 2 2 2 2651 83.00 M 0 2 3 2652 58.00 F 2 2 2 2653 48.00 F 0 2 2 2654 75.00 M 2 2 3 2655 80.00 M 3 2 3 2656 65.00 M 1 2 3 2657 40.00 M 0 2 2 2658 67.00 M 1 2 3 2659 50.00 F 3 2 2 2660 71.00 F 0 2 3 2661 61.00 M 4 2 3 2662 58.00 M 1 2 2 2663 46.00 M 0 2 2 2664 64.00 F 1 2 3 2665 44.00 M 2 2 2 2666 65.00 F 0 2 3 2667 93.00 M 0 2 3 2668 50.00 M 0 2 2 2669 52.00 F 1 2 2 2670 60.00 M 0 2 3 2671 90.00 M 1 2 3 2672 72.00 F 1 2 3 2673 74.00 F 1 2 3 2674 90.00 M 3 2 3 2675 63.00 M 1 2 3 2676 70.00 F 1 2 3 2677 82.00 F 2 2 3 2678 67.00 M 2 2 3 2679 65.00 F 0 2 3 2680 79.00 M 0 2 3 2681 70.00 M 2 2 3 2682 65.00 M 0 2 3 2683 65.00 M 32 2 3 2684 70.00 M 2 2 3 2685 70.00 F 0 2 3 2686 64.00 M 1 2 3 2687 73.00 F 13 2 3 2688 50.00 M 1 2 2 2689 66.00 F 1 2 3 2690 87.00 F 14 2 3 2691 70.00 M 12 2 3 2692 50.00 M 0 2 2 2693 62.00 F 1 2 3 2694 65.00 F 13 2 3 2695 70.00 F 17 2 3 2696 59.00 M 10 2 2 2697 73.00 M 13 2 3 2698 78.00 F 8 2 3 2699 38.00 M 11 2 2 2700 62.00 F 1 2 3 2701 82.00 M 12 2 3 2702 82.00 M 11 2 3 2703 45.00 F 6 2 2 2704 65.00 M 9 2 3 2705 55.00 F 0 2 2 2706 40.00 M 7 2 2 2707 41.00 F 1 2 2 2708 55.00 M 8 2 2 2709 70.00 F 7 2 3 2710 70.00 F 8 2 3 2711 45.00 M 0 2 2 2712 46.00 F 8 2 2 2713 60.00 M 0 2 3 2714 72.00 M 7 2 3 2715 62.00 M 2 2 3 2716 67.00 F 9 2 3 2717 70.00 M 6 2 3 2718 65.00 M 2 2 3 2719 70.00 F 1 2 3 2720 86.00 M 6 2 3 2721 70.00 M 6 2 3 2722 62.00 M 5 2 3 2723 43.00 M 12 2 2 2724 78.00 M 6 2 3 2725 36.00 M 4 2 2 2726 62.00 M 8 2 3 2727 60.00 M 4 2 3 2728 59.00 M 1 2 2 2729 65.00 M 3 2 3 2730 56.00 M 5 2 2 2731 62.00 M 4 2 3 2732 45.00 F 1 2 2 2733 63.00 M 3 2 3 2734 46.00 M 5 2 2 2735 68.00 M 4 2 3 2736 40.00 M 0 2 2 2737 68.00 F 0 2 3 2738 62.00 F 1 2 3 2739 45.00 M 0 2 2 2740 62.00 M 4 2 3 2741 69.00 M 2 2 3 2742 65.00 M 4 2 3 2743 65.00 M 0 2 3 2744 62.00 M 0 2 3 2745 75.00 M 2 2 3 2746 60.00 M 4 2 3 2747 74.00 M 0 2 3 2748 67.00 M 0 2 3 2749 60.00 M 0 2 3 2750 36.00 M 0 2 2 2751 75.00 M 0 2 3 2752 80.00 M 0 2 3 2753 62.00 M 1 2 3 2754 60.00 M 8 2 3 2755 77.00 M 1 2 3 2756 59.00 M 2 2 2 2757 60.00 M 1 2 3 2758 43.00 M 0 2 2 2759 70.00 M 2 2 3 2760 72.00 M 1 2 3 2761 49.00 F 1 2 2 2762 80.00 F 0 2 3 2763 60.00 M 1 2 3 2764 52.00 M 2 2 2 2765 67.00 M 1 2 3 2766 67.00 M 0 2 3 2767 48.00 F 1 2 2 2768 56.00 F 0 2 2 2769 65.00 F 1 2 3 2770 52.00 M 0 2 2 2771 43.00 M 0 2 2 2772 70.00 F 1 2 3 2773 55.00 M 0 2 2 2774 58.00 F 0 2 2 2775 69.00 M 0 2 3 2776 80.00 F 0 2 3 2777 52.00 M 1 2 2 2778 65.00 M 0 2 3 2779 66.00 M 20 2 3 2780 25.00 F 1 2 2 2781 42.00 M 0 2 2 2782 63.00 F 4 2 3 2783 23.00 M 0 2 2 2784 78.00 M 1 2 3 2785 60.00 M 4 2 3 2786 53.00 M 12 2 2 2787 58.00 M 10 2 2 2788 64.00 M 1 2 3 2789 50.00 M 2 2 2 2790 48.00 M 2 2 2 2791 65.00 M 3 2 3 2792 60.00 M 14 2 3 2793 73.00 F 8 2 3 2794 57.00 M 1 2 2 2795 77.00 M 14 2 3 2796 69.00 M 10 2 3 2797 67.00 M 1 2 3 2798 40.00 M 14 2 2 2799 65.00 M 10 2 3 2800 63.00 F 9 2 3 2801 45.00 M 4 2 2 2802 35.00 F 0 2 2 2803 50.00 M 1 2 2 2804 59.00 M 3 2 2 2805 53.00 M 9 2 2 2806 58.00 M 4 2 2 2807 78.00 F 9 2 3 2808 43.00 F 2 2 2 2809 21.00 M 7 2 2 2810 46.00 M 4 2 2 2811 70.00 M 11 2 3 2812 73.00 M 2 2 3 2813 67.00 M 10 2 3 2814 74.00 M 3 2 3 2815 75.00 M 5 2 3 2816 27.00 M 2 2 2 2817 70.00 F 1 2 3 2818 46.00 F 3 2 2 2819 49.00 M 17 2 2 2820 66.00 M 0 2 3 2821 58.00 M 11 2 2 2822 52.00 F 0 2 2 2823 75.00 M 6 2 3 2824 59.00 M 0 2 2 2825 58.00 M 6 2 2 2826 54.00 M 3 2 2 2827 74.00 M 5 2 3 2828 75.00 M 2 2 3 2829 70.00 F 4 2 3 2830 60.00 M 3 2 3 2831 60.00 F 0 2 3 2832 55.00 M 1 2 2 2833 69.00 M 1 2 3 2834 59.00 M 4 2 2 2835 50.00 M 0 2 2 2836 53.00 M 2 2 2 2837 65.00 F 3 2 3 2838 50.00 F 0 2 2 2839 51.00 M 3 2 2 2840 28.00 F 3 2 2 2841 56.00 M 0 2 2 2842 85.00 M 7 2 3 2843 52.00 M 1 2 2 2844 81.00 M 0 2 3 2845 59.00 F 3 2 2 2846 85.00 M 0 2 3 2847 68.00 M 0 2 3 2848 40.00 F 0 2 2 2849 65.00 F 11 2 3 2850 67.00 M 1 2 3 2851 54.00 F 1 2 2 2852 76.00 F 2 2 3 2853 56.00 M 3 2 2 2854 35.00 M 0 2 2 2855 46.00 F 2 2 2 2856 65.00 M 1 2 3 2857 70.00 M 0 2 3 2858 30.00 M 0 2 2 2859 22.00 M 0 2 2 2860 75.00 M 3 2 3 2861 37.00 F 0 2 2 2862 60.00 M 1 2 3 2863 40.00 M 2 2 2 2864 60.00 M 1 2 3 2865 65.00 M 1 2 3 2866 55.00 M 1 2 2 2867 58.00 F 0 2 2 2868 29.00 M 3 2 2 2869 65.00 M 0 2 3 2870 75.00 M 0 2 3 2871 35.00 F 2 2 2 2872 35.00 F 0 2 2 2873 65.00 F 0 2 3 2874 44.00 M 2 2 2 2875 61.00 M 0 2 3 2876 85.00 F 1 2 3 2877 72.00 F 8 2 3 2878 72.00 F 0 2 3 2879 55.00 M 0 2 2 2880 55.00 M 18 2 2 2881 49.00 M 1 2 2 2882 66.00 M 15 2 3 2883 58.00 M 9 2 2 2884 74.00 M 12 2 3 2885 67.00 M 7 2 3 2886 63.00 M 8 2 3 2887 51.00 M 7 2 2 2888 72.00 M 30 2 3 2889 38.00 M 17 2 2 2890 60.00 F 18 2 3 2891 80.00 F 12 2 3 2892 54.00 F 5 2 2 2893 59.00 M 5 2 2 2894 82.00 M 14 2 3 2895 54.00 M 0 2 2 2896 53.00 F 3 2 2 2897 64.00 M 7 2 3 2898 59.00 M 3 2 2 2899 46.00 M 7 2 2 2900 65.00 M 5 2 3 2901 78.00 F 7 2 3 2902 50.00 M 21 2 2 2903 70.00 M 10 2 3 2904 55.00 F 11 2 2 2905 50.00 M 9 2 2 2906 65.00 M 11 2 3 2907 81.00 M 9 2 3 2908 60.00 M 8 2 3 2909 65.00 F 0 2 3 2910 39.00 M 2 2 2 2911 62.00 M 10 2 3 2912 80.00 F 9 2 3 2913 50.00 F 10 2 2 2914 51.00 M 16 2 2 2915 21.00 M 3 2 2 2916 58.00 F 8 2 2 2917 41.00 F 9 2 2 2918 45.00 M 0 2 2 2919 72.00 F 3 2 3 2920 46.00 M 1 2 2 2921 51.00 M 5 2 2 2922 57.00 M 1 2 2 2923 36.00 M 6 2 2 2924 65.00 M 0 2 3 2925 91.00 M 1 2 3 2926 83.00 M 6 2 3 2927 82.00 F 5 2 3 2928 65.00 M 4 2 3 2929 60.00 M 4 2 3 2930 70.00 M 6 2 3 2931 67.00 F 7 2 3 2932 60.00 F 1 2 3 2933 51.00 F 1 2 2 2934 69.00 M 3 2 3 2935 45.00 F 0 2 2 2936 49.00 M 4 2 2 2937 65.00 F 4 2 3 2938 55.00 F 9 2 2 2939 72.00 M 1 2 3 2940 77.00 M 4 2 3 2941 55.00 M 2 2 2 2942 73.00 M 0 2 3 2943 90.00 M 1 2 3 2944 39.00 M 4 2 2 2945 56.00 M 4 2 2 2946 75.00 F 2 2 3 2947 60.00 F 4 2 3 2948 74.00 M 3 2 3 2949 49.00 M 4 2 2 2950 58.00 M 2 2 2 2951 40.00 F 3 2 2 2952 54.00 M 1 2 2 2953 78.00 M 2 2 3 2954 65.00 M 2 2 3 2955 60.00 M 2 2 3 2956 48.00 M 2 2 2 2957 44.00 M 7 2 2 2958 55.00 M 0 2 2 2959 76.00 M 0 2 3 2960 55.00 M 1 2 2 2961 75.00 M 1 2 3 2962 82.00 M 2 2 3 2963 70.00 F 3 2 3 2964 50.00 M 5 2 2 2965 52.00 M 2 2 2 2966 55.00 M 2 2 2 2967 58.00 F 0 2 2 2968 50.00 F 1 2 2 2969 38.00 M 1 2 2 2970 75.00 M 2 2 3 2971 70.00 M 0 2 3 2972 75.00 F 4 2 3 2973 64.00 M 8 2 3 2974 58.00 F 11 2 2 2975 63.00 M 0 2 3 2976 80.00 F 9 2 3 2977 64.00 F 2 2 3 2978 71.00 M 6 2 3 2979 67.00 M 3 2 3 2980 42.00 M 7 2 2 2981 37.00 M 7 2 2 2982 85.00 M 5 2 3 2983 50.00 M 0 2 2 2984 61.00 F 16 2 3 2985 40.00 M 14 2 2 2986 51.00 M 16 2 2 2987 60.00 M 13 2 3 2988 74.00 F 14 2 3 2989 58.00 F 15 2 2 2990 65.00 M 13 2 3 2991 52.00 M 10 2 2 2992 69.00 M 11 2 3 2993 61.00 M 12 2 3 2994 80.00 M 11 2 3 2995 61.00 F 11 2 3 2996 46.00 F 0 2 2 2997 50.00 F 8 2 2 2998 65.00 M 12 2 3 2999 49.00 M 3 2 2 3000 53.00 M 7 2 2 3001 65.00 F 3 2 3 3002 72.00 F 7 2 3 3003 89.00 M 1 2 3 3004 65.00 M 1 2 3 3005 38.00 M 5 2 2 3006 45.00 M 1 2 2 3007 50.00 F 0 2 2 3008 62.00 F 9 2 3 3009 48.00 M 4 2 2 3010 40.00 M 7 2 2 3011 62.00 M 0 2 3 3012 67.00 F 9 2 3 3013 65.00 F 9 2 3 3014 62.00 M 2 2 3 3015 35.00 M 7 2 2 3016 65.00 M 0 2 3 3017 71.00 F 0 2 3 3018 47.00 M 7 2 2 3019 57.00 M 7 2 2 3020 62.00 F 0 2 3 3021 75.00 F 6 2 3 3022 48.00 M 1 2 2 3023 55.00 M 1 2 2 3024 49.00 M 6 2 2 3025 57.00 M 2 2 2 3026 43.00 F 1 2 2 3027 77.00 M 5 2 3 3028 76.00 M 5 2 3 3029 50.00 M 4 2 2 3030 82.00 F 1 2 3 3031 64.00 M 0 2 3 3032 74.00 F 3 2 3 3033 59.00 M 4 2 2 3034 55.00 F 1 2 2 3035 54.00 M 1 2 2 3036 33.00 M 5 2 2 3037 78.00 F 10 2 3 3038 57.00 M 1 2 2 3039 63.00 M 4 2 3 3040 50.00 F 0 2 2 3041 63.00 M 1 2 3 3042 80.00 M 3 2 3 3043 58.00 M 0 2 2 3044 55.00 M 1 2 2 3045 60.00 M 1 2 3 3046 45.00 F 0 2 2 3047 66.00 M 5 2 3 3048 68.00 M 0 2 3 3049 48.00 M 3 2 2 3050 75.00 F 14 2 3 3051 27.00 M 0 2 2 3052 57.00 M 1 2 2 3053 73.00 M 1 2 3 3054 55.00 M 0 2 2 3055 80.00 M 0 2 3 3056 70.00 M 1 2 3 3057 55.00 M 0 2 2 3058 71.00 M 2 2 3 3059 60.00 F 1 2 3 3060 32.00 M 5 2 2 3061 70.00 F 0 2 3 3062 60.00 F 2 2 3 3063 55.00 F 0 2 2 3064 23.00 F 1 2 2 3065 55.00 F 2 2 2 3066 40.00 M 14 2 2 3067 75.00 M 0 2 3 3068 38.00 M 2 2 2 3069 30.00 M 0 2 2 3070 49.00 M 0 2 2 3071 75.00 M 3 2 3 3072 56.00 M 2 2 2 3073 55.00 F 1 2 2 3074 75.00 M 0 2 3 3075 54.00 M 0 2 2 3076 55.00 M 1 2 2 3077 65.00 M 2 2 3 3078 55.00 M 1 2 2 3079 70.00 F 0 2 3 3080 46.00 F 19 2 2 3081 80.00 M 8 2 3 3082 73.00 M 0 2 3 3083 77.00 M 2 2 3 3084 77.00 M 1 2 3 3085 54.00 F 5 2 2 3086 58.00 M 11 2 2 3087 56.00 F 8 2 2 3088 57.00 M 5 2 2 3089 62.00 M 0 2 3 3090 86.00 F 15 2 3 3091 50.00 F 0 2 2 3092 46.00 M 2 2 2 3093 56.00 M 6 2 2 3094 54.00 F 2 2 2 3095 76.00 F 5 2 3 3096 56.00 M 2 2 2 3097 61.00 M 4 2 3 3098 77.00 M 4 2 3 3099 53.00 F 0 2 2 3100 70.00 M 2 2 3 3101 73.00 F 6 2 3 3102 63.00 F 1 2 3 3103 59.00 M 15 2 2 3104 72.00 F 16 2 3 3105 78.00 M 2 2 3 3106 52.00 F 12 2 2 3107 53.00 M 15 2 2 3108 64.00 M 1 2 3 3109 70.00 F 0 2 3 3110 64.00 M 8 2 3 3111 66.00 M 7 2 3 3112 70.00 M 1 2 3 3113 70.00 F 1 2 3 3114 60.00 M 9 2 3 3115 21.00 M 6 2 2 3116 61.00 M 3 2 3 3117 82.00 M 8 2 3 3118 50.00 M 4 2 2 3119 49.00 M 8 2 2 3120 67.00 M 9 2 3 3121 79.00 M 10 2 3 3122 69.00 M 13 2 3 3123 70.00 M 4 2 3 3124 67.00 M 7 2 3 3125 58.00 M 10 2 2 3126 52.00 M 0 2 2 3127 64.00 M 5 2 3 3128 72.00 M 9 2 3 3129 65.00 M 5 2 3 3130 70.00 F 5 2 3 3131 45.00 F 5 2 2 3132 49.00 M 5 2 2 3133 46.00 M 4 2 2 3134 68.00 F 1 2 3 3135 54.00 M 8 2 2 3136 39.00 M 4 2 2 3137 67.00 M 3 2 3 3138 77.00 M 5 2 3 3139 41.00 M 2 2 2 3140 48.00 M 2 2 2 3141 46.00 M 1 2 2 3142 71.00 F 12 2 3 3143 44.00 M 5 2 2 3144 68.00 M 5 2 3 3145 78.00 F 4 2 3 3146 38.00 M 0 2 2 3147 68.00 M 6 2 3 3148 67.00 M 2 2 3 3149 65.00 M 2 2 3 3150 92.00 M 3 2 3 3151 52.00 F 0 2 2 3152 56.00 M 0 2 2 3153 70.00 M 0 2 3 3154 68.00 M 4 2 3 3155 45.00 F 3 2 2 3156 67.00 F 1 2 3 3157 50.00 M 2 2 2 3158 58.00 F 3 2 2 3159 65.00 M 4 2 3 3160 57.00 M 2 2 2 3161 51.00 M 1 2 2 3162 62.00 M 1 2 3 3163 87.00 M 3 2 3 3164 45.00 F 0 2 2 3165 48.00 F 1 2 2 3166 65.00 M 0 2 3 3167 55.00 M 2 2 2 3168 66.00 M 0 2 3 3169 76.00 F 5 2 3 3170 69.00 M 1 2 3 3171 62.00 M 0 2 3 3172 60.00 M 0 2 3 3173 75.00 M 1 2 3 3174 102.00 M 0 2 3 3175 65.00 F 1 2 3 3176 89.00 F 2 2 3 3177 62.00 M 1 2 3 3178 32.00 F 3 2 2 3179 36.00 M 16 2 2 3180 40.00 F 0 2 2 3181 41.00 M 0 2 2 3182 14.00 M 2 2 1 3183 41.00 M 1 2 2 3184 60.00 M 1 2 3 3185 55.00 M 0 2 2 3186 60.00 M 0 2 3 3187 57.00 M 4 2 2 3188 63.00 M 6 2 3 3189 63.00 F 1 2 3 3190 58.00 M 0 2 2 3191 45.00 F 0 2 2 3192 45.00 F 1 2 2 3193 65.00 M 1 2 3 3194 76.00 M 0 2 3 3195 63.00 M 1 2 3 3196 83.00 F 8 2 3 3197 64.00 F 16 2 3 3198 89.00 M 5 2 3 3199 40.00 M 0 2 2 3200 89.00 M 1 2 3 3201 55.00 M 13 2 2 3202 43.00 F 9 2 2 3203 73.00 M 10 2 3 3204 43.00 F 1 2 2 3205 49.00 M 5 2 2 3206 70.00 M 10 2 3 3207 80.00 M 2 2 3 3208 55.00 M 0 2 2 3209 38.00 M 8 2 2 3210 75.00 M 1 2 3 3211 65.00 F 0 2 3 3212 48.00 M 7 2 2 3213 52.00 F 13 2 2 3214 64.00 M 12 2 3 3215 74.00 M 19 2 3 3216 62.00 F 2 2 3 3217 72.00 M 10 2 3 3218 71.00 M 12 2 3 3219 50.00 M 10 2 2 3220 52.00 M 5 2 2 3221 70.00 M 10 2 3 3222 53.00 M 10 2 2 3223 80.00 M 9 2 3 3224 70.00 F 7 2 3 3225 35.00 M 9 2 2 3226 72.00 M 1 2 3 3227 75.00 M 9 2 3 3228 73.00 M 1 2 3 3229 50.00 F 4 2 2 3230 64.00 F 0 2 3 3231 60.00 F 0 2 3 3232 42.00 F 7 2 2 3233 74.00 F 2 2 3 3234 85.00 F 7 2 3 3235 72.00 F 3 2 3 3236 75.00 F 5 2 3 3237 80.00 M 6 2 3 3238 50.00 F 3 2 2 3239 76.00 M 4 2 3 3240 69.00 M 7 2 3 3241 48.00 M 5 2 2 3242 73.00 F 3 2 3 3243 66.00 M 5 2 3 3244 53.00 M 5 2 2 3245 55.00 F 6 2 2 3246 38.00 M 4 2 2 3247 72.00 F 3 2 3 3248 55.00 M 14 2 2 3249 82.00 M 4 2 3 3250 54.00 M 0 2 2 3251 75.00 F 2 2 3 3252 50.00 M 0 2 2 3253 55.00 M 1 2 2 3254 63.00 M 2 2 3 3255 88.00 F 4 2 3 3256 71.00 F 1 2 3 3257 75.00 F 1 2 3 3258 65.00 F 0 2 3 3259 80.00 M 1 2 3 3260 70.00 F 1 2 3 3261 55.00 M 1 2 2 3262 50.00 M 2 2 2 3263 40.00 M 4 2 2 3264 57.00 F 0 2 2 3265 55.00 M 5 2 2 3266 56.00 M 0 2 2 3267 65.00 M 0 2 3 3268 45.00 F 1 2 2 3269 80.00 F 1 2 3 3270 40.00 F 3 2 2 3271 83.00 M 0 2 3 3272 38.00 M 0 2 2 3273 49.00 F 0 2 2 3274 70.00 F 1 2 3 3275 71.00 M 1 2 3 3276 42.00 M 0 2 2 3277 70.00 F 0 2 3 3278 65.00 M 0 2 3 3279 72.00 F 0 2 3 3280 65.00 M 1 2 3 3281 35.00 M 21 2 2 3282 67.00 M 10 2 3 3283 23.00 M 1 2 2 3284 66.00 F 7 2 3 3285 28.00 M 12 2 2 3286 68.00 F 1 2 3 3287 61.00 F 0 2 3 3288 63.00 F 12 2 3 3289 57.00 F 0 2 2 3290 53.00 M 11 2 2 3291 65.00 F 9 2 3 3292 53.00 M 7 2 2 3293 66.00 M 12 2 3 3294 52.00 F 1 2 2 3295 60.00 M 13 2 3 3296 77.00 M 7 2 3 3297 43.00 F 1 2 2 3298 61.00 F 0 2 3 3299 56.00 M 6 2 2 3300 46.00 F 4 2 2 3301 72.00 M 8 2 3 3302 75.00 M 11 2 3 3303 65.00 F 1 2 3 3304 18.00 M 15 2 2 3305 81.00 M 12 2 3 3306 70.00 M 7 2 3 3307 33.00 M 11 2 2 3308 62.00 M 6 2 3 3309 50.00 M 2 2 2 3310 55.00 F 1 2 2 3311 77.00 F 8 2 3 3312 66.00 M 5 2 3 3313 31.00 M 11 2 2 3314 71.00 M 7 2 3 3315 67.00 M 3 2 3 3316 66.00 M 4 2 3 3317 65.00 M 11 2 3 3318 50.00 M 0 2 2 3319 65.00 F 9 2 3 3320 78.00 M 4 2 3 3321 80.00 M 7 2 3 3322 45.00 F 1 2 2 3323 73.00 F 3 2 3 3324 56.00 M 1 2 2 3325 55.00 M 5 2 2 3326 48.00 M 6 2 2 3327 52.00 F 5 2 2 3328 37.00 M 7 2 2 3329 92.00 M 8 2 3 3330 75.00 F 1 2 3 3331 65.00 F 0 2 3 3332 53.00 M 6 2 2 3333 75.00 M 6 2 3 3334 74.00 M 0 2 3 3335 23.00 M 7 2 2 3336 61.00 M 1 2 3 3337 70.00 M 7 2 3 3338 78.00 M 4 2 3 3339 58.00 F 37 2 2 3340 60.00 M 11 2 3 3341 72.00 M 3 2 3 3342 72.00 M 1 2 3 3343 75.00 M 6 2 3 3344 68.00 M 9 2 3 3345 82.00 M 4 2 3 3346 68.00 F 17 2 3 3347 66.00 M 4 2 3 3348 40.00 M 0 2 2 3349 11.00 M 5 2 1 3350 55.00 F 0 2 2 3351 86.00 M 5 2 3 3352 37.00 M 2 2 2 3353 69.00 M 2 2 3 3354 34.00 M 1 2 2 3355 65.00 M 3 2 3 3356 52.00 M 7 2 2 3357 70.00 F 4 2 3 3358 66.00 M 3 2 3 3359 65.00 F 14 2 3 3360 57.00 M 1 2 2 3361 65.00 M 1 2 3 3362 74.00 M 2 2 3 3363 49.00 M 0 2 2 3364 23.00 M 1 2 2 3365 56.00 M 2 2 2 3366 63.00 M 2 2 3 3367 75.00 M 0 2 3 3368 69.00 M 4 2 3 3369 82.00 M 0 2 3 3370 64.00 M 0 2 3 3371 43.00 F 1 2 2 3372 75.00 M 2 2 3 3373 67.00 M 0 2 3 3374 90.00 M 3 2 3 3375 67.00 M 0 2 3 3376 70.00 M 1 2 3 3377 63.00 M 1 2 3 3378 60.00 M 0 2 3 3379 67.00 M 0 2 3 3380 85.00 F 2 2 3 3381 45.00 M 0 2 2 3382 70.00 M 1 2 3 3383 82.00 M 1 2 3 3384 67.00 M 0 2 3 3385 55.00 M 2 2 2 3386 60.00 M 2 2 3 3387 65.00 M 0 2 3 3388 67.00 F 0 2 3 3389 49.00 F 8 2 2 3390 90.00 F 1 2 3 3391 61.00 M 2 2 3 3392 45.00 F 1 2 2 3393 90.00 M 7 2 3 3394 56.00 F 1 2 2 3395 65.00 F 4 2 3 3396 67.00 M 10 2 3 3397 68.00 M 2 2 3 3398 68.00 M 17 2 3 3399 65.00 M 3 2 3 3400 68.00 M 0 2 3 3401 58.00 M 13 2 2 3402 58.00 F 2 2 2 3403 60.00 F 6 2 3 3404 67.00 F 13 2 3 3405 51.00 F 19 2 2 3406 76.00 F 1 2 3 3407 51.00 M 3 2 2 3408 83.00 M 9 2 3 3409 76.00 M 1 2 3 3410 74.00 F 6 2 3 3411 87.00 F 19 2 3 3412 79.00 F 16 2 3 3413 76.00 M 6 2 3 3414 76.00 M 1 2 3 3415 70.00 M 3 2 3 3416 88.00 M 2 2 3 3417 22.00 F 16 2 2 3418 65.00 M 6 2 3 3419 54.00 M 6 2 2 3420 74.00 M 13 2 3 3421 57.00 M 6 2 2 3422 70.00 M 13 2 3 3423 60.00 F 0 2 3 3424 56.00 M 14 2 2 3425 68.00 M 2 2 3 3426 65.00 F 10 2 3 3427 45.00 M 1 2 2 3428 75.00 M 6 2 3 3429 61.00 M 8 2 3 3430 71.00 M 5 2 3 3431 47.00 M 6 2 2 3432 35.00 M 8 2 2 3433 67.00 F 8 2 3 3434 45.00 M 8 2 2 3435 80.00 F 9 2 3 3436 54.00 M 25 2 2 3437 58.00 M 3 2 2 3438 52.00 F 0 2 2 3439 87.00 M 6 2 3 3440 80.00 M 6 2 3 3441 75.00 M 7 2 3 3442 64.00 M 8 2 3 3443 43.00 M 0 2 2 3444 34.00 M 2 2 2 3445 35.00 F 0 2 2 3446 50.00 M 6 2 2 3447 56.00 M 7 2 2 3448 48.00 M 6 2 2 3449 68.00 F 1 2 3 3450 70.00 M 4 2 3 3451 83.00 M 5 2 3 3452 50.00 M 4 2 2 3453 75.00 M 2 2 3 3454 34.00 M 12 2 2 3455 58.00 M 3 2 2 3456 53.00 F 4 2 2 3457 65.00 F 6 2 3 3458 78.00 F 0 2 3 3459 70.00 F 3 2 3 3460 65.00 M 5 2 3 3461 77.00 M 0 2 3 3462 80.00 F 4 2 3 3463 65.00 M 3 2 3 3464 82.00 M 2 2 3 3465 58.00 M 5 2 2 3466 57.00 M 31 2 2 3467 60.00 M 2 2 3 3468 35.00 F 4 2 2 3469 52.00 M 2 2 2 3470 58.00 F 6 2 2 3471 45.00 M 0 2 2 3472 80.00 M 1 2 3 3473 56.00 M 5 2 2 3474 80.00 M 2 2 3 3475 70.00 F 1 2 3 3476 95.00 F 0 2 3 3477 39.00 M 0 2 2 3478 70.00 M 0 2 3 3479 59.00 M 2 2 2 3480 60.00 M 2 2 3 3481 48.00 M 2 2 2 3482 57.00 M 2 2 2 3483 58.00 F 3 2 2 3484 70.00 M 1 2 3 3485 65.00 M 2 2 3 3486 77.00 M 21 2 3 3487 70.00 M 0 2 3 3488 65.00 M 1 2 3 3489 24.00 M 1 2 2 3490 50.00 M 1 2 2 3491 70.00 M 0 2 3 3492 62.00 M 1 2 3 3493 80.00 M 1 2 3 3494 80.00 M 0 2 3 3495 78.00 M 0 2 3 3496 55.00 M 1 2 2 3497 58.00 M 0 2 2 3498 42.00 M 3 2 2 3499 74.00 F 0 2 3 3500 54.00 F 0 2 2 3501 53.00 F 16 2 2 3502 58.00 M 2 2 2 3503 69.00 M 7 2 3 3504 58.00 M 3 2 2 3505 34.00 M 0 2 2 3506 73.00 M 0 2 3 3507 86.00 F 8 2 3 3508 46.00 M 1 2 2 3509 79.00 M 5 2 3 3510 62.00 F 3 2 3 3511 59.00 F 4 2 2 3512 75.00 M 0 2 3 3513 80.00 M 4 2 3 3514 65.00 F 7 2 3 3515 60.00 F 0 2 3 3516 76.00 F 18 2 3 3517 65.00 M 3 2 3 3518 70.00 F 0 2 3 3519 84.00 M 8 2 3 3520 46.00 F 0 2 2 3521 55.00 F 1 2 2 3522 57.00 M 3 2 2 3523 55.00 M 0 2 2 3524 66.00 M 15 2 3 3525 72.00 M 18 2 3 3526 70.00 F 3 2 3 3527 63.00 M 14 2 3 3528 66.00 M 14 2 3 3529 64.00 F 7 2 3 3530 60.00 M 0 2 3 3531 73.00 M 4 2 3 3532 55.00 M 15 2 2 3533 65.00 M 2 2 3 3534 86.00 M 0 2 3 3535 88.00 F 13 2 3 3536 68.00 M 13 2 3 3537 58.00 M 11 2 2 3538 58.00 F 12 2 2 3539 82.00 M 10 2 3 3540 64.00 M 6 2 3 3541 67.00 M 11 2 3 3542 64.00 F 0 2 3 3543 72.00 M 10 2 3 3544 64.00 M 11 2 3 3545 55.00 F 2 2 2 3546 44.00 M 9 2 2 3547 73.00 M 7 2 3 3548 68.00 M 0 2 3 3549 40.00 F 0 2 2 3550 70.00 M 1 2 3 3551 80.00 M 4 2 3 3552 65.00 M 3 2 3 3553 52.00 M 1 2 2 3554 72.00 M 16 2 3 3555 70.00 M 1 2 3 3556 75.00 M 0 2 3 3557 48.00 M 6 2 2 3558 60.00 F 6 2 3 3559 72.00 M 9 2 3 3560 33.00 F 10 2 2 3561 53.00 M 7 2 2 3562 30.00 M 2 2 2 3563 52.00 M 0 2 2 3564 62.00 M 4 2 3 3565 76.00 M 5 2 3 3566 87.00 M 9 2 3 3567 80.00 M 6 2 3 3568 53.00 F 2 2 2 3569 86.00 M 5 2 3 3570 67.00 M 0 2 3 3571 33.00 M 8 2 2 3572 52.00 F 1 2 2 3573 48.00 F 2 2 2 3574 78.00 F 4 2 3 3575 80.00 M 3 2 3 3576 67.00 M 0 2 3 3577 58.00 M 3 2 2 3578 61.00 F 5 2 3 3579 73.00 M 2 2 3 3580 52.00 F 2 2 2 3581 50.00 M 0 2 2 3582 85.00 M 2 2 3 3583 70.00 M 2 2 3 3584 60.00 M 4 2 3 3585 55.00 F 0 2 2 3586 69.00 M 0 2 3 3587 80.00 F 2 2 3 3588 50.00 M 3 2 2 3589 64.00 F 0 2 3 3590 65.00 M 1 2 3 3591 70.00 M 1 2 3 3592 82.00 M 3 2 3 3593 61.00 M 0 2 3 3594 72.00 M 6 2 3 3595 68.00 M 0 2 3 3596 60.00 F 0 2 3 3597 68.00 M 1 2 3 3598 62.00 F 0 2 3 3599 50.00 M 0 2 2 3600 71.00 M 9 2 3 3601 45.00 M 0 2 2 3602 45.00 M 0 2 2 3603 70.00 F 0 2 3 3604 54.00 M 1 2 2 3605 53.00 F 4 2 2 3606 49.00 M 4 2 2 3607 49.00 M 6 2 2 3608 65.00 F 4 2 3 3609 62.00 M 17 2 3 3610 70.00 M 22 2 3 3611 50.00 F 7 2 2 3612 56.00 F 18 2 2 3613 46.00 F 20 2 2 3614 49.00 M 8 2 2 3615 58.00 M 1 2 2 3616 60.00 M 2 2 3 3617 72.00 M 7 2 3 3618 60.00 F 19 2 3 3619 45.00 F 1 2 2 3620 40.00 M 10 2 2 3621 75.00 M 3 2 3 3622 65.00 M 2 2 3 3623 55.00 M 9 2 2 3624 43.00 M 11 2 2 3625 42.00 M 14 2 2 3626 53.00 M 13 2 2 3627 32.00 M 16 2 2 3628 66.00 M 11 2 3 3629 66.00 F 12 2 3 3630 38.00 M 11 2 2 3631 68.00 F 10 2 3 3632 70.00 M 11 2 3 3633 62.00 F 11 2 3 3634 55.00 M 6 2 2 3635 68.00 M 12 2 3 3636 72.00 F 12 2 3 3637 70.00 M 0 2 3 3638 85.00 F 9 2 3 3639 48.00 M 7 2 2 3640 50.00 M 4 2 2 3641 70.00 M 1 2 3 3642 63.00 M 2 2 3 3643 76.00 M 6 2 3 3644 71.00 M 9 2 3 3645 80.00 M 9 2 3 3646 92.00 M 0 2 3 3647 68.00 M 0 2 3 3648 64.00 M 6 2 3 3649 66.00 M 26 2 3 3650 76.00 M 4 2 3 3651 60.00 F 0 2 3 3652 67.00 M 6 2 3 3653 68.00 M 33 2 3 3654 80.00 M 7 2 3 3655 78.00 M 4 2 3 3656 50.00 M 0 2 2 3657 25.00 F 1 2 2 3658 37.00 F 0 2 2 3659 55.00 M 6 2 2 3660 70.00 F 1 2 3 3661 77.00 M 7 2 3 3662 50.00 F 1 2 2 3663 65.00 M 1 2 3 3664 60.00 M 0 2 3 3665 72.00 M 5 2 3 3666 53.00 M 6 2 2 3667 74.00 M 0 2 3 3668 70.00 M 1 2 3 3669 49.00 M 0 2 2 3670 64.00 F 4 2 3 3671 78.00 M 5 2 3 3672 36.00 M 3 2 2 3673 58.00 M 1 2 2 3674 67.00 M 22 2 3 3675 65.00 M 3 2 3 3676 54.00 F 5 2 2 3677 62.00 F 0 2 3 3678 69.00 M 2 2 3 3679 80.00 M 21 2 3 3680 44.00 F 0 2 2 3681 39.00 M 3 2 2 3682 61.00 M 3 2 3 3683 73.00 M 2 2 3 3684 70.00 M 3 2 3 3685 34.00 M 10 2 2 3686 62.00 M 5 2 3 3687 48.00 M 2 2 2 3688 75.00 F 2 2 3 3689 38.00 F 0 2 2 3690 65.00 M 0 2 3 3691 87.00 F 0 2 3 3692 59.00 M 1 2 2 3693 55.00 M 1 2 2 3694 45.00 F 2 2 2 3695 48.00 F 0 2 2 3696 28.00 M 0 2 2 3697 52.00 M 5 2 2 3698 56.00 F 6 2 2 3699 60.00 M 11 2 3 3700 74.00 M 2 2 3 3701 65.00 F 2 2 3 3702 48.00 M 0 2 2 3703 65.00 M 1 2 3 3704 65.00 M 2 2 3 3705 60.00 M 0 2 3 3706 40.00 M 0 2 2 3707 70.00 F 1 2 3 3708 62.00 F 6 2 3 3709 39.00 M 1 2 2 3710 63.00 M 1 2 3 3711 70.00 M 1 2 3 3712 70.00 F 0 2 3 3713 86.00 M 0 2 3 3714 63.00 F 0 2 3 3715 48.00 M 0 2 2 3716 65.00 M 0 2 3 3717 69.00 M 0 2 3 3718 55.00 F 0 2 2 3719 71.00 M 0 2 3 3720 75.00 M 0 2 3 3721 58.00 F 0 2 2 3722 71.00 F 0 2 3 3723 78.00 M 0 2 3 3724 71.00 F 0 2 3 3725 67.00 F 0 2 3 3726 67.00 F 0 2 3 3727 70.00 M 0 2 3 3728 53.00 M 0 2 2 3729 72.00 M 0 2 3 3730 65.00 M 0 2 3 3731 58.00 M 0 2 2 3732 44.00 F 0 2 2 3733 58.00 F 0 2 2 3734 79.00 M 0 2 3 3735 40.00 M 0 2 2 3736 65.00 F 0 2 3 3737 80.00 F 0 2 3 3738 70.00 M 0 2 3 3739 40.00 F 0 2 2 3740 75.00 M 0 2 3 3741 63.00 M 0 2 3 3742 74.00 M 0 2 3 3743 70.00 M 0 2 3 3744 42.00 M 0 2 2 3745 78.00 M 0 2 3 3746 71.00 M 0 2 3 3747 46.00 F 0 2 2 3748 76.00 M 0 2 3 3749 63.00 M 0 2 3 3750 73.00 M 0 2 3 3751 80.00 M 0 2 3 3752 85.00 M 0 2 3 3753 62.00 M 0 2 3 3754 73.00 M 0 2 3 3755 46.00 M 0 2 2 3756 78.00 F 0 2 3 3757 55.00 M 0 2 2 3758 66.00 M 0 2 3 3759 60.00 F 0 2 3 3760 70.00 F 0 2 3 3761 68.00 F 0 2 3 3762 62.00 M 0 2 3 3763 75.00 F 0 2 3 3764 62.00 M 0 2 3 3765 71.00 M 0 2 3 3766 63.00 M 0 2 3 3767 23.00 M 0 2 2 3768 50.00 M 0 2 2 3769 60.00 M 0 2 3 3770 70.00 M 0 2 3 3771 76.00 M 0 2 3 3772 70.00 M 0 2 3 3773 68.00 M 0 2 3 3774 79.00 F 0 2 3 3775 67.00 M 0 2 3 3776 80.00 M 0 2 3 3777 26.00 F 0 2 2 3778 72.00 F 0 2 3 3779 82.00 M 0 2 3 3780 62.00 M 0 2 3 3781 48.00 M 0 2 2 3782 50.00 M 0 2 2 3783 72.00 F 0 2 3 3784 75.00 M 0 2 3 3785 63.00 M 0 2 3 3786 65.00 F 0 2 3 3787 57.00 M 0 2 2 3788 46.00 M 0 2 2 3789 42.00 F 0 2 2 3790 75.00 M 0 2 3 3791 56.00 F 0 2 2 3792 56.00 M 0 2 2 3793 61.00 F 0 2 3 3794 77.00 F 0 2 3 3795 35.00 M 0 2 2 3796 41.00 M 0 2 2 3797 72.00 M 0 2 3 3798 58.00 M 0 2 2 3799 65.00 M 0 2 3 3800 65.00 F 0 2 3 3801 60.00 M 0 2 3 3802 60.00 F 0 2 3 3803 64.00 M 0 2 3 3804 65.00 M 0 2 3 3805 62.00 M 0 2 3 3806 77.00 F 0 2 3 3807 62.00 F 0 2 3 3808 56.00 M 0 2 2 3809 50.00 M 0 2 2 3810 65.00 F 0 2 3 3811 80.00 F 0 2 3 3812 65.00 F 0 2 3 3813 56.00 M 0 2 2 3814 70.00 M 0 2 3 3815 73.00 M 0 2 3 3816 70.00 M 0 2 3 3817 77.00 M 0 2 3 3818 78.00 M 0 2 3 3819 80.00 M 0 2 3 3820 80.00 F 0 2 3 3821 60.00 F 0 2 3 3822 63.00 M 0 2 3 3823 46.00 M 0 2 2 3824 50.00 F 0 2 2 3825 40.00 M 0 2 2 3826 80.00 M 0 2 3 3827 38.00 M 0 2 2 3828 56.00 M 0 2 2 3829 51.00 F 0 2 2 3830 76.00 M 0 2 3 3831 67.00 F 0 2 3 3832 16.00 M 0 2 1 3833 68.00 M 0 2 3 3834 68.00 M 0 2 3 3835 66.00 M 0 2 3 3836 58.00 M 0 2 2 3837 50.00 M 0 2 2 3838 52.00 M 6 2 2 3839 52.00 F 9 2 2 3840 61.00 M 24 2 3 3841 77.00 M 7 2 3 3842 85.00 F 4 2 3 3843 44.00 F 1 2 2 3844 59.00 M 9 2 2 3845 57.00 M 3 2 2 3846 48.00 M 1 2 2 3847 48.00 M 3 2 2 3848 74.00 F 5 2 3 3849 50.00 M 24 2 2 3850 33.00 M 5 2 2 3851 49.00 M 12 2 2 3852 72.00 M 28 2 3 3853 65.00 M 7 2 3 3854 66.00 M 4 2 3 3855 70.00 M 11 2 3 3856 49.00 F 11 2 2 3857 78.00 M 21 2 3 3858 42.00 M 2 2 2 3859 55.00 M 4 2 2 3860 62.00 M 2 2 3 3861 70.00 M 48 2 3 3862 70.00 F 18 2 3 3863 73.00 M 4 2 3 3864 68.00 F 3 2 3 3865 56.00 F 9 2 2 3866 70.00 M 6 2 3 3867 85.00 M 2 2 3 3868 64.00 M 5 2 3 3869 52.00 M 18 2 2 3870 60.00 F 10 2 3 3871 33.00 M 11 2 2 3872 30.00 F 1 2 2 3873 65.00 M 14 2 3 3874 86.00 M 9 2 3 3875 51.00 M 11 2 2 3876 59.00 M 0 2 2 3877 57.00 M 12 2 2 3878 30.00 M 0 2 2 3879 58.00 M 17 2 2 3880 64.00 M 0 2 3 3881 55.00 M 9 2 2 3882 51.00 M 37 2 2 3883 69.00 M 1 2 3 3884 50.00 M 16 2 2 3885 41.00 M 8 2 2 3886 62.00 M 10 2 3 3887 81.00 M 7 2 3 3888 56.00 M 6 2 2 3889 67.00 M 5 2 3 3890 48.00 F 9 2 2 3891 50.00 M 6 2 2 3892 72.00 M 3 2 3 3893 90.00 F 8 2 3 3894 59.00 F 5 2 2 3895 60.00 M 5 2 3 3896 42.00 M 1 2 2 3897 56.00 M 5 2 2 3898 54.00 M 0 2 2 3899 55.00 M 6 2 2 3900 45.00 M 4 2 2 3901 65.00 M 1 2 3 3902 78.00 M 6 2 3 3903 82.00 M 11 2 3 3904 70.00 M 2 2 3 3905 72.00 M 2 2 3 3906 45.00 F 2 2 2 3907 65.00 M 1 2 3 3908 49.00 F 5 2 2 3909 50.00 M 3 2 2 3910 35.00 M 0 2 2 3911 72.00 M 6 2 3 3912 38.00 M 1 2 2 3913 60.00 M 1 2 3 3914 63.00 M 1 2 3 3915 42.00 M 4 2 2 3916 29.00 F 6 2 2 3917 68.00 M 4 2 3 3918 75.00 M 1 2 3 3919 72.00 F 0 2 3 3920 55.00 M 0 2 2 3921 87.00 M 1 2 3 3922 72.00 M 1 2 3 3923 80.00 F 1 2 3 3924 58.00 F 2 2 2 3925 70.00 M 3 2 3 3926 60.00 F 0 2 3 3927 85.00 F 3 2 3 3928 38.00 F 2 2 2 3929 86.00 F 4 2 3 3930 60.00 M 2 2 3 3931 67.00 F 1 2 3 3932 80.00 F 8 2 3 3933 74.00 M 0 2 3 3934 42.00 M 3 2 2 3935 43.00 F 4 2 2 3936 35.00 F 0 2 2 3937 73.00 M 1 2 3 3938 50.00 F 0 2 2 3939 50.00 M 0 2 2 3940 69.00 M 2 2 3 3941 57.00 F 0 2 2 3942 50.00 M 0 2 2 3943 51.00 M 0 2 2 3944 62.00 M 0 2 3 3945 47.00 F 2 2 2 3946 53.00 M 1 2 2 3947 70.00 F 2 2 3 3948 76.00 M 2 2 3 3949 75.00 M 0 2 3 3950 40.00 M 4 2 2 3951 50.00 M 0 2 2 3952 65.00 M 0 2 3 3953 66.00 M 4 2 3 3954 37.00 F 3 2 2 3955 42.00 F 6 2 2 3956 58.00 M 14 2 2 3957 51.00 M 10 2 2 3958 73.00 M 1 2 3 3959 92.00 M 0 2 3 3960 62.00 F 0 2 3 3961 38.00 F 10 2 2 3962 67.00 M 20 2 3 3963 65.00 F 0 2 3 3964 67.00 M 20 2 3 3965 73.00 M 23 2 3 3966 56.00 M 16 2 2 3967 80.00 M 13 2 3 3968 55.00 M 17 2 2 3969 63.00 F 6 2 3 3970 39.00 F 8 2 2 3971 55.00 M 12 2 2 3972 75.00 F 6 2 3 3973 42.00 M 2 2 2 3974 75.00 F 19 2 3 3975 87.00 M 7 2 3 3976 75.00 F 6 2 3 3977 26.00 M 7 2 2 3978 63.00 M 5 2 3 3979 60.00 M 18 2 3 3980 45.00 M 10 2 2 3981 68.00 M 18 2 3 3982 68.00 M 12 2 3 3983 62.00 F 1 2 3 3984 65.00 F 10 2 3 3985 57.00 M 19 2 2 3986 54.00 M 2 2 2 3987 62.00 M 7 2 3 3988 34.00 M 14 2 2 3989 41.00 M 16 2 2 3990 55.00 F 4 2 2 3991 60.00 M 2 2 3 3992 50.00 M 2 2 2 3993 74.00 M 6 2 3 3994 48.00 M 10 2 2 3995 56.00 M 10 2 2 3996 35.00 F 10 2 2 3997 75.00 M 0 2 3 3998 80.00 M 13 2 3 3999 72.00 M 11 2 3 4000 83.00 M 1 2 3 4001 48.00 M 8 2 2 4002 65.00 M 22 2 3 4003 84.00 M 0 2 3 4004 77.00 M 8 2 3 4005 56.00 M 8 2 2 4006 75.00 M 0 2 3 4007 38.00 M 0 2 2 4008 63.00 F 0 2 3 4009 72.00 M 4 2 3 4010 62.00 M 10 2 3 4011 54.00 F 0 2 2 4012 75.00 M 10 2 3 4013 67.00 F 2 2 3 4014 52.00 M 3 2 2 4015 75.00 F 3 2 3 4016 64.00 M 1 2 3 4017 72.00 F 11 2 3 4018 75.00 F 0 2 3 4019 57.00 M 11 2 2 4020 65.00 F 3 2 3 4021 94.00 M 3 2 3 4022 63.00 M 1 2 3 4023 60.00 M 8 2 3 4024 42.00 M 11 2 2 4025 56.00 F 7 2 2 4026 58.00 M 7 2 2 4027 68.00 M 5 2 3 4028 60.00 M 6 2 3 4029 65.00 F 31 2 3 4030 40.00 M 2 2 2 4031 67.00 M 5 2 3 4032 68.00 M 3 2 3 4033 48.00 M 3 2 2 4034 38.00 M 4 2 2 4035 37.00 M 8 2 2 4036 67.00 M 1 2 3 4037 62.00 F 1 2 3 4038 52.00 M 2 2 2 4039 53.00 M 4 2 2 4040 67.00 F 1 2 3 4041 48.00 M 7 2 2 4042 75.00 M 3 2 3 4043 80.00 M 1 2 3 4044 40.00 M 0 2 2 4045 41.00 M 0 2 2 4046 65.00 M 1 2 3 4047 63.00 M 0 2 3 4048 45.00 M 5 2 2 4049 49.00 M 0 2 2 4050 55.00 F 5 2 2 4051 62.00 M 4 2 3 4052 45.00 M 4 2 2 4053 60.00 F 1 2 3 4054 60.00 M 0 2 3 4055 80.00 M 3 2 3 4056 50.00 M 0 2 2 4057 55.00 M 2 2 2 4058 78.00 M 0 2 3 4059 67.00 F 0 2 3 4060 45.00 M 0 2 2 4061 90.00 F 0 2 3 4062 62.00 M 0 2 3 4063 53.00 M 0 2 2 4064 60.00 M 0 2 3 4065 64.00 F 0 2 3 4066 37.00 F 0 2 2 4067 24.00 F 2 2 2 4068 75.00 M 0 2 3 4069 22.00 F 4 2 2 4070 75.00 F 0 2 3 4071 54.00 F 1 2 2 4072 34.00 F 2 2 2 4073 64.00 M 2 2 3 4074 0.00 M 0 2 1 4075 44.00 F 0 2 2 4076 65.00 M 1 2 3 4077 64.00 M 4 2 3 4078 60.00 M 3 2 3 4079 65.00 F 1 2 3 4080 56.00 M 0 2 2 4081 47.00 M 0 2 2 4082 65.00 M 2 2 3 4083 51.00 M 2 2 2 4084 65.00 F 0 2 3 4085 80.00 M 0 2 3 4086 55.00 M 1 2 2 4087 60.00 M 0 2 3 4088 65.00 F 1 2 3 4089 32.00 M 0 2 2 4090 59.00 F 0 2 2 4091 24.00 M 1 2 2 4092 74.00 F 9 2 3 4093 63.00 M 20 2 3 4094 72.00 M 21 2 3 4095 85.00 F 20 2 3 4096 42.00 M 9 2 2 4097 79.00 M 14 2 3 4098 65.00 M 5 2 3 4099 49.00 M 17 2 2 4100 70.00 M 22 2 3 4101 46.00 M 5 2 2 4102 70.00 F 7 2 3 4103 84.00 M 4 2 3 4104 67.00 F 5 2 3 4105 45.00 M 6 2 2 4106 48.00 M 1 2 2 4107 47.00 M 13 2 2 4108 82.00 M 7 2 3 4109 65.00 M 1 2 3 4110 78.00 M 7 2 3 4111 70.00 M 0 2 3 4112 38.00 M 0 2 2 4113 45.00 M 0 2 2 4114 80.00 M 5 2 3 4115 57.00 M 6 2 2 4116 50.00 M 0 2 2 4117 80.00 M 4 2 3 4118 76.00 M 4 2 3 4119 45.00 M 1 2 2 4120 73.00 M 1 2 3 4121 72.00 M 5 2 3 4122 65.00 M 3 2 3 4123 65.00 M 0 2 3 4124 68.00 M 13 2 3 4125 52.00 M 9 2 2 4126 45.00 F 1 2 2 4127 52.00 M 4 2 2 4128 64.00 M 9 2 3 4129 76.00 M 3 2 3 4130 84.00 M 4 2 3 4131 36.00 M 11 2 2 4132 46.00 F 2 2 2 4133 64.00 M 9 2 3 4134 53.00 M 9 2 2 4135 75.00 F 0 2 3 4136 82.00 M 5 2 3 4137 56.00 F 8 2 2 4138 58.00 M 9 2 2 4139 73.00 F 4 2 3 4140 62.00 M 7 2 3 4141 45.00 M 5 2 2 4142 55.00 F 7 2 2 4143 55.00 F 4 2 2 4144 55.00 M 8 2 2 4145 53.00 F 6 2 2 4146 42.00 M 0 2 2 4147 78.00 M 6 2 3 4148 60.00 M 8 2 3 4149 62.00 M 0 2 3 4150 71.00 M 7 2 3 4151 27.00 M 6 2 2 4152 60.00 F 7 2 3 4153 66.00 F 9 2 3 4154 61.00 F 4 2 3 4155 55.00 M 5 2 2 4156 65.00 M 0 2 3 4157 73.00 M 4 2 3 4158 75.00 M 4 2 3 4159 64.00 F 5 2 3 4160 52.00 F 6 2 2 4161 85.00 M 0 2 3 4162 40.00 F 1 2 2 4163 52.00 F 4 2 2 4164 31.00 M 0 2 2 4165 65.00 M 3 2 3 4166 50.00 M 3 2 2 4167 67.00 M 1 2 3 4168 58.00 M 2 2 2 4169 60.00 F 0 2 3 4170 56.00 M 29 2 2 4171 55.00 M 2 2 2 4172 65.00 M 3 2 3 4173 53.00 M 0 2 2 4174 60.00 M 3 2 3 4175 50.00 F 1 2 2 4176 55.00 M 0 2 2 4177 72.00 F 2 2 3 4178 85.00 F 1 2 3 4179 64.00 M 4 2 3 4180 67.00 F 0 2 3 4181 42.00 M 4 2 2 4182 38.00 M 4 2 2 4183 58.00 M 3 2 2 4184 56.00 M 0 2 2 4185 61.00 M 3 2 3 4186 65.00 F 0 2 3 4187 20.00 M 1 2 2 4188 89.00 M 1 2 3 4189 70.00 M 3 2 3 4190 65.00 F 2 2 3 4191 47.00 M 1 2 2 4192 71.00 F 0 2 3 4193 70.00 M 1 2 3 4194 47.00 M 0 2 2 4195 88.00 M 1 2 3 4196 46.00 M 0 2 2 4197 71.00 M 9 2 3 4198 45.00 M 0 2 2 4199 70.00 F 22 2 3 4200 75.00 M 0 2 3 4201 70.00 M 0 2 3 4202 58.00 M 2 2 2 4203 55.00 F 2 2 2 4204 59.00 M 0 2 2 4205 55.00 F 0 2 2 4206 50.00 F 0 2 2 4207 75.00 M 1 2 3 4208 46.00 M 0 2 2 4209 33.00 M 0 2 2 4210 60.00 M 3 2 3 4211 78.00 M 0 2 3 4212 73.00 F 10 2 3 4213 65.00 M 0 2 3 4214 70.00 F 0 2 3 4215 60.00 M 0 2 3 4216 50.00 F 1 2 2 4217 48.00 M 2 2 2 4218 75.00 M 16 2 3 4219 72.00 F 9 2 3 4220 52.00 F 6 2 2 4221 10.00 F 1 2 1 4222 55.00 F 5 2 2 4223 67.00 M 15 2 3 4224 61.00 M 2 2 3 4225 53.00 F 4 2 2 4226 60.00 M 8 2 3 4227 68.00 F 9 2 3 4228 62.00 M 15 2 3 4229 50.00 F 4 2 2 4230 71.00 M 2 2 3 4231 72.00 F 0 2 3 4232 53.00 M 4 2 2 4233 36.00 M 11 2 2 4234 75.00 F 8 2 3 4235 70.00 M 2 2 3 4236 55.00 M 6 2 2 4237 52.00 F 9 2 2 4238 62.00 M 4 2 3 4239 70.00 M 11 2 3 4240 42.00 F 3 2 2 4241 68.00 F 11 2 3 4242 56.00 M 11 2 2 4243 56.00 F 9 2 2 4244 59.00 M 6 2 2 4245 60.00 F 10 2 3 4246 63.00 M 8 2 3 4247 75.00 F 8 2 3 4248 64.00 M 9 2 3 4249 75.00 M 0 2 3 4250 34.00 F 2 2 2 4251 61.00 F 6 2 3 4252 40.00 M 13 2 2 4253 70.00 M 8 2 3 4254 55.00 F 9 2 2 4255 74.00 M 1 2 3 4256 36.00 M 6 2 2 4257 68.00 F 3 2 3 4258 40.00 M 6 2 2 4259 45.00 F 2 2 2 4260 68.00 M 6 2 3 4261 64.00 M 3 2 3 4262 63.00 M 4 2 3 4263 62.00 M 4 2 3 4264 65.00 M 5 2 3 4265 43.00 M 5 2 2 4266 50.00 M 2 2 2 4267 62.00 M 6 2 3 4268 42.00 M 2 2 2 4269 71.00 M 5 2 3 4270 64.00 M 3 2 3 4271 40.00 M 3 2 2 4272 55.00 F 3 2 2 4273 68.00 M 5 2 3 4274 60.00 F 4 2 3 4275 68.00 M 1 2 3 4276 60.00 M 4 2 3 4277 45.00 F 3 2 2 4278 84.00 M 4 2 3 4279 60.00 F 5 2 3 4280 55.00 M 1 2 2 4281 45.00 M 1 2 2 4282 82.00 M 4 2 3 4283 57.00 F 3 2 2 4284 30.00 M 2 2 2 4285 0.00 F 3 2 1 4286 58.00 F 1 2 2 4287 45.00 M 8 2 2 4288 55.00 M 0 2 2 4289 42.00 M 3 2 2 4290 65.00 F 1 2 3 4291 65.00 F 0 2 3 4292 46.00 F 3 2 2 4293 53.00 M 1 2 2 4294 75.00 F 2 2 3 4295 65.00 M 0 2 3 4296 65.00 M 2 2 3 4297 51.00 F 0 2 2 4298 69.00 F 1 2 3 4299 52.00 M 1 2 2 4300 55.00 M 3 2 2 4301 68.00 F 1 2 3 4302 51.00 M 4 2 2 4303 27.00 M 2 2 2 4304 40.00 F 2 2 2 4305 52.00 M 4 2 2 4306 30.00 M 9 2 2 4307 25.00 F 1 2 2 4308 65.00 F 0 2 3 4309 57.00 M 0 2 2 4310 63.00 M 1 2 3 4311 70.00 M 5 2 3 4312 65.00 M 0 2 3 4313 71.00 M 1 2 3 4314 65.00 M 1 2 3 4315 50.00 F 1 2 2 4316 52.00 M 0 2 2 4317 63.00 M 1 2 3 4318 55.00 M 0 2 2 4319 60.00 M 1 2 3 4320 52.00 F 1 2 2 4321 75.00 F 2 2 3 4322 38.00 M 6 2 2 4323 55.00 F 4 2 2 4324 73.00 M 3 2 3 4325 60.00 F 42 2 3 4326 88.00 F 6 2 3 4327 70.00 F 2 2 3 4328 75.00 M 18 2 3 4329 56.00 M 8 2 2 4330 52.00 M 7 2 2 4331 55.00 F 4 2 2 4332 65.00 F 10 2 3 4333 60.00 M 11 2 3 4334 66.00 M 11 2 3 4335 75.00 M 3 2 3 4336 76.00 M 11 2 3 4337 65.00 M 10 2 3 4338 63.00 M 5 2 3 4339 70.00 M 1 2 3 4340 65.00 M 12 2 3 4341 71.00 M 11 2 3 4342 85.00 F 1 2 3 4343 41.00 F 8 2 2 4344 49.00 M 10 2 2 4345 7.00 F 0 2 1 4346 69.00 M 9 2 3 4347 41.00 M 6 2 2 4348 53.00 M 10 2 2 4349 62.00 F 7 2 3 4350 58.00 M 0 2 2 4351 61.00 M 0 2 3 4352 53.00 M 2 2 2 4353 65.00 F 0 2 3 4354 68.00 F 3 2 3 4355 92.00 M 0 2 3 4356 60.00 M 6 2 3 4357 75.00 F 5 2 3 4358 78.00 M 6 2 3 4359 58.00 M 9 2 2 4360 76.00 F 9 2 3 4361 77.00 M 4 2 3 4362 78.00 M 4 2 3 4363 52.00 M 4 2 2 4364 60.00 M 1 2 3 4365 60.00 F 4 2 3 4366 57.00 M 7 2 2 4367 55.00 F 2 2 2 4368 64.00 M 6 2 3 4369 65.00 M 4 2 3 4370 72.00 M 6 2 3 4371 60.00 M 4 2 3 4372 50.00 M 2 2 2 4373 65.00 F 6 2 3 4374 60.00 M 5 2 3 4375 68.00 F 4 2 3 4376 60.00 F 1 2 3 4377 62.00 M 3 2 3 4378 50.00 M 0 2 2 4379 65.00 F 3 2 3 4380 73.00 M 1 2 3 4381 48.00 F 6 2 2 4382 59.00 M 2 2 2 4383 65.00 F 1 2 3 4384 68.00 M 0 2 3 4385 53.00 M 0 2 2 4386 77.00 M 0 2 3 4387 35.00 M 3 2 2 4388 68.00 M 4 2 3 4389 59.00 F 0 2 2 4390 38.00 M 0 2 2 4391 60.00 F 7 2 3 4392 82.00 M 3 2 3 4393 95.00 M 10 2 3 4394 60.00 M 0 2 3 4395 92.00 F 0 2 3 4396 70.00 M 0 2 3 4397 76.00 M 1 2 3 4398 29.00 M 1 2 2 4399 20.00 M 0 2 2 4400 85.00 M 0 2 3 4401 55.00 M 0 2 2 4402 75.00 F 0 2 3 4403 75.00 M 0 2 3 4404 48.00 M 6 2 2 4405 74.00 F 1 2 3 4406 61.00 M 6 2 3 4407 35.00 M 1 2 2 4408 60.00 F 1 2 3 4409 64.00 M 7 2 3 4410 30.00 M 0 2 2 4411 74.00 F 0 2 3 4412 58.00 F 0 2 2 4413 62.00 M 0 2 3 4414 86.00 M 1 2 3 4415 58.00 M 7 2 2 4416 80.00 M 1 2 3 4417 66.00 M 12 2 3 4418 80.00 M 3 2 3 4419 91.00 F 14 2 3 4420 57.00 M 13 2 2 4421 68.00 F 1 2 3 4422 75.00 M 12 2 3 4423 72.00 M 7 2 3 4424 76.00 M 6 2 3 4425 70.00 M 12 2 3 4426 70.00 M 11 2 3 4427 75.00 M 10 2 3 4428 56.00 F 9 2 2 4429 68.00 M 10 2 3 4430 70.00 M 8 2 3 4431 59.00 M 9 2 2 4432 52.00 M 6 2 2 4433 54.00 F 0 2 2 4434 75.00 M 7 2 3 4435 63.00 M 10 2 3 4436 60.00 M 1 2 3 4437 45.00 M 8 2 2 4438 75.00 M 5 2 3 4439 69.00 M 6 2 3 4440 70.00 M 9 2 3 4441 77.00 F 7 2 3 4442 62.00 M 6 2 3 4443 65.00 M 4 2 3 4444 64.00 M 2 2 3 4445 58.00 M 8 2 2 4446 56.00 M 4 2 2 4447 70.00 M 9 2 3 4448 49.00 M 3 2 2 4449 33.00 M 6 2 2 4450 84.00 M 5 2 3 4451 82.00 M 6 2 3 4452 43.00 M 5 2 2 4453 66.00 F 4 2 3 4454 60.00 M 5 2 3 4455 67.00 M 2 2 3 4456 82.00 M 2 2 3 4457 40.00 F 3 2 2 4458 70.00 F 3 2 3 4459 78.00 F 4 2 3 4460 60.00 F 2 2 3 4461 41.00 M 0 2 2 4462 78.00 M 3 2 3 4463 67.00 M 1 2 3 4464 42.00 M 0 2 2 4465 58.00 F 1 2 2 4466 60.00 M 0 2 3 4467 75.00 F 0 2 3 4468 55.00 F 0 2 2 4469 85.00 M 3 2 3 4470 64.00 F 4 2 3 4471 56.00 M 1 2 2 4472 38.00 M 2 2 2 4473 68.00 F 3 2 3 4474 65.00 M 0 2 3 4475 78.00 F 2 2 3 4476 74.00 F 1 2 3 4477 78.00 M 1 2 3 4478 67.00 M 1 2 3 4479 50.00 M 1 2 2 4480 84.00 F 1 2 3 4481 57.00 M 5 2 2 4482 45.00 M 0 2 2 4483 69.00 M 0 2 3 4484 55.00 F 2 2 2 4485 83.00 M 0 2 3 4486 48.00 M 1 2 2 4487 44.00 M 0 2 2 4488 63.00 M 0 2 3 4489 48.00 M 2 2 2 4490 80.00 M 0 2 3 4491 58.00 M 1 2 2 4492 72.00 M 18 2 3 4493 52.00 M 1 2 2 4494 47.00 M 2 2 2 4495 85.00 M 3 2 3 4496 65.00 M 4 2 3 4497 45.00 M 1 2 2 4498 49.00 F 2 2 2 4499 45.00 F 2 2 2 4500 43.00 M 1 2 2 4501 40.00 M 0 2 2 4502 65.00 M 0 2 3 4503 65.00 M 1 2 3 4504 63.00 F 3 2 3 4505 55.00 M 1 2 2 4506 65.00 F 2 2 3 4507 60.00 M 16 2 3 4508 54.00 M 2 2 2 4509 28.00 F 15 2 2 4510 68.00 F 5 2 3 4511 45.00 M 3 2 2 4512 55.00 M 0 2 2 4513 50.00 M 10 2 2 4514 55.00 M 10 2 2 4515 76.00 F 9 2 3 4516 60.00 M 2 2 3 4517 96.00 M 10 2 3 4518 72.00 M 1 2 3 4519 49.00 M 5 2 2 4520 56.00 M 13 2 2 4521 65.00 F 7 2 3 4522 70.00 F 8 2 3 4523 61.00 M 4 2 3 4524 35.00 M 10 2 2 4525 70.00 M 9 2 3 4526 65.00 F 3 2 3 4527 80.00 M 9 2 3 4528 32.00 M 10 2 2 4529 70.00 M 4 2 3 4530 76.00 M 4 2 3 4531 42.00 M 1 2 2 4532 55.00 F 4 2 2 4533 55.00 F 2 2 2 4534 55.00 M 1 2 2 4535 61.00 F 3 2 3 4536 48.00 M 1 2 2 4537 64.00 M 5 2 3 4538 74.00 M 5 2 3 4539 60.00 M 4 2 3 4540 80.00 F 2 2 3 4541 65.00 F 0 2 3 4542 60.00 M 6 2 3 4543 50.00 F 3 2 2 4544 54.00 M 1 2 2 4545 80.00 M 5 2 3 4546 55.00 M 4 2 2 4547 60.00 F 3 2 3 4548 66.00 M 3 2 3 4549 44.00 M 1 2 2 4550 86.00 F 1 2 3 4551 45.00 M 0 2 2 4552 73.00 M 1 2 3 4553 60.00 M 1 2 3 4554 38.00 F 0 2 2 4555 51.00 F 0 2 2 4556 52.00 F 17 2 2 4557 72.00 M 2 2 3 4558 70.00 M 1 2 3 4559 55.00 M 0 2 2 4560 60.00 F 0 2 3 4561 65.00 F 0 2 3 4562 60.00 M 0 2 3 4563 45.00 F 5 2 2 4564 74.00 M 0 2 3 4565 75.00 M 2 2 3 4566 63.00 M 0 2 3 4567 70.00 M 0 2 3 4568 58.00 M 1 2 2 4569 39.00 M 0 2 2 4570 60.00 M 1 2 3 4571 60.00 M 1 2 3 4572 89.00 F 1 2 3 4573 58.00 M 1 2 2 4574 77.00 F 3 2 3 4575 35.00 M 11 2 2 4576 65.00 M 0 2 3 4577 74.00 M 13 2 3 4578 56.00 M 11 2 2 4579 80.00 M 1 2 3 4580 51.00 M 2 2 2 4581 82.00 M 16 2 3 4582 76.00 F 1 2 3 4583 82.00 M 13 2 3 4584 31.00 M 11 2 2 4585 60.00 F 9 2 3 4586 78.00 F 10 2 3 4587 55.00 M 6 2 2 4588 76.00 M 8 2 3 4589 75.00 M 5 2 3 4590 60.00 M 0 2 3 4591 65.00 M 2 2 3 4592 45.00 M 10 2 2 4593 57.00 M 10 2 2 4594 74.00 M 6 2 3 4595 72.00 F 10 2 3 4596 40.00 M 10 2 2 4597 48.00 F 5 2 2 4598 60.00 M 4 2 3 4599 40.00 M 7 2 2 4600 65.00 F 10 2 3 4601 59.00 M 3 2 2 4602 32.00 M 1 2 2 4603 25.00 M 0 2 2 4604 70.00 M 7 2 3 4605 71.00 F 3 2 3 4606 57.00 M 1 2 2 4607 60.00 F 5 2 3 4608 65.00 M 19 2 3 4609 60.00 F 13 2 3 4610 92.00 F 8 2 3 4611 68.00 F 7 2 3 4612 50.00 M 7 2 2 4613 56.00 M 1 2 2 4614 47.00 M 5 2 2 4615 71.00 F 9 2 3 4616 54.00 F 8 2 2 4617 45.00 M 1 2 2 4618 38.00 M 9 2 2 4619 66.00 M 2 2 3 4620 72.00 M 6 2 3 4621 72.00 F 0 2 3 4622 65.00 F 3 2 3 4623 69.00 M 7 2 3 4624 68.00 M 4 2 3 4625 55.00 M 1 2 2 4626 78.00 M 6 2 3 4627 60.00 M 3 2 3 4628 61.00 F 6 2 3 4629 40.00 M 3 2 2 4630 67.00 M 0 2 3 4631 60.00 M 1 2 3 4632 40.00 F 7 2 2 4633 73.00 M 6 2 3 4634 88.00 F 5 2 3 4635 40.00 F 9 2 2 4636 35.00 F 4 2 2 4637 55.00 F 1 2 2 4638 75.00 F 1 2 3 4639 62.00 F 5 2 3 4640 65.00 F 7 2 3 4641 65.00 M 4 2 3 4642 73.00 M 2 2 3 4643 55.00 M 1 2 2 4644 57.00 M 7 2 2 4645 75.00 M 6 2 3 4646 58.00 M 7 2 2 4647 70.00 M 2 2 3 4648 46.00 M 2 2 2 4649 57.00 F 9 2 2 4650 49.00 F 8 2 2 4651 55.00 M 6 2 2 4652 51.00 F 4 2 2 4653 37.00 M 3 2 2 4654 46.00 M 0 2 2 4655 39.00 M 3 2 2 4656 55.00 M 1 2 2 4657 65.00 F 4 2 3 4658 40.00 F 0 2 2 4659 53.00 F 1 2 2 4660 38.00 F 1 2 2 4661 50.00 F 1 2 2 4662 85.00 M 1 2 3 4663 55.00 M 0 2 2 4664 60.00 F 1 2 3 4665 57.00 M 2 2 2 4666 50.00 F 2 2 2 4667 55.00 M 0 2 2 4668 58.00 F 3 2 2 4669 57.00 M 5 2 2 4670 58.00 F 0 2 2 4671 61.00 M 8 2 3 4672 63.00 F 2 2 3 4673 85.00 F 2 2 3 4674 77.00 F 2 2 3 4675 61.00 F 2 2 3 4676 55.00 M 0 2 2 4677 65.00 M 2 2 3 4678 42.00 M 3 2 2 4679 75.00 F 2 2 3 4680 60.00 F 3 2 3 4681 64.00 F 5 2 3 4682 65.00 M 0 2 3 4683 58.00 F 4 2 2 4684 65.00 M 0 2 3 4685 44.00 M 0 2 2 4686 85.00 M 0 2 3 4687 55.00 F 4 2 2 4688 26.00 M 1 2 2 4689 50.00 M 0 2 2 4690 54.00 M 0 2 2 4691 45.00 M 1 2 2 4692 62.00 M 0 2 3 4693 85.00 M 0 2 3 4694 85.00 F 0 2 3 4695 72.00 F 1 2 3 4696 72.00 M 1 2 3 4697 40.00 F 0 2 2 4698 70.00 F 0 2 3 4699 64.00 M 0 2 3 4700 60.00 F 0 2 3 4701 70.00 M 0 2 3 4702 75.00 M 1 2 3 4703 73.00 M 0 2 3 4704 54.00 M 14 2 2 4705 55.00 M 17 2 2 4706 69.00 F 4 2 3 4707 34.00 M 23 2 2 4708 38.00 F 19 2 2 4709 58.00 M 9 2 2 4710 61.00 M 17 2 3 4711 64.00 M 6 2 3 4712 63.00 F 2 2 3 4713 50.00 M 8 2 2 4714 64.00 M 13 2 3 4715 54.00 F 32 2 2 4716 86.00 M 7 2 3 4717 64.00 F 3 2 3 4718 71.00 M 1 2 3 4719 60.00 M 12 2 3 4720 70.00 M 1 2 3 4721 45.00 F 13 2 2 4722 35.00 M 13 2 2 4723 70.00 M 20 2 3 4724 72.00 M 1 2 3 4725 64.00 M 3 2 3 4726 53.00 M 0 2 2 4727 57.00 F 1 2 2 4728 58.00 M 1 2 2 4729 62.00 M 1 2 3 4730 71.00 M 5 2 3 4731 57.00 M 11 2 2 4732 50.00 F 8 2 2 4733 72.00 M 6 2 3 4734 65.00 M 6 2 3 4735 55.00 M 13 2 2 4736 50.00 M 10 2 2 4737 57.00 M 5 2 2 4738 54.00 F 7 2 2 4739 80.00 M 7 2 3 4740 40.00 M 5 2 2 4741 79.00 M 4 2 3 4742 56.00 M 0 2 2 4743 49.00 F 3 2 2 4744 46.00 M 0 2 2 4745 62.00 M 7 2 3 4746 58.00 F 7 2 2 4747 53.00 M 0 2 2 4748 45.00 M 7 2 2 4749 69.00 M 32 2 3 4750 65.00 F 8 2 3 4751 52.00 M 9 2 2 4752 67.00 M 10 2 3 4753 46.00 F 0 2 2 4754 76.00 F 2 2 3 4755 50.00 F 8 2 2 4756 60.00 F 1 2 3 4757 80.00 M 1 2 3 4758 45.00 M 0 2 2 4759 78.00 M 1 2 3 4760 72.00 M 0 2 3 4761 82.00 F 0 2 3 4762 45.00 M 0 2 2 4763 62.00 M 0 2 3 4764 55.00 F 4 2 2 4765 60.00 F 0 2 3 4766 73.00 M 10 2 3 4767 48.00 F 13 2 2 4768 42.00 M 8 2 2 4769 65.00 M 3 2 3 4770 49.00 M 0 2 2 4771 73.00 F 1 2 3 4772 78.00 M 7 2 3 4773 83.00 F 1 2 3 4774 47.00 M 0 2 2 4775 74.00 M 4 2 3 4776 42.00 M 3 2 2 4777 58.00 M 10 2 2 4778 75.00 F 0 2 3 4779 43.00 F 3 2 2 4780 61.00 M 1 2 3 4781 35.00 M 0 2 2 4782 94.00 M 5 2 3 4783 62.00 M 3 2 3 4784 50.00 M 6 2 2 4785 68.00 M 6 2 3 4786 48.00 M 8 2 2 4787 53.00 M 4 2 2 4788 60.00 F 8 2 3 4789 50.00 M 6 2 2 4790 56.00 M 2 2 2 4791 72.00 M 5 2 3 4792 60.00 F 5 2 3 4793 52.00 M 4 2 2 4794 58.00 F 6 2 2 4795 73.00 F 3 2 3 4796 53.00 F 2 2 2 4797 65.00 M 4 2 3 4798 92.00 M 1 2 3 4799 59.00 M 0 2 2 4800 61.00 M 6 2 3 4801 63.00 M 5 2 3 4802 50.00 M 6 2 2 4803 63.00 M 0 2 3 4804 84.00 M 3 2 3 4805 75.00 F 5 2 3 4806 65.00 M 3 2 3 4807 52.00 M 5 2 2 4808 42.00 M 3 2 2 4809 48.00 M 2 2 2 4810 70.00 M 5 2 3 4811 61.00 F 1 2 3 4812 56.00 M 1 2 2 4813 75.00 F 2 2 3 4814 65.00 M 1 2 3 4815 30.00 F 1 2 2 4816 78.00 M 3 2 3 4817 78.00 F 9 2 3 4818 69.00 M 1 2 3 4819 30.00 F 3 2 2 4820 62.00 F 2 2 3 4821 52.00 M 2 2 2 4822 55.00 F 6 2 2 4823 73.00 M 6 2 3 4824 95.00 M 1 2 3 4825 72.00 M 3 2 3 4826 74.00 M 0 2 3 4827 75.00 M 1 2 3 4828 55.00 M 1 2 2 4829 76.00 M 0 2 3 4830 44.00 F 0 2 2 4831 64.00 M 2 2 3 4832 58.00 M 0 2 2 4833 50.00 M 0 2 2 4834 59.00 F 1 2 2 4835 45.00 F 0 2 2 4836 60.00 F 0 2 3 4837 67.00 M 0 2 3 4838 70.00 M 1 2 3 4839 67.00 M 3 2 3 4840 80.00 M 3 2 3 4841 66.00 M 2 2 3 4842 87.00 M 1 2 3 4843 50.00 M 1 2 2 4844 64.00 M 0 2 3 4845 61.00 M 0 2 3 4846 58.00 M 0 2 2 4847 80.00 F 0 2 3 4848 56.00 M 1 2 2 4849 38.00 M 2 2 2 4850 96.00 F 0 2 3 4851 52.00 M 0 2 2 4852 60.00 M 4 2 3 4853 56.00 M 8 2 2 4854 55.00 F 0 2 2 4855 75.00 F 11 2 3 4856 45.00 F 9 2 2 4857 81.00 M 8 2 3 4858 55.00 M 20 2 2 4859 56.00 M 7 2 2 4860 56.00 F 6 2 2 4861 33.00 M 16 2 2 4862 60.00 M 12 2 3 4863 92.00 F 14 2 3 4864 66.00 M 3 2 3 4865 58.00 F 11 2 2 4866 44.00 M 12 2 2 4867 78.00 M 11 2 3 4868 65.00 F 4 2 3 4869 32.00 M 14 2 2 4870 65.00 M 6 2 3 4871 70.00 F 3 2 3 4872 73.00 M 6 2 3 4873 60.00 F 6 2 3 4874 37.00 M 8 2 2 4875 56.00 M 12 2 2 4876 53.00 F 4 2 2 4877 88.00 M 13 2 3 4878 55.00 M 10 2 2 4879 41.00 F 0 2 2 4880 70.00 M 9 2 3 4881 31.00 M 5 2 2 4882 60.00 M 6 2 3 4883 46.00 M 11 2 2 4884 65.00 M 7 2 3 4885 60.00 F 11 2 3 4886 51.00 F 2 2 2 4887 79.00 M 10 2 3 4888 62.00 M 4 2 3 4889 72.00 M 12 2 3 4890 70.00 M 9 2 3 4891 67.00 F 4 2 3 4892 42.00 M 4 2 2 4893 65.00 F 3 2 3 4894 40.00 M 7 2 2 4895 81.00 F 7 2 3 4896 69.00 F 10 2 3 4897 50.00 F 7 2 2 4898 84.00 M 6 2 3 4899 65.00 M 6 2 3 4900 66.00 M 6 2 3 4901 31.00 M 7 2 2 4902 46.00 M 8 2 2 4903 60.00 M 5 2 3 4904 63.00 F 2 2 3 4905 58.00 F 5 2 2 4906 70.00 F 1 2 3 4907 50.00 F 0 2 2 4908 49.00 M 8 2 2 4909 62.00 M 0 2 3 4910 36.00 M 0 2 2 4911 78.00 F 7 2 3 4912 66.00 M 5 2 3 4913 67.00 M 3 2 3 4914 63.00 M 7 2 3 4915 75.00 M 6 2 3 4916 58.00 M 2 2 2 4917 76.00 M 4 2 3 4918 70.00 F 1 2 3 4919 72.00 M 3 2 3 4920 73.00 M 7 2 3 4921 61.00 M 5 2 3 4922 57.00 M 4 2 2 4923 64.00 M 1 2 3 4924 64.00 F 1 2 3 4925 58.00 M 6 2 2 4926 65.00 M 0 2 3 4927 60.00 M 0 2 3 4928 58.00 M 4 2 2 4929 70.00 M 5 2 3 4930 88.00 F 1 2 3 4931 67.00 M 12 2 3 4932 60.00 M 0 2 3 4933 78.00 F 1 2 3 4934 75.00 F 1 2 3 4935 65.00 M 2 2 3 4936 24.00 M 5 2 2 4937 67.00 M 1 2 3 4938 65.00 F 0 2 3 4939 55.00 M 0 2 2 4940 40.00 M 0 2 2 4941 65.00 M 1 2 3 4942 55.00 M 3 2 2 4943 58.00 M 3 2 2 4944 62.00 M 1 2 3 4945 49.00 M 0 2 2 4946 71.00 M 1 2 3 4947 70.00 M 0 2 3 4948 57.00 M 0 2 2 4949 65.00 F 2 2 3 4950 55.00 M 1 2 2 4951 85.00 M 1 2 3 4952 60.00 M 4 2 3 4953 60.00 F 2 2 3 4954 60.00 M 7 2 3 4955 58.00 M 1 2 2 4956 57.00 M 0 2 2 4957 65.00 M 6 2 3 4958 75.00 F 2 2 3 4959 55.00 M 1 2 2 4960 65.00 F 3 2 3 4961 65.00 F 0 2 3 4962 50.00 M 0 2 2 4963 75.00 F 1 2 3 4964 45.00 F 1 2 2 4965 56.00 M 0 2 2 4966 46.00 M 1 2 2 4967 65.00 F 3 2 3 4968 54.00 M 5 2 2 4969 32.00 F 1 2 2 4970 60.00 F 1 2 3 4971 68.00 M 6 2 3 4972 70.00 M 1 2 3 4973 35.00 F 0 2 2 4974 68.00 M 2 2 3 4975 62.00 F 0 2 3 4976 75.00 M 1 2 3 4977 40.00 M 0 2 2 4978 73.00 M 0 2 3 4979 60.00 F 0 2 3 4980 52.00 F 0 2 2 4981 55.00 F 0 2 2 4982 36.00 M 0 2 2 4983 30.00 M 2 2 2 4984 70.00 M 1 2 3 4985 59.00 M 8 2 2 4986 77.00 M 0 2 3 4987 69.00 M 5 2 3 4988 60.00 M 14 2 3 4989 53.00 F 2 2 2 4990 54.00 F 24 2 2 4991 82.00 M 5 2 3 4992 44.00 M 7 2 2 4993 55.00 F 6 2 2 4994 54.00 F 4 2 2 4995 45.00 F 3 2 2 4996 75.00 M 8 2 3 4997 45.00 F 8 2 2 4998 76.00 F 3 2 3 4999 66.00 M 14 2 3 5000 75.00 M 3 2 3 5001 48.00 M 14 2 2 5002 54.00 M 10 2 2 5003 63.00 F 0 2 3 5004 55.00 F 6 2 2 5005 69.00 F 5 2 3 5006 85.00 M 15 2 3 5007 64.00 M 8 2 3 5008 63.00 M 0 2 3 5009 40.00 M 20 2 2 5010 57.00 M 23 2 2 5011 26.00 F 0 2 2 5012 57.00 M 8 2 2 5013 54.00 M 3 2 2 5014 73.00 F 12 2 3 5015 60.00 M 3 2 3 5016 68.00 M 4 2 3 5017 55.00 M 7 2 2 5018 34.00 M 8 2 2 5019 48.00 M 0 2 2 5020 70.00 M 5 2 3 5021 58.00 M 0 2 2 5022 66.00 F 5 2 3 5023 70.00 M 2 2 3 5024 34.00 M 17 2 2 5025 74.00 F 17 2 3 5026 67.00 M 16 2 3 5027 76.00 M 0 2 3 5028 67.00 F 13 2 3 5029 68.00 M 12 2 3 5030 56.00 M 19 2 2 5031 75.00 F 15 2 3 5032 90.00 M 14 2 3 5033 51.00 M 12 2 2 5034 33.00 F 1 2 2 5035 72.00 M 11 2 3 5036 58.00 M 12 2 2 5037 55.00 M 10 2 2 5038 75.00 F 2 2 3 5039 61.00 M 12 2 3 5040 55.00 F 1 2 2 5041 20.00 F 0 2 2 5042 56.00 F 2 2 2 5043 72.00 M 11 2 3 5044 63.00 M 4 2 3 5045 55.00 F 6 2 2 5046 78.00 M 12 2 3 5047 65.00 M 1 2 3 5048 60.00 M 11 2 3 5049 58.00 F 4 2 2 5050 70.00 M 3 2 3 5051 65.00 M 8 2 3 5052 67.00 F 9 2 3 5053 65.00 M 1 2 3 5054 86.00 M 10 2 3 5055 40.00 M 0 2 2 5056 43.00 M 0 2 2 5057 70.00 M 3 2 3 5058 65.00 F 0 2 3 5059 85.00 F 7 2 3 5060 70.00 M 1 2 3 5061 52.00 F 5 2 2 5062 80.00 F 2 2 3 5063 39.00 M 1 2 2 5064 37.00 M 5 2 2 5065 67.00 M 1 2 3 5066 70.00 M 1 2 3 5067 57.00 F 5 2 2 5068 80.00 F 6 2 3 5069 74.00 F 7 2 3 5070 24.00 M 4 2 2 5071 50.00 F 7 2 2 5072 57.00 M 6 2 2 5073 46.00 M 3 2 2 5074 68.00 M 3 2 3 5075 68.00 M 1 2 3 5076 32.00 M 8 2 2 5077 75.00 M 3 2 3 5078 28.00 F 4 2 2 5079 44.00 M 3 2 2 5080 57.00 M 0 2 2 5081 53.00 F 5 2 2 5082 55.00 F 5 2 2 5083 67.00 M 0 2 3 5084 71.00 M 3 2 3 5085 50.00 M 4 2 2 5086 60.00 M 0 2 3 5087 76.00 M 0 2 3 5088 70.00 F 0 2 3 5089 64.00 F 1 2 3 5090 74.00 F 4 2 3 5091 55.00 M 2 2 2 5092 47.00 M 1 2 2 5093 72.00 M 1 2 3 5094 63.00 M 1 2 3 5095 50.00 M 5 2 2 5096 55.00 F 3 2 2 5097 57.00 M 1 2 2 5098 50.00 M 0 2 2 5099 64.00 M 0 2 3 5100 61.00 M 5 2 3 5101 60.00 M 3 2 3 5102 50.00 M 2 2 2 5103 58.00 F 0 2 2 5104 73.00 F 2 2 3 5105 73.00 M 1 2 3 5106 80.00 F 2 2 3 5107 75.00 F 0 2 3 5108 60.00 F 1 2 3 5109 58.00 M 0 2 2 5110 52.00 M 1 2 2 5111 32.00 M 10 2 2 5112 39.00 F 0 2 2 5113 60.00 M 0 2 3 5114 73.00 F 0 2 3 5115 68.00 M 0 2 3 5116 72.00 M 1 2 3 5117 74.00 F 1 2 3 5118 70.00 F 0 2 3 5119 62.00 M 0 2 3 5120 56.00 M 1 2 2 5121 99.00 M 1 2 3 5122 70.00 F 0 2 3 5123 70.00 M 1 2 3 5124 82.00 M 0 2 3 5125 70.00 F 0 2 3 5126 66.00 M 0 2 3 5127 49.00 M 5 2 2 5128 49.00 M 8 2 2 5129 68.00 F 1 2 3 5130 41.00 M 0 2 2 5131 50.00 M 3 2 2 5132 70.00 M 17 2 3 5133 42.00 F 4 2 2 5134 54.00 F 16 2 2 5135 85.00 M 14 2 3 5136 85.00 M 17 2 3 5137 44.00 M 16 2 2 5138 63.00 F 15 2 3 5139 61.00 M 2 2 3 5140 72.00 M 6 2 3 5141 46.00 F 15 2 2 5142 68.00 M 11 2 3 5143 65.00 F 14 2 3 5144 65.00 M 3 2 3 5145 66.00 M 15 2 3 5146 88.00 F 7 2 3 5147 50.00 F 9 2 2 5148 40.00 M 10 2 2 5149 45.00 F 11 2 2 5150 55.00 M 5 2 2 5151 53.00 F 0 2 2 5152 81.00 M 0 2 3 5153 63.00 M 9 2 3 5154 53.00 M 5 2 2 5155 65.00 M 1 2 3 5156 66.00 M 10 2 3 5157 35.00 M 10 2 2 5158 55.00 M 8 2 2 5159 70.00 F 6 2 3 5160 74.00 M 6 2 3 5161 70.00 M 10 2 3 5162 50.00 F 9 2 2 5163 55.00 M 9 2 2 5164 69.00 M 9 2 3 5165 74.00 M 7 2 3 5166 73.00 M 11 2 3 5167 60.00 F 10 2 3 5168 62.00 M 4 2 3 5169 73.00 M 7 2 3 5170 75.00 M 2 2 3 5171 53.00 M 7 2 2 5172 54.00 M 2 2 2 5173 67.00 M 8 2 3 5174 35.00 M 6 2 2 5175 61.00 M 12 2 3 5176 77.00 M 0 2 3 5177 47.00 M 3 2 2 5178 67.00 M 8 2 3 5179 62.00 M 8 2 3 5180 61.00 M 7 2 3 5181 70.00 M 6 2 3 5182 53.00 M 8 2 2 5183 61.00 M 6 2 3 5184 65.00 M 2 2 3 5185 59.00 M 1 2 2 5186 66.00 M 5 2 3 5187 89.00 F 5 2 3 5188 80.00 F 5 2 3 5189 49.00 F 6 2 2 5190 73.00 M 8 2 3 5191 55.00 M 3 2 2 5192 75.00 M 6 2 3 5193 46.00 M 7 2 2 5194 60.00 F 8 2 3 5195 67.00 M 6 2 3 5196 90.00 M 0 2 3 5197 40.00 F 9 2 2 5198 83.00 F 5 2 3 5199 44.00 M 6 2 2 5200 60.00 F 7 2 3 5201 66.00 F 1 2 3 5202 57.00 M 7 2 2 5203 59.00 M 4 2 2 5204 60.00 M 1 2 3 5205 85.00 M 7 2 3 5206 70.00 M 5 2 3 5207 36.00 M 6 2 2 5208 37.00 M 1 2 2 5209 74.00 F 4 2 3 5210 79.00 F 6 2 3 5211 68.00 M 4 2 3 5212 55.00 F 1 2 2 5213 78.00 M 1 2 3 5214 62.00 F 15 2 3 5215 86.00 M 0 2 3 5216 43.00 M 10 2 2 5217 58.00 M 1 2 2 5218 62.00 M 0 2 3 5219 64.00 F 0 2 3 5220 74.00 M 0 2 3 5221 62.00 M 3 2 3 5222 31.00 M 6 2 2 5223 59.00 M 5 2 2 5224 76.00 M 0 2 3 5225 65.00 M 1 2 3 5226 48.00 F 4 2 2 5227 45.00 F 4 2 2 5228 68.00 F 3 2 3 5229 65.00 M 2 2 3 5230 45.00 F 3 2 2 5231 70.00 M 1 2 3 5232 44.00 M 1 2 2 5233 56.00 M 2 2 2 5234 65.00 M 5 2 3 5235 65.00 M 3 2 3 5236 68.00 F 2 2 3 5237 55.00 M 2 2 2 5238 70.00 M 1 2 3 5239 68.00 M 0 2 3 5240 58.00 F 1 2 2 5241 48.00 M 1 2 2 5242 68.00 F 2 2 3 5243 36.00 M 3 2 2 5244 66.00 M 13 2 3 5245 58.00 F 1 2 2 5246 63.00 M 1 2 3 5247 75.00 M 0 2 3 5248 59.00 F 1 2 2 5249 65.00 F 1 2 3 5250 55.00 M 2 2 2 5251 45.00 F 2 2 2 5252 75.00 M 1 2 3 5253 58.00 M 1 2 2 5254 63.00 F 3 2 3 5255 73.00 F 2 2 3 5256 80.00 F 0 2 3 5257 63.00 M 0 2 3 5258 63.00 F 3 2 3 5259 44.00 M 0 2 2 5260 63.00 M 1 2 3 5261 58.00 M 1 2 2 5262 54.00 M 2 2 2 5263 70.00 F 0 2 3 5264 60.00 M 27 2 3 5265 57.00 M 4 2 2 5266 63.00 M 23 2 3 5267 78.00 M 18 2 3 5268 58.00 M 16 2 2 5269 70.00 M 15 2 3 5270 55.00 F 15 2 2 5271 56.00 M 4 2 2 5272 80.00 M 5 2 3 5273 55.00 M 15 2 2 5274 60.00 M 9 2 3 5275 44.00 M 14 2 2 5276 55.00 M 10 2 2 5277 78.00 M 11 2 3 5278 47.00 M 15 2 2 5279 70.00 M 0 2 3 5280 63.00 M 9 2 3 5281 72.00 F 2 2 3 5282 65.00 M 2 2 3 5283 65.00 M 11 2 3 5284 74.00 F 1 2 3 5285 63.00 M 13 2 3 5286 50.00 M 8 2 2 5287 52.00 M 8 2 2 5288 84.00 M 8 2 3 5289 59.00 M 3 2 2 5290 78.00 F 7 2 3 5291 64.00 F 8 2 3 5292 68.00 F 11 2 3 5293 68.00 F 6 2 3 5294 60.00 F 7 2 3 5295 65.00 M 9 2 3 5296 47.00 M 8 2 2 5297 60.00 F 6 2 3 5298 42.00 F 10 2 2 5299 64.00 F 7 2 3 5300 47.00 F 3 2 2 5301 72.00 M 9 2 3 5302 70.00 M 6 2 3 5303 68.00 M 11 2 3 5304 64.00 F 7 2 3 5305 59.00 M 3 2 2 5306 72.00 M 5 2 3 5307 75.00 M 2 2 3 5308 59.00 F 1 2 2 5309 50.00 M 10 2 2 5310 51.00 M 5 2 2 5311 65.00 M 12 2 3 5312 81.00 M 3 2 3 5313 50.00 F 1 2 2 5314 70.00 M 4 2 3 5315 70.00 M 5 2 3 5316 36.00 M 6 2 2 5317 66.00 M 4 2 3 5318 62.00 M 7 2 3 5319 63.00 M 0 2 3 5320 74.00 M 5 2 3 5321 65.00 M 1 2 3 5322 67.00 M 1 2 3 5323 57.00 M 0 2 2 5324 65.00 M 8 2 3 5325 70.00 M 4 2 3 5326 70.00 M 2 2 3 5327 50.00 F 1 2 2 5328 75.00 M 3 2 3 5329 75.00 F 0 2 3 5330 76.00 M 5 2 3 5331 75.00 M 2 2 3 5332 39.00 F 3 2 2 5333 64.00 M 23 2 3 5334 71.00 M 0 2 3 5335 44.00 F 4 2 2 5336 80.00 M 1 2 3 5337 70.00 M 1 2 3 5338 45.00 M 0 2 2 5339 53.00 M 3 2 2 5340 60.00 M 0 2 3 5341 72.00 F 4 2 3 5342 61.00 M 3 2 3 5343 75.00 F 0 2 3 5344 76.00 M 1 2 3 5345 62.00 F 1 2 3 5346 69.00 M 1 2 3 5347 37.00 M 1 2 2 5348 47.00 M 0 2 2 5349 80.00 M 0 2 3 5350 32.00 M 1 2 2 5351 80.00 M 5 2 3 5352 42.00 M 1 2 2 5353 63.00 M 2 2 3 5354 55.00 M 0 2 2 5355 70.00 M 1 2 3 5356 56.00 M 0 2 2 5357 70.00 M 0 2 3 5358 69.00 M 0 2 3 5359 78.00 F 2 2 3 5360 74.00 F 2 2 3 5361 80.00 M 0 2 3 5362 39.00 M 1 2 2 5363 60.00 F 13 2 3 5364 70.00 F 2 2 3 5365 70.00 M 2 2 3 5366 48.00 F 2 2 2 5367 50.00 M 9 2 2 5368 14.00 M 0 2 1 5369 17.00 F 0 2 1 5370 70.00 M 1 2 3 5371 44.00 F 1 2 2 5372 66.00 M 0 2 3 5373 34.00 M 0 2 2 5374 72.00 M 1 2 3 5375 50.00 M 0 2 2 5376 60.00 M 0 2 3 5377 70.00 F 1 2 3 5378 60.00 M 15 2 3 5379 43.00 M 10 2 2 5380 60.00 F 17 2 3 5381 68.00 M 20 2 3 5382 65.00 M 11 2 3 5383 59.00 M 8 2 2 5384 85.00 M 3 2 3 5385 56.00 M 22 2 2 5386 54.00 F 17 2 2 5387 58.00 F 6 2 2 5388 50.00 M 2 2 2 5389 60.00 M 13 2 3 5390 68.00 M 13 2 3 5391 60.00 F 2 2 3 5392 69.00 F 0 2 3 5393 50.00 M 15 2 2 5394 50.00 M 0 2 2 5395 84.00 M 18 2 3 5396 54.00 M 3 2 2 5397 73.00 M 3 2 3 5398 60.00 M 12 2 3 5399 94.00 F 17 2 3 5400 63.00 F 19 2 3 5401 65.00 F 12 2 3 5402 75.00 F 1 2 3 5403 60.00 M 14 2 3 5404 58.00 F 1 2 2 5405 75.00 M 1 2 3 5406 76.00 M 8 2 3 5407 55.00 F 2 2 2 5408 68.00 F 0 2 3 5409 60.00 M 4 2 3 5410 65.00 M 11 2 3 5411 50.00 F 0 2 2 5412 62.00 M 11 2 3 5413 65.00 F 2 2 3 5414 69.00 M 0 2 3 5415 37.00 M 6 2 2 5416 60.00 M 10 2 3 5417 48.00 F 16 2 2 5418 44.00 M 3 2 2 5419 80.00 F 6 2 3 5420 49.00 F 9 2 2 5421 62.00 F 7 2 3 5422 79.00 M 1 2 3 5423 49.00 M 10 2 2 5424 53.00 F 0 2 2 5425 91.00 F 6 2 3 5426 52.00 F 5 2 2 5427 75.00 M 4 2 3 5428 59.00 F 6 2 2 5429 65.00 M 0 2 3 5430 35.00 F 2 2 2 5431 43.00 M 5 2 2 5432 48.00 M 6 2 2 5433 59.00 F 0 2 2 5434 40.00 F 4 2 2 5435 60.00 M 0 2 3 5436 60.00 M 10 2 3 5437 65.00 F 5 2 3 5438 73.00 M 5 2 3 5439 48.00 M 2 2 2 5440 35.00 M 5 2 2 5441 70.00 F 4 2 3 5442 63.00 M 3 2 3 5443 62.00 F 2 2 3 5444 68.00 M 2 2 3 5445 70.00 F 4 2 3 5446 45.00 M 4 2 2 5447 72.00 F 4 2 3 5448 65.00 M 3 2 3 5449 73.00 M 3 2 3 5450 60.00 F 1 2 3 5451 44.00 M 4 2 2 5452 55.00 M 3 2 2 5453 63.00 M 0 2 3 5454 70.00 M 3 2 3 5455 60.00 M 2 2 3 5456 39.00 M 3 2 2 5457 31.00 M 0 2 2 5458 49.00 M 0 2 2 5459 58.00 M 2 2 2 5460 69.00 M 2 2 3 5461 48.00 M 0 2 2 5462 60.00 F 2 2 3 5463 75.00 M 5 2 3 5464 58.00 M 9 2 2 5465 51.00 M 3 2 2 5466 78.00 M 3 2 3 5467 55.00 F 1 2 2 5468 64.00 M 0 2 3 5469 88.00 F 1 2 3 5470 64.00 M 1 2 3 5471 60.00 M 0 2 3 5472 50.00 M 1 2 2 5473 60.00 F 0 2 3 5474 38.00 M 1 2 2 5475 63.00 M 1 2 3 5476 50.00 M 1 2 2 5477 50.00 F 1 2 2 5478 68.00 M 2 2 3 5479 80.00 M 1 2 3 5480 35.00 M 1 2 2 5481 73.00 M 1 2 3 5482 82.00 M 2 2 3 5483 48.00 M 27 2 2 5484 60.00 M 17 2 3 5485 69.00 M 14 2 3 5486 62.00 M 10 2 3 5487 58.00 M 18 2 2 5488 76.00 M 9 2 3 5489 63.00 M 15 2 3 5490 35.00 F 22 2 2 5491 39.00 F 16 2 2 5492 75.00 M 10 2 3 5493 55.00 F 17 2 2 5494 60.00 F 12 2 3 5495 67.00 F 13 2 3 5496 60.00 F 3 2 3 5497 58.00 F 6 2 2 5498 70.00 M 3 2 3 5499 65.00 M 0 2 3 5500 80.00 M 11 2 3 5501 67.00 M 12 2 3 5502 48.00 M 15 2 2 5503 55.00 F 5 2 2 5504 63.00 F 4 2 3 5505 55.00 M 10 2 2 5506 68.00 F 7 2 3 5507 40.00 F 10 2 2 5508 90.00 F 8 2 3 5509 73.00 M 8 2 3 5510 72.00 M 8 2 3 5511 62.00 F 12 2 3 5512 84.00 M 8 2 3 5513 74.00 M 14 2 3 5514 60.00 M 6 2 3 5515 48.00 F 7 2 2 5516 58.00 M 5 2 2 5517 70.00 F 10 2 3 5518 80.00 M 6 2 3 5519 65.00 M 6 2 3 5520 41.00 F 7 2 2 5521 52.00 M 2 2 2 5522 84.00 M 6 2 3 5523 48.00 M 0 2 2 5524 56.00 F 5 2 2 5525 61.00 F 3 2 3 5526 60.00 M 2 2 3 5527 55.00 M 6 2 2 5528 65.00 M 4 2 3 5529 58.00 F 3 2 2 5530 65.00 M 5 2 3 5531 73.00 F 5 2 3 5532 60.00 M 4 2 3 5533 68.00 F 2 2 3 5534 49.00 F 0 2 2 5535 77.00 M 15 2 3 5536 65.00 F 6 2 3 5537 25.00 M 11 2 2 5538 70.00 F 1 2 3 5539 63.00 F 1 2 3 5540 70.00 F 2 2 3 5541 60.00 M 2 2 3 5542 47.00 M 7 2 2 5543 89.00 M 7 2 3 5544 68.00 F 2 2 3 5545 68.00 M 4 2 3 5546 53.00 M 9 2 2 5547 75.00 M 4 2 3 5548 41.00 M 0 2 2 5549 74.00 M 0 2 3 5550 65.00 M 5 2 3 5551 70.00 M 0 2 3 5552 40.00 M 2 2 2 5553 47.00 M 2 2 2 5554 55.00 M 2 2 2 5555 65.00 M 2 2 3 5556 66.00 M 4 2 3 5557 53.00 F 0 2 2 5558 61.00 M 2 2 3 5559 80.00 F 2 2 3 5560 75.00 M 2 2 3 5561 52.00 F 2 2 2 5562 87.00 M 3 2 3 5563 64.00 M 0 2 3 5564 58.00 M 1 2 2 5565 67.00 F 1 2 3 5566 50.00 F 4 2 2 5567 47.00 F 1 2 2 5568 55.00 F 0 2 2 5569 69.00 F 0 2 3 5570 60.00 M 0 2 3 5571 71.00 M 1 2 3 5572 48.00 M 4 2 2 5573 85.00 M 0 2 3 5574 87.00 M 0 2 3 5575 92.00 M 3 2 3 5576 82.00 M 2 2 3 5577 80.00 F 0 2 3 5578 60.00 F 2 2 3 5579 43.00 M 1 2 2 5580 72.00 M 2 2 3 5581 79.00 F 1 2 3 5582 82.00 M 0 2 3 5583 65.00 M 1 2 3 5584 67.00 M 2 2 3 5585 54.00 M 0 2 2 5586 63.00 M 1 2 3 5587 65.00 F 1 2 3 5588 56.00 M 0 2 2 5589 35.00 M 0 2 2 5590 84.00 M 4 2 3 5591 52.00 M 2 2 2 5592 50.00 F 0 2 2 5593 62.00 F 1 2 3 5594 73.00 M 0 2 3 5595 69.00 M 1 2 3 5596 40.00 F 3 2 2 5597 44.00 M 3 2 2 5598 62.00 M 1 2 3 5599 76.00 F 18 2 3 5600 46.00 M 17 2 2 5601 63.00 F 19 2 3 5602 38.00 F 4 2 2 5603 70.00 M 0 2 3 5604 45.00 M 0 2 2 5605 59.00 M 50 2 2 5606 75.00 M 11 2 3 5607 60.00 F 18 2 3 5608 78.00 F 41 2 3 5609 70.00 M 4 2 3 5610 60.00 M 1 2 3 5611 60.00 M 0 2 3 5612 80.00 M 0 2 3 5613 50.00 F 22 2 2 5614 53.00 M 1 2 2 5615 57.00 M 21 2 2 5616 45.00 F 1 2 2 5617 61.00 M 5 2 3 5618 60.00 M 4 2 3 5619 70.00 M 3 2 3 5620 87.00 F 7 2 3 5621 50.00 M 8 2 2 5622 64.00 M 21 2 3 5623 52.00 M 0 2 2 5624 56.00 M 9 2 2 5625 68.00 M 1 2 3 5626 75.00 F 9 2 3 5627 27.00 M 10 2 2 5628 64.00 M 7 2 3 5629 75.00 F 5 2 3 5630 68.00 M 17 2 3 5631 51.00 M 13 2 2 5632 58.00 M 16 2 2 5633 39.00 F 10 2 2 5634 58.00 M 11 2 2 5635 58.00 M 2 2 2 5636 63.00 M 14 2 3 5637 46.00 F 30 2 2 5638 61.00 M 14 2 3 5639 45.00 M 13 2 2 5640 62.00 F 6 2 3 5641 52.00 F 0 2 2 5642 65.00 M 0 2 3 5643 75.00 M 0 2 3 5644 59.00 F 10 2 2 5645 60.00 M 11 2 3 5646 55.00 M 1 2 2 5647 70.00 F 10 2 3 5648 60.00 F 5 2 3 5649 69.00 M 17 2 3 5650 68.00 F 8 2 3 5651 78.00 F 0 2 3 5652 78.00 M 8 2 3 5653 65.00 F 13 2 3 5654 75.00 M 8 2 3 5655 30.00 F 11 2 2 5656 85.00 F 2 2 3 5657 72.00 F 7 2 3 5658 89.00 M 3 2 3 5659 48.00 M 14 2 2 5660 65.00 M 0 2 3 5661 42.00 M 0 2 2 5662 82.00 M 7 2 3 5663 55.00 M 0 2 2 5664 28.00 F 1 2 2 5665 60.00 M 2 2 3 5666 65.00 F 5 2 3 5667 45.00 M 3 2 2 5668 73.00 F 5 2 3 5669 70.00 M 8 2 3 5670 70.00 M 9 2 3 5671 60.00 M 7 2 3 5672 66.00 F 2 2 3 5673 82.00 F 7 2 3 5674 79.00 F 10 2 3 5675 67.00 M 3 2 3 5676 65.00 M 1 2 3 5677 62.00 M 3 2 3 5678 78.00 M 7 2 3 5679 73.00 M 4 2 3 5680 66.00 M 4 2 3 5681 42.00 M 4 2 2 5682 58.00 M 2 2 2 5683 65.00 M 6 2 3 5684 84.00 M 0 2 3 5685 60.00 M 4 2 3 5686 45.00 M 0 2 2 5687 65.00 M 7 2 3 5688 89.00 M 4 2 3 5689 40.00 F 1 2 2 5690 53.00 M 2 2 2 5691 60.00 M 3 2 3 5692 75.00 M 4 2 3 5693 60.00 M 4 2 3 5694 86.00 M 2 2 3 5695 30.00 M 3 2 2 5696 65.00 F 3 2 3 5697 75.00 F 1 2 3 5698 70.00 M 5 2 3 5699 50.00 M 0 2 2 5700 35.00 M 2 2 2 5701 48.00 F 2 2 2 5702 75.00 M 1 2 3 5703 72.00 M 2 2 3 5704 72.00 M 3 2 3 5705 36.00 M 2 2 2 5706 74.00 M 3 2 3 5707 90.00 F 1 2 3 5708 60.00 M 2 2 3 5709 45.00 M 3 2 2 5710 83.00 M 3 2 3 5711 58.00 M 0 2 2 5712 49.00 M 0 2 2 5713 50.00 M 0 2 2 5714 83.00 M 0 2 3 5715 48.00 F 0 2 2 5716 40.00 M 0 2 2 5717 40.00 F 0 2 2 5718 85.00 M 1 2 3 5719 75.00 M 2 2 3 5720 55.00 F 0 2 2 5721 62.00 F 1 2 3 5722 68.00 M 1 2 3 5723 70.00 M 3 2 3 5724 70.00 M 1 2 3 5725 35.00 F 0 2 2 5726 80.00 M 3 2 3 5727 71.00 M 0 2 3 5728 53.00 M 0 2 2 5729 46.00 M 1 2 2 5730 53.00 M 2 2 2 5731 50.00 M 3 2 2 5732 60.00 M 1 2 3 5733 52.00 M 0 2 2 5734 77.00 F 24 2 3 5735 70.00 M 6 2 3 5736 12.00 F 1 2 1 5737 81.00 M 2 2 3 5738 84.00 M 13 2 3 5739 51.00 M 1 2 2 5740 69.00 M 14 2 3 5741 68.00 F 6 2 3 5742 60.00 M 19 2 3 5743 66.00 F 15 2 3 5744 32.00 M 16 2 2 5745 65.00 M 14 2 3 5746 48.00 M 13 2 2 5747 13.00 M 3 2 1 5748 58.00 M 0 2 2 5749 82.00 M 0 2 3 5750 45.00 M 12 2 2 5751 72.00 M 13 2 3 5752 66.00 M 15 2 3 5753 78.00 M 2 2 3 5754 79.00 M 3 2 3 5755 67.00 M 11 2 3 5756 42.00 F 2 2 2 5757 74.00 F 7 2 3 5758 44.00 M 10 2 2 5759 70.00 M 2 2 3 5760 60.00 M 24 2 3 5761 80.00 M 6 2 3 5762 85.00 M 1 2 3 5763 75.00 M 9 2 3 5764 58.00 F 1 2 2 5765 72.00 M 8 2 3 5766 51.00 M 7 2 2 5767 70.00 M 7 2 3 5768 71.00 M 0 2 3 5769 85.00 M 5 2 3 5770 56.00 M 7 2 2 5771 71.00 M 8 2 3 5772 30.00 F 8 2 2 5773 69.00 F 1 2 3 5774 83.00 M 6 2 3 5775 69.00 M 6 2 3 5776 70.00 M 1 2 3 5777 53.00 M 1 2 2 5778 55.00 M 7 2 2 5779 29.00 M 4 2 2 5780 65.00 M 3 2 3 5781 48.00 M 8 2 2 5782 70.00 F 5 2 3 5783 78.00 F 6 2 3 5784 62.00 F 3 2 3 5785 70.00 M 9 2 3 5786 70.00 F 9 2 3 5787 49.00 M 5 2 2 5788 60.00 M 5 2 3 5789 75.00 M 5 2 3 5790 62.00 M 4 2 3 5791 72.00 M 2 2 3 5792 32.00 M 9 2 2 5793 70.00 M 5 2 3 5794 65.00 M 5 2 3 5795 87.00 M 2 2 3 5796 60.00 F 6 2 3 5797 45.00 F 5 2 2 5798 70.00 M 4 2 3 5799 55.00 M 6 2 2 5800 73.00 M 5 2 3 5801 40.00 F 2 2 2 5802 80.00 M 6 2 3 5803 46.00 F 0 2 2 5804 65.00 F 3 2 3 5805 44.00 F 3 2 2 5806 45.00 M 3 2 2 5807 55.00 M 3 2 2 5808 69.00 F 6 2 3 5809 45.00 F 4 2 2 5810 55.00 M 4 2 2 5811 29.00 M 3 2 2 5812 65.00 M 3 2 3 5813 60.00 M 5 2 3 5814 53.00 M 4 2 2 5815 60.00 F 1 2 3 5816 85.00 M 1 2 3 5817 59.00 M 2 2 2 5818 70.00 M 5 2 3 5819 50.00 M 0 2 2 5820 66.00 F 5 2 3 5821 62.00 M 2 2 3 5822 82.00 M 4 2 3 5823 84.00 M 1 2 3 5824 70.00 F 3 2 3 5825 73.00 F 4 2 3 5826 55.00 M 1 2 2 5827 65.00 F 2 2 3 5828 86.00 F 1 2 3 5829 38.00 M 0 2 2 5830 45.00 F 3 2 2 5831 57.00 M 0 2 2 5832 49.00 M 1 2 2 5833 62.00 F 1 2 3 5834 85.00 M 0 2 3 5835 81.00 M 0 2 3 5836 70.00 M 2 2 3 5837 70.00 M 1 2 3 5838 90.00 M 0 2 3 5839 50.00 M 0 2 2 5840 28.00 F 0 2 2 5841 80.00 M 0 2 3 5842 75.00 M 4 2 3 5843 40.00 F 0 2 2 5844 78.00 F 19 2 3 5845 76.00 M 0 2 3 5846 60.00 F 0 2 3 5847 61.00 M 19 2 3 5848 70.00 F 19 2 3 5849 60.00 M 1 2 3 5850 50.00 M 1 2 2 5851 68.00 F 19 2 3 5852 38.00 M 18 2 2 5853 55.00 M 16 2 2 5854 45.00 F 31 2 2 5855 60.00 M 2 2 3 5856 47.00 M 13 2 2 5857 62.00 M 13 2 3 5858 65.00 M 3 2 3 5859 57.00 F 13 2 2 5860 60.00 M 11 2 3 5861 55.00 M 4 2 2 5862 60.00 F 9 2 3 5863 75.00 F 8 2 3 5864 68.00 M 0 2 3 5865 60.00 M 2 2 3 5866 70.00 M 3 2 3 5867 45.00 F 1 2 2 5868 65.00 M 1 2 3 5869 70.00 M 10 2 3 5870 75.00 M 1 2 3 5871 65.00 M 8 2 3 5872 54.00 M 9 2 2 5873 45.00 M 10 2 2 5874 52.00 M 11 2 2 5875 64.00 M 9 2 3 5876 64.00 M 10 2 3 5877 59.00 M 5 2 2 5878 56.00 F 4 2 2 5879 65.00 M 8 2 3 5880 75.00 F 5 2 3 5881 54.00 F 5 2 2 5882 76.00 M 8 2 3 5883 59.00 M 10 2 2 5884 79.00 M 4 2 3 5885 45.00 M 7 2 2 5886 69.00 M 7 2 3 5887 35.00 M 0 2 2 5888 72.00 M 2 2 3 5889 70.00 M 0 2 3 5890 33.00 M 8 2 2 5891 48.00 M 5 2 2 5892 65.00 M 4 2 3 5893 42.00 F 3 2 2 5894 53.00 M 7 2 2 5895 65.00 M 5 2 3 5896 85.00 M 4 2 3 5897 55.00 M 13 2 2 5898 67.00 F 5 2 3 5899 49.00 F 4 2 2 5900 75.00 M 2 2 3 5901 48.00 M 4 2 2 5902 65.00 M 0 2 3 5903 57.00 F 4 2 2 5904 73.00 M 6 2 3 5905 72.00 M 2 2 3 5906 70.00 F 4 2 3 5907 46.00 M 5 2 2 5908 74.00 F 0 2 3 5909 61.00 F 4 2 3 5910 50.00 F 0 2 2 5911 65.00 F 5 2 3 5912 32.00 F 1 2 2 5913 47.00 F 3 2 2 5914 65.00 M 4 2 3 5915 68.00 M 1 2 3 5916 57.00 F 2 2 2 5917 58.00 M 7 2 2 5918 63.00 M 2 2 3 5919 65.00 M 3 2 3 5920 48.00 F 2 2 2 5921 50.00 F 1 2 2 5922 63.00 F 1 2 3 5923 56.00 F 1 2 2 5924 63.00 F 13 2 3 5925 60.00 M 1 2 3 5926 60.00 M 0 2 3 5927 78.00 M 0 2 3 5928 71.00 M 5 2 3 5929 65.00 M 2 2 3 5930 58.00 M 5 2 2 5931 50.00 F 5 2 2 5932 75.00 F 0 2 3 5933 80.00 M 0 2 3 5934 55.00 M 2 2 2 5935 68.00 F 2 2 3 5936 52.00 F 2 2 2 5937 50.00 M 0 2 2 5938 84.00 M 2 2 3 5939 45.00 M 0 2 2 5940 55.00 M 1 2 2 5941 75.00 F 0 2 3 5942 68.00 M 0 2 3 5943 70.00 M 0 2 3 5944 46.00 M 0 2 2 5945 90.00 M 0 2 3 5946 78.00 M 0 2 3 5947 70.00 F 0 2 3 5948 60.00 M 2 2 3 5949 67.00 M 20 2 3 5950 47.00 F 1 2 2 5951 55.00 M 2 2 2 5952 44.00 M 24 2 2 5953 73.00 M 24 2 3 5954 60.00 M 2 2 3 5955 62.00 M 16 2 3 5956 61.00 M 9 2 3 5957 56.00 F 1 2 2 5958 62.00 M 17 2 3 5959 62.00 M 16 2 3 5960 61.00 F 16 2 3 5961 83.00 M 8 2 3 5962 60.00 F 0 2 3 5963 74.00 M 4 2 3 5964 50.00 M 5 2 2 5965 25.00 F 13 2 2 5966 68.00 M 11 2 3 5967 68.00 F 13 2 3 5968 75.00 M 5 2 3 5969 70.00 M 10 2 3 5970 65.00 M 12 2 3 5971 60.00 M 14 2 3 5972 59.00 M 13 2 2 5973 62.00 M 8 2 3 5974 72.00 M 5 2 3 5975 42.00 F 5 2 2 5976 29.00 F 3 2 2 5977 74.00 M 1 2 3 5978 70.00 M 2 2 3 5979 42.00 M 10 2 2 5980 65.00 F 10 2 3 5981 73.00 M 2 2 3 5982 58.00 M 9 2 2 5983 72.00 F 9 2 3 5984 52.00 F 10 2 2 5985 66.00 M 10 2 3 5986 45.00 M 7 2 2 5987 45.00 M 1 2 2 5988 69.00 M 0 2 3 5989 84.00 M 7 2 3 5990 75.00 M 3 2 3 5991 65.00 M 5 2 3 5992 68.00 F 10 2 3 5993 68.00 M 7 2 3 5994 66.00 M 0 2 3 5995 62.00 F 7 2 3 5996 65.00 F 5 2 3 5997 70.00 F 0 2 3 5998 92.00 M 5 2 3 5999 70.00 M 0 2 3 6000 75.00 F 3 2 3 6001 69.00 M 12 2 3 6002 43.00 M 6 2 2 6003 58.00 M 5 2 2 6004 81.00 F 0 2 3 6005 65.00 F 0 2 3 6006 59.00 M 0 2 2 6007 91.00 M 0 2 3 6008 65.00 M 3 2 3 6009 75.00 F 2 2 3 6010 65.00 M 5 2 3 6011 77.00 M 2 2 3 6012 23.00 M 2 2 2 6013 63.00 M 0 2 3 6014 62.00 M 3 2 3 6015 79.00 M 1 2 3 6016 49.00 M 5 2 2 6017 72.00 M 0 2 3 6018 75.00 M 5 2 3 6019 70.00 F 0 2 3 6020 70.00 M 5 2 3 6021 62.00 F 3 2 3 6022 61.00 F 1 2 3 6023 45.00 F 2 2 2 6024 68.00 M 1 2 3 6025 72.00 M 2 2 3 6026 73.00 M 3 2 3 6027 58.00 M 0 2 2 6028 74.00 M 3 2 3 6029 78.00 F 5 2 3 6030 85.00 M 2 2 3 6031 71.00 M 2 2 3 6032 60.00 F 2 2 3 6033 74.00 F 3 2 3 6034 29.00 M 1 2 2 6035 64.00 F 3 2 3 6036 39.00 M 1 2 2 6037 43.00 F 2 2 2 6038 76.00 M 2 2 3 6039 60.00 M 0 2 3 6040 67.00 M 2 2 3 6041 70.00 F 1 2 3 6042 67.00 M 0 2 3 6043 50.00 M 0 2 2 6044 45.00 M 0 2 2 6045 75.00 M 3 2 3 6046 46.00 F 0 2 2 6047 61.00 F 1 2 3 6048 61.00 M 1 2 3 6049 56.00 M 0 2 2 6050 58.00 M 2 2 2 6051 65.00 F 6 2 3 6052 86.00 M 0 2 3 6053 35.00 M 1 2 2 6054 85.00 M 2 2 3 6055 55.00 F 0 2 2 6056 47.00 M 0 2 2 6057 57.00 M 0 2 2 6058 84.00 M 1 2 3 6059 79.00 M 1 2 3 6060 65.00 F 1 2 3 6061 65.00 M 0 2 3 6062 68.00 M 0 2 3 6063 60.00 F 2 2 3 6064 30.00 M 7 2 2 6065 34.00 M 0 2 2 6066 60.00 M 23 2 3 6067 29.00 M 18 2 2 6068 68.00 F 4 2 3 6069 54.00 M 19 2 2 6070 49.00 M 14 2 2 6071 70.00 M 1 2 3 6072 53.00 M 15 2 2 6073 75.00 M 5 2 3 6074 78.00 F 14 2 3 6075 70.00 M 15 2 3 6076 79.00 M 14 2 3 6077 51.00 M 11 2 2 6078 67.00 M 0 2 3 6079 49.00 M 12 2 2 6080 85.00 M 13 2 3 6081 84.00 M 0 2 3 6082 58.00 F 8 2 2 6083 50.00 F 0 2 2 6084 60.00 M 0 2 3 6085 85.00 F 7 2 3 6086 48.00 M 0 2 2 6087 70.00 M 10 2 3 6088 65.00 M 5 2 3 6089 70.00 M 11 2 3 6090 35.00 M 9 2 2 6091 45.00 M 4 2 2 6092 80.00 M 3 2 3 6093 58.00 F 12 2 2 6094 80.00 M 6 2 3 6095 78.00 M 3 2 3 6096 62.00 M 5 2 3 6097 66.00 M 5 2 3 6098 82.00 M 8 2 3 6099 58.00 M 1 2 2 6100 58.00 M 9 2 2 6101 68.00 M 7 2 3 6102 86.00 M 0 2 3 6103 17.00 M 6 2 1 6104 68.00 M 5 2 3 6105 64.00 M 4 2 3 6106 58.00 F 10 2 2 6107 62.00 M 7 2 3 6108 60.00 M 9 2 3 6109 82.00 F 3 2 3 6110 60.00 F 0 2 3 6111 55.00 F 2 2 2 6112 41.00 M 3 2 2 6113 62.00 M 1 2 3 6114 54.00 M 8 2 2 6115 66.00 F 2 2 3 6116 57.00 F 7 2 2 6117 70.00 M 6 2 3 6118 79.00 F 6 2 3 6119 70.00 F 5 2 3 6120 70.00 F 0 2 3 6121 78.00 M 7 2 3 6122 72.00 M 6 2 3 6123 52.00 F 4 2 2 6124 74.00 M 6 2 3 6125 65.00 F 10 2 3 6126 70.00 M 6 2 3 6127 68.00 F 7 2 3 6128 75.00 F 0 2 3 6129 41.00 F 3 2 2 6130 52.00 M 3 2 2 6131 65.00 M 0 2 3 6132 84.00 F 4 2 3 6133 50.00 F 5 2 2 6134 55.00 M 3 2 2 6135 57.00 M 5 2 2 6136 28.00 M 1 2 2 6137 69.00 M 6 2 3 6138 90.00 M 2 2 3 6139 61.00 M 4 2 3 6140 49.00 M 4 2 2 6141 75.00 M 4 2 3 6142 70.00 M 4 2 3 6143 60.00 M 6 2 3 6144 68.00 F 5 2 3 6145 61.00 M 2 2 3 6146 45.00 M 4 2 2 6147 62.00 M 3 2 3 6148 70.00 M 3 2 3 6149 79.00 M 3 2 3 6150 38.00 F 5 2 2 6151 60.00 M 1 2 3 6152 83.00 F 12 2 3 6153 76.00 M 0 2 3 6154 47.00 F 0 2 2 6155 67.00 M 5 2 3 6156 40.00 M 0 2 2 6157 92.00 M 2 2 3 6158 67.00 M 0 2 3 6159 55.00 F 1 2 2 6160 65.00 F 3 2 3 6161 49.00 M 1 2 2 6162 25.00 M 11 2 2 6163 51.00 F 1 2 2 6164 72.00 M 16 2 3 6165 60.00 F 1 2 3 6166 65.00 M 2 2 3 6167 34.00 M 2 2 2 6168 81.00 M 7 2 3 6169 87.00 M 0 2 3 6170 46.00 F 0 2 2 6171 80.00 F 2 2 3 6172 65.00 F 2 2 3 6173 70.00 M 3 2 3 6174 58.00 M 0 2 2 6175 65.00 M 2 2 3 6176 75.00 M 3 2 3 6177 35.00 M 1 2 2 6178 44.00 M 3 2 2 6179 38.00 M 8 2 2 6180 86.00 F 0 2 3 6181 83.00 M 1 2 3 6182 52.00 M 1 2 2 6183 68.00 F 2 2 3 6184 50.00 F 2 2 2 6185 83.00 M 2 2 3 6186 35.00 M 1 2 2 6187 65.00 M 1 2 3 6188 60.00 M 0 2 3 6189 66.00 F 1 2 3 6190 52.00 M 0 2 2 6191 82.00 M 2 2 3 6192 71.00 M 27 2 3 6193 26.00 M 3 2 2 6194 65.00 M 1 2 3 6195 72.00 M 1 2 3 6196 66.00 M 20 2 3 6197 50.00 F 10 2 2 6198 48.00 F 1 2 2 6199 71.00 M 14 2 3 6200 66.00 M 2 2 3 6201 65.00 M 2 2 3 6202 51.00 M 12 2 2 6203 82.00 F 7 2 3 6204 50.00 F 1 2 2 6205 87.00 M 7 2 3 6206 39.00 M 3 2 2 6207 75.00 M 1 2 3 6208 68.00 M 5 2 3 6209 65.00 F 15 2 3 6210 68.00 M 3 2 3 6211 79.00 F 6 2 3 6212 59.00 M 4 2 2 6213 50.00 M 1 2 2 6214 50.00 M 12 2 2 6215 74.00 M 0 2 3 6216 70.00 M 0 2 3 6217 58.00 M 7 2 2 6218 46.00 M 13 2 2 6219 55.00 F 0 2 2 6220 65.00 F 0 2 3 6221 45.00 M 3 2 2 6222 45.00 F 0 2 2 6223 69.00 M 0 2 3 6224 73.00 F 1 2 3 6225 25.00 M 6 2 2 6226 72.00 M 2 2 3 6227 64.00 M 9 2 3 6228 43.00 M 4 2 2 6229 72.00 M 6 2 3 6230 39.00 F 6 2 2 6231 40.00 M 8 2 2 6232 51.00 F 11 2 2 6233 65.00 M 4 2 3 6234 51.00 M 6 2 2 6235 92.00 M 4 2 3 6236 70.00 M 5 2 3 6237 79.00 M 7 2 3 6238 73.00 M 1 2 3 6239 55.00 M 6 2 2 6240 64.00 M 2 2 3 6241 60.00 F 1 2 3 6242 52.00 M 6 2 2 6243 61.00 M 4 2 3 6244 55.00 M 1 2 2 6245 65.00 F 5 2 3 6246 52.00 M 0 2 2 6247 50.00 M 27 2 2 6248 63.00 M 3 2 3 6249 75.00 F 1 2 3 6250 45.00 F 3 2 2 6251 46.00 M 1 2 2 6252 73.00 M 3 2 3 6253 72.00 M 1 2 3 6254 56.00 M 2 2 2 6255 40.00 M 1 2 2 6256 51.00 M 6 2 2 6257 65.00 M 5 2 3 6258 40.00 M 3 2 2 6259 52.00 M 0 2 2 6260 63.00 M 5 2 3 6261 65.00 F 1 2 3 6262 69.00 F 1 2 3 6263 60.00 M 1 2 3 6264 45.00 F 1 2 2 6265 40.00 M 1 2 2 6266 68.00 M 3 2 3 6267 67.00 M 2 2 3 6268 70.00 F 0 2 3 6269 50.00 F 3 2 2 6270 65.00 M 2 2 3 6271 63.00 F 1 2 3 6272 63.00 M 5 2 3 6273 45.00 M 0 2 2 6274 70.00 M 0 2 3 6275 60.00 M 1 2 3 6276 86.00 M 1 2 3 6277 65.00 F 1 2 3 6278 75.00 F 2 2 3 6279 32.00 M 1 2 2 6280 66.00 M 1 2 3 6281 65.00 F 2 2 3 6282 82.00 M 2 2 3 6283 52.00 M 1 2 2 6284 78.00 F 1 2 3 6285 79.00 M 0 2 3 6286 75.00 M 1 2 3 6287 73.00 M 7 2 3 6288 65.00 M 13 2 3 6289 55.00 M 4 2 2 6290 74.00 M 3 2 3 6291 60.00 F 8 2 3 6292 64.00 M 13 2 3 6293 69.00 F 7 2 3 6294 39.00 M 0 2 2 6295 47.00 M 6 2 2 6296 24.00 M 0 2 2 6297 80.00 F 15 2 3 6298 54.00 F 0 2 2 6299 84.00 F 17 2 3 6300 60.00 M 2 2 3 6301 58.00 M 0 2 2 6302 78.00 F 9 2 3 6303 68.00 F 0 2 3 6304 70.00 M 24 2 3 6305 66.00 M 2 2 3 6306 75.00 M 6 2 3 6307 76.00 M 11 2 3 6308 84.00 F 0 2 3 6309 58.00 M 1 2 2 6310 52.00 M 6 2 2 6311 90.00 M 5 2 3 6312 22.00 M 11 2 2 6313 57.00 M 18 2 2 6314 76.00 F 1 2 3 6315 86.00 M 8 2 3 6316 71.00 M 4 2 3 6317 63.00 M 7 2 3 6318 68.00 M 12 2 3 6319 88.00 M 14 2 3 6320 56.00 F 2 2 2 6321 47.00 M 6 2 2 6322 7.00 M 2 2 1 6323 81.00 M 4 2 3 6324 53.00 F 7 2 2 6325 19.00 M 0 2 2 6326 70.00 M 0 2 3 6327 81.00 M 2 2 3 6328 8.00 M 1 2 1 6329 65.00 F 20 2 3 6330 74.00 M 0 2 3 6331 73.00 M 7 2 3 6332 60.00 M 2 2 3 6333 63.00 M 8 2 3 6334 75.00 F 5 2 3 6335 75.00 M 1 2 3 6336 73.00 F 7 2 3 6337 58.00 F 2 2 2 6338 57.00 F 1 2 2 6339 80.00 F 5 2 3 6340 65.00 M 1 2 3 6341 80.00 M 4 2 3 6342 70.00 F 6 2 3 6343 55.00 F 5 2 2 6344 45.00 F 15 2 2 6345 49.00 M 8 2 2 6346 75.00 M 1 2 3 6347 45.00 M 0 2 2 6348 58.00 F 12 2 2 6349 60.00 F 3 2 3 6350 59.00 M 3 2 2 6351 75.00 F 0 2 3 6352 61.00 M 4 2 3 6353 79.00 M 2 2 3 6354 49.00 F 7 2 2 6355 85.00 M 12 2 3 6356 65.00 F 0 2 3 6357 70.00 M 2 2 3 6358 90.00 M 0 2 3 6359 61.00 M 5 2 3 6360 53.00 M 7 2 2 6361 60.00 F 8 2 3 6362 53.00 F 9 2 2 6363 62.00 M 12 2 3 6364 50.00 M 5 2 2 6365 67.00 M 0 2 3 6366 65.00 M 0 2 3 6367 77.00 F 2 2 3 6368 65.00 M 3 2 3 6369 38.00 M 11 2 2 6370 48.00 M 8 2 2 6371 64.00 M 9 2 3 6372 72.00 M 3 2 3 6373 72.00 M 6 2 3 6374 78.00 M 4 2 3 6375 55.00 F 8 2 2 6376 65.00 M 6 2 3 6377 64.00 M 0 2 3 6378 21.00 M 8 2 2 6379 35.00 F 2 2 2 6380 58.00 M 7 2 2 6381 55.00 M 5 2 2 6382 55.00 M 4 2 2 6383 77.00 F 3 2 3 6384 57.00 M 5 2 2 6385 57.00 M 2 2 2 6386 54.00 M 4 2 2 6387 55.00 M 12 2 2 6388 45.00 M 6 2 2 6389 95.00 M 0 2 3 6390 52.00 F 3 2 2 6391 71.00 M 4 2 3 6392 72.00 F 5 2 3 6393 70.00 M 1 2 3 6394 53.00 F 5 2 2 6395 42.00 F 4 2 2 6396 84.00 M 5 2 3 6397 50.00 F 2 2 2 6398 80.00 M 0 2 3 6399 36.00 M 8 2 2 6400 33.00 M 2 2 2 6401 65.00 M 1 2 3 6402 52.00 F 0 2 2 6403 86.00 M 1 2 3 6404 76.00 F 2 2 3 6405 68.00 M 1 2 3 6406 41.00 M 2 2 2 6407 67.00 M 2 2 3 6408 64.00 F 3 2 3 6409 54.00 F 1 2 2 6410 58.00 M 1 2 2 6411 52.00 M 2 2 2 6412 48.00 M 1 2 2 6413 55.00 M 5 2 2 6414 67.00 M 4 2 3 6415 70.00 M 1 2 3 6416 65.00 M 2 2 3 6417 88.00 F 1 2 3 6418 30.00 M 0 2 2 6419 60.00 M 0 2 3 6420 50.00 M 1 2 2 6421 50.00 M 1 2 2 6422 66.00 F 1 2 3 6423 52.00 F 1 2 2 6424 62.00 M 5 2 3 6425 45.00 F 3 2 2 6426 56.00 M 2 2 2 6427 75.00 F 0 2 3 6428 64.00 M 24 2 3 6429 63.00 M 22 2 3 6430 54.00 M 10 2 2 6431 60.00 M 7 2 3 6432 51.00 F 3 2 2 6433 47.00 F 4 2 2 6434 78.00 M 19 2 3 6435 60.00 M 16 2 3 6436 66.00 M 15 2 3 6437 80.00 M 18 2 3 6438 65.00 F 2 2 3 6439 49.00 M 19 2 2 6440 55.00 M 18 2 2 6441 80.00 F 15 2 3 6442 82.00 F 16 2 3 6443 34.00 F 13 2 2 6444 30.00 F 13 2 2 6445 65.00 F 5 2 3 6446 67.00 M 1 2 3 6447 58.00 F 11 2 2 6448 75.00 F 3 2 3 6449 32.00 F 2 2 2 6450 70.00 F 13 2 3 6451 56.00 M 10 2 2 6452 76.00 F 11 2 3 6453 78.00 M 9 2 3 6454 56.00 M 13 2 2 6455 60.00 F 1 2 3 6456 65.00 F 15 2 3 6457 80.00 M 12 2 3 6458 60.00 F 9 2 3 6459 42.00 M 5 2 2 6460 81.00 F 10 2 3 6461 65.00 M 5 2 3 6462 88.00 M 10 2 3 6463 65.00 M 7 2 3 6464 56.00 F 0 2 2 6465 85.00 M 12 2 3 6466 58.00 M 8 2 2 6467 53.00 M 6 2 2 6468 55.00 M 8 2 2 6469 50.00 M 11 2 2 6470 50.00 F 3 2 2 6471 62.00 M 1 2 3 6472 65.00 F 12 2 3 6473 68.00 M 6 2 3 6474 65.00 M 3 2 3 6475 60.00 M 2 2 3 6476 53.00 M 31 2 2 6477 55.00 F 4 2 2 6478 54.00 M 7 2 2 6479 46.00 M 0 2 2 6480 42.00 F 6 2 2 6481 70.00 F 9 2 3 6482 65.00 M 7 2 3 6483 47.00 M 2 2 2 6484 55.00 F 3 2 2 6485 60.00 F 0 2 3 6486 65.00 M 8 2 3 6487 71.00 M 6 2 3 6488 63.00 M 7 2 3 6489 75.00 F 7 2 3 6490 66.00 M 8 2 3 6491 68.00 M 1 2 3 6492 55.00 M 7 2 2 6493 55.00 M 6 2 2 6494 42.00 M 4 2 2 6495 60.00 F 10 2 3 6496 67.00 M 2 2 3 6497 62.00 M 5 2 3 6498 61.00 M 3 2 3 6499 64.00 M 0 2 3 6500 45.00 F 4 2 2 6501 77.00 F 5 2 3 6502 48.00 F 6 2 2 6503 51.00 M 5 2 2 6504 48.00 M 1 2 2 6505 70.00 M 0 2 3 6506 48.00 M 2 2 2 6507 54.00 M 5 2 2 6508 68.00 F 3 2 3 6509 62.00 M 0 2 3 6510 46.00 M 4 2 2 6511 79.00 M 5 2 3 6512 61.00 M 4 2 3 6513 80.00 F 4 2 3 6514 73.00 M 4 2 3 6515 40.00 M 0 2 2 6516 69.00 F 4 2 3 6517 58.00 M 6 2 2 6518 62.00 F 2 2 3 6519 77.00 M 1 2 3 6520 63.00 F 2 2 3 6521 75.00 M 1 2 3 6522 35.00 M 0 2 2 6523 45.00 M 1 2 2 6524 66.00 M 3 2 3 6525 54.00 M 2 2 2 6526 67.00 M 2 2 3 6527 62.00 M 4 2 3 6528 59.00 M 0 2 2 6529 57.00 M 3 2 2 6530 64.00 F 3 2 3 6531 52.00 M 0 2 2 6532 87.00 F 0 2 3 6533 55.00 M 0 2 2 6534 60.00 M 1 2 3 6535 75.00 M 3 2 3 6536 73.00 M 5 2 3 6537 63.00 M 0 2 3 6538 88.00 M 0 2 3 6539 55.00 F 0 2 2 6540 47.00 M 5 2 2 6541 50.00 M 4 2 2 6542 92.00 F 2 2 3 6543 63.00 F 2 2 3 6544 77.00 M 3 2 3 6545 36.00 M 0 2 2 6546 75.00 M 3 2 3 6547 35.00 M 3 2 2 6548 70.00 F 0 2 3 6549 74.00 F 3 2 3 6550 54.00 F 0 2 2 6551 58.00 M 2 2 2 6552 84.00 M 0 2 3 6553 78.00 M 0 2 3 6554 42.00 M 2 2 2 6555 66.00 M 3 2 3 6556 65.00 M 10 2 3 6557 59.00 F 0 2 2 6558 50.00 M 1 2 2 6559 65.00 M 0 2 3 6560 57.00 M 2 2 2 6561 55.00 F 0 2 2 6562 76.00 M 0 2 3 6563 65.00 F 3 2 3 6564 49.00 M 0 2 2 6565 47.00 F 2 2 2 6566 59.00 F 1 2 2 6567 58.00 M 0 2 2 6568 75.00 M 0 2 3 6569 82.00 F 1 2 3 6570 57.00 M 1 2 2 6571 45.00 M 0 2 2 6572 60.00 M 0 2 3 6573 42.00 M 0 2 2 6574 65.00 M 3 2 3 6575 64.00 M 0 2 3 6576 59.00 M 24 2 2 6577 50.00 M 3 2 2 6578 55.00 M 10 2 2 6579 67.00 M 22 2 3 6580 53.00 M 16 2 2 6581 45.00 M 16 2 2 6582 70.00 M 16 2 3 6583 78.00 M 0 2 3 6584 49.00 M 15 2 2 6585 67.00 F 12 2 3 6586 47.00 M 10 2 2 6587 50.00 M 8 2 2 6588 59.00 M 5 2 2 6589 84.00 M 13 2 3 6590 52.00 M 7 2 2 6591 44.00 M 9 2 2 6592 54.00 F 9 2 2 6593 64.00 M 0 2 3 6594 75.00 F 34 2 3 6595 74.00 M 2 2 3 6596 34.00 M 6 2 2 6597 80.00 F 12 2 3 6598 68.00 F 0 2 3 6599 68.00 M 9 2 3 6600 45.00 M 3 2 2 6601 52.00 F 1 2 2 6602 45.00 F 0 2 2 6603 85.00 M 4 2 3 6604 80.00 F 3 2 3 6605 64.00 M 2 2 3 6606 35.00 M 0 2 2 6607 60.00 F 1 2 3 6608 70.00 F 35 2 3 6609 68.00 F 7 2 3 6610 70.00 M 5 2 3 6611 75.00 M 7 2 3 6612 70.00 F 9 2 3 6613 35.00 M 10 2 2 6614 84.00 F 11 2 3 6615 66.00 F 0 2 3 6616 47.00 M 0 2 2 6617 55.00 F 8 2 2 6618 70.00 M 0 2 3 6619 62.00 M 35 2 3 6620 68.00 M 7 2 3 6621 68.00 F 4 2 3 6622 74.00 M 8 2 3 6623 31.00 M 7 2 2 6624 60.00 M 7 2 3 6625 63.00 M 8 2 3 6626 80.00 M 6 2 3 6627 47.00 F 9 2 2 6628 78.00 M 7 2 3 6629 53.00 M 7 2 2 6630 84.00 M 5 2 3 6631 26.00 F 4 2 2 6632 54.00 M 10 2 2 6633 56.00 M 5 2 2 6634 75.00 M 1 2 3 6635 72.00 M 8 2 3 6636 98.00 M 7 2 3 6637 27.00 M 1 2 2 6638 73.00 M 2 2 3 6639 76.00 M 7 2 3 6640 80.00 M 5 2 3 6641 55.00 F 4 2 2 6642 69.00 M 4 2 3 6643 61.00 M 34 2 3 6644 32.00 M 0 2 2 6645 44.00 M 4 2 2 6646 45.00 M 4 2 2 6647 60.00 M 2 2 3 6648 64.00 M 6 2 3 6649 61.00 M 1 2 3 6650 33.00 F 4 2 2 6651 70.00 F 6 2 3 6652 100.00 M 3 2 3 6653 70.00 M 7 2 3 6654 59.00 M 4 2 2 6655 45.00 M 5 2 2 6656 81.00 F 2 2 3 6657 90.00 F 5 2 3 6658 60.00 M 2 2 3 6659 52.00 M 14 2 2 6660 50.00 M 5 2 2 6661 62.00 F 5 2 3 6662 48.00 M 4 2 2 6663 55.00 F 4 2 2 6664 68.00 F 0 2 3 6665 78.00 M 19 2 3 6666 77.00 F 2 2 3 6667 74.00 M 5 2 3 6668 80.00 M 3 2 3 6669 60.00 F 1 2 3 6670 45.00 M 3 2 2 6671 60.00 F 9 2 3 6672 70.00 F 2 2 3 6673 55.00 F 1 2 2 6674 74.00 M 2 2 3 6675 64.00 M 4 2 3 6676 44.00 F 2 2 2 6677 40.00 M 1 2 2 6678 73.00 M 33 2 3 6679 48.00 M 1 2 2 6680 64.00 M 0 2 3 6681 64.00 M 1 2 3 6682 42.00 M 1 2 2 6683 61.00 M 0 2 3 6684 77.00 M 2 2 3 6685 40.00 M 0 2 2 6686 17.00 M 0 2 1 6687 56.00 F 1 2 2 6688 60.00 M 2 2 3 6689 72.00 F 0 2 3 6690 80.00 M 0 2 3 6691 35.00 F 0 2 2 6692 60.00 F 0 2 3 6693 62.00 M 0 2 3 6694 53.00 F 1 2 2 6695 83.00 M 1 2 3 6696 70.00 M 0 2 3 6697 37.00 M 1 2 2 6698 73.00 M 1 2 3 6699 72.00 F 0 2 3 6700 48.00 M 4 2 2 6701 78.00 F 0 2 3 6702 65.00 M 12 2 3 6703 50.00 M 4 2 2 6704 65.00 F 1 2 3 6705 48.00 M 1 2 2 6706 65.00 M 4 2 3 6707 49.00 F 21 2 2 6708 55.00 M 23 2 2 6709 65.00 M 33 2 3 6710 65.00 M 8 2 3 6711 22.00 F 14 2 2 6712 62.00 F 16 2 3 6713 80.00 M 2 2 3 6714 85.00 F 5 2 3 6715 74.00 F 10 2 3 6716 70.00 M 2 2 3 6717 48.00 M 13 2 2 6718 65.00 F 5 2 3 6719 65.00 M 2 2 3 6720 76.00 M 2 2 3 6721 54.00 M 2 2 2 6722 87.00 M 11 2 3 6723 89.00 M 4 2 3 6724 55.00 F 7 2 2 6725 70.00 M 5 2 3 6726 70.00 M 2 2 3 6727 67.00 M 0 2 3 6728 61.00 F 5 2 3 6729 69.00 M 2 2 3 6730 62.00 F 5 2 3 6731 65.00 F 6 2 3 6732 78.00 M 6 2 3 6733 78.00 F 5 2 3 6734 65.00 M 9 2 3 6735 42.00 M 7 2 2 6736 67.00 M 6 2 3 6737 63.00 F 4 2 3 6738 56.00 M 7 2 2 6739 29.00 M 9 2 2 6740 79.00 M 8 2 3 6741 69.00 M 3 2 3 6742 86.00 M 9 2 3 6743 55.00 F 7 2 2 6744 76.00 F 4 2 3 6745 75.00 M 6 2 3 6746 75.00 F 5 2 3 6747 76.00 F 5 2 3 6748 70.00 M 7 2 3 6749 80.00 F 5 2 3 6750 73.00 F 7 2 3 6751 38.00 F 0 2 2 6752 83.00 M 7 2 3 6753 55.00 F 2 2 2 6754 58.00 M 5 2 2 6755 45.00 M 4 2 2 6756 65.00 M 8 2 3 6757 70.00 M 3 2 3 6758 33.00 M 5 2 2 6759 70.00 M 0 2 3 6760 68.00 M 3 2 3 6761 75.00 M 7 2 3 6762 59.00 M 5 2 2 6763 79.00 M 7 2 3 6764 59.00 M 5 2 2 6765 58.00 M 4 2 2 6766 42.00 F 4 2 2 6767 59.00 M 4 2 2 6768 59.00 F 6 2 2 6769 74.00 M 2 2 3 6770 79.00 M 1 2 3 6771 67.00 M 4 2 3 6772 60.00 F 6 2 3 6773 72.00 M 4 2 3 6774 83.00 M 6 2 3 6775 78.00 M 2 2 3 6776 55.00 M 0 2 2 6777 41.00 F 5 2 2 6778 76.00 M 5 2 3 6779 49.00 M 0 2 2 6780 52.00 F 23 2 2 6781 84.00 M 2 2 3 6782 65.00 M 1 2 3 6783 47.00 F 3 2 2 6784 65.00 M 1 2 3 6785 58.00 M 34 2 2 6786 80.00 M 2 2 3 6787 60.00 F 3 2 3 6788 83.00 M 0 2 3 6789 84.00 M 3 2 3 6790 65.00 M 3 2 3 6791 58.00 F 3 2 2 6792 60.00 M 3 2 3 6793 60.00 F 1 2 3 6794 68.00 F 3 2 3 6795 70.00 F 6 2 3 6796 66.00 M 0 2 3 6797 80.00 M 0 2 3 6798 59.00 F 2 2 2 6799 65.00 F 1 2 3 6800 60.00 M 0 2 3 6801 32.00 F 2 2 2 6802 56.00 M 2 2 2 6803 55.00 F 1 2 2 6804 45.00 M 1 2 2 6805 60.00 M 4 2 3 6806 40.00 F 2 2 2 6807 56.00 M 0 2 2 6808 55.00 F 1 2 2 6809 42.00 M 0 2 2 6810 0.00 M 1 2 1 6811 50.00 M 1 2 2 6812 59.00 M 1 2 2 6813 56.00 M 1 2 2 6814 52.00 F 4 2 2 6815 35.00 M 0 2 2 6816 50.00 M 2 2 2 6817 60.00 M 1 2 3 6818 73.00 M 1 2 3 6819 54.00 M 4 2 2 6820 60.00 M 2 2 3 6821 75.00 M 1 2 3 6822 64.00 M 0 2 3 6823 48.00 M 1 2 2 6824 80.00 F 3 2 3 6825 58.00 F 1 2 2 6826 25.00 M 1 2 2 6827 55.00 F 0 2 2 6828 72.00 M 0 2 3 6829 68.00 M 2 2 3 6830 49.00 F 0 2 2 6831 70.00 M 7 2 3 6832 70.00 F 0 2 3 6833 60.00 M 8 2 3 6834 52.00 F 7 2 2 6835 81.00 M 2 2 3 6836 71.00 M 11 2 3 6837 69.00 M 7 2 3 6838 77.00 M 15 2 3 6839 48.00 F 11 2 2 6840 68.00 M 6 2 3 6841 64.00 F 13 2 3 6842 55.00 M 1 2 2 6843 63.00 M 12 2 3 6844 63.00 M 6 2 3 6845 55.00 M 5 2 2 6846 64.00 M 3 2 3 6847 57.00 F 7 2 2 6848 52.00 M 4 2 2 6849 74.00 M 2 2 3 6850 75.00 M 3 2 3 6851 66.00 M 12 2 3 6852 59.00 M 5 2 2 6853 70.00 M 7 2 3 6854 69.00 F 0 2 3 6855 80.00 M 0 2 3 6856 46.00 M 11 2 2 6857 60.00 M 12 2 3 6858 65.00 M 12 2 3 6859 60.00 M 0 2 3 6860 68.00 M 13 2 3 6861 74.00 M 4 2 3 6862 60.00 F 8 2 3 6863 40.00 M 4 2 2 6864 50.00 M 7 2 2 6865 66.00 M 8 2 3 6866 75.00 M 4 2 3 6867 65.00 M 2 2 3 6868 73.00 M 9 2 3 6869 55.00 M 1 2 2 6870 70.00 M 6 2 3 6871 80.00 F 4 2 3 6872 70.00 F 5 2 3 6873 42.00 M 9 2 2 6874 60.00 M 3 2 3 6875 67.00 F 8 2 3 6876 72.00 M 3 2 3 6877 53.00 M 6 2 2 6878 70.00 M 2 2 3 6879 70.00 F 8 2 3 6880 65.00 M 2 2 3 6881 54.00 M 1 2 2 6882 51.00 M 9 2 2 6883 22.00 F 1 2 2 6884 56.00 F 8 2 2 6885 59.00 M 4 2 2 6886 68.00 M 2 2 3 6887 43.00 F 3 2 2 6888 54.00 M 11 2 2 6889 48.00 M 2 2 2 6890 76.00 M 6 2 3 6891 63.00 M 5 2 3 6892 90.00 M 9 2 3 6893 72.00 M 5 2 3 6894 57.00 M 10 2 2 6895 67.00 M 4 2 3 6896 73.00 M 7 2 3 6897 74.00 M 1 2 3 6898 70.00 M 4 2 3 6899 35.00 F 4 2 2 6900 48.00 F 5 2 2 6901 40.00 M 4 2 2 6902 73.00 M 6 2 3 6903 65.00 F 3 2 3 6904 60.00 M 2 2 3 6905 46.00 M 4 2 2 6906 71.00 M 6 2 3 6907 66.00 M 7 2 3 6908 69.00 M 0 2 3 6909 64.00 M 4 2 3 6910 65.00 F 1 2 3 6911 63.00 M 3 2 3 6912 67.00 M 5 2 3 6913 70.00 F 35 2 3 6914 55.00 F 0 2 2 6915 54.00 F 1 2 2 6916 75.00 F 5 2 3 6917 70.00 M 6 2 3 6918 58.00 M 5 2 2 6919 69.00 M 1 2 3 6920 52.00 M 2 2 2 6921 48.00 F 2 2 2 6922 90.00 M 1 2 3 6923 50.00 F 3 2 2 6924 60.00 F 6 2 3 6925 47.00 F 2 2 2 6926 52.00 M 1 2 2 6927 58.00 F 3 2 2 6928 52.00 M 5 2 2 6929 74.00 M 3 2 3 6930 55.00 M 1 2 2 6931 40.00 M 0 2 2 6932 85.00 M 2 2 3 6933 66.00 F 0 2 3 6934 38.00 M 6 2 2 6935 60.00 M 2 2 3 6936 26.00 M 2 2 2 6937 50.00 M 2 2 2 6938 59.00 F 0 2 2 6939 50.00 F 3 2 2 6940 45.00 M 1 2 2 6941 74.00 M 0 2 3 6942 83.00 F 4 2 3 6943 72.00 F 2 2 3 6944 55.00 F 3 2 2 6945 60.00 F 2 2 3 6946 75.00 M 2 2 3 6947 72.00 F 1 2 3 6948 64.00 M 0 2 3 6949 73.00 M 2 2 3 6950 63.00 F 1 2 3 6951 54.00 M 2 2 2 6952 70.00 M 2 2 3 6953 85.00 M 1 2 3 6954 70.00 F 1 2 3 6955 40.00 M 2 2 2 6956 72.00 M 0 2 3 6957 59.00 M 0 2 2 6958 53.00 M 34 2 2 6959 50.00 M 0 2 2 6960 52.00 F 1 2 2 6961 87.00 M 7 2 3 6962 54.00 F 5 2 2 6963 67.00 F 21 2 3 6964 43.00 M 8 2 2 6965 71.00 M 2 2 3 6966 48.00 F 15 2 2 6967 70.00 M 21 2 3 6968 32.00 M 0 2 2 6969 56.00 M 20 2 2 6970 75.00 M 12 2 3 6971 79.00 M 6 2 3 6972 67.00 M 5 2 3 6973 42.00 F 8 2 2 6974 75.00 M 8 2 3 6975 75.00 M 5 2 3 6976 69.00 M 5 2 3 6977 86.00 M 18 2 3 6978 51.00 M 5 2 2 6979 61.00 M 8 2 3 6980 67.00 F 5 2 3 6981 84.00 M 5 2 3 6982 76.00 M 10 2 3 6983 22.00 F 11 2 2 6984 75.00 M 11 2 3 6985 85.00 M 3 2 3 6986 55.00 M 4 2 2 6987 61.00 M 4 2 3 6988 55.00 M 4 2 2 6989 78.00 M 4 2 3 6990 89.00 F 9 2 3 6991 70.00 M 3 2 3 6992 47.00 M 14 2 2 6993 43.00 F 10 2 2 6994 80.00 M 8 2 3 6995 57.00 M 7 2 2 6996 38.00 M 33 2 2 6997 65.00 F 8 2 3 6998 60.00 M 9 2 3 6999 80.00 F 9 2 3 7000 65.00 M 0 2 3 7001 82.00 M 8 2 3 7002 65.00 F 3 2 3 7003 75.00 M 36 2 3 7004 58.00 M 0 2 2 7005 59.00 M 2 2 2 7006 57.00 M 7 2 2 7007 65.00 F 8 2 3 7008 65.00 M 4 2 3 7009 45.00 M 5 2 2 7010 84.00 F 1 2 3 7011 40.00 M 3 2 2 7012 41.00 M 3 2 2 7013 60.00 M 2 2 3 7014 46.00 M 1 2 2 7015 63.00 F 15 2 3 7016 87.00 F 6 2 3 7017 68.00 F 6 2 3 7018 80.00 F 3 2 3 7019 75.00 M 1 2 3 7020 65.00 M 11 2 3 7021 27.00 F 6 2 2 7022 70.00 F 7 2 3 7023 7.00 M 1 2 1 7024 73.00 M 0 2 3 7025 65.00 M 3 2 3 7026 50.00 M 3 2 2 7027 56.00 M 0 2 2 7028 71.00 M 5 2 3 7029 55.00 M 2 2 2 7030 83.00 M 5 2 3 7031 65.00 M 1 2 3 7032 67.00 M 0 2 3 7033 42.00 M 3 2 2 7034 83.00 F 0 2 3 7035 72.00 M 4 2 3 7036 65.00 M 3 2 3 7037 66.00 M 1 2 3 7038 70.00 F 2 2 3 7039 58.00 F 7 2 2 7040 35.00 F 3 2 2 7041 56.00 F 3 2 2 7042 57.00 F 4 2 2 7043 70.00 F 1 2 3 7044 80.00 M 3 2 3 7045 82.00 M 0 2 3 7046 55.00 M 1 2 2 7047 78.00 M 0 2 3 7048 56.00 M 1 2 2 7049 70.00 M 9 2 3 7050 60.00 F 0 2 3 7051 40.00 M 0 2 2 7052 73.00 M 1 2 3 7053 75.00 M 0 2 3 7054 37.00 M 1 2 2 7055 36.00 F 2 2 2 7056 32.00 F 5 2 2 7057 23.00 F 2 2 2 7058 72.00 F 45 2 3 7059 56.00 F 8 2 2 7060 33.00 F 4 2 2 7061 72.00 M 2 2 3 7062 67.00 F 22 2 3 7063 80.00 F 0 2 3 7064 56.00 M 7 2 2 7065 75.00 F 20 2 3 7066 58.00 M 7 2 2 7067 59.00 M 15 2 2 7068 59.00 M 0 2 2 7069 65.00 F 7 2 3 7070 64.00 F 6 2 3 7071 48.00 M 15 2 2 7072 58.00 F 14 2 2 7073 73.00 F 11 2 3 7074 68.00 F 6 2 3 7075 48.00 M 7 2 2 7076 72.00 M 13 2 3 7077 60.00 M 8 2 3 7078 45.00 M 9 2 2 7079 50.00 M 4 2 2 7080 70.00 M 9 2 3 7081 55.00 M 2 2 2 7082 55.00 F 1 2 2 7083 55.00 M 2 2 2 7084 63.00 F 6 2 3 7085 90.00 F 8 2 3 7086 79.00 M 11 2 3 7087 57.00 M 10 2 2 7088 64.00 M 10 2 3 7089 36.00 M 8 2 2 7090 66.00 M 8 2 3 7091 61.00 M 11 2 3 7092 61.00 M 6 2 3 7093 65.00 F 7 2 3 7094 65.00 M 6 2 3 7095 70.00 M 7 2 3 7096 60.00 F 2 2 3 7097 65.00 M 3 2 3 7098 52.00 F 2 2 2 7099 44.00 F 10 2 2 7100 96.00 M 13 2 3 7101 74.00 M 3 2 3 7102 63.00 F 4 2 3 7103 61.00 M 1 2 3 7104 65.00 F 6 2 3 7105 21.00 M 8 2 2 7106 52.00 M 3 2 2 7107 70.00 M 3 2 3 7108 63.00 F 4 2 3 7109 68.00 M 2 2 3 7110 33.00 M 3 2 2 7111 52.00 M 8 2 2 7112 69.00 M 9 2 3 7113 64.00 M 8 2 3 7114 70.00 F 1 2 3 7115 68.00 M 10 2 3 7116 74.00 F 6 2 3 7117 72.00 M 3 2 3 7118 50.00 F 6 2 2 7119 73.00 M 6 2 3 7120 70.00 M 4 2 3 7121 68.00 M 5 2 3 7122 59.00 M 7 2 2 7123 62.00 M 1 2 3 7124 87.00 M 5 2 3 7125 48.00 F 6 2 2 7126 58.00 F 4 2 2 7127 43.00 M 3 2 2 7128 73.00 F 5 2 3 7129 60.00 M 5 2 3 7130 49.00 F 5 2 2 7131 59.00 M 1 2 2 7132 68.00 F 1 2 3 7133 43.00 M 4 2 2 7134 70.00 F 4 2 3 7135 77.00 F 4 2 3 7136 74.00 F 3 2 3 7137 50.00 M 1 2 2 7138 40.00 F 0 2 2 7139 52.00 M 4 2 2 7140 35.00 M 0 2 2 7141 58.00 F 1 2 2 7142 40.00 F 0 2 2 7143 62.00 M 2 2 3 7144 75.00 M 5 2 3 7145 65.00 F 3 2 3 7146 78.00 F 3 2 3 7147 74.00 F 1 2 3 7148 60.00 F 0 2 3 7149 70.00 F 1 2 3 7150 69.00 M 0 2 3 7151 56.00 F 3 2 2 7152 83.00 M 1 2 3 7153 82.00 F 0 2 3 7154 39.00 M 7 2 2 7155 55.00 M 1 2 2 7156 73.00 M 1 2 3 7157 60.00 M 11 2 3 7158 70.00 F 0 2 3 7159 70.00 M 23 2 3 7160 85.00 M 4 2 3 7161 60.00 M 0 2 3 7162 65.00 F 0 2 3 7163 70.00 F 4 2 3 7164 44.00 M 1 2 2 7165 65.00 M 2 2 3 7166 57.00 M 4 2 2 7167 65.00 M 13 2 3 7168 55.00 M 2 2 2 7169 66.00 M 10 2 3 7170 71.00 M 6 2 3 7171 75.00 M 13 2 3 7172 56.00 M 15 2 2 7173 32.00 F 9 2 2 7174 42.00 M 3 2 2 7175 88.00 M 12 2 3 7176 74.00 M 6 2 3 7177 65.00 F 5 2 3 7178 54.00 M 13 2 2 7179 76.00 M 13 2 3 7180 86.00 M 4 2 3 7181 78.00 M 7 2 3 7182 54.00 M 1 2 2 7183 53.00 M 4 2 2 7184 64.00 M 7 2 3 7185 90.00 M 8 2 3 7186 40.00 F 1 2 2 7187 55.00 M 4 2 2 7188 65.00 F 6 2 3 7189 62.00 M 1 2 3 7190 72.00 M 3 2 3 7191 65.00 F 0 2 3 7192 51.00 M 5 2 2 7193 60.00 M 5 2 3 7194 60.00 M 1 2 3 7195 55.00 M 8 2 2 7196 71.00 M 3 2 3 7197 70.00 M 5 2 3 7198 71.00 F 4 2 3 7199 38.00 M 2 2 2 7200 29.00 M 7 2 2 7201 70.00 F 9 2 3 7202 55.00 M 7 2 2 7203 62.00 M 3 2 3 7204 64.00 M 4 2 3 7205 45.00 M 1 2 2 7206 76.00 M 7 2 3 7207 70.00 M 2 2 3 7208 42.00 M 6 2 2 7209 72.00 M 8 2 3 7210 58.00 M 1 2 2 7211 55.00 F 4 2 2 7212 55.00 M 1 2 2 7213 63.00 M 5 2 3 7214 65.00 M 8 2 3 7215 72.00 M 2 2 3 7216 42.00 F 3 2 2 7217 26.00 F 6 2 2 7218 69.00 M 7 2 3 7219 72.00 M 4 2 3 7220 75.00 M 8 2 3 7221 80.00 M 2 2 3 7222 56.00 M 7 2 2 7223 71.00 F 1 2 3 7224 55.00 M 2 2 2 7225 70.00 F 1 2 3 7226 75.00 M 5 2 3 7227 54.00 M 6 2 2 7228 58.00 F 0 2 2 7229 50.00 M 2 2 2 7230 65.00 F 2 2 3 7231 61.00 M 1 2 3 7232 46.00 F 1 2 2 7233 69.00 M 0 2 3 7234 69.00 M 0 2 3 7235 84.00 M 7 2 3 7236 73.00 M 2 2 3 7237 57.00 M 2 2 2 7238 63.00 F 10 2 3 7239 82.00 M 3 2 3 7240 43.00 M 1 2 2 7241 47.00 M 3 2 2 7242 52.00 M 5 2 2 7243 60.00 F 2 2 3 7244 65.00 M 0 2 3 7245 77.00 F 0 2 3 7246 60.00 M 4 2 3 7247 39.00 F 0 2 2 7248 47.00 M 0 2 2 7249 70.00 F 1 2 3 7250 71.00 F 0 2 3 7251 65.00 M 5 2 3 7252 50.00 M 1 2 2 7253 60.00 F 1 2 3 7254 76.00 M 0 2 3 7255 65.00 M 2 2 3 7256 65.00 F 1 2 3 7257 60.00 M 2 2 3 7258 70.00 F 3 2 3 7259 45.00 M 0 2 2 7260 54.00 M 1 2 2 7261 63.00 F 0 2 3 7262 62.00 F 2 2 3 7263 70.00 M 8 2 3 7264 53.00 M 11 2 2 7265 70.00 M 1 2 3 7266 63.00 M 2 2 3 7267 78.00 M 2 2 3 7268 52.00 M 3 2 2 7269 54.00 F 5 2 2 7270 62.00 M 4 2 3 7271 67.00 M 0 2 3 7272 61.00 M 0 2 3 7273 43.00 F 0 2 2 7274 65.00 M 0 2 3 7275 35.00 M 1 2 2 7276 72.00 M 0 2 3 7277 45.00 M 1 2 2 7278 76.00 M 12 2 3 7279 71.00 F 10 2 3 7280 48.00 M 3 2 2 7281 60.00 M 5 2 3 7282 35.00 M 1 2 2 7283 69.00 M 6 2 3 7284 67.00 M 18 2 3 7285 62.00 M 4 2 3 7286 65.00 F 0 2 3 7287 66.00 F 1 2 3 7288 63.00 M 25 2 3 7289 67.00 F 15 2 3 7290 50.00 M 11 2 2 7291 67.00 M 11 2 3 7292 67.00 M 2 2 3 7293 85.00 M 0 2 3 7294 45.00 M 1 2 2 7295 71.00 F 0 2 3 7296 49.00 M 7 2 2 7297 20.00 M 11 2 2 7298 77.00 F 11 2 3 7299 48.00 M 2 2 2 7300 73.00 F 14 2 3 7301 62.00 F 0 2 3 7302 45.00 M 12 2 2 7303 60.00 M 5 2 3 7304 45.00 M 1 2 2 7305 57.00 F 1 2 2 7306 83.00 M 0 2 3 7307 70.00 M 1 2 3 7308 60.00 F 14 2 3 7309 74.00 M 3 2 3 7310 26.00 M 10 2 2 7311 66.00 M 10 2 3 7312 50.00 M 12 2 2 7313 49.00 M 10 2 2 7314 53.00 F 0 2 2 7315 32.00 M 3 2 2 7316 57.00 M 3 2 2 7317 56.00 M 0 2 2 7318 65.00 M 1 2 3 7319 65.00 F 0 2 3 7320 45.00 F 7 2 2 7321 70.00 F 3 2 3 7322 42.00 M 9 2 2 7323 63.00 M 0 2 3 7324 66.00 M 5 2 3 7325 60.00 M 2 2 3 7326 65.00 M 5 2 3 7327 65.00 F 5 2 3 7328 54.00 M 0 2 2 7329 59.00 M 4 2 2 7330 58.00 M 2 2 2 7331 60.00 F 2 2 3 7332 54.00 M 2 2 2 7333 30.00 M 11 2 2 7334 50.00 F 5 2 2 7335 70.00 M 3 2 3 7336 58.00 M 6 2 2 7337 49.00 M 5 2 2 7338 68.00 M 2 2 3 7339 80.00 M 7 2 3 7340 58.00 M 8 2 2 7341 93.00 M 2 2 3 7342 60.00 M 5 2 3 7343 70.00 M 3 2 3 7344 65.00 M 1 2 3 7345 55.00 M 2 2 2 7346 42.00 M 3 2 2 7347 26.00 M 0 2 2 7348 46.00 F 3 2 2 7349 48.00 M 2 2 2 7350 55.00 F 1 2 2 7351 60.00 M 6 2 3 7352 49.00 M 2 2 2 7353 62.00 M 2 2 3 7354 66.00 M 2 2 3 7355 84.00 F 3 2 3 7356 73.00 F 0 2 3 7357 32.00 M 2 2 2 7358 59.00 M 0 2 2 7359 65.00 M 7 2 3 7360 77.00 M 4 2 3 7361 60.00 M 3 2 3 7362 58.00 M 0 2 2 7363 62.00 F 0 2 3 7364 68.00 F 1 2 3 7365 55.00 F 2 2 2 7366 52.00 F 2 2 2 7367 55.00 M 5 2 2 7368 41.00 M 0 2 2 7369 54.00 F 2 2 2 7370 65.00 F 0 2 3 7371 52.00 M 0 2 2 7372 57.00 M 2 2 2 7373 40.00 F 0 2 2 7374 63.00 M 0 2 3 7375 55.00 M 0 2 2 7376 41.00 M 0 2 2 7377 45.00 M 1 2 2 7378 50.00 M 23 2 2 7379 35.00 M 5 2 2 7380 80.00 M 16 2 3 7381 39.00 M 13 2 2 7382 65.00 M 16 2 3 7383 60.00 M 3 2 3 7384 76.00 M 15 2 3 7385 55.00 M 5 2 2 7386 70.00 M 0 2 3 7387 55.00 F 6 2 2 7388 55.00 F 3 2 2 7389 46.00 M 6 2 2 7390 37.00 M 9 2 2 7391 67.00 M 9 2 3 7392 45.00 F 10 2 2 7393 72.00 M 9 2 3 7394 80.00 M 9 2 3 7395 72.00 F 7 2 3 7396 59.00 F 8 2 2 7397 57.00 F 8 2 2 7398 50.00 F 7 2 2 7399 56.00 F 7 2 2 7400 70.00 M 10 2 3 7401 60.00 M 5 2 3 7402 75.00 M 2 2 3 7403 74.00 M 6 2 3 7404 65.00 F 7 2 3 7405 79.00 F 5 2 3 7406 72.00 M 5 2 3 7407 65.00 F 5 2 3 7408 63.00 F 6 2 3 7409 65.00 M 2 2 3 7410 43.00 M 1 2 2 7411 46.00 M 5 2 2 7412 51.00 M 0 2 2 7413 71.00 F 8 2 3 7414 69.00 F 4 2 3 7415 80.00 M 2 2 3 7416 70.00 M 2 2 3 7417 69.00 M 3 2 3 7418 74.00 M 1 2 3 7419 40.00 M 2 2 2 7420 35.00 M 2 2 2 7421 77.00 F 7 2 3 7422 91.00 F 1 2 3 7423 70.00 M 6 2 3 7424 42.00 M 0 2 2 7425 65.00 F 3 2 3 7426 70.00 M 2 2 3 7427 67.00 M 8 2 3 7428 56.00 M 1 2 2 7429 36.00 M 0 2 2 7430 63.00 M 2 2 3 7431 54.00 M 2 2 2 7432 60.00 M 4 2 3 7433 66.00 F 2 2 3 7434 56.00 M 0 2 2 7435 27.00 M 2 2 2 7436 60.00 M 0 2 3 7437 55.00 M 1 2 2 7438 73.00 M 1 2 3 7439 54.00 F 0 2 2 7440 60.00 M 1 2 3 7441 54.00 M 0 2 2 7442 40.00 M 0 2 2 7443 60.00 M 1 2 3 7444 62.00 M 1 2 3 7445 68.00 M 7 2 3 7446 97.00 M 29 2 3 7447 75.00 M 19 2 3 7448 62.00 M 15 2 3 7449 80.00 M 11 2 3 7450 40.00 M 15 2 2 7451 71.00 M 9 2 3 7452 59.00 M 3 2 2 7453 62.00 M 14 2 3 7454 75.00 F 15 2 3 7455 65.00 M 12 2 3 7456 86.00 M 4 2 3 7457 80.00 F 3 2 3 7458 62.00 M 7 2 3 7459 80.00 M 7 2 3 7460 83.00 M 0 2 3 7461 65.00 F 5 2 3 7462 53.00 M 11 2 2 7463 64.00 M 2 2 3 7464 52.00 F 11 2 2 7465 72.00 M 8 2 3 7466 66.00 F 6 2 3 7467 63.00 M 15 2 3 7468 0.00 M 10 2 1 7469 68.00 M 1 2 3 7470 82.00 F 2 2 3 7471 62.00 M 4 2 3 7472 70.00 F 8 2 3 7473 62.00 M 7 2 3 7474 89.00 M 8 2 3 7475 69.00 M 9 2 3 7476 80.00 M 8 2 3 7477 50.00 M 4 2 2 7478 80.00 M 9 2 3 7479 42.00 M 10 2 2 7480 56.00 F 6 2 2 7481 85.00 F 8 2 3 7482 85.00 M 3 2 3 7483 69.00 M 6 2 3 7484 61.00 F 9 2 3 7485 78.00 F 9 2 3 7486 81.00 M 2 2 3 7487 71.00 M 4 2 3 7488 58.00 M 0 2 2 7489 54.00 F 5 2 2 7490 62.00 M 7 2 3 7491 69.00 M 5 2 3 7492 93.00 M 0 2 3 7493 64.00 F 4 2 3 7494 50.00 M 3 2 2 7495 52.00 M 9 2 2 7496 65.00 M 2 2 3 7497 74.00 M 7 2 3 7498 68.00 M 2 2 3 7499 30.00 M 5 2 2 7500 77.00 M 7 2 3 7501 64.00 M 5 2 3 7502 66.00 M 6 2 3 7503 70.00 F 1 2 3 7504 65.00 M 6 2 3 7505 80.00 M 4 2 3 7506 70.00 F 1 2 3 7507 66.00 M 6 2 3 7508 68.00 M 3 2 3 7509 80.00 F 1 2 3 7510 45.00 F 0 2 2 7511 64.00 F 15 2 3 7512 86.00 M 0 2 3 7513 66.00 M 5 2 3 7514 65.00 F 3 2 3 7515 72.00 M 8 2 3 7516 70.00 M 1 2 3 7517 53.00 M 3 2 2 7518 73.00 F 5 2 3 7519 47.00 M 0 2 2 7520 48.00 M 4 2 2 7521 45.00 F 12 2 2 7522 62.00 M 2 2 3 7523 56.00 M 1 2 2 7524 55.00 M 2 2 2 7525 71.00 F 3 2 3 7526 70.00 F 2 2 3 7527 70.00 M 2 2 3 7528 60.00 M 1 2 3 7529 54.00 F 1 2 2 7530 73.00 F 0 2 3 7531 30.00 M 0 2 2 7532 52.00 F 0 2 2 7533 19.00 M 0 2 2 7534 65.00 M 0 2 3 7535 62.00 M 2 2 3 7536 36.00 F 1 2 2 7537 42.00 M 0 2 2 7538 61.00 M 0 2 3 7539 45.00 M 0 2 2 7540 72.00 M 0 2 3 7541 56.00 M 0 2 2 7542 54.00 M 0 2 2 7543 74.00 M 23 2 3 7544 68.00 M 25 2 3 7545 50.00 F 4 2 2 7546 60.00 F 6 2 3 7547 50.00 M 4 2 2 7548 68.00 F 19 2 3 7549 68.00 F 1 2 3 7550 58.00 F 19 2 2 7551 68.00 F 16 2 3 7552 51.00 M 13 2 2 7553 50.00 F 11 2 2 7554 66.00 F 2 2 3 7555 51.00 M 14 2 2 7556 75.00 M 9 2 3 7557 67.00 M 1 2 3 7558 68.00 M 7 2 3 7559 61.00 F 1 2 3 7560 74.00 F 1 2 3 7561 52.00 F 7 2 2 7562 92.00 M 1 2 3 7563 66.00 M 3 2 3 7564 67.00 F 6 2 3 7565 50.00 F 3 2 2 7566 67.00 M 10 2 3 7567 35.00 F 1 2 2 7568 65.00 M 2 2 3 7569 65.00 M 0 2 3 7570 72.00 M 12 2 3 7571 45.00 F 1 2 2 7572 62.00 M 4 2 3 7573 66.00 M 3 2 3 7574 52.00 F 12 2 2 7575 56.00 F 8 2 2 7576 53.00 M 12 2 2 7577 66.00 M 9 2 3 7578 43.00 M 0 2 2 7579 79.00 M 5 2 3 7580 60.00 M 6 2 3 7581 57.00 M 12 2 2 7582 88.00 M 5 2 3 7583 66.00 M 11 2 3 7584 70.00 M 2 2 3 7585 45.00 M 6 2 2 7586 65.00 M 5 2 3 7587 80.00 M 1 2 3 7588 65.00 M 5 2 3 7589 74.00 M 12 2 3 7590 76.00 M 0 2 3 7591 36.00 M 6 2 2 7592 65.00 F 0 2 3 7593 47.00 M 1 2 2 7594 85.00 M 38 2 3 7595 40.00 M 0 2 2 7596 73.00 M 10 2 3 7597 60.00 M 5 2 3 7598 54.00 M 5 2 2 7599 56.00 M 1 2 2 7600 74.00 M 1 2 3 7601 65.00 M 4 2 3 7602 53.00 M 1 2 2 7603 67.00 M 9 2 3 7604 77.00 F 1 2 3 7605 68.00 M 1 2 3 7606 78.00 M 4 2 3 7607 72.00 M 4 2 3 7608 85.00 F 10 2 3 7609 75.00 F 5 2 3 7610 56.00 M 2 2 2 7611 54.00 F 1 2 2 7612 60.00 F 5 2 3 7613 68.00 M 10 2 3 7614 47.00 F 3 2 2 7615 50.00 M 4 2 2 7616 83.00 M 9 2 3 7617 85.00 M 8 2 3 7618 75.00 F 9 2 3 7619 64.00 M 10 2 3 7620 65.00 M 6 2 3 7621 78.00 F 4 2 3 7622 67.00 F 4 2 3 7623 58.00 M 2 2 2 7624 58.00 F 2 2 2 7625 65.00 M 1 2 3 7626 70.00 M 31 2 3 7627 65.00 M 0 2 3 7628 70.00 F 4 2 3 7629 59.00 M 7 2 2 7630 64.00 F 5 2 3 7631 60.00 M 2 2 3 7632 70.00 M 4 2 3 7633 57.00 M 5 2 2 7634 72.00 M 6 2 3 7635 42.00 M 0 2 2 7636 74.00 M 3 2 3 7637 68.00 F 3 2 3 7638 45.00 M 3 2 2 7639 59.00 M 6 2 2 7640 55.00 M 5 2 2 7641 70.00 F 8 2 3 7642 52.00 M 5 2 2 7643 32.00 F 1 2 2 7644 43.00 F 1 2 2 7645 55.00 F 3 2 2 7646 42.00 M 5 2 2 7647 49.00 M 2 2 2 7648 68.00 F 0 2 3 7649 68.00 F 2 2 3 7650 87.00 M 6 2 3 7651 20.00 F 1 2 2 7652 49.00 M 14 2 2 7653 50.00 M 0 2 2 7654 55.00 F 3 2 2 7655 57.00 M 4 2 2 7656 45.00 M 5 2 2 7657 63.00 M 3 2 3 7658 34.00 F 1 2 2 7659 70.00 F 1 2 3 7660 62.00 M 0 2 3 7661 66.00 M 2 2 3 7662 54.00 M 3 2 2 7663 65.00 F 5 2 3 7664 84.00 F 1 2 3 7665 70.00 M 1 2 3 7666 69.00 M 3 2 3 7667 85.00 M 2 2 3 7668 62.00 M 1 2 3 7669 72.00 M 1 2 3 7670 50.00 M 0 2 2 7671 70.00 M 0 2 3 7672 60.00 F 0 2 3 7673 70.00 F 4 2 3 7674 76.00 M 9 2 3 7675 71.00 F 4 2 3 7676 60.00 M 0 2 3 7677 64.00 M 3 2 3 7678 68.00 M 1 2 3 7679 68.00 F 5 2 3 7680 67.00 M 5 2 3 7681 52.00 F 0 2 2 7682 85.00 F 7 2 3 7683 56.00 M 3 2 2 7684 70.00 M 0 2 3 7685 45.00 M 7 2 2 7686 63.00 F 3 2 3 7687 64.00 M 5 2 3 7688 87.00 M 2 2 3 7689 40.00 M 3 2 2 7690 86.00 F 1 2 3 7691 45.00 F 3 2 2 7692 67.00 M 1 2 3 7693 50.00 M 2 2 2 7694 58.00 M 3 2 2 7695 55.00 M 1 2 2 7696 75.00 M 3 2 3 7697 58.00 M 0 2 2 7698 21.00 M 0 2 2 7699 54.00 M 2 2 2 7700 56.00 M 3 2 2 7701 70.00 M 2 2 3 7702 73.00 M 0 2 3 7703 84.00 M 1 2 3 7704 75.00 M 1 2 3 7705 48.00 M 1 2 2 7706 50.00 F 1 2 2 7707 56.00 M 0 2 2 7708 80.00 M 3 2 3 7709 75.00 M 2 2 3 7710 46.00 F 2 2 2 7711 62.00 M 1 2 3 7712 65.00 F 2 2 3 7713 65.00 M 2 2 3 7714 69.00 M 1 2 3 7715 96.00 F 3 2 3 7716 79.00 F 6 2 3 7717 70.00 F 34 2 3 7718 73.00 M 23 2 3 7719 86.00 M 13 2 3 7720 59.00 M 8 2 2 7721 75.00 M 16 2 3 7722 70.00 M 17 2 3 7723 82.00 M 19 2 3 7724 34.00 M 17 2 2 7725 60.00 M 3 2 3 7726 65.00 M 14 2 3 7727 62.00 M 13 2 3 7728 59.00 M 6 2 2 7729 65.00 M 0 2 3 7730 78.00 F 0 2 3 7731 50.00 F 0 2 2 7732 63.00 F 5 2 3 7733 65.00 M 6 2 3 7734 21.00 F 3 2 2 7735 57.00 F 8 2 2 7736 67.00 M 18 2 3 7737 51.00 F 0 2 2 7738 71.00 F 0 2 3 7739 78.00 M 0 2 3 7740 69.00 M 17 2 3 7741 60.00 M 4 2 3 7742 84.00 F 0 2 3 7743 63.00 M 0 2 3 7744 70.00 M 1 2 3 7745 52.00 M 8 2 2 7746 36.00 M 2 2 2 7747 65.00 F 0 2 3 7748 72.00 M 2 2 3 7749 30.00 F 7 2 2 7750 74.00 M 0 2 3 7751 49.00 M 0 2 2 7752 75.00 M 1 2 3 7753 60.00 M 13 2 3 7754 49.00 M 2 2 2 7755 73.00 M 25 2 3 7756 57.00 M 1 2 2 7757 82.00 M 1 2 3 7758 75.00 M 6 2 3 7759 68.00 M 9 2 3 7760 50.00 M 4 2 2 7761 51.00 F 5 2 2 7762 84.00 M 2 2 3 7763 72.00 M 0 2 3 7764 66.00 M 5 2 3 7765 60.00 F 0 2 3 7766 72.00 M 7 2 3 7767 72.00 M 7 2 3 7768 59.00 M 6 2 2 7769 62.00 M 13 2 3 7770 68.00 M 3 2 3 7771 35.00 F 0 2 2 7772 85.00 F 2 2 3 7773 59.00 F 3 2 2 7774 85.00 M 2 2 3 7775 57.00 F 5 2 2 7776 39.00 M 4 2 2 7777 62.00 F 1 2 3 7778 55.00 M 5 2 2 7779 64.00 M 7 2 3 7780 61.00 F 2 2 3 7781 65.00 M 1 2 3 7782 51.00 M 6 2 2 7783 75.00 M 2 2 3 7784 72.00 M 4 2 3 7785 75.00 M 5 2 3 7786 62.00 M 0 2 3 7787 70.00 F 0 2 3 7788 65.00 F 2 2 3 7789 60.00 F 4 2 3 7790 70.00 F 5 2 3 7791 44.00 M 5 2 2 7792 58.00 M 0 2 2 7793 62.00 M 5 2 3 7794 50.00 M 14 2 2 7795 81.00 M 18 2 3 7796 64.00 M 2 2 3 7797 31.00 M 1 2 2 7798 73.00 M 0 2 3 7799 60.00 F 5 2 3 7800 64.00 M 1 2 3 7801 83.00 M 0 2 3 7802 48.00 M 0 2 2 7803 54.00 M 2 2 2 7804 65.00 M 2 2 3 7805 60.00 M 0 2 3 7806 68.00 M 0 2 3 7807 53.00 M 0 2 2 7808 38.00 M 1 2 2 7809 63.00 M 1 2 3 7810 61.00 M 1 2 3 7811 65.00 F 3 2 3 7812 73.00 M 0 2 3 7813 71.00 M 1 2 3 7814 62.00 F 1 2 3 7815 44.00 M 1 2 2 7816 53.00 M 1 2 2 7817 70.00 M 0 2 3 7818 63.00 M 1 2 3 7819 55.00 F 2 2 2 7820 42.00 M 1 2 2 7821 52.00 M 10 2 2 7822 73.00 M 0 2 3 7823 69.00 M 2 2 3 7824 88.00 M 0 2 3 7825 69.00 M 0 2 3 7826 65.00 F 1 2 3 7827 72.00 M 1 2 3 7828 55.00 F 1 2 2 7829 46.00 F 2 2 2 7830 56.00 M 0 2 2 7831 65.00 M 17 2 3 7832 67.00 M 0 2 3 7833 64.00 M 0 2 3 7834 60.00 F 13 2 3 7835 52.00 M 0 2 2 7836 63.00 M 5 2 3 7837 72.00 M 13 2 3 7838 52.00 M 13 2 2 7839 50.00 F 16 2 2 7840 68.00 M 10 2 3 7841 68.00 M 8 2 3 7842 57.00 M 2 2 2 7843 50.00 F 1 2 2 7844 60.00 M 6 2 3 7845 62.00 M 10 2 3 7846 59.00 F 0 2 2 7847 68.00 F 3 2 3 7848 96.00 M 5 2 3 7849 80.00 M 12 2 3 7850 80.00 M 7 2 3 7851 65.00 F 3 2 3 7852 64.00 F 2 2 3 7853 40.00 F 9 2 2 7854 72.00 M 6 2 3 7855 50.00 M 7 2 2 7856 51.00 F 5 2 2 7857 65.00 F 6 2 3 7858 75.00 M 7 2 3 7859 80.00 M 1 2 3 7860 49.00 M 0 2 2 7861 66.00 F 7 2 3 7862 12.00 M 0 2 1 7863 85.00 M 8 2 3 7864 76.00 M 4 2 3 7865 60.00 F 1 2 3 7866 80.00 F 4 2 3 7867 75.00 M 8 2 3 7868 33.00 M 9 2 2 7869 73.00 F 6 2 3 7870 80.00 F 2 2 3 7871 19.00 F 1 2 2 7872 54.00 M 8 2 2 7873 66.00 M 5 2 3 7874 57.00 M 4 2 2 7875 62.00 M 2 2 3 7876 83.00 M 1 2 3 7877 65.00 M 0 2 3 7878 50.00 F 4 2 2 7879 50.00 F 6 2 2 7880 32.00 M 2 2 2 7881 77.00 F 1 2 3 7882 55.00 F 3 2 2 7883 76.00 M 1 2 3 7884 61.00 M 0 2 3 7885 47.00 M 5 2 2 7886 50.00 M 5 2 2 7887 55.00 M 4 2 2 7888 73.00 F 6 2 3 7889 64.00 M 1 2 3 7890 85.00 F 6 2 3 7891 35.00 M 4 2 2 7892 55.00 F 2 2 2 7893 68.00 M 3 2 3 7894 50.00 F 2 2 2 7895 75.00 M 0 2 3 7896 76.00 F 1 2 3 7897 56.00 M 3 2 2 7898 48.00 F 13 2 2 7899 80.00 M 1 2 3 7900 72.00 M 3 2 3 7901 81.00 F 1 2 3 7902 1.00 F 0 2 1 7903 40.00 F 4 2 2 7904 69.00 M 4 2 3 7905 64.00 M 2 2 3 7906 72.00 M 7 2 3 7907 93.00 M 1 2 3 7908 97.00 M 5 2 3 7909 32.00 M 2 2 2 7910 75.00 F 2 2 3 7911 54.00 M 1 2 2 7912 38.00 F 1 2 2 7913 64.00 M 1 2 3 7914 60.00 F 1 2 3 7915 61.00 M 10 2 3 7916 60.00 M 0 2 3 7917 78.00 F 0 2 3 7918 65.00 F 2 2 3 7919 59.00 M 0 2 2 7920 58.00 M 2 2 2 7921 85.00 M 2 2 3 7922 55.00 M 0 2 2 7923 73.00 M 3 2 3 7924 48.00 F 4 2 2 7925 43.00 F 4 2 2 7926 84.00 M 1 2 3 7927 85.00 M 0 2 3 7928 38.00 M 0 2 2 7929 51.00 M 1 2 2 7930 60.00 M 0 2 3 7931 70.00 M 0 2 3 7932 85.00 M 15 2 3 7933 61.00 M 16 2 3 7934 75.00 M 21 2 3 7935 62.00 M 11 2 3 7936 75.00 M 17 2 3 7937 75.00 F 11 2 3 7938 70.00 M 1 2 3 7939 60.00 F 14 2 3 7940 50.00 M 1 2 2 7941 75.00 M 14 2 3 7942 63.00 F 13 2 3 7943 35.00 M 10 2 2 7944 56.00 M 7 2 2 7945 75.00 M 0 2 3 7946 69.00 M 6 2 3 7947 68.00 M 3 2 3 7948 70.00 M 5 2 3 7949 50.00 M 11 2 2 7950 65.00 F 4 2 3 7951 62.00 F 1 2 3 7952 72.00 M 0 2 3 7953 63.00 M 8 2 3 7954 75.00 F 6 2 3 7955 80.00 M 2 2 3 7956 72.00 F 5 2 3 7957 60.00 F 9 2 3 7958 75.00 M 0 2 3 7959 63.00 M 10 2 3 7960 65.00 F 2 2 3 7961 70.00 M 2 2 3 7962 84.00 M 9 2 3 7963 70.00 F 8 2 3 7964 65.00 M 8 2 3 7965 85.00 M 10 2 3 7966 58.00 M 2 2 2 7967 85.00 M 1 2 3 7968 61.00 M 4 2 3 7969 66.00 F 7 2 3 7970 80.00 F 8 2 3 7971 58.00 F 6 2 2 7972 66.00 M 10 2 3 7973 71.00 M 7 2 3 7974 59.00 M 8 2 2 7975 65.00 F 7 2 3 7976 78.00 M 4 2 3 7977 80.00 M 3 2 3 7978 82.00 M 3 2 3 7979 62.00 F 4 2 3 7980 82.00 M 2 2 3 7981 48.00 M 5 2 2 7982 62.00 M 3 2 3 7983 60.00 M 3 2 3 7984 77.00 M 5 2 3 7985 40.00 M 6 2 2 7986 50.00 M 5 2 2 7987 73.00 M 5 2 3 7988 65.00 F 7 2 3 7989 48.00 F 5 2 2 7990 64.00 M 3 2 3 7991 67.00 M 2 2 3 7992 65.00 F 4 2 3 7993 65.00 M 0 2 3 7994 53.00 M 3 2 2 7995 65.00 M 4 2 3 7996 66.00 M 5 2 3 7997 71.00 M 3 2 3 7998 52.00 M 0 2 2 7999 71.00 F 6 2 3 8000 75.00 M 6 2 3 8001 72.00 M 3 2 3 8002 66.00 M 2 2 3 8003 42.00 M 2 2 2 8004 67.00 M 3 2 3 8005 53.00 F 1 2 2 8006 49.00 M 2 2 2 8007 62.00 M 10 2 3 8008 63.00 M 2 2 3 8009 69.00 M 1 2 3 8010 65.00 F 1 2 3 8011 58.00 M 2 2 2 8012 72.00 M 2 2 3 8013 43.00 M 1 2 2 8014 70.00 M 2 2 3 8015 42.00 M 0 2 2 8016 65.00 M 4 2 3 8017 66.00 M 4 2 3 8018 70.00 F 0 2 3 8019 50.00 M 1 2 2 8020 70.00 M 1 2 3 8021 35.00 M 0 2 2 8022 65.00 M 3 2 3 8023 65.00 M 2 2 3 8024 59.00 M 15 2 2 8025 60.00 M 0 2 3 8026 65.00 M 1 2 3 8027 72.00 F 0 2 3 8028 60.00 M 1 2 3 8029 48.00 M 1 2 2 8030 58.00 F 2 2 2 8031 58.00 M 0 2 2 8032 49.00 M 2 2 2 8033 66.00 M 3 2 3 8034 70.00 M 2 2 3 8035 61.00 M 4 2 3 8036 60.00 F 3 2 3 8037 65.00 M 2 2 3 8038 80.00 M 23 2 3 8039 85.00 M 2 2 3 8040 70.00 M 1 2 3 8041 50.00 F 0 2 2 8042 25.00 M 1 2 2 8043 62.00 M 1 2 3 8044 52.00 M 1 2 2 8045 68.00 M 2 2 3 8046 59.00 F 2 2 2 8047 55.00 M 0 2 2 8048 65.00 M 0 2 3 8049 60.00 M 0 2 3 8050 65.00 F 0 2 3 8051 45.00 F 1 2 2 8052 42.00 M 2 2 2 8053 52.00 F 1 2 2 8054 65.00 F 19 2 3 8055 65.00 M 22 2 3 8056 26.00 M 24 2 2 8057 58.00 F 3 2 2 8058 56.00 M 17 2 2 8059 65.00 F 14 2 3 8060 76.00 M 22 2 3 8061 77.00 F 17 2 3 8062 40.00 M 1 2 2 8063 71.00 M 0 2 3 8064 68.00 M 6 2 3 8065 49.00 M 6 2 2 8066 74.00 M 7 2 3 8067 75.00 F 14 2 3 8068 71.00 F 0 2 3 8069 75.00 F 1 2 3 8070 60.00 M 0 2 3 8071 58.00 M 1 2 2 8072 72.00 M 5 2 3 8073 74.00 M 7 2 3 8074 93.00 M 2 2 3 8075 73.00 M 3 2 3 8076 45.00 M 11 2 2 8077 70.00 M 1 2 3 8078 79.00 M 7 2 3 8079 70.00 M 0 2 3 8080 65.00 M 7 2 3 8081 89.00 M 4 2 3 8082 68.00 M 6 2 3 8083 68.00 M 0 2 3 8084 73.00 M 3 2 3 8085 65.00 M 5 2 3 8086 57.00 F 1 2 2 8087 41.00 F 11 2 2 8088 72.00 M 0 2 3 8089 48.00 M 7 2 2 8090 40.00 M 0 2 2 8091 60.00 M 6 2 3 8092 38.00 M 6 2 2 8093 55.00 M 0 2 2 8094 71.00 F 6 2 3 8095 64.00 F 6 2 3 8096 65.00 M 8 2 3 8097 63.00 M 3 2 3 8098 65.00 F 3 2 3 8099 60.00 M 1 2 3 8100 65.00 M 4 2 3 8101 70.00 M 3 2 3 8102 64.00 M 4 2 3 8103 62.00 M 3 2 3 8104 58.00 M 4 2 2 8105 23.00 M 5 2 2 8106 95.00 M 5 2 3 8107 45.00 M 0 2 2 8108 57.00 M 4 2 2 8109 52.00 F 6 2 2 8110 43.00 M 7 2 2 8111 52.00 M 3 2 2 8112 82.00 M 3 2 3 8113 67.00 M 1 2 3 8114 58.00 M 2 2 2 8115 55.00 F 2 2 2 8116 56.00 F 3 2 2 8117 46.00 M 1 2 2 8118 95.00 M 2 2 3 8119 52.00 M 2 2 2 8120 71.00 M 5 2 3 8121 40.00 F 2 2 2 8122 83.00 M 0 2 3 8123 50.00 M 2 2 2 8124 74.00 M 3 2 3 8125 65.00 F 1 2 3 8126 52.00 M 4 2 2 8127 84.00 F 0 2 3 8128 72.00 M 3 2 3 8129 86.00 M 3 2 3 8130 67.00 F 0 2 3 8131 1.00 M 0 2 1 8132 60.00 M 4 2 3 8133 60.00 F 3 2 3 8134 58.00 M 2 2 2 8135 88.00 M 0 2 3 8136 74.00 M 0 2 3 8137 65.00 M 27 2 3 8138 76.00 M 15 2 3 8139 58.00 M 0 2 2 8140 67.00 M 8 2 3 8141 49.00 M 0 2 2 8142 70.00 M 2 2 3 8143 44.00 M 12 2 2 8144 64.00 M 2 2 3 8145 67.00 F 6 2 3 8146 58.00 F 7 2 2 8147 70.00 F 7 2 3 8148 50.00 M 6 2 2 8149 56.00 M 5 2 2 8150 83.00 M 1 2 3 8151 67.00 M 3 2 3 8152 77.00 M 17 2 3 8153 76.00 M 7 2 3 8154 75.00 F 1 2 3 8155 54.00 F 0 2 2 8156 70.00 M 2 2 3 8157 68.00 M 3 2 3 8158 46.00 M 1 2 2 8159 79.00 F 2 2 3 8160 82.00 M 6 2 3 8161 69.00 M 5 2 3 8162 83.00 F 8 2 3 8163 65.00 M 3 2 3 8164 78.00 M 2 2 3 8165 65.00 M 2 2 3 8166 48.00 F 4 2 2 8167 48.00 F 2 2 2 8168 89.00 F 2 2 3 8169 68.00 F 6 2 3 8170 75.00 M 3 2 3 8171 54.00 F 1 2 2 8172 41.00 M 0 2 2 8173 65.00 M 0 2 3 8174 60.00 F 1 2 3 8175 72.00 M 34 2 3 8176 64.00 M 23 2 3 8177 82.00 M 13 2 3 8178 52.00 M 17 2 2 8179 65.00 M 3 2 3 8180 85.00 M 12 2 3 8181 74.00 M 10 2 3 8182 67.00 F 12 2 3 8183 62.00 F 2 2 3 8184 78.00 M 13 2 3 8185 58.00 F 9 2 2 8186 50.00 M 14 2 2 8187 62.00 F 0 2 3 8188 85.00 M 2 2 3 8189 65.00 M 2 2 3 8190 69.00 M 10 2 3 8191 56.00 F 3 2 2 8192 67.00 M 3 2 3 8193 52.00 M 9 2 2 8194 81.00 M 11 2 3 8195 71.00 M 8 2 3 8196 74.00 M 3 2 3 8197 67.00 M 7 2 3 8198 45.00 F 7 2 2 8199 62.00 M 11 2 3 8200 54.00 M 0 2 2 8201 86.00 M 7 2 3 8202 32.00 M 0 2 2 8203 63.00 M 9 2 3 8204 65.00 M 7 2 3 8205 58.00 M 5 2 2 8206 50.00 M 0 2 2 8207 80.00 M 0 2 3 8208 59.00 F 4 2 2 8209 30.00 F 3 2 2 8210 72.00 F 3 2 3 8211 73.00 M 5 2 3 8212 95.00 M 3 2 3 8213 67.00 M 3 2 3 8214 53.00 M 4 2 2 8215 60.00 F 0 2 3 8216 80.00 F 4 2 3 8217 62.00 M 1 2 3 8218 54.00 M 0 2 2 8219 75.00 M 2 2 3 8220 85.00 F 3 2 3 8221 71.00 F 7 2 3 8222 71.00 F 2 2 3 8223 40.00 M 0 2 2 8224 72.00 M 1 2 3 8225 54.00 M 1 2 2 8226 97.00 M 1 2 3 8227 60.00 M 1 2 3 8228 52.00 M 0 2 2 8229 76.00 M 0 2 3 8230 88.00 M 0 2 3 8231 82.00 M 1 2 3 8232 70.00 M 2 2 3 8233 54.00 F 1 2 2 8234 73.00 M 0 2 3 8235 70.00 M 0 2 3 8236 67.00 M 4 2 3 8237 50.00 M 0 2 2 8238 70.00 F 1 2 3 8239 60.00 M 0 2 3 8240 33.00 F 2 2 2 8241 60.00 F 5 2 3 8242 79.00 M 4 2 3 8243 74.00 M 21 2 3 8244 59.00 M 14 2 2 8245 60.00 F 11 2 3 8246 81.00 M 8 2 3 8247 65.00 F 7 2 3 8248 65.00 M 12 2 3 8249 50.00 M 17 2 2 8250 65.00 M 12 2 3 8251 84.00 M 17 2 3 8252 60.00 M 13 2 3 8253 69.00 M 18 2 3 8254 75.00 M 17 2 3 8255 87.00 F 12 2 3 8256 68.00 M 11 2 3 8257 46.00 F 8 2 2 8258 67.00 M 17 2 3 8259 56.00 M 9 2 2 8260 60.00 M 10 2 3 8261 61.00 M 8 2 3 8262 68.00 F 8 2 3 8263 76.00 M 8 2 3 8264 63.00 M 12 2 3 8265 79.00 M 7 2 3 8266 45.00 M 10 2 2 8267 73.00 M 12 2 3 8268 62.00 M 2 2 3 8269 45.00 M 8 2 2 8270 61.00 M 5 2 3 8271 66.00 M 23 2 3 8272 85.00 M 10 2 3 8273 47.00 M 3 2 2 8274 74.00 M 10 2 3 8275 51.00 M 4 2 2 8276 60.00 M 4 2 3 8277 65.00 F 1 2 3 8278 75.00 M 0 2 3 8279 67.00 M 5 2 3 8280 50.00 M 1 2 2 8281 70.00 M 0 2 3 8282 60.00 M 1 2 3 8283 57.00 M 1 2 2 8284 29.00 M 1 2 2 8285 64.00 M 4 2 3 8286 55.00 M 3 2 2 8287 50.00 M 0 2 2 8288 66.00 F 0 2 3 8289 52.00 M 2 2 2 8290 73.00 M 9 2 3 8291 54.00 M 9 2 2 8292 80.00 F 0 2 3 8293 57.00 F 8 2 2 8294 58.00 M 1 2 2 8295 65.00 F 2 2 3 8296 56.00 M 6 2 2 8297 67.00 M 2 2 3 8298 64.00 M 1 2 3 8299 40.00 M 23 2 2 8300 52.00 F 2 2 2 8301 59.00 M 1 2 2 8302 76.00 M 2 2 3 8303 73.00 F 4 2 3 8304 60.00 M 0 2 3 8305 70.00 F 1 2 3 8306 31.00 M 0 2 2 8307 60.00 F 0 2 3 8308 53.00 M 0 2 2 8309 74.00 M 1 2 3 8310 85.00 M 0 2 3 8311 60.00 M 1 2 3 8312 80.00 M 0 2 3 8313 60.00 M 1 2 3 8314 67.00 M 2 2 3 8315 40.00 M 3 2 2 8316 64.00 M 4 2 3 8317 35.00 M 1 2 2 8318 85.00 M 1 2 3 8319 45.00 M 0 2 2 8320 65.00 F 4 2 3 8321 70.00 M 0 2 3 8322 70.00 M 0 2 3 8323 65.00 M 1 2 3 8324 70.00 M 0 2 3 8325 56.00 M 3 2 2 8326 71.00 M 28 2 3 8327 45.00 M 18 2 2 8328 75.00 M 16 2 3 8329 72.00 F 21 2 3 8330 74.00 M 9 2 3 8331 69.00 M 16 2 3 8332 65.00 M 9 2 3 8333 83.00 F 6 2 3 8334 65.00 M 14 2 3 8335 40.00 M 12 2 2 8336 58.00 M 11 2 2 8337 56.00 M 11 2 2 8338 60.00 M 8 2 3 8339 83.00 M 5 2 3 8340 75.00 M 1 2 3 8341 63.00 M 8 2 3 8342 45.00 M 12 2 2 8343 65.00 F 10 2 3 8344 60.00 M 9 2 3 8345 50.00 M 10 2 2 8346 85.00 M 2 2 3 8347 80.00 M 4 2 3 8348 70.00 F 9 2 3 8349 76.00 F 10 2 3 8350 63.00 M 7 2 3 8351 65.00 M 11 2 3 8352 62.00 F 3 2 3 8353 47.00 M 1 2 2 8354 66.00 M 10 2 3 8355 62.00 M 9 2 3 8356 57.00 M 3 2 2 8357 65.00 M 2 2 3 8358 75.00 M 9 2 3 8359 78.00 M 4 2 3 8360 85.00 M 3 2 3 8361 48.00 M 4 2 2 8362 42.00 M 10 2 2 8363 35.00 M 8 2 2 8364 82.00 F 5 2 3 8365 43.00 M 2 2 2 8366 72.00 F 2 2 3 8367 55.00 M 4 2 2 8368 60.00 M 2 2 3 8369 65.00 F 8 2 3 8370 72.00 F 3 2 3 8371 74.00 M 2 2 3 8372 56.00 M 3 2 2 8373 66.00 F 1 2 3 8374 62.00 F 10 2 3 8375 58.00 F 0 2 2 8376 65.00 M 6 2 3 8377 75.00 F 6 2 3 8378 60.00 M 2 2 3 8379 62.00 M 0 2 3 8380 65.00 M 3 2 3 8381 66.00 F 3 2 3 8382 74.00 M 2 2 3 8383 72.00 F 3 2 3 8384 66.00 M 2 2 3 8385 76.00 M 7 2 3 8386 24.00 M 1 2 2 8387 62.00 M 1 2 3 8388 59.00 F 4 2 2 8389 50.00 M 6 2 2 8390 75.00 M 5 2 3 8391 60.00 M 1 2 3 8392 55.00 F 1 2 2 8393 61.00 M 17 2 3 8394 34.00 M 0 2 2 8395 74.00 M 3 2 3 8396 67.00 F 0 2 3 8397 62.00 F 3 2 3 8398 79.00 M 5 2 3 8399 65.00 F 2 2 3 8400 68.00 M 1 2 3 8401 57.00 M 0 2 2 8402 40.00 F 2 2 2 8403 65.00 M 1 2 3 8404 70.00 F 0 2 3 8405 40.00 F 3 2 2 8406 45.00 F 1 2 2 8407 38.00 M 1 2 2 8408 70.00 F 2 2 3 8409 40.00 M 1 2 2 8410 58.00 M 0 2 2 8411 65.00 F 0 2 3 8412 50.00 M 0 2 2 8413 68.00 M 16 2 3 8414 56.00 M 12 2 2 8415 68.00 M 8 2 3 8416 79.00 M 12 2 3 8417 84.00 F 13 2 3 8418 43.00 M 15 2 2 8419 80.00 F 7 2 3 8420 60.00 M 5 2 3 8421 52.00 M 13 2 2 8422 68.00 M 2 2 3 8423 82.00 M 3 2 3 8424 68.00 F 8 2 3 8425 57.00 M 8 2 2 8426 70.00 M 10 2 3 8427 48.00 M 10 2 2 8428 65.00 M 8 2 3 8429 50.00 F 3 2 2 8430 60.00 F 5 2 3 8431 72.00 M 7 2 3 8432 78.00 M 13 2 3 8433 62.00 M 8 2 3 8434 61.00 M 7 2 3 8435 62.00 F 6 2 3 8436 75.00 M 3 2 3 8437 56.00 F 7 2 2 8438 60.00 F 2 2 3 8439 28.00 M 13 2 2 8440 62.00 M 4 2 3 8441 40.00 F 4 2 2 8442 74.00 M 9 2 3 8443 67.00 F 0 2 3 8444 56.00 M 5 2 2 8445 55.00 M 6 2 2 8446 78.00 M 1 2 3 8447 80.00 M 5 2 3 8448 46.00 M 5 2 2 8449 90.00 M 3 2 3 8450 46.00 M 4 2 2 8451 45.00 M 5 2 2 8452 48.00 F 2 2 2 8453 72.00 F 6 2 3 8454 65.00 M 1 2 3 8455 66.00 F 3 2 3 8456 70.00 M 0 2 3 8457 48.00 F 11 2 2 8458 84.00 F 5 2 3 8459 94.00 F 2 2 3 8460 65.00 M 1 2 3 8461 40.00 M 0 2 2 8462 76.00 M 7 2 3 8463 47.00 M 7 2 2 8464 76.00 F 4 2 3 8465 71.00 M 4 2 3 8466 34.00 M 0 2 2 8467 80.00 F 2 2 3 8468 52.00 F 2 2 2 8469 88.00 F 0 2 3 8470 65.00 M 1 2 3 8471 55.00 M 1 2 2 8472 30.00 F 3 2 2 8473 60.00 F 3 2 3 8474 61.00 M 1 2 3 8475 73.00 M 1 2 3 8476 75.00 M 0 2 3 8477 73.00 M 2 2 3 8478 62.00 M 1 2 3 8479 59.00 F 1 2 2 8480 76.00 M 1 2 3 8481 68.00 M 3 2 3 8482 70.00 M 0 2 3 8483 80.00 M 10 2 3 8484 45.00 F 0 2 2 8485 37.00 M 2 2 2 8486 80.00 M 2 2 3 8487 55.00 M 1 2 2 8488 72.00 F 1 2 3 8489 75.00 M 0 2 3 8490 46.00 F 1 2 2 8491 72.00 F 0 2 3 8492 80.00 M 9 2 3 8493 83.00 M 19 2 3 8494 36.00 M 13 2 2 8495 55.00 M 0 2 2 8496 62.00 M 18 2 3 8497 58.00 F 7 2 2 8498 68.00 M 8 2 3 8499 72.00 F 10 2 3 8500 65.00 M 2 2 3 8501 55.00 M 8 2 2 8502 72.00 M 9 2 3 8503 63.00 M 10 2 3 8504 56.00 M 1 2 2 8505 70.00 F 12 2 3 8506 40.00 M 0 2 2 8507 62.00 M 11 2 3 8508 70.00 M 0 2 3 8509 72.00 M 7 2 3 8510 85.00 F 9 2 3 8511 65.00 M 1 2 3 8512 60.00 F 9 2 3 8513 45.00 F 7 2 2 8514 56.00 F 9 2 2 8515 63.00 M 2 2 3 8516 72.00 M 4 2 3 8517 41.00 F 0 2 2 8518 57.00 M 4 2 2 8519 70.00 M 0 2 3 8520 57.00 F 0 2 2 8521 91.00 M 9 2 3 8522 75.00 M 0 2 3 8523 58.00 M 4 2 2 8524 70.00 F 0 2 3 8525 46.00 M 5 2 2 8526 63.00 M 4 2 3 8527 71.00 F 3 2 3 8528 35.00 F 3 2 2 8529 55.00 M 1 2 2 8530 46.00 M 3 2 2 8531 65.00 M 6 2 3 8532 67.00 M 5 2 3 8533 52.00 F 4 2 2 8534 62.00 M 2 2 3 8535 50.00 F 2 2 2 8536 58.00 F 0 2 2 8537 54.00 M 2 2 2 8538 65.00 M 1 2 3 8539 81.00 F 4 2 3 8540 80.00 M 1 2 3 8541 35.00 M 1 2 2 8542 50.00 M 19 2 2 8543 88.00 M 0 2 3 8544 52.00 F 1 2 2 8545 65.00 M 1 2 3 8546 46.00 M 1 2 2 8547 60.00 M 0 2 3 8548 56.00 M 0 2 2 8549 55.00 F 1 2 2 8550 84.00 F 1 2 3 8551 41.00 M 0 2 2 8552 51.00 M 0 2 2 8553 23.00 F 0 2 2 8554 71.00 F 1 2 3 8555 60.00 F 8 2 3 8556 52.00 M 4 2 2 8557 56.00 M 0 2 2 8558 61.00 M 1 2 3 8559 50.00 M 1 2 2 8560 52.00 M 0 2 2 8561 59.00 M 0 2 2 8562 71.00 M 3 2 3 8563 88.00 F 5 2 3 8564 52.00 F 0 2 2 8565 54.00 F 1 2 2 8566 48.00 M 0 2 2 8567 40.00 F 1 2 2 8568 58.00 F 0 2 2 8569 59.00 M 0 2 2 8570 37.00 M 1 2 2 8571 47.00 M 1 2 2 8572 63.00 M 3 2 3 8573 63.00 F 0 2 3 8574 46.00 M 0 2 2 8575 64.00 M 2 2 3 8576 54.00 M 0 2 2 8577 71.00 M 0 2 3 8578 64.00 M 4 2 3 8579 44.00 M 2 2 2 8580 74.00 F 2 2 3 8581 83.00 M 0 2 3 8582 65.00 F 2 2 3 8583 70.00 F 0 2 3 8584 58.00 F 2 2 2 8585 45.00 M 0 2 2 8586 62.00 M 10 2 3 8587 54.00 M 0 2 2 8588 40.00 M 0 2 2 8589 45.00 M 26 2 2 8590 52.00 M 23 2 2 8591 47.00 M 1 2 2 8592 58.00 M 1 2 2 8593 66.00 M 4 2 3 8594 79.00 F 7 2 3 8595 52.00 M 8 2 2 8596 59.00 M 4 2 2 8597 60.00 F 0 2 3 8598 45.00 F 20 2 2 8599 62.00 F 6 2 3 8600 84.00 M 9 2 3 8601 56.00 F 0 2 2 8602 77.00 F 2 2 3 8603 63.00 M 8 2 3 8604 68.00 F 4 2 3 8605 60.00 M 14 2 3 8606 69.00 F 16 2 3 8607 85.00 F 12 2 3 8608 45.00 M 14 2 2 8609 55.00 M 0 2 2 8610 66.00 M 9 2 3 8611 60.00 F 0 2 3 8612 55.00 M 0 2 2 8613 81.00 M 11 2 3 8614 62.00 M 8 2 3 8615 42.00 M 15 2 2 8616 69.00 M 19 2 3 8617 75.00 M 5 2 3 8618 68.00 F 4 2 3 8619 64.00 M 4 2 3 8620 60.00 M 0 2 3 8621 40.00 M 16 2 2 8622 40.00 F 5 2 2 8623 61.00 M 9 2 3 8624 23.00 M 1 2 2 8625 65.00 M 3 2 3 8626 69.00 M 9 2 3 8627 62.00 M 10 2 3 8628 60.00 M 1 2 3 8629 74.00 M 0 2 3 8630 85.00 M 3 2 3 8631 65.00 M 6 2 3 8632 61.00 M 8 2 3 8633 66.00 M 4 2 3 8634 55.00 M 8 2 2 8635 65.00 F 7 2 3 8636 69.00 M 9 2 3 8637 65.00 F 12 2 3 8638 62.00 M 7 2 3 8639 55.00 M 3 2 2 8640 75.00 M 9 2 3 8641 53.00 F 15 2 2 8642 78.00 M 6 2 3 8643 76.00 F 8 2 3 8644 42.00 M 7 2 2 8645 70.00 M 0 2 3 8646 50.00 M 2 2 2 8647 56.00 M 5 2 2 8648 70.00 M 4 2 3 8649 47.00 F 1 2 2 8650 65.00 M 1 2 3 8651 78.00 F 5 2 3 8652 74.00 M 0 2 3 8653 5.00 M 4 2 1 8654 92.00 M 1 2 3 8655 76.00 M 5 2 3 8656 69.00 F 4 2 3 8657 67.00 M 4 2 3 8658 78.00 M 1 2 3 8659 60.00 F 6 2 3 8660 55.00 M 4 2 2 8661 65.00 M 4 2 3 8662 47.00 M 3 2 2 8663 60.00 M 2 2 3 8664 82.00 M 0 2 3 8665 58.00 M 2 2 2 8666 71.00 M 3 2 3 8667 84.00 M 2 2 3 8668 59.00 M 0 2 2 8669 72.00 M 1 2 3 8670 42.00 M 1 2 2 8671 60.00 M 1 2 3 8672 82.00 F 1 2 3 8673 48.00 F 2 2 2 8674 68.00 M 3 2 3 8675 86.00 M 2 2 3 8676 75.00 F 1 2 3 8677 23.00 M 0 2 2 8678 68.00 F 2 2 3 8679 90.00 M 1 2 3 8680 70.00 F 1 2 3 8681 50.00 M 4 2 2 8682 45.00 F 4 2 2 8683 68.00 M 4 2 3 8684 73.00 M 1 2 3 8685 81.00 M 18 2 3 8686 84.00 F 7 2 3 8687 73.00 M 22 2 3 8688 67.00 M 10 2 3 8689 80.00 F 20 2 3 8690 52.00 F 16 2 2 8691 62.00 M 2 2 3 8692 73.00 F 7 2 3 8693 66.00 M 0 2 3 8694 70.00 F 11 2 3 8695 42.00 M 1 2 2 8696 66.00 M 6 2 3 8697 65.00 M 11 2 3 8698 67.00 M 7 2 3 8699 55.00 F 8 2 2 8700 65.00 M 0 2 3 8701 40.00 M 1 2 2 8702 55.00 M 9 2 2 8703 66.00 M 0 2 3 8704 62.00 M 2 2 3 8705 78.00 F 7 2 3 8706 78.00 M 0 2 3 8707 70.00 M 7 2 3 8708 75.00 M 10 2 3 8709 50.00 M 0 2 2 8710 45.00 F 2 2 2 8711 68.00 F 4 2 3 8712 53.00 M 7 2 2 8713 59.00 M 5 2 2 8714 68.00 M 0 2 3 8715 75.00 M 7 2 3 8716 70.00 M 7 2 3 8717 63.00 M 9 2 3 8718 90.00 M 6 2 3 8719 78.00 M 8 2 3 8720 82.00 F 6 2 3 8721 56.00 M 4 2 2 8722 40.00 M 1 2 2 8723 48.00 M 3 2 2 8724 73.00 M 3 2 3 8725 76.00 M 6 2 3 8726 59.00 M 5 2 2 8727 35.00 M 7 2 2 8728 59.00 M 4 2 2 8729 48.00 M 0 2 2 8730 52.00 M 3 2 2 8731 55.00 M 7 2 2 8732 65.00 F 3 2 3 8733 82.00 F 2 2 3 8734 72.00 M 2 2 3 8735 76.00 M 4 2 3 8736 60.00 F 9 2 3 8737 70.00 M 8 2 3 8738 53.00 F 0 2 2 8739 67.00 F 4 2 3 8740 74.00 M 5 2 3 8741 74.00 M 1 2 3 8742 75.00 M 3 2 3 8743 42.00 M 2 2 2 8744 82.00 M 0 2 3 8745 58.00 M 3 2 2 8746 63.00 M 0 2 3 8747 79.00 M 32 2 3 8748 85.00 F 2 2 3 8749 79.00 M 5 2 3 8750 69.00 M 2 2 3 8751 47.00 F 5 2 2 8752 65.00 M 1 2 3 8753 80.00 M 0 2 3 8754 72.00 M 2 2 3 8755 60.00 M 3 2 3 8756 36.00 M 2 2 2 8757 62.00 M 4 2 3 8758 50.00 M 0 2 2 8759 67.00 F 0 2 3 8760 62.00 M 3 2 3 8761 68.00 M 3 2 3 8762 70.00 F 2 2 3 8763 85.00 M 2 2 3 8764 74.00 F 1 2 3 8765 51.00 M 2 2 2 8766 54.00 M 1 2 2 8767 52.00 M 0 2 2 8768 86.00 M 2 2 3 8769 77.00 M 2 2 3 8770 45.00 M 0 2 2 8771 51.00 M 1 2 2 8772 70.00 F 3 2 3 8773 58.00 M 23 2 2 8774 28.00 M 9 2 2 8775 58.00 M 0 2 2 8776 48.00 M 1 2 2 8777 48.00 M 7 2 2 8778 59.00 M 5 2 2 8779 90.00 M 2 2 3 8780 60.00 F 8 2 3 8781 74.00 M 4 2 3 8782 72.00 F 1 2 3 8783 65.00 F 2 2 3 8784 70.00 M 14 2 3 8785 77.00 M 0 2 3 8786 52.00 M 10 2 2 8787 77.00 M 3 2 3 8788 66.00 M 18 2 3 8789 64.00 M 24 2 3 8790 79.00 M 12 2 3 8791 85.00 M 9 2 3 8792 81.00 M 12 2 3 8793 70.00 M 16 2 3 8794 51.00 M 4 2 2 8795 54.00 M 10 2 2 8796 52.00 M 0 2 2 8797 46.00 M 18 2 2 8798 80.00 F 16 2 3 8799 58.00 M 8 2 2 8800 65.00 M 5 2 3 8801 87.00 F 8 2 3 8802 74.00 M 2 2 3 8803 2.00 F 3 2 1 8804 88.00 F 4 2 3 8805 56.00 M 6 2 2 8806 42.00 M 10 2 2 8807 68.00 M 13 2 3 8808 45.00 M 0 2 2 8809 62.00 M 14 2 3 8810 59.00 F 5 2 2 8811 65.00 M 5 2 3 8812 70.00 M 10 2 3 8813 68.00 F 0 2 3 8814 70.00 M 13 2 3 8815 57.00 F 3 2 2 8816 64.00 M 9 2 3 8817 79.00 F 0 2 3 8818 63.00 F 9 2 3 8819 70.00 F 1 2 3 8820 55.00 M 12 2 2 8821 90.00 M 11 2 3 8822 52.00 F 10 2 2 8823 27.00 M 7 2 2 8824 84.00 F 6 2 3 8825 64.00 F 2 2 3 8826 75.00 M 8 2 3 8827 70.00 M 9 2 3 8828 45.00 M 8 2 2 8829 72.00 M 4 2 3 8830 55.00 M 6 2 2 8831 40.00 M 0 2 2 8832 78.00 M 10 2 3 8833 65.00 F 2 2 3 8834 78.00 M 1 2 3 8835 57.00 F 8 2 2 8836 68.00 F 5 2 3 8837 60.00 M 1 2 3 8838 36.00 M 4 2 2 8839 80.00 M 1 2 3 8840 60.00 F 8 2 3 8841 55.00 F 8 2 2 8842 50.00 M 0 2 2 8843 59.00 M 3 2 2 8844 68.00 M 8 2 3 8845 63.00 M 1 2 3 8846 52.00 M 6 2 2 8847 50.00 F 5 2 2 8848 58.00 F 2 2 2 8849 71.00 F 7 2 3 8850 48.00 M 1 2 2 8851 52.00 M 6 2 2 8852 70.00 M 1 2 3 8853 58.00 F 0 2 2 8854 65.00 M 5 2 3 8855 40.00 M 7 2 2 8856 75.00 M 4 2 3 8857 86.00 M 6 2 3 8858 58.00 M 6 2 2 8859 65.00 F 2 2 3 8860 56.00 M 0 2 2 8861 55.00 M 5 2 2 8862 72.00 M 6 2 3 8863 60.00 F 6 2 3 8864 64.00 M 5 2 3 8865 54.00 M 2 2 2 8866 96.00 F 3 2 3 8867 58.00 M 5 2 2 8868 46.00 M 1 2 2 8869 58.00 M 0 2 2 8870 60.00 F 5 2 3 8871 83.00 F 0 2 3 8872 53.00 M 6 2 2 8873 67.00 M 4 2 3 8874 55.00 M 4 2 2 8875 85.00 M 1 2 3 8876 25.00 F 1 2 2 8877 69.00 M 2 2 3 8878 48.00 M 4 2 2 8879 80.00 M 1 2 3 8880 75.00 M 4 2 3 8881 80.00 F 2 2 3 8882 70.00 M 5 2 3 8883 86.00 M 4 2 3 8884 67.00 F 4 2 3 8885 85.00 F 10 2 3 8886 65.00 F 0 2 3 8887 63.00 M 3 2 3 8888 52.00 M 0 2 2 8889 94.00 F 2 2 3 8890 75.00 M 3 2 3 8891 46.00 M 0 2 2 8892 58.00 M 2 2 2 8893 61.00 M 3 2 3 8894 55.00 M 3 2 2 8895 55.00 F 2 2 2 8896 63.00 F 1 2 3 8897 59.00 F 2 2 2 8898 56.00 M 0 2 2 8899 74.00 M 1 2 3 8900 33.00 M 0 2 2 8901 40.00 F 0 2 2 8902 78.00 M 26 2 3 8903 50.00 M 25 2 2 8904 58.00 F 0 2 2 8905 72.00 M 17 2 3 8906 82.00 M 9 2 3 8907 72.00 M 12 2 3 8908 50.00 M 4 2 2 8909 75.00 M 20 2 3 8910 71.00 M 16 2 3 8911 67.00 F 7 2 3 8912 76.00 M 16 2 3 8913 41.00 M 16 2 2 8914 67.00 M 16 2 3 8915 69.00 F 14 2 3 8916 56.00 M 17 2 2 8917 55.00 M 2 2 2 8918 36.00 M 1 2 2 8919 71.00 F 8 2 3 8920 36.00 M 13 2 2 8921 76.00 F 9 2 3 8922 56.00 M 9 2 2 8923 87.00 F 14 2 3 8924 72.00 M 11 2 3 8925 55.00 M 5 2 2 8926 57.00 F 13 2 2 8927 75.00 M 9 2 3 8928 52.00 M 11 2 2 8929 76.00 M 11 2 3 8930 68.00 M 6 2 3 8931 70.00 M 10 2 3 8932 62.00 M 10 2 3 8933 66.00 M 10 2 3 8934 53.00 F 5 2 2 8935 78.00 M 6 2 3 8936 54.00 M 3 2 2 8937 65.00 M 7 2 3 8938 39.00 M 7 2 2 8939 64.00 M 5 2 3 8940 44.00 M 8 2 2 8941 65.00 M 8 2 3 8942 64.00 M 1 2 3 8943 67.00 M 1 2 3 8944 54.00 F 6 2 2 8945 77.00 F 0 2 3 8946 65.00 F 6 2 3 8947 49.00 M 1 2 2 8948 48.00 M 6 2 2 8949 45.00 M 7 2 2 8950 39.00 M 2 2 2 8951 50.00 M 8 2 2 8952 62.00 F 6 2 3 8953 56.00 M 3 2 2 8954 59.00 M 5 2 2 8955 58.00 M 6 2 2 8956 83.00 M 10 2 3 8957 65.00 M 2 2 3 8958 72.00 M 1 2 3 8959 87.00 F 3 2 3 8960 70.00 M 8 2 3 8961 72.00 M 3 2 3 8962 70.00 M 3 2 3 8963 51.00 M 7 2 2 8964 72.00 M 3 2 3 8965 65.00 F 5 2 3 8966 37.00 M 6 2 2 8967 70.00 M 0 2 3 8968 35.00 M 5 2 2 8969 57.00 M 6 2 2 8970 82.00 F 6 2 3 8971 66.00 F 1 2 3 8972 24.00 M 2 2 2 8973 70.00 M 3 2 3 8974 63.00 M 3 2 3 8975 64.00 M 6 2 3 8976 68.00 M 4 2 3 8977 70.00 F 9 2 3 8978 78.00 M 0 2 3 8979 60.00 M 0 2 3 8980 40.00 M 0 2 2 8981 65.00 M 5 2 3 8982 74.00 M 3 2 3 8983 47.00 F 4 2 2 8984 75.00 M 6 2 3 8985 47.00 F 3 2 2 8986 45.00 M 4 2 2 8987 72.00 M 4 2 3 8988 58.00 M 4 2 2 8989 81.00 F 2 2 3 8990 20.00 M 2 2 2 8991 78.00 M 3 2 3 8992 73.00 M 2 2 3 8993 80.00 M 0 2 3 8994 54.00 M 2 2 2 8995 61.00 M 5 2 3 8996 55.00 M 3 2 2 8997 46.00 M 3 2 2 8998 47.00 M 1 2 2 8999 45.00 F 2 2 2 9000 73.00 M 7 2 3 9001 89.00 F 2 2 3 9002 53.00 M 7 2 2 9003 57.00 F 2 2 2 9004 65.00 M 0 2 3 9005 42.00 M 0 2 2 9006 55.00 M 1 2 2 9007 34.00 M 2 2 2 9008 50.00 M 2 2 2 9009 61.00 F 4 2 3 9010 77.00 F 4 2 3 9011 85.00 M 0 2 3 9012 80.00 F 0 2 3 9013 32.00 F 2 2 2 9014 75.00 F 1 2 3 9015 62.00 M 1 2 3 9016 37.00 F 2 2 2 9017 35.00 F 0 2 2 9018 33.00 M 1 2 2 9019 67.00 M 1 2 3 9020 57.00 M 0 2 2 9021 82.00 M 1 2 3 9022 70.00 M 0 2 3 9023 36.00 M 7 2 2 9024 42.00 F 3 2 2 9025 55.00 F 3 2 2 9026 82.00 F 1 2 3 9027 58.00 M 1 2 2 9028 38.00 F 23 2 2 9029 78.00 M 16 2 3 9030 75.00 M 18 2 3 9031 79.00 F 17 2 3 9032 66.00 F 20 2 3 9033 60.00 M 3 2 3 9034 65.00 M 8 2 3 9035 50.00 M 5 2 2 9036 62.00 M 5 2 3 9037 65.00 M 0 2 3 9038 61.00 F 12 2 3 9039 82.00 M 5 2 3 9040 72.00 M 7 2 3 9041 62.00 M 6 2 3 9042 81.00 M 8 2 3 9043 68.00 M 8 2 3 9044 57.00 M 3 2 2 9045 89.00 F 13 2 3 9046 75.00 M 20 2 3 9047 72.00 M 11 2 3 9048 50.00 F 10 2 2 9049 60.00 M 4 2 3 9050 40.00 M 1 2 2 9051 62.00 F 0 2 3 9052 64.00 F 9 2 3 9053 73.00 M 10 2 3 9054 83.00 M 2 2 3 9055 85.00 M 8 2 3 9056 70.00 M 10 2 3 9057 76.00 F 8 2 3 9058 68.00 M 8 2 3 9059 50.00 F 4 2 2 9060 72.00 M 2 2 3 9061 55.00 M 11 2 2 9062 75.00 M 10 2 3 9063 75.00 M 4 2 3 9064 55.00 M 0 2 2 9065 43.00 M 2 2 2 9066 66.00 F 7 2 3 9067 91.00 M 5 2 3 9068 40.00 M 3 2 2 9069 55.00 M 4 2 2 9070 44.00 M 8 2 2 9071 55.00 F 7 2 2 9072 65.00 M 4 2 3 9073 54.00 M 0 2 2 9074 61.00 M 2 2 3 9075 85.00 M 5 2 3 9076 66.00 M 5 2 3 9077 61.00 M 7 2 3 9078 78.00 M 3 2 3 9079 57.00 M 1 2 2 9080 77.00 F 5 2 3 9081 57.00 M 5 2 2 9082 76.00 F 5 2 3 9083 62.00 M 3 2 3 9084 66.00 M 5 2 3 9085 63.00 M 4 2 3 9086 55.00 M 3 2 2 9087 61.00 F 4 2 3 9088 56.00 M 4 2 2 9089 80.00 F 4 2 3 9090 65.00 M 3 2 3 9091 46.00 M 0 2 2 9092 62.00 F 7 2 3 9093 74.00 M 5 2 3 9094 60.00 F 5 2 3 9095 52.00 M 8 2 2 9096 65.00 M 3 2 3 9097 82.00 M 0 2 3 9098 55.00 F 1 2 2 9099 74.00 M 1 2 3 9100 36.00 F 1 2 2 9101 67.00 M 3 2 3 9102 87.00 M 2 2 3 9103 89.00 M 2 2 3 9104 65.00 F 4 2 3 9105 38.00 M 4 2 2 9106 52.00 F 1 2 2 9107 74.00 M 1 2 3 9108 45.00 M 2 2 2 9109 65.00 M 5 2 3 9110 85.00 M 3 2 3 9111 50.00 M 0 2 2 9112 38.00 M 1 2 2 9113 50.00 M 3 2 2 9114 70.00 M 5 2 3 9115 39.00 M 5 2 2 9116 60.00 M 0 2 3 9117 38.00 M 5 2 2 9118 70.00 M 0 2 3 9119 70.00 M 3 2 3 9120 64.00 M 4 2 3 9121 80.00 F 1 2 3 9122 75.00 M 2 2 3 9123 73.00 M 0 2 3 9124 67.00 M 42 2 3 9125 65.00 M 0 2 3 9126 80.00 M 0 2 3 9127 62.00 M 49 2 3 9128 65.00 M 7 2 3 9129 70.00 M 16 2 3 9130 73.00 M 13 2 3 9131 23.00 M 2 2 2 9132 42.00 F 10 2 2 9133 75.00 F 18 2 3 9134 17.00 M 0 2 1 9135 55.00 M 8 2 2 9136 49.00 M 18 2 2 9137 49.00 M 0 2 2 9138 60.00 M 3 2 3 9139 73.00 F 4 2 3 9140 62.00 M 10 2 3 9141 87.00 F 0 2 3 9142 33.00 M 5 2 2 9143 60.00 F 5 2 3 9144 57.00 M 0 2 2 9145 47.00 M 11 2 2 9146 58.00 M 7 2 2 9147 73.00 F 2 2 3 9148 65.00 F 12 2 3 9149 78.00 M 5 2 3 9150 59.00 F 12 2 2 9151 75.00 M 11 2 3 9152 62.00 M 8 2 3 9153 38.00 F 0 2 2 9154 93.00 M 11 2 3 9155 70.00 F 7 2 3 9156 24.00 M 11 2 2 9157 50.00 M 6 2 2 9158 45.00 M 7 2 2 9159 86.00 M 8 2 3 9160 42.00 M 7 2 2 9161 60.00 M 5 2 3 9162 36.00 M 6 2 2 9163 50.00 F 9 2 2 9164 61.00 F 5 2 3 9165 65.00 M 6 2 3 9166 59.00 M 5 2 2 9167 62.00 M 5 2 3 9168 86.00 F 5 2 3 9169 75.00 M 8 2 3 9170 70.00 F 1 2 3 9171 70.00 M 5 2 3 9172 60.00 M 3 2 3 9173 75.00 F 3 2 3 9174 53.00 M 3 2 2 9175 83.00 M 4 2 3 9176 65.00 M 2 2 3 9177 51.00 M 0 2 2 9178 77.00 F 5 2 3 9179 78.00 M 1 2 3 9180 48.00 M 2 2 2 9181 78.00 M 3 2 3 9182 62.00 M 13 2 3 9183 85.00 M 2 2 3 9184 75.00 M 2 2 3 9185 52.00 F 0 2 2 9186 75.00 F 4 2 3 9187 70.00 M 0 2 3 9188 83.00 M 0 2 3 9189 70.00 M 1 2 3 9190 55.00 M 2 2 2 9191 53.00 M 1 2 2 9192 75.00 M 0 2 3 9193 60.00 F 0 2 3 9194 41.00 M 21 2 2 9195 96.00 F 20 2 3 9196 54.00 F 4 2 2 9197 53.00 M 15 2 2 9198 43.00 M 7 2 2 9199 66.00 M 11 2 3 9200 45.00 F 13 2 2 9201 55.00 F 15 2 2 9202 47.00 M 11 2 2 9203 65.00 M 1 2 3 9204 77.00 M 12 2 3 9205 84.00 F 13 2 3 9206 53.00 M 13 2 2 9207 45.00 M 9 2 2 9208 76.00 M 6 2 3 9209 80.00 F 3 2 3 9210 48.00 F 8 2 2 9211 35.00 M 10 2 2 9212 71.00 M 11 2 3 9213 56.00 M 10 2 2 9214 58.00 M 10 2 2 9215 50.00 M 3 2 2 9216 55.00 F 8 2 2 9217 70.00 F 4 2 3 9218 80.00 M 5 2 3 9219 45.00 M 7 2 2 9220 63.00 M 6 2 3 9221 64.00 M 9 2 3 9222 32.00 M 9 2 2 9223 43.00 M 7 2 2 9224 65.00 M 4 2 3 9225 55.00 F 6 2 2 9226 58.00 F 9 2 2 9227 36.00 M 6 2 2 9228 69.00 F 1 2 3 9229 45.00 M 4 2 2 9230 48.00 F 0 2 2 9231 60.00 M 8 2 3 9232 24.00 M 4 2 2 9233 55.00 M 5 2 2 9234 70.00 M 8 2 3 9235 93.00 M 4 2 3 9236 60.00 M 5 2 3 9237 85.00 M 8 2 3 9238 65.00 F 6 2 3 9239 54.00 M 6 2 2 9240 66.00 M 3 2 3 9241 70.00 M 4 2 3 9242 37.00 M 1 2 2 9243 35.00 M 6 2 2 9244 70.00 F 2 2 3 9245 35.00 M 6 2 2 9246 60.00 M 5 2 3 9247 86.00 F 0 2 3 9248 89.00 M 2 2 3 9249 55.00 F 2 2 2 9250 55.00 M 5 2 2 9251 48.00 M 3 2 2 9252 57.00 F 0 2 2 9253 62.00 M 3 2 3 9254 75.00 F 3 2 3 9255 83.00 M 2 2 3 9256 70.00 M 5 2 3 9257 73.00 M 0 2 3 9258 40.00 M 19 2 2 9259 72.00 F 4 2 3 9260 76.00 M 0 2 3 9261 75.00 M 0 2 3 9262 43.00 M 1 2 2 9263 32.00 M 1 2 2 9264 76.00 F 2 2 3 9265 95.00 M 0 2 3 9266 45.00 F 1 2 2 9267 62.00 F 0 2 3 9268 89.00 M 1 2 3 9269 74.00 M 0 2 3 9270 60.00 F 13 2 3 9271 55.00 M 7 2 2 9272 56.00 F 1 2 2 9273 63.00 M 0 2 3 9274 48.00 M 1 2 2 9275 68.00 F 0 2 3 9276 75.00 M 0 2 3 9277 81.00 M 0 2 3 9278 65.00 M 2 2 3 9279 54.00 F 0 2 2 9280 76.00 M 1 2 3 9281 70.00 M 0 2 3 9282 75.00 M 6 2 3 9283 35.00 M 16 2 2 9284 72.00 M 9 2 3 9285 62.00 F 7 2 3 9286 46.00 M 0 2 2 9287 48.00 M 14 2 2 9288 65.00 M 14 2 3 9289 81.00 M 8 2 3 9290 43.00 M 14 2 2 9291 63.00 F 2 2 3 9292 62.00 F 1 2 3 9293 77.00 F 10 2 3 9294 75.00 M 12 2 3 9295 70.00 M 3 2 3 9296 45.00 M 3 2 2 9297 73.00 M 3 2 3 9298 58.00 M 4 2 2 9299 80.00 M 7 2 3 9300 64.00 F 6 2 3 9301 72.00 M 12 2 3 9302 88.00 M 2 2 3 9303 58.00 M 4 2 2 9304 39.00 F 11 2 2 9305 84.00 M 4 2 3 9306 56.00 M 5 2 2 9307 36.00 M 9 2 2 9308 68.00 F 2 2 3 9309 63.00 F 10 2 3 9310 47.00 M 5 2 2 9311 73.00 M 5 2 3 9312 70.00 F 8 2 3 9313 72.00 M 8 2 3 9314 80.00 F 6 2 3 9315 72.00 M 8 2 3 9316 68.00 F 8 2 3 9317 85.00 F 8 2 3 9318 51.00 M 3 2 2 9319 58.00 M 9 2 2 9320 70.00 M 10 2 3 9321 70.00 M 7 2 3 9322 53.00 M 4 2 2 9323 74.00 M 3 2 3 9324 98.00 M 14 2 3 9325 74.00 M 6 2 3 9326 55.00 F 10 2 2 9327 45.00 M 14 2 2 9328 72.00 M 9 2 3 9329 64.00 F 11 2 3 9330 72.00 M 4 2 3 9331 50.00 F 3 2 2 9332 40.00 M 26 2 2 9333 84.00 M 16 2 3 9334 55.00 F 17 2 2 9335 66.00 M 12 2 3 9336 52.00 M 19 2 2 9337 54.00 F 23 2 2 9338 70.00 M 3 2 3 9339 78.00 M 24 2 3 9340 55.00 M 43 2 2 9341 85.00 M 1 2 3 9342 62.00 F 51 2 3 9343 50.00 M 3 2 2 9344 72.00 M 20 2 3 9345 80.00 M 4 2 3 9346 78.00 M 1 2 3 9347 56.00 F 1 2 2 9348 40.00 M 0 2 2 9349 50.00 F 4 2 2 9350 47.00 M 2 2 2 9351 65.00 M 1 2 3 9352 63.00 M 7 2 3 9353 73.00 M 4 2 3 9354 67.00 M 4 2 3 9355 65.00 F 3 2 3 9356 70.00 M 4 2 3 9357 62.00 M 2 2 3 9358 50.00 M 3 2 2 9359 72.00 M 4 2 3 9360 72.00 M 0 2 3 9361 58.00 M 1 2 2 9362 66.00 M 6 2 3 9363 29.00 M 3 2 2 9364 77.00 M 1 2 3 9365 48.00 F 0 2 2 9366 77.00 M 1 2 3 9367 55.00 F 31 2 2 9368 56.00 M 1 2 2 9369 64.00 M 0 2 3 9370 26.00 M 0 2 2 9371 58.00 M 0 2 2 9372 56.00 M 1 2 2 9373 51.00 F 5 2 2 9374 75.00 M 0 2 3 9375 48.00 M 5 2 2 9376 82.00 M 4 2 3 9377 64.00 M 0 2 3 9378 60.00 F 4 2 3 9379 53.00 F 7 2 2 9380 76.00 M 13 2 3 9381 28.00 M 10 2 2 9382 70.00 M 20 2 3 9383 68.00 M 20 2 3 9384 70.00 F 1 2 3 9385 72.00 M 5 2 3 9386 65.00 M 4 2 3 9387 60.00 F 4 2 3 9388 88.00 M 4 2 3 9389 56.00 M 3 2 2 9390 55.00 F 13 2 2 9391 73.00 M 3 2 3 9392 66.00 M 10 2 3 9393 72.00 M 11 2 3 9394 64.00 M 4 2 3 9395 52.00 M 0 2 2 9396 46.00 M 6 2 2 9397 72.00 M 0 2 3 9398 65.00 F 11 2 3 9399 68.00 M 11 2 3 9400 44.00 F 3 2 2 9401 73.00 M 3 2 3 9402 75.00 M 2 2 3 9403 66.00 M 7 2 3 9404 64.00 F 13 2 3 9405 72.00 M 11 2 3 9406 68.00 F 5 2 3 9407 87.00 M 2 2 3 9408 71.00 M 8 2 3 9409 63.00 M 11 2 3 9410 56.00 M 12 2 2 9411 55.00 F 13 2 2 9412 42.00 M 13 2 2 9413 72.00 M 9 2 3 9414 69.00 M 7 2 3 9415 71.00 F 1 2 3 9416 58.00 F 0 2 2 9417 57.00 M 9 2 2 9418 75.00 M 8 2 3 9419 85.00 M 7 2 3 9420 71.00 M 7 2 3 9421 62.00 M 9 2 3 9422 68.00 M 4 2 3 9423 67.00 M 15 2 3 9424 69.00 M 5 2 3 9425 75.00 M 8 2 3 9426 79.00 M 5 2 3 9427 57.00 M 7 2 2 9428 40.00 M 5 2 2 9429 86.00 M 0 2 3 9430 75.00 M 6 2 3 9431 64.00 M 6 2 3 9432 76.00 F 1 2 3 9433 82.00 M 6 2 3 9434 86.00 M 6 2 3 9435 59.00 M 10 2 2 9436 50.00 M 4 2 2 9437 40.00 M 7 2 2 9438 47.00 M 0 2 2 9439 89.00 M 5 2 3 9440 58.00 M 4 2 2 9441 52.00 M 7 2 2 9442 67.00 M 4 2 3 9443 48.00 M 5 2 2 9444 60.00 F 0 2 3 9445 58.00 M 7 2 2 9446 48.00 F 4 2 2 9447 75.00 M 1 2 3 9448 73.00 M 3 2 3 9449 57.00 F 4 2 2 9450 83.00 M 3 2 3 9451 42.00 M 2 2 2 9452 70.00 M 4 2 3 9453 80.00 M 3 2 3 9454 62.00 M 1 2 3 9455 85.00 M 4 2 3 9456 58.00 M 3 2 2 9457 70.00 F 3 2 3 9458 72.00 F 4 2 3 9459 51.00 M 3 2 2 9460 68.00 M 3 2 3 9461 30.00 F 1 2 2 9462 70.00 M 1 2 3 9463 60.00 M 3 2 3 9464 70.00 M 5 2 3 9465 72.00 M 1 2 3 9466 68.00 F 9 2 3 9467 51.00 F 0 2 2 9468 80.00 M 2 2 3 9469 60.00 M 0 2 3 9470 38.00 M 0 2 2 9471 84.00 F 4 2 3 9472 76.00 M 4 2 3 9473 50.00 F 3 2 2 9474 50.00 M 0 2 2 9475 30.00 M 1 2 2 9476 58.00 M 2 2 2 9477 65.00 F 1 2 3 9478 65.00 F 4 2 3 9479 40.00 M 1 2 2 9480 55.00 M 1 2 2 9481 72.00 M 8 2 3 9482 52.00 F 0 2 2 9483 42.00 M 0 2 2 9484 63.00 F 0 2 3 9485 58.00 M 23 2 2 9486 45.00 M 0 2 2 9487 40.00 F 4 2 2 9488 39.00 M 1 2 2 9489 57.00 M 12 2 2 9490 70.00 F 4 2 3 9491 68.00 M 3 2 3 9492 72.00 F 4 2 3 9493 71.00 M 14 2 3 9494 75.00 M 0 2 3 9495 64.00 M 15 2 3 9496 80.00 M 2 2 3 9497 65.00 M 0 2 3 9498 59.00 M 0 2 2 9499 47.00 M 0 2 2 9500 75.00 M 0 2 3 9501 60.00 M 0 2 3 9502 43.00 M 0 2 2 9503 71.00 M 1 2 3 9504 62.00 M 6 2 3 9505 70.00 M 1 2 3 9506 60.00 M 20 2 3 9507 65.00 M 2 2 3 9508 87.00 F 6 2 3 9509 49.00 M 4 2 2 9510 65.00 F 29 2 3 9511 34.00 M 12 2 2 9512 84.00 M 0 2 3 9513 59.00 M 9 2 2 9514 76.00 M 12 2 3 9515 65.00 M 9 2 3 9516 44.00 M 12 2 2 9517 52.00 M 6 2 2 9518 68.00 F 12 2 3 9519 72.00 M 0 2 3 9520 74.00 M 12 2 3 9521 68.00 M 12 2 3 9522 64.00 M 7 2 3 9523 60.00 M 6 2 3 9524 73.00 M 11 2 3 9525 71.00 M 9 2 3 9526 65.00 M 11 2 3 9527 73.00 M 10 2 3 9528 61.00 M 5 2 3 9529 76.00 M 12 2 3 9530 75.00 M 7 2 3 9531 52.00 M 8 2 2 9532 58.00 M 9 2 2 9533 75.00 M 3 2 3 9534 54.00 F 8 2 2 9535 68.00 F 8 2 3 9536 82.00 M 8 2 3 9537 46.00 M 3 2 2 9538 75.00 F 0 2 3 9539 50.00 M 11 2 2 9540 60.00 M 11 2 3 9541 62.00 M 0 2 3 9542 63.00 F 9 2 3 9543 71.00 F 8 2 3 9544 42.00 M 4 2 2 9545 84.00 F 3 2 3 9546 70.00 F 7 2 3 9547 73.00 M 0 2 3 9548 68.00 F 6 2 3 9549 52.00 M 1 2 2 9550 45.00 M 6 2 2 9551 59.00 M 7 2 2 9552 90.00 M 4 2 3 9553 69.00 F 4 2 3 9554 54.00 M 3 2 2 9555 77.00 M 9 2 3 9556 61.00 M 8 2 3 9557 70.00 F 5 2 3 9558 46.00 M 6 2 2 9559 82.00 M 6 2 3 9560 65.00 F 2 2 3 9561 55.00 M 4 2 2 9562 80.00 M 2 2 3 9563 40.00 M 3 2 2 9564 66.00 M 0 2 3 9565 54.00 M 0 2 2 9566 78.00 M 34 2 3 9567 66.00 M 0 2 3 9568 62.00 M 2 2 3 9569 40.00 F 3 2 2 9570 62.00 M 3 2 3 9571 54.00 M 1 2 2 9572 55.00 M 0 2 2 9573 60.00 F 3 2 3 9574 45.00 F 0 2 2 9575 60.00 F 1 2 3 9576 45.00 M 1 2 2 9577 65.00 F 4 2 3 9578 60.00 F 1 2 3 9579 47.00 M 1 2 2 9580 70.00 M 0 2 3 9581 55.00 F 0 2 2 9582 74.00 M 0 2 3 9583 50.00 M 17 2 2 9584 60.00 F 0 2 3 9585 70.00 M 13 2 3 9586 86.00 M 23 2 3 9587 60.00 M 1 2 3 9588 87.00 M 8 2 3 9589 70.00 M 9 2 3 9590 56.00 M 1 2 2 9591 65.00 M 8 2 3 9592 80.00 M 6 2 3 9593 75.00 F 5 2 3 9594 80.00 M 0 2 3 9595 60.00 M 7 2 3 9596 58.00 F 0 2 2 9597 40.00 M 0 2 2 9598 90.00 M 1 2 3 9599 72.00 M 10 2 3 9600 71.00 M 15 2 3 9601 55.00 M 11 2 2 9602 57.00 M 3 2 2 9603 70.00 M 3 2 3 9604 61.00 M 3 2 3 9605 60.00 M 12 2 3 9606 67.00 M 7 2 3 9607 58.00 F 11 2 2 9608 57.00 M 2 2 2 9609 67.00 M 0 2 3 9610 75.00 M 12 2 3 9611 35.00 F 10 2 2 9612 74.00 F 3 2 3 9613 65.00 M 8 2 3 9614 63.00 M 11 2 3 9615 80.00 F 1 2 3 9616 78.00 M 3 2 3 9617 57.00 M 6 2 2 9618 41.00 M 11 2 2 9619 48.00 M 11 2 2 9620 94.00 M 9 2 3 9621 29.00 F 6 2 2 9622 55.00 M 12 2 2 9623 86.00 M 10 2 3 9624 70.00 F 12 2 3 9625 24.00 M 10 2 2 9626 72.00 M 10 2 3 9627 64.00 M 12 2 3 9628 50.00 F 7 2 2 9629 82.00 F 10 2 3 9630 74.00 M 7 2 3 9631 55.00 M 0 2 2 9632 53.00 M 8 2 2 9633 60.00 F 2 2 3 9634 62.00 M 8 2 3 9635 68.00 M 9 2 3 9636 80.00 M 8 2 3 9637 75.00 M 10 2 3 9638 55.00 M 4 2 2 9639 53.00 M 11 2 2 9640 50.00 M 1 2 2 9641 52.00 M 6 2 2 9642 49.00 M 8 2 2 9643 70.00 M 2 2 3 9644 80.00 F 7 2 3 9645 68.00 M 8 2 3 9646 57.00 M 3 2 2 9647 60.00 M 9 2 3 9648 72.00 M 2 2 3 9649 76.00 M 9 2 3 9650 63.00 M 11 2 3 9651 60.00 M 5 2 3 9652 62.00 M 7 2 3 9653 47.00 M 4 2 2 9654 57.00 F 7 2 2 9655 86.00 M 0 2 3 9656 35.00 F 4 2 2 9657 67.00 F 4 2 3 9658 44.00 M 2 2 2 9659 44.00 M 4 2 2 9660 45.00 F 5 2 2 9661 73.00 M 3 2 3 9662 60.00 F 4 2 3 9663 68.00 M 3 2 3 9664 71.00 M 7 2 3 9665 80.00 F 4 2 3 9666 85.00 M 2 2 3 9667 56.00 F 2 2 2 9668 66.00 M 3 2 3 9669 69.00 M 4 2 3 9670 40.00 F 1 2 2 9671 76.00 F 3 2 3 9672 77.00 M 2 2 3 9673 30.00 M 1 2 2 9674 57.00 M 3 2 2 9675 65.00 M 3 2 3 9676 54.00 M 1 2 2 9677 70.00 M 1 2 3 9678 71.00 M 0 2 3 9679 73.00 M 3 2 3 9680 61.00 M 0 2 3 9681 65.00 F 1 2 3 9682 80.00 M 1 2 3 9683 67.00 M 0 2 3 9684 62.00 M 2 2 3 9685 34.00 M 1 2 2 9686 58.00 M 0 2 2 9687 60.00 F 1 2 3 9688 66.00 M 1 2 3 9689 71.00 M 1 2 3 9690 62.00 M 0 2 3 9691 64.00 M 1 2 3 9692 70.00 M 1 2 3 9693 58.00 M 1 2 2 9694 50.00 F 0 2 2 9695 63.00 M 0 2 3 9696 62.00 M 0 2 3 9697 74.00 M 0 2 3 9698 27.00 M 1 2 2 9699 43.00 M 20 2 2 9700 43.00 F 22 2 2 9701 65.00 F 19 2 3 9702 53.00 M 19 2 2 9703 50.00 F 9 2 2 9704 64.00 M 4 2 3 9705 50.00 M 7 2 2 9706 64.00 M 6 2 3 9707 85.00 M 0 2 3 9708 58.00 M 2 2 2 9709 67.00 M 3 2 3 9710 71.00 F 1 2 3 9711 74.00 M 5 2 3 9712 75.00 M 2 2 3 9713 24.00 F 3 2 2 9714 55.00 F 16 2 2 9715 76.00 F 11 2 3 9716 58.00 F 0 2 2 9717 74.00 M 3 2 3 9718 60.00 M 1 2 3 9719 67.00 M 12 2 3 9720 65.00 M 13 2 3 9721 80.00 M 6 2 3 9722 70.00 M 8 2 3 9723 65.00 M 2 2 3 9724 47.00 M 11 2 2 9725 45.00 F 1 2 2 9726 65.00 M 11 2 3 9727 50.00 F 2 2 2 9728 48.00 F 0 2 2 9729 70.00 F 10 2 3 9730 82.00 M 3 2 3 9731 75.00 F 12 2 3 9732 64.00 M 11 2 3 9733 55.00 M 12 2 2 9734 71.00 M 9 2 3 9735 55.00 M 4 2 2 9736 65.00 M 25 2 3 9737 57.00 M 11 2 2 9738 80.00 M 10 2 3 9739 40.00 M 1 2 2 9740 56.00 M 4 2 2 9741 56.00 M 1 2 2 9742 77.00 M 16 2 3 9743 70.00 F 2 2 3 9744 35.00 M 8 2 2 9745 64.00 M 8 2 3 9746 90.00 M 0 2 3 9747 52.00 M 10 2 2 9748 93.00 M 4 2 3 9749 55.00 M 5 2 2 9750 51.00 M 1 2 2 9751 57.00 M 7 2 2 9752 52.00 M 9 2 2 9753 75.00 F 6 2 3 9754 64.00 M 1 2 3 9755 66.00 M 2 2 3 9756 84.00 F 8 2 3 9757 71.00 F 7 2 3 9758 70.00 F 5 2 3 9759 55.00 F 4 2 2 9760 48.00 F 3 2 2 9761 46.00 F 5 2 2 9762 50.00 F 6 2 2 9763 56.00 M 6 2 2 9764 60.00 M 5 2 3 9765 86.00 F 4 2 3 9766 83.00 M 6 2 3 9767 82.00 F 4 2 3 9768 70.00 M 0 2 3 9769 85.00 M 3 2 3 9770 84.00 M 2 2 3 9771 75.00 M 4 2 3 9772 58.00 M 2 2 2 9773 51.00 M 2 2 2 9774 58.00 F 1 2 2 9775 60.00 M 2 2 3 9776 62.00 F 2 2 3 9777 73.00 M 3 2 3 9778 84.00 M 3 2 3 9779 65.00 F 3 2 3 9780 60.00 M 2 2 3 9781 84.00 M 3 2 3 9782 42.00 M 2 2 2 9783 70.00 M 6 2 3 9784 61.00 M 1 2 3 9785 65.00 F 1 2 3 9786 78.00 F 4 2 3 9787 36.00 M 9 2 2 9788 64.00 M 1 2 3 9789 48.00 M 1 2 2 9790 34.00 M 1 2 2 9791 55.00 F 1 2 2 9792 65.00 F 4 2 3 9793 46.00 M 0 2 2 9794 86.00 F 1 2 3 9795 75.00 F 2 2 3 9796 80.00 M 1 2 3 9797 25.00 F 30 2 2 9798 85.00 M 3 2 3 9799 60.00 M 20 2 3 9800 76.00 F 6 2 3 9801 70.00 M 4 2 3 9802 59.00 M 18 2 2 9803 72.00 M 15 2 3 9804 60.00 F 4 2 3 9805 85.00 M 13 2 3 9806 55.00 M 10 2 2 9807 72.00 M 12 2 3 9808 53.00 M 15 2 2 9809 70.00 M 13 2 3 9810 53.00 M 3 2 2 9811 60.00 M 7 2 3 9812 53.00 F 11 2 2 9813 76.00 M 13 2 3 9814 97.00 F 4 2 3 9815 60.00 F 0 2 3 9816 68.00 F 10 2 3 9817 70.00 F 5 2 3 9818 59.00 M 1 2 2 9819 60.00 M 0 2 3 9820 73.00 M 6 2 3 9821 71.00 F 9 2 3 9822 75.00 M 7 2 3 9823 83.00 M 9 2 3 9824 75.00 M 9 2 3 9825 52.00 F 4 2 2 9826 63.00 F 23 2 3 9827 63.00 M 26 2 3 9828 95.00 M 9 2 3 9829 70.00 F 8 2 3 9830 73.00 M 8 2 3 9831 52.00 M 8 2 2 9832 50.00 M 1 2 2 9833 55.00 F 0 2 2 9834 84.00 M 6 2 3 9835 80.00 F 9 2 3 9836 92.00 M 4 2 3 9837 74.00 M 7 2 3 9838 36.00 M 26 2 2 9839 60.00 M 6 2 3 9840 50.00 M 3 2 2 9841 74.00 F 4 2 3 9842 65.00 F 1 2 3 9843 78.00 M 2 2 3 9844 60.00 M 6 2 3 9845 65.00 M 3 2 3 9846 60.00 M 6 2 3 9847 68.00 M 5 2 3 9848 70.00 M 4 2 3 9849 40.00 M 4 2 2 9850 70.00 F 0 2 3 9851 75.00 M 1 2 3 9852 65.00 F 9 2 3 9853 55.00 M 7 2 2 9854 62.00 F 3 2 3 9855 63.00 M 3 2 3 9856 39.00 F 4 2 2 9857 55.00 F 3 2 2 9858 70.00 M 1 2 3 9859 64.00 M 1 2 3 9860 72.00 F 0 2 3 9861 60.00 F 1 2 3 9862 65.00 F 1 2 3 9863 56.00 M 3 2 2 9864 40.00 F 2 2 2 9865 82.00 M 10 2 3 9866 84.00 M 3 2 3 9867 53.00 F 2 2 2 9868 59.00 M 1 2 2 9869 76.00 M 3 2 3 9870 40.00 M 0 2 2 9871 67.00 M 32 2 3 9872 56.00 M 1 2 2 9873 47.00 M 0 2 2 9874 61.00 M 5 2 3 9875 65.00 M 5 2 3 9876 70.00 M 1 2 3 9877 53.00 M 11 2 2 9878 46.00 M 0 2 2 9879 55.00 M 4 2 2 9880 56.00 M 4 2 2 9881 79.00 M 15 2 3 9882 51.00 F 5 2 2 9883 56.00 F 6 2 2 9884 66.00 M 12 2 3 9885 51.00 M 4 2 2 9886 67.00 F 10 2 3 9887 65.00 M 9 2 3 9888 85.00 M 3 2 3 9889 72.00 M 8 2 3 9890 50.00 M 11 2 2 9891 65.00 M 1 2 3 9892 82.00 M 12 2 3 9893 57.00 M 10 2 2 9894 53.00 F 1 2 2 9895 80.00 F 12 2 3 9896 71.00 M 8 2 3 9897 53.00 M 8 2 2 9898 70.00 F 6 2 3 9899 46.00 F 7 2 2 9900 74.00 M 7 2 3 9901 55.00 F 8 2 2 9902 64.00 M 9 2 3 9903 47.00 M 10 2 2 9904 65.00 M 10 2 3 9905 76.00 F 3 2 3 9906 87.00 M 39 2 3 9907 70.00 F 5 2 3 9908 61.00 F 2 2 3 9909 80.00 M 3 2 3 9910 65.00 M 2 2 3 9911 48.00 M 2 2 2 9912 84.00 M 6 2 3 9913 82.00 M 1 2 3 9914 69.00 F 6 2 3 9915 61.00 F 12 2 3 9916 60.00 M 2 2 3 9917 64.00 F 1 2 3 9918 80.00 F 3 2 3 9919 86.00 F 4 2 3 9920 75.00 F 4 2 3 9921 65.00 F 6 2 3 9922 70.00 M 3 2 3 9923 75.00 F 6 2 3 9924 72.00 M 3 2 3 9925 78.00 F 16 2 3 9926 58.00 M 0 2 2 9927 73.00 M 5 2 3 9928 70.00 M 2 2 3 9929 65.00 F 15 2 3 9930 71.00 F 3 2 3 9931 76.00 M 2 2 3 9932 80.00 M 0 2 3 9933 80.00 M 0 2 3 9934 32.00 M 10 2 2 9935 58.00 M 5 2 2 9936 55.00 F 1 2 2 9937 50.00 M 0 2 2 9938 60.00 M 2 2 3 9939 70.00 M 1 2 3 9940 65.00 M 0 2 3 9941 50.00 F 2 2 2 9942 54.00 M 0 2 2 9943 57.00 M 0 2 2 9944 48.00 F 31 2 2 9945 58.00 F 5 2 2 9946 44.00 M 28 2 2 9947 71.00 M 10 2 3 9948 75.00 M 25 2 3 9949 62.00 F 2 2 3 9950 59.00 M 37 2 2 9951 60.00 M 1 2 3 9952 60.00 M 4 2 3 9953 65.00 M 7 2 3 9954 69.00 M 17 2 3 9955 70.00 M 3 2 3 9956 60.00 F 6 2 3 9957 74.00 M 0 2 3 9958 52.00 M 13 2 2 9959 54.00 F 0 2 2 9960 65.00 M 8 2 3 9961 71.00 M 10 2 3 9962 72.00 F 7 2 3 9963 65.00 F 8 2 3 9964 51.00 M 9 2 2 9965 71.00 M 4 2 3 9966 45.00 F 15 2 2 9967 75.00 M 2 2 3 9968 67.00 M 10 2 3 9969 77.00 M 8 2 3 9970 74.00 F 8 2 3 9971 51.00 M 10 2 2 9972 73.00 M 3 2 3 9973 45.00 M 7 2 2 9974 61.00 M 5 2 3 9975 49.00 M 0 2 2 9976 58.00 M 2 2 2 9977 60.00 M 7 2 3 9978 47.00 F 7 2 2 9979 45.00 F 4 2 2 9980 53.00 M 7 2 2 9981 83.00 M 7 2 3 9982 59.00 M 6 2 2 9983 36.00 F 6 2 2 9984 31.00 F 4 2 2 9985 65.00 M 7 2 3 9986 81.00 M 3 2 3 9987 46.00 F 5 2 2 9988 80.00 F 7 2 3 9989 70.00 M 1 2 3 9990 66.00 M 8 2 3 9991 53.00 F 0 2 2 9992 65.00 M 0 2 3 9993 83.00 M 11 2 3 9994 60.00 F 2 2 3 9995 76.00 F 5 2 3 9996 65.00 F 2 2 3 9997 70.00 F 5 2 3 9998 68.00 M 3 2 3 9999 75.00 M 5 2 3 10000 67.00 M 7 2 3 10001 67.00 M 6 2 3 10002 70.00 M 1 2 3 10003 59.00 M 5 2 2 10004 81.00 M 2 2 3 10005 53.00 M 4 2 2 10006 65.00 F 2 2 3 10007 55.00 F 0 2 2 10008 52.00 M 4 2 2 10009 40.00 M 1 2 2 10010 82.00 M 3 2 3 10011 67.00 M 3 2 3 10012 58.00 M 2 2 2 10013 52.00 F 2 2 2 10014 51.00 M 2 2 2 10015 62.00 M 4 2 3 10016 70.00 M 2 2 3 10017 54.00 M 2 2 2 10018 59.00 F 53 2 2 10019 70.00 M 2 2 3 10020 56.00 M 2 2 2 10021 71.00 M 2 2 3 10022 74.00 F 2 2 3 10023 70.00 M 2 2 3 10024 60.00 F 1 2 3 10025 42.00 F 1 2 2 10026 65.00 M 1 2 3 10027 64.00 M 1 2 3 10028 60.00 M 0 2 3 10029 65.00 F 6 2 3 10030 24.00 M 4 2 2 10031 63.00 M 11 2 3 10032 54.00 M 10 2 2 10033 71.00 M 6 2 3 10034 70.00 M 9 2 3 10035 61.00 M 23 2 3 10036 65.00 M 16 2 3 10037 82.00 M 16 2 3 10038 65.00 M 7 2 3 10039 52.00 F 18 2 2 10040 66.00 M 17 2 3 10041 60.00 F 1 2 3 10042 59.00 M 7 2 2 10043 53.00 M 11 2 2 10044 69.00 M 8 2 3 10045 58.00 M 10 2 2 10046 81.00 M 9 2 3 10047 62.00 M 11 2 3 10048 85.00 F 11 2 3 10049 65.00 M 8 2 3 10050 77.00 M 9 2 3 10051 72.00 F 9 2 3 10052 85.00 M 8 2 3 10053 76.00 M 6 2 3 10054 67.00 M 8 2 3 10055 58.00 M 0 2 2 10056 53.00 M 3 2 2 10057 84.00 M 8 2 3 10058 60.00 F 7 2 3 10059 70.00 M 7 2 3 10060 75.00 M 9 2 3 10061 53.00 M 3 2 2 10062 60.00 M 8 2 3 10063 54.00 M 7 2 2 10064 77.00 M 2 2 3 10065 74.00 F 8 2 3 10066 59.00 M 7 2 2 10067 80.00 M 7 2 3 10068 54.00 M 9 2 2 10069 50.00 M 5 2 2 10070 50.00 M 7 2 2 10071 74.00 M 8 2 3 10072 75.00 F 5 2 3 10073 65.00 M 3 2 3 10074 80.00 M 3 2 3 10075 65.00 M 6 2 3 10076 77.00 M 5 2 3 10077 70.00 M 3 2 3 10078 74.00 M 5 2 3 10079 62.00 M 6 2 3 10080 65.00 M 1 2 3 10081 67.00 M 3 2 3 10082 38.00 F 4 2 2 10083 72.00 M 5 2 3 10084 61.00 F 6 2 3 10085 60.00 M 4 2 3 10086 75.00 M 4 2 3 10087 58.00 M 1 2 2 10088 45.00 M 1 2 2 10089 42.00 M 1 2 2 10090 63.00 M 2 2 3 10091 68.00 M 0 2 3 10092 32.00 F 3 2 2 10093 61.00 F 4 2 3 10094 67.00 F 1 2 3 10095 68.00 M 1 2 3 10096 55.00 F 2 2 2 10097 20.00 F 2 2 2 10098 72.00 F 0 2 3 10099 68.00 M 1 2 3 10100 43.00 M 0 2 2 10101 67.00 M 2 2 3 10102 32.00 M 1 2 2 10103 70.00 F 2 2 3 10104 65.00 F 2 2 3 10105 35.00 F 1 2 2 10106 76.00 M 1 2 3 10107 64.00 M 20 2 3 10108 55.00 F 17 2 2 10109 80.00 M 15 2 3 10110 65.00 M 11 2 3 10111 60.00 F 1 2 3 10112 54.00 M 17 2 2 10113 58.00 M 1 2 2 10114 51.00 M 13 2 2 10115 76.00 M 13 2 3 10116 58.00 M 12 2 2 10117 62.00 F 18 2 3 10118 65.00 M 6 2 3 10119 80.00 F 6 2 3 10120 68.00 M 11 2 3 10121 82.00 M 8 2 3 10122 63.00 M 8 2 3 10123 67.00 M 7 2 3 10124 44.00 M 9 2 2 10125 46.00 M 8 2 2 10126 79.00 M 9 2 3 10127 52.00 F 6 2 2 10128 60.00 F 3 2 3 10129 60.00 M 7 2 3 10130 39.00 M 8 2 2 10131 46.00 F 4 2 2 10132 65.00 M 2 2 3 10133 55.00 F 7 2 2 10134 77.00 M 10 2 3 10135 73.00 M 8 2 3 10136 48.00 M 6 2 2 10137 65.00 M 36 2 3 10138 79.00 F 7 2 3 10139 76.00 M 6 2 3 10140 81.00 M 6 2 3 10141 61.00 F 8 2 3 10142 68.00 M 3 2 3 10143 75.00 M 7 2 3 10144 80.00 M 6 2 3 10145 65.00 F 6 2 3 10146 30.00 M 8 2 2 10147 32.00 F 8 2 2 10148 82.00 M 9 2 3 10149 92.00 F 8 2 3 10150 60.00 M 3 2 3 10151 58.00 F 5 2 2 10152 59.00 M 5 2 2 10153 56.00 M 6 2 2 10154 61.00 M 6 2 3 10155 33.00 M 24 2 2 10156 57.00 F 1 2 2 10157 62.00 M 7 2 3 10158 70.00 F 0 2 3 10159 90.00 M 12 2 3 10160 32.00 F 3 2 2 10161 82.00 M 16 2 3 10162 85.00 M 5 2 3 10163 39.00 M 2 2 2 10164 77.00 F 4 2 3 10165 58.00 M 4 2 2 10166 70.00 M 2 2 3 10167 75.00 F 1 2 3 10168 88.00 F 3 2 3 10169 76.00 F 3 2 3 10170 80.00 M 6 2 3 10171 90.00 M 16 2 3 10172 66.00 M 6 2 3 10173 72.00 M 1 2 3 10174 48.00 F 0 2 2 10175 68.00 F 23 2 3 10176 18.00 F 2 2 2 10177 52.00 M 6 2 2 10178 62.00 F 3 2 3 10179 48.00 M 1 2 2 10180 49.00 M 1 2 2 10181 62.00 F 0 2 3 10182 45.00 F 1 2 2 10183 60.00 F 0 2 3 10184 52.00 F 3 2 2 10185 56.00 F 2 2 2 10186 45.00 F 2 2 2 10187 53.00 M 0 2 2 10188 70.00 M 1 2 3 10189 78.00 F 0 2 3 10190 75.00 M 0 2 3 10191 68.00 M 8 2 3 10192 41.00 F 22 2 2 10193 86.00 M 15 2 3 10194 76.00 M 23 2 3 10195 60.00 M 11 2 3 10196 72.00 M 9 2 3 10197 61.00 M 14 2 3 10198 68.00 M 0 2 3 10199 84.00 M 12 2 3 10200 45.00 M 2 2 2 10201 52.00 M 4 2 2 10202 87.00 F 15 2 3 10203 70.00 F 12 2 3 10204 64.00 M 2 2 3 10205 80.00 M 11 2 3 10206 53.00 F 13 2 2 10207 62.00 M 11 2 3 10208 63.00 M 5 2 3 10209 58.00 M 16 2 2 10210 52.00 M 12 2 2 10211 75.00 M 0 2 3 10212 92.00 M 5 2 3 10213 66.00 M 9 2 3 10214 58.00 M 5 2 2 10215 80.00 M 11 2 3 10216 70.00 M 10 2 3 10217 65.00 M 11 2 3 10218 60.00 M 22 2 3 10219 75.00 M 10 2 3 10220 74.00 M 6 2 3 10221 81.00 M 7 2 3 10222 72.00 F 6 2 3 10223 78.00 M 7 2 3 10224 40.00 F 8 2 2 10225 71.00 M 5 2 3 10226 70.00 M 7 2 3 10227 43.00 M 8 2 2 10228 47.00 M 6 2 2 10229 78.00 M 1 2 3 10230 57.00 M 7 2 2 10231 82.00 F 7 2 3 10232 76.00 M 1 2 3 10233 71.00 M 7 2 3 10234 60.00 M 4 2 3 10235 60.00 M 2 2 3 10236 55.00 F 2 2 2 10237 75.00 F 3 2 3 10238 70.00 M 2 2 3 10239 65.00 F 2 2 3 10240 57.00 M 4 2 2 10241 89.00 M 1 2 3 10242 75.00 M 0 2 3 10243 48.00 M 33 2 2 10244 65.00 M 26 2 3 10245 62.00 F 5 2 3 10246 79.00 F 4 2 3 10247 45.00 F 8 2 2 10248 37.00 F 1 2 2 10249 75.00 F 1 2 3 10250 45.00 F 0 2 2 10251 46.00 M 2 2 2 10252 68.00 M 5 2 3 10253 75.00 M 4 2 3 10254 75.00 M 2 2 3 10255 83.00 M 2 2 3 10256 60.00 F 4 2 3 10257 60.00 M 4 2 3 10258 63.00 F 2 2 3 10259 64.00 M 2 2 3 10260 72.00 M 2 2 3 10261 72.00 M 3 2 3 10262 78.00 M 0 2 3 10263 78.00 M 2 2 3 10264 68.00 M 2 2 3 10265 77.00 M 8 2 3 10266 70.00 M 2 2 3 10267 56.00 M 15 2 2 10268 63.00 M 3 2 3 10269 64.00 M 4 2 3 10270 64.00 F 13 2 3 10271 60.00 M 16 2 3 10272 62.00 M 15 2 3 10273 72.00 M 11 2 3 10274 61.00 M 1 2 3 10275 60.00 M 13 2 3 10276 38.00 M 11 2 2 10277 70.00 M 9 2 3 10278 84.00 M 9 2 3 10279 74.00 F 11 2 3 10280 39.00 M 12 2 2 10281 70.00 F 8 2 3 10282 81.00 M 11 2 3 10283 61.00 F 10 2 3 10284 70.00 M 6 2 3 10285 64.00 M 11 2 3 10286 40.00 F 2 2 2 10287 62.00 F 12 2 3 10288 75.00 M 10 2 3 10289 61.00 M 2 2 3 10290 62.00 M 5 2 3 10291 55.00 F 7 2 2 10292 65.00 M 3 2 3 10293 26.00 M 9 2 2 10294 72.00 M 4 2 3 10295 56.00 M 7 2 2 10296 76.00 M 6 2 3 10297 57.00 F 8 2 2 10298 78.00 F 9 2 3 10299 64.00 M 7 2 3 10300 52.00 M 5 2 2 10301 72.00 M 4 2 3 10302 70.00 F 7 2 3 10303 70.00 M 8 2 3 10304 74.00 M 8 2 3 10305 58.00 M 5 2 2 10306 55.00 M 6 2 2 10307 94.00 M 6 2 3 10308 86.00 M 7 2 3 10309 75.00 M 5 2 3 10310 62.00 F 6 2 3 10311 75.00 M 6 2 3 10312 65.00 M 1 2 3 10313 46.00 M 0 2 2 10314 49.00 M 8 2 2 10315 72.00 M 1 2 3 10316 45.00 F 1 2 2 10317 67.00 F 1 2 3 10318 54.00 M 4 2 2 10319 68.00 M 5 2 3 10320 52.00 F 3 2 2 10321 55.00 F 5 2 2 10322 71.00 M 32 2 3 10323 52.00 F 3 2 2 10324 48.00 M 2 2 2 10325 25.00 F 1 2 2 10326 80.00 M 2 2 3 10327 87.00 F 2 2 3 10328 74.00 M 5 2 3 10329 60.00 M 1 2 3 10330 65.00 F 3 2 3 10331 80.00 M 1 2 3 10332 68.00 M 1 2 3 10333 65.00 F 0 2 3 10334 38.00 M 1 2 2 10335 55.00 F 2 2 2 10336 24.00 F 0 2 2 10337 57.00 M 2 2 2 10338 70.00 F 4 2 3 10339 51.00 F 18 2 2 10340 50.00 M 17 2 2 10341 39.00 F 16 2 2 10342 54.00 M 15 2 2 10343 65.00 F 6 2 3 10344 69.00 M 14 2 3 10345 84.00 M 9 2 3 10346 70.00 M 11 2 3 10347 49.00 F 2 2 2 10348 69.00 M 10 2 3 10349 60.00 M 9 2 3 10350 75.00 M 8 2 3 10351 72.00 M 8 2 3 10352 59.00 F 7 2 2 10353 52.00 M 6 2 2 10354 73.00 M 7 2 3 10355 74.00 M 4 2 3 10356 60.00 M 1 2 3 10357 75.00 M 13 2 3 10358 37.00 M 6 2 2 10359 65.00 M 13 2 3 10360 67.00 F 5 2 3 10361 71.00 M 3 2 3 10362 70.00 F 4 2 3 10363 57.00 F 2 2 2 10364 70.00 M 4 2 3 10365 75.00 F 3 2 3 10366 44.00 M 4 2 2 10367 53.00 M 2 2 2 10368 43.00 F 4 2 2 10369 75.00 M 5 2 3 10370 60.00 M 4 2 3 10371 73.00 M 2 2 3 10372 79.00 M 2 2 3 10373 72.00 M 1 2 3 10374 68.00 M 3 2 3 10375 60.00 F 1 2 3 10376 61.00 M 2 2 3 10377 36.00 M 1 2 2 10378 86.00 M 1 2 3 10379 78.00 M 0 2 3 10380 64.00 M 2 2 3 10381 66.00 M 1 2 3 10382 52.00 F 1 2 2 10383 48.00 M 11 2 2 10384 50.00 M 7 2 2 10385 60.00 M 1 2 3 10386 56.00 F 1 2 2 10387 65.00 M 5 2 3 10388 67.00 M 4 2 3 10389 52.00 M 4 2 2 10390 75.00 F 11 2 3 10391 46.00 F 16 2 2 10392 71.00 F 14 2 3 10393 62.00 M 13 2 3 10394 75.00 M 12 2 3 10395 52.00 F 15 2 2 10396 70.00 M 12 2 3 10397 52.00 M 0 2 2 10398 82.00 M 6 2 3 10399 80.00 F 14 2 3 10400 75.00 F 6 2 3 10401 60.00 F 12 2 3 10402 57.00 M 4 2 2 10403 90.00 M 0 2 3 10404 47.00 M 9 2 2 10405 75.00 M 8 2 3 10406 86.00 M 7 2 3 10407 71.00 M 0 2 3 10408 65.00 M 9 2 3 10409 35.00 M 4 2 2 10410 68.00 M 11 2 3 10411 69.00 F 5 2 3 10412 60.00 F 3 2 3 10413 62.00 F 8 2 3 10414 68.00 F 25 2 3 10415 62.00 M 0 2 3 10416 85.00 M 2 2 3 10417 46.00 M 11 2 2 10418 65.00 M 3 2 3 10419 65.00 M 6 2 3 10420 64.00 F 6 2 3 10421 83.00 M 0 2 3 10422 73.00 M 8 2 3 10423 52.00 F 6 2 2 10424 55.00 F 3 2 2 10425 49.00 M 1 2 2 10426 80.00 M 2 2 3 10427 58.00 F 3 2 2 10428 63.00 M 2 2 3 10429 52.00 F 5 2 2 10430 73.00 M 2 2 3 10431 35.00 F 3 2 2 10432 58.00 M 0 2 2 10433 61.00 M 4 2 3 10434 53.00 F 3 2 2 10435 85.00 M 3 2 3 10436 59.00 M 3 2 2 10437 35.00 M 0 2 2 10438 60.00 F 1 2 3 10439 50.00 M 1 2 2 10440 75.00 M 1 2 3 10441 75.00 F 3 2 3 10442 84.00 F 2 2 3 10443 26.00 M 0 2 2 10444 80.00 M 8 2 3 10445 45.00 M 4 2 2 10446 79.00 M 11 2 3 10447 56.00 M 15 2 2 10448 75.00 M 0 2 3 10449 70.00 M 5 2 3 10450 52.00 M 8 2 2 10451 73.00 M 0 2 3 10452 60.00 M 4 2 3 10453 71.00 M 16 2 3 10454 28.00 M 13 2 2 10455 38.00 M 10 2 2 10456 85.00 M 7 2 3 10457 60.00 F 12 2 3 10458 65.00 F 8 2 3 10459 61.00 F 4 2 3 10460 62.00 M 11 2 3 10461 70.00 F 8 2 3 10462 70.00 M 5 2 3 10463 67.00 M 8 2 3 10464 46.00 F 9 2 2 10465 76.00 M 9 2 3 10466 54.00 M 10 2 2 10467 85.00 M 7 2 3 10468 65.00 F 8 2 3 10469 62.00 F 10 2 3 10470 65.00 M 3 2 3 10471 80.00 F 10 2 3 10472 80.00 M 9 2 3 10473 75.00 F 8 2 3 10474 90.00 F 8 2 3 10475 84.00 M 7 2 3 10476 63.00 F 3 2 3 10477 70.00 F 7 2 3 10478 80.00 F 9 2 3 10479 77.00 M 6 2 3 10480 79.00 M 6 2 3 10481 60.00 M 6 2 3 10482 62.00 F 9 2 3 10483 70.00 M 6 2 3 10484 40.00 M 5 2 2 10485 68.00 M 0 2 3 10486 58.00 F 2 2 2 10487 65.00 F 5 2 3 10488 67.00 M 4 2 3 10489 72.00 M 7 2 3 10490 68.00 F 7 2 3 10491 25.00 M 0 2 2 10492 66.00 F 3 2 3 10493 30.00 M 4 2 2 10494 60.00 M 1 2 3 10495 85.00 M 4 2 3 10496 85.00 M 1 2 3 10497 64.00 M 5 2 3 10498 63.00 M 3 2 3 10499 56.00 M 1 2 2 10500 60.00 M 6 2 3 10501 52.00 F 0 2 2 10502 64.00 M 1 2 3 10503 45.00 F 11 2 2 10504 49.00 M 1 2 2 10505 50.00 F 0 2 2 10506 71.00 F 2 2 3 10507 53.00 F 1 2 2 10508 65.00 M 1 2 3 10509 46.00 M 0 2 2 10510 55.00 M 2 2 2 10511 70.00 M 0 2 3 10512 43.00 M 3 2 2 10513 75.00 F 1 2 3 10514 75.00 F 0 2 3 10515 70.00 F 2 2 3 10516 42.00 M 0 2 2 10517 65.00 F 5 2 3 10518 75.00 M 19 2 3 10519 37.00 M 18 2 2 10520 51.00 F 5 2 2 10521 60.00 M 1 2 3 10522 70.00 M 12 2 3 10523 65.00 M 14 2 3 10524 67.00 F 3 2 3 10525 56.00 F 13 2 2 10526 70.00 M 13 2 3 10527 85.00 M 15 2 3 10528 65.00 F 6 2 3 10529 64.00 M 4 2 3 10530 71.00 F 11 2 3 10531 38.00 M 5 2 2 10532 61.00 F 12 2 3 10533 69.00 M 18 2 3 10534 70.00 M 10 2 3 10535 89.00 M 7 2 3 10536 62.00 M 1 2 3 10537 55.00 F 1 2 2 10538 46.00 M 5 2 2 10539 65.00 M 10 2 3 10540 50.00 M 10 2 2 10541 79.00 M 8 2 3 10542 82.00 M 2 2 3 10543 60.00 M 4 2 3 10544 70.00 F 5 2 3 10545 59.00 F 9 2 2 10546 71.00 M 7 2 3 10547 48.00 F 3 2 2 10548 85.00 F 7 2 3 10549 64.00 M 3 2 3 10550 87.00 F 7 2 3 10551 62.00 M 7 2 3 10552 65.00 M 4 2 3 10553 76.00 M 3 2 3 10554 69.00 M 4 2 3 10555 55.00 F 8 2 2 10556 75.00 F 7 2 3 10557 65.00 M 5 2 3 10558 59.00 F 8 2 2 10559 70.00 M 5 2 3 10560 38.00 M 7 2 2 10561 66.00 M 7 2 3 10562 66.00 M 6 2 3 10563 41.00 M 7 2 2 10564 65.00 M 8 2 3 10565 63.00 M 6 2 3 10566 40.00 F 2 2 2 10567 50.00 F 1 2 2 10568 72.00 M 5 2 3 10569 64.00 M 8 2 3 10570 22.00 M 2 2 2 10571 65.00 M 2 2 3 10572 70.00 M 7 2 3 10573 58.00 F 0 2 2 10574 35.00 M 8 2 2 10575 42.00 F 4 2 2 10576 75.00 M 8 2 3 10577 60.00 F 5 2 3 10578 65.00 M 4 2 3 10579 70.00 F 3 2 3 10580 66.00 M 4 2 3 10581 60.00 F 4 2 3 10582 56.00 M 1 2 2 10583 55.00 F 2 2 2 10584 49.00 F 4 2 2 10585 61.00 M 4 2 3 10586 72.00 M 6 2 3 10587 51.00 M 3 2 2 10588 61.00 M 3 2 3 10589 62.00 F 5 2 3 10590 60.00 M 0 2 3 10591 74.00 F 1 2 3 10592 59.00 M 1 2 2 10593 75.00 F 5 2 3 10594 77.00 M 2 2 3 10595 67.00 F 2 2 3 10596 70.00 M 1 2 3 10597 70.00 M 2 2 3 10598 49.00 F 2 2 2 10599 55.00 M 4 2 2 10600 56.00 F 2 2 2 10601 60.00 F 4 2 3 10602 60.00 F 2 2 3 10603 72.00 M 8 2 3 10604 54.00 F 8 2 2 10605 59.00 M 33 2 2 10606 64.00 F 36 2 3 10607 53.00 F 3 2 2 10608 63.00 M 2 2 3 10609 72.00 F 6 2 3 10610 78.00 M 2 2 3 10611 73.00 M 14 2 3 10612 85.00 M 1 2 3 10613 42.00 M 7 2 2 10614 77.00 M 13 2 3 10615 89.00 M 14 2 3 10616 72.00 M 7 2 3 10617 37.00 M 7 2 2 10618 78.00 M 12 2 3 10619 69.00 M 14 2 3 10620 65.00 F 0 2 3 10621 51.00 M 3 2 2 10622 74.00 M 3 2 3 10623 32.00 F 0 2 2 10624 51.00 M 11 2 2 10625 74.00 M 9 2 3 10626 52.00 M 4 2 2 10627 68.00 F 11 2 3 10628 66.00 M 10 2 3 10629 71.00 M 11 2 3 10630 65.00 M 10 2 3 10631 43.00 M 7 2 2 10632 80.00 M 10 2 3 10633 65.00 M 4 2 3 10634 76.00 M 8 2 3 10635 56.00 M 3 2 2 10636 60.00 F 7 2 3 10637 51.00 M 14 2 2 10638 64.00 M 11 2 3 10639 75.00 M 1 2 3 10640 57.00 F 4 2 2 10641 80.00 M 2 2 3 10642 81.00 M 12 2 3 10643 75.00 F 11 2 3 10644 88.00 M 8 2 3 10645 75.00 M 8 2 3 10646 65.00 M 7 2 3 10647 86.00 M 7 2 3 10648 76.00 M 5 2 3 10649 67.00 M 6 2 3 10650 20.00 M 2 2 2 10651 70.00 F 5 2 3 10652 50.00 M 3 2 2 10653 70.00 M 6 2 3 10654 80.00 M 4 2 3 10655 72.00 M 3 2 3 10656 55.00 F 3 2 2 10657 60.00 F 2 2 3 10658 66.00 M 5 2 3 10659 50.00 M 4 2 2 10660 55.00 M 3 2 2 10661 75.00 M 4 2 3 10662 68.00 M 0 2 3 10663 69.00 F 1 2 3 10664 59.00 M 2 2 2 10665 75.00 F 4 2 3 10666 82.00 M 2 2 3 10667 68.00 M 2 2 3 10668 52.00 M 0 2 2 10669 58.00 F 3 2 2 10670 62.00 M 2 2 3 10671 55.00 F 0 2 2 10672 70.00 F 4 2 3 10673 53.00 M 3 2 2 10674 50.00 M 2 2 2 10675 54.00 M 3 2 2 10676 45.00 M 0 2 2 10677 87.00 M 0 2 3 10678 81.00 M 18 2 3 10679 85.00 M 4 2 3 10680 54.00 M 1 2 2 10681 55.00 F 15 2 2 10682 64.00 M 4 2 3 10683 58.00 F 18 2 2 10684 65.00 F 13 2 3 10685 60.00 F 14 2 3 10686 60.00 M 5 2 3 10687 60.00 M 0 2 3 10688 76.00 M 1 2 3 10689 63.00 F 11 2 3 10690 70.00 M 11 2 3 10691 55.00 M 4 2 2 10692 81.00 M 1 2 3 10693 73.00 F 2 2 3 10694 49.00 F 12 2 2 10695 80.00 F 7 2 3 10696 65.00 M 4 2 3 10697 71.00 M 11 2 3 10698 60.00 M 1 2 3 10699 55.00 M 8 2 2 10700 65.00 M 9 2 3 10701 56.00 M 7 2 2 10702 76.00 M 8 2 3 10703 68.00 F 7 2 3 10704 85.00 M 6 2 3 10705 62.00 M 17 2 3 10706 70.00 F 6 2 3 10707 66.00 M 6 2 3 10708 60.00 M 10 2 3 10709 50.00 M 4 2 2 10710 95.00 M 5 2 3 10711 65.00 M 5 2 3 10712 60.00 M 5 2 3 10713 51.00 M 6 2 2 10714 63.00 M 7 2 3 10715 34.00 M 4 2 2 10716 64.00 M 5 2 3 10717 52.00 M 0 2 2 10718 65.00 M 12 2 3 10719 85.00 M 2 2 3 10720 67.00 M 1 2 3 10721 57.00 F 1 2 2 10722 63.00 M 1 2 3 10723 82.00 F 5 2 3 10724 50.00 M 4 2 2 10725 63.00 M 3 2 3 10726 52.00 M 1 2 2 10727 58.00 M 0 2 2 10728 81.00 M 2 2 3 10729 55.00 M 16 2 2 10730 68.00 M 9 2 3 10731 77.00 F 16 2 3 10732 75.00 F 18 2 3 10733 89.00 M 14 2 3 10734 68.00 M 15 2 3 10735 65.00 M 8 2 3 10736 66.00 M 15 2 3 10737 28.00 M 4 2 2 10738 74.00 M 5 2 3 10739 59.00 F 13 2 2 10740 77.00 M 4 2 3 10741 79.00 F 13 2 3 10742 75.00 M 9 2 3 10743 82.00 M 8 2 3 10744 41.00 F 1 2 2 10745 56.00 M 7 2 2 10746 63.00 M 3 2 3 10747 70.00 M 10 2 3 10748 83.00 F 11 2 3 10749 68.00 M 13 2 3 10750 88.00 M 7 2 3 10751 60.00 M 0 2 3 10752 70.00 M 10 2 3 10753 51.00 M 2 2 2 10754 47.00 M 10 2 2 10755 60.00 M 1 2 3 10756 65.00 M 7 2 3 10757 57.00 M 7 2 2 10758 84.00 F 7 2 3 10759 60.00 F 6 2 3 10760 54.00 F 4 2 2 10761 73.00 M 5 2 3 10762 80.00 F 6 2 3 10763 68.00 F 2 2 3 10764 60.00 M 16 2 3 10765 54.00 F 2 2 2 10766 58.00 M 1 2 2 10767 83.00 M 4 2 3 10768 75.00 M 3 2 3 10769 62.00 F 3 2 3 10770 59.00 M 0 2 2 10771 78.00 F 0 2 3 10772 63.00 F 1 2 3 10773 55.00 F 3 2 2 10774 74.00 F 0 2 3 10775 84.00 M 10 2 3 10776 84.00 M 4 2 3 10777 81.00 M 1 2 3 10778 38.00 F 0 2 2 10779 60.00 M 6 2 3 10780 57.00 F 7 2 2 10781 72.00 M 21 2 3 10782 42.00 M 15 2 2 10783 72.00 M 17 2 3 10784 72.00 M 13 2 3 10785 58.00 F 13 2 2 10786 70.00 M 11 2 3 10787 68.00 M 0 2 3 10788 47.00 M 11 2 2 10789 81.00 F 41 2 3 10790 75.00 F 9 2 3 10791 87.00 M 10 2 3 10792 90.00 F 8 2 3 10793 78.00 M 9 2 3 10794 51.00 M 5 2 2 10795 70.00 M 8 2 3 10796 63.00 F 7 2 3 10797 70.00 F 8 2 3 10798 57.00 F 9 2 2 10799 70.00 M 7 2 3 10800 62.00 M 6 2 3 10801 82.00 F 1 2 3 10802 80.00 F 5 2 3 10803 68.00 M 5 2 3 10804 75.00 M 7 2 3 10805 80.00 F 0 2 3 10806 62.00 M 4 2 3 10807 67.00 F 5 2 3 10808 64.00 F 0 2 3 10809 56.00 M 3 2 2 10810 59.00 M 1 2 2 10811 63.00 M 0 2 3 10812 53.00 M 7 2 2 10813 59.00 M 4 2 2 10814 56.00 M 5 2 2 10815 65.00 M 5 2 3 10816 65.00 F 9 2 3 10817 32.00 M 0 2 2 10818 65.00 F 17 2 3 10819 54.00 M 7 2 2 10820 80.00 M 14 2 3 10821 64.00 M 12 2 3 10822 54.00 M 11 2 2 10823 82.00 M 9 2 3 10824 70.00 M 0 2 3 10825 66.00 F 3 2 3 10826 84.00 M 10 2 3 10827 71.00 M 15 2 3 10828 92.00 M 8 2 3 10829 60.00 M 11 2 3 10830 58.00 F 8 2 2 10831 80.00 M 8 2 3 10832 74.00 M 8 2 3 10833 83.00 F 10 2 3 10834 70.00 F 7 2 3 10835 86.00 M 10 2 3 10836 38.00 M 7 2 2 10837 70.00 F 8 2 3 10838 80.00 M 7 2 3 10839 70.00 F 5 2 3 10840 47.00 F 9 2 2 10841 75.00 M 4 2 3 10842 59.00 M 7 2 2 10843 68.00 M 3 2 3 10844 82.00 F 5 2 3 10845 73.00 M 2 2 3 10846 87.00 M 3 2 3 10847 70.00 M 14 2 3 10848 48.00 F 3 2 2 10849 78.00 M 11 2 3 10850 52.00 F 0 2 2 10851 47.00 M 4 2 2 10852 70.00 M 2 2 3 10853 60.00 F 4 2 3 10854 78.00 M 0 2 3 10855 70.00 F 2 2 3 10856 64.00 F 2 2 3 10857 57.00 M 0 2 2 10858 56.00 M 13 2 2 10859 55.00 M 14 2 2 10860 67.00 M 4 2 3 10861 58.00 M 14 2 2 10862 3.00 F 12 2 1 10863 63.00 F 14 2 3 10864 48.00 F 12 2 2 10865 44.00 M 6 2 2 10866 77.00 M 11 2 3 10867 71.00 F 7 2 3 10868 55.00 M 9 2 2 10869 65.00 M 4 2 3 10870 68.00 M 9 2 3 10871 80.00 F 11 2 3 10872 78.00 M 9 2 3 10873 84.00 M 8 2 3 10874 75.00 M 6 2 3 10875 55.00 M 7 2 2 10876 70.00 F 2 2 3 10877 80.00 F 9 2 3 10878 70.00 M 8 2 3 10879 80.00 F 6 2 3 10880 56.00 M 5 2 2 10881 58.00 M 3 2 2 10882 60.00 F 1 2 3 10883 65.00 M 4 2 3 10884 88.00 M 6 2 3 10885 70.00 F 5 2 3 10886 72.00 M 3 2 3 10887 66.00 M 5 2 3 10888 90.00 M 6 2 3 10889 54.00 M 2 2 2 10890 76.00 F 2 2 3 10891 63.00 F 3 2 3 10892 57.00 M 2 2 2 10893 58.00 F 7 2 2 10894 84.00 M 1 2 3 10895 35.00 F 2 2 2 10896 31.00 M 1 2 2 10897 19.00 M 9 2 2 10898 58.00 M 0 2 2 10899 72.00 M 12 2 3 10900 76.00 M 9 2 3 10901 57.00 F 12 2 2 10902 57.00 M 22 2 2 10903 66.00 M 18 2 3 10904 62.00 M 6 2 3 10905 72.00 M 21 2 3 10906 60.00 F 8 2 3 10907 55.00 M 2 2 2 10908 80.00 M 10 2 3 10909 65.00 M 12 2 3 10910 65.00 M 16 2 3 10911 60.00 F 4 2 3 10912 72.00 M 10 2 3 10913 75.00 M 12 2 3 10914 75.00 M 11 2 3 10915 80.00 M 8 2 3 10916 65.00 M 12 2 3 10917 63.00 M 10 2 3 10918 72.00 F 9 2 3 10919 69.00 M 11 2 3 10920 93.00 F 9 2 3 10921 40.00 M 11 2 2 10922 75.00 M 17 2 3 10923 57.00 M 3 2 2 10924 79.00 M 11 2 3 10925 58.00 M 11 2 2 10926 54.00 M 6 2 2 10927 75.00 M 2 2 3 10928 55.00 M 5 2 2 10929 68.00 M 7 2 3 10930 54.00 M 26 2 2 10931 65.00 F 0 2 3 10932 74.00 M 4 2 3 10933 52.00 M 5 2 2 10934 63.00 M 6 2 3 10935 80.00 F 0 2 3 10936 65.00 F 6 2 3 10937 76.00 M 6 2 3 10938 57.00 F 3 2 2 10939 64.00 M 2 2 3 10940 66.00 M 1 2 3 10941 60.00 M 2 2 3 10942 80.00 M 3 2 3 10943 76.00 M 5 2 3 10944 61.00 M 5 2 3 10945 82.00 M 3 2 3 10946 34.00 M 0 2 2 10947 89.00 M 2 2 3 10948 80.00 M 2 2 3 10949 80.00 F 2 2 3 10950 74.00 M 3 2 3 10951 53.00 F 2 2 2 10952 66.00 M 0 2 3 10953 78.00 M 3 2 3 10954 55.00 M 1 2 2 10955 52.00 M 3 2 2 10956 33.00 M 14 2 2 10957 65.00 F 0 2 3 10958 46.00 M 2 2 2 10959 46.00 F 12 2 2 10960 68.00 F 19 2 3 10961 29.00 M 12 2 2 10962 63.00 M 10 2 3 10963 69.00 M 11 2 3 10964 42.00 M 4 2 2 10965 70.00 M 1 2 3 10966 86.00 M 11 2 3 10967 77.00 F 4 2 3 10968 67.00 M 8 2 3 10969 68.00 M 7 2 3 10970 73.00 M 10 2 3 10971 41.00 M 11 2 2 10972 83.00 M 8 2 3 10973 68.00 M 6 2 3 10974 79.00 M 7 2 3 10975 65.00 M 3 2 3 10976 55.00 M 2 2 2 10977 60.00 M 5 2 3 10978 45.00 M 2 2 2 10979 25.00 F 0 2 2 10980 89.00 M 6 2 3 10981 57.00 F 6 2 2 10982 51.00 F 6 2 2 10983 85.00 F 2 2 3 10984 84.00 M 5 2 3 10985 78.00 M 7 2 3 10986 58.00 M 3 2 2 10987 78.00 F 3 2 3 10988 65.00 M 2 2 3 10989 68.00 M 9 2 3 10990 78.00 F 4 2 3 10991 75.00 F 0 2 3 10992 78.00 M 5 2 3 10993 67.00 F 2 2 3 10994 63.00 M 3 2 3 10995 83.00 M 2 2 3 10996 11.00 M 3 2 1 10997 68.00 F 0 2 3 10998 77.00 M 2 2 3 10999 24.00 M 8 2 2 11000 75.00 F 19 2 3 11001 56.00 F 25 2 2 11002 56.00 M 8 2 2 11003 24.00 F 16 2 2 11004 65.00 M 15 2 3 11005 70.00 M 15 2 3 11006 31.00 F 1 2 2 11007 76.00 M 7 2 3 11008 55.00 F 9 2 2 11009 65.00 M 14 2 3 11010 61.00 M 13 2 3 11011 65.00 M 0 2 3 11012 62.00 M 4 2 3 11013 74.00 M 1 2 3 11014 78.00 M 10 2 3 11015 58.00 M 3 2 2 11016 67.00 M 11 2 3 11017 62.00 M 9 2 3 11018 70.00 F 10 2 3 11019 65.00 F 2 2 3 11020 75.00 M 5 2 3 11021 55.00 M 9 2 2 11022 92.00 M 8 2 3 11023 74.00 M 1 2 3 11024 91.00 F 6 2 3 11025 29.00 M 4 2 2 11026 81.00 M 7 2 3 11027 82.00 M 7 2 3 11028 46.00 M 2 2 2 11029 76.00 M 6 2 3 11030 74.00 M 5 2 3 11031 60.00 F 36 2 3 11032 30.00 F 2 2 2 11033 48.00 F 1 2 2 11034 64.00 M 2 2 3 11035 75.00 M 1 2 3 11036 73.00 M 1 2 3 11037 71.00 M 1 2 3 11038 86.00 F 1 2 3 11039 59.00 M 2 2 2 11040 79.00 M 2 2 3 11041 70.00 M 2 2 3 11042 87.00 F 0 2 3 11043 56.00 F 1 2 2 11044 25.00 M 0 2 2 11045 66.00 M 11 2 3 11046 73.00 M 1 2 3 11047 58.00 F 1 2 2 11048 60.00 F 6 2 3 11049 75.00 M 7 2 3 11050 60.00 M 11 2 3 11051 75.00 M 11 2 3 11052 70.00 F 8 2 3 11053 93.00 M 7 2 3 11054 66.00 M 16 2 3 11055 48.00 M 10 2 2 11056 68.00 M 11 2 3 11057 37.00 M 13 2 2 11058 74.00 F 12 2 3 11059 65.00 M 9 2 3 11060 61.00 M 9 2 3 11061 62.00 F 8 2 3 11062 34.00 M 7 2 2 11063 70.00 F 4 2 3 11064 72.00 M 4 2 3 11065 82.00 M 6 2 3 11066 70.00 M 7 2 3 11067 60.00 F 6 2 3 11068 69.00 F 0 2 3 11069 79.00 M 8 2 3 11070 34.00 M 1 2 2 11071 90.00 M 1 2 3 11072 52.00 M 0 2 2 11073 25.00 M 0 2 2 11074 44.00 M 0 2 2 11075 73.00 M 0 2 3 11076 60.00 M 43 2 3 11077 56.00 M 4 2 2 11078 59.00 M 2 2 2 11079 60.00 F 13 2 3 11080 85.00 M 11 2 3 11081 65.00 M 7 2 3 11082 78.00 M 10 2 3 11083 92.00 M 8 2 3 11084 68.00 M 8 2 3 11085 63.00 M 5 2 3 11086 58.00 F 8 2 2 11087 65.00 M 9 2 3 11088 80.00 F 7 2 3 11089 100.00 F 3 2 3 11090 48.00 M 2 2 2 11091 45.00 M 5 2 2 11092 62.00 M 2 2 3 11093 69.00 M 1 2 3 11094 60.00 F 4 2 3 11095 80.00 F 3 2 3 11096 29.00 M 2 2 2 11097 78.00 M 14 2 3 11098 64.00 M 1 2 3 11099 52.00 M 0 2 2 11100 68.00 M 1 2 3 11101 74.00 F 16 2 3 11102 64.00 M 12 2 3 11103 92.00 F 6 2 3 11104 65.00 F 12 2 3 11105 56.00 M 21 2 2 11106 68.00 F 8 2 3 11107 73.00 M 9 2 3 11108 58.00 M 7 2 2 11109 85.00 M 9 2 3 11110 33.00 M 9 2 2 11111 63.00 M 8 2 3 11112 46.00 M 4 2 2 11113 74.00 M 6 2 3 11114 62.00 M 6 2 3 11115 55.00 F 6 2 2 11116 50.00 F 0 2 2 11117 65.00 M 5 2 3 11118 63.00 F 3 2 3 11119 84.00 M 1 2 3 11120 67.00 M 2 2 3 11121 48.00 F 1 2 2 11122 65.00 F 1 2 3 11123 76.00 F 2 2 3 11124 65.00 M 1 2 3 11125 65.00 F 21 2 3 11126 41.00 M 0 2 2 11127 30.00 M 3 2 2 11128 76.00 F 2 2 3 11129 65.00 F 2 2 3 11130 76.00 F 7 2 3 11131 30.00 M 0 2 2 11132 92.00 M 14 2 3 11133 65.00 F 11 2 3 11134 55.00 F 5 2 2 11135 75.00 F 9 2 3 11136 60.00 M 2 2 3 11137 93.00 F 9 2 3 11138 72.00 M 3 2 3 11139 84.00 M 0 2 3 11140 82.00 M 5 2 3 11141 64.00 F 2 2 3 11142 65.00 M 21 2 3 11143 78.00 M 4 2 3 11144 60.00 M 3 2 3 11145 58.00 M 4 2 2 11146 35.00 F 2 2 2 11147 67.00 M 4 2 3 11148 79.00 M 1 2 3 11149 74.00 M 8 2 3 11150 56.00 F 0 2 2 11151 55.00 M 0 2 2 11152 80.00 M 2 2 3 11153 67.00 M 3 2 3 11154 68.00 M 1 2 3 11155 67.00 M 7 2 3 11156 82.00 M 13 2 3 11157 77.00 M 4 2 3 11158 60.00 F 0 2 3 11159 70.00 M 1 2 3 11160 84.00 F 0 2 3 11161 57.00 M 2 2 2 11162 29.00 F 1 2 2 11163 84.00 M 11 2 3 11164 82.00 F 9 2 3 11165 57.00 F 11 2 2 11166 48.00 F 12 2 2 11167 61.00 M 11 2 3 11168 59.00 M 9 2 2 11169 62.00 F 8 2 3 11170 81.00 M 11 2 3 11171 72.00 F 7 2 3 11172 45.00 M 8 2 2 11173 63.00 M 0 2 3 11174 74.00 M 9 2 3 11175 32.00 F 8 2 2 11176 55.00 F 10 2 2 11177 58.00 F 2 2 2 11178 84.00 F 5 2 3 11179 63.00 M 5 2 3 11180 61.00 M 4 2 3 11181 68.00 M 5 2 3 11182 90.00 F 5 2 3 11183 71.00 M 2 2 3 11184 82.00 M 3 2 3 11185 60.00 F 14 2 3 11186 76.00 M 3 2 3 11187 74.00 M 2 2 3 11188 86.00 M 1 2 3 11189 56.00 F 6 2 2 11190 74.00 F 4 2 3 11191 7.00 M 23 2 1 11192 65.00 M 0 2 3 11193 56.00 M 3 2 2 11194 60.00 M 12 2 3 11195 40.00 M 14 2 2 11196 58.00 F 2 2 2 11197 52.00 M 11 2 2 11198 66.00 F 13 2 3 11199 56.00 M 5 2 2 11200 60.00 M 0 2 3 11201 67.00 M 2 2 3 11202 54.00 F 2 2 2 11203 66.00 F 6 2 3 11204 47.00 M 7 2 2 11205 67.00 F 2 2 3 11206 45.00 F 3 2 2 11207 35.00 F 2 2 2 11208 70.00 M 1 2 3 11209 79.00 M 3 2 3 11210 53.00 M 3 2 2 11211 50.00 F 3 2 2 11212 48.00 M 1 2 2 11213 65.00 F 4 2 3 11214 72.00 M 2 2 3 11215 70.00 F 1 2 3 11216 50.00 M 2 2 2 11217 57.00 M 1 2 2 11218 70.00 F 1 2 3 11219 38.00 M 1 2 2 11220 70.00 M 4 2 3 11221 56.00 M 17 2 2 11222 84.00 F 0 2 3 11223 88.00 M 17 2 3 11224 49.00 M 1 2 2 11225 58.00 M 6 2 2 11226 78.00 F 5 2 3 11227 70.00 M 12 2 3 11228 51.00 M 3 2 2 11229 75.00 M 9 2 3 11230 70.00 F 0 2 3 11231 54.00 M 9 2 2 11232 55.00 M 1 2 2 11233 78.00 M 8 2 3 11234 73.00 M 9 2 3 11235 72.00 M 12 2 3 11236 41.00 M 8 2 2 11237 75.00 F 5 2 3 11238 58.00 F 5 2 2 11239 78.00 M 6 2 3 11240 66.00 M 3 2 3 11241 68.00 M 5 2 3 11242 62.00 F 4 2 3 11243 73.00 M 0 2 3 11244 71.00 M 1 2 3 11245 75.00 M 3 2 3 11246 60.00 F 2 2 3 11247 34.00 F 3 2 2 11248 70.00 M 3 2 3 11249 54.00 M 1 2 2 11250 41.00 F 1 2 2 11251 53.00 M 0 2 2 11252 60.00 F 1 2 3 11253 68.00 M 0 2 3 11254 70.00 M 1 2 3 11255 54.00 M 19 2 2 11256 50.00 M 1 2 2 11257 65.00 F 0 2 3 11258 67.00 F 17 2 3 11259 59.00 M 17 2 2 11260 78.00 M 3 2 3 11261 62.00 F 0 2 3 11262 20.00 F 14 2 2 11263 77.00 M 4 2 3 11264 32.00 M 6 2 2 11265 75.00 M 0 2 3 11266 75.00 M 8 2 3 11267 61.00 M 6 2 3 11268 75.00 M 0 2 3 11269 65.00 M 2 2 3 11270 70.00 M 2 2 3 11271 44.00 M 4 2 2 11272 63.00 F 2 2 3 11273 81.00 M 2 2 3 11274 72.00 F 2 2 3 11275 66.00 M 2 2 3 11276 55.00 M 0 2 2 11277 62.00 M 0 2 3 11278 71.00 M 25 2 3 11279 50.00 F 10 2 2 11280 80.00 F 2 2 3 11281 65.00 M 0 2 3 11282 74.00 M 9 2 3 11283 48.00 M 12 2 2 11284 79.00 F 0 2 3 11285 79.00 M 9 2 3 11286 40.00 M 4 2 2 11287 83.00 M 6 2 3 11288 67.00 M 5 2 3 11289 65.00 F 3 2 3 11290 73.00 M 2 2 3 11291 60.00 M 1 2 3 11292 57.00 M 5 2 2 11293 65.00 F 0 2 3 11294 65.00 M 1 2 3 11295 70.00 F 2 2 3 11296 50.00 M 0 2 2 11297 89.00 M 5 2 3 11298 49.00 F 3 2 2 11299 88.00 M 10 2 3 11300 68.00 F 6 2 3 11301 67.00 M 23 2 3 11302 41.00 M 0 2 2 11303 65.00 M 8 2 3 11304 70.00 M 0 2 3 11305 51.00 M 9 2 2 11306 63.00 M 6 2 3 11307 70.00 M 10 2 3 11308 82.00 M 7 2 3 11309 30.00 F 8 2 2 11310 48.00 F 0 2 2 11311 73.00 F 8 2 3 11312 79.00 M 5 2 3 11313 68.00 F 1 2 3 11314 84.00 M 5 2 3 11315 58.00 M 3 2 2 11316 55.00 F 8 2 2 11317 58.00 M 1 2 2 11318 72.00 F 3 2 3 11319 32.00 M 7 2 2 11320 80.00 F 0 2 3 11321 68.00 M 0 2 3 11322 75.00 F 8 2 3 11323 71.00 M 12 2 3 11324 50.00 M 12 2 2 11325 58.00 M 7 2 2 11326 73.00 F 10 2 3 11327 75.00 F 8 2 3 11328 47.00 M 7 2 2 11329 68.00 M 0 2 3 11330 50.00 M 8 2 2 11331 48.00 F 8 2 2 11332 45.00 F 4 2 2 11333 49.00 M 3 2 2 11334 52.00 M 3 2 2 11335 51.00 M 3 2 2 11336 84.00 M 12 2 3 11337 29.00 M 1 2 2 11338 72.00 M 0 2 3 11339 41.00 F 5 2 2 11340 96.00 M 2 2 3 11341 58.00 M 8 2 2 11342 77.00 M 17 2 3 11343 50.00 M 0 2 2 11344 51.00 M 8 2 2 11345 90.00 F 8 2 3 11346 72.00 M 4 2 3 11347 44.00 M 5 2 2 11348 74.00 M 1 2 3 11349 60.00 M 7 2 3 11350 60.00 M 4 2 3 11351 66.00 M 5 2 3 11352 35.00 M 6 2 2 11353 59.00 M 4 2 2 11354 72.00 M 5 2 3 11355 65.00 F 4 2 3 11356 50.00 F 0 2 2 11357 72.00 M 2 2 3 11358 68.00 M 2 2 3 11359 65.00 F 0 2 3 11360 40.00 M 0 2 2 11361 54.00 M 2 2 2 11362 62.00 M 0 2 3 11363 78.00 F 4 2 3 11364 80.00 M 2 2 3 11365 48.00 M 0 2 2 11366 75.00 M 0 2 3 11367 58.00 M 1 2 2 11368 89.00 M 5 2 3 11369 27.00 M 18 2 2 11370 78.00 M 1 2 3 11371 60.00 F 9 2 3 11372 80.00 F 7 2 3 11373 40.00 M 1 2 2 11374 60.00 F 5 2 3 11375 52.00 M 4 2 2 11376 72.00 M 5 2 3 11377 61.00 M 5 2 3 11378 40.00 F 1 2 2 11379 41.00 M 4 2 2 11380 41.00 M 1 2 2 11381 65.00 M 0 2 3 11382 69.00 M 13 2 3 11383 40.00 M 5 2 2 11384 60.00 M 0 2 3 11385 53.00 F 0 2 2 11386 66.00 M 3 2 3 11387 66.00 M 12 2 3 11388 80.00 F 12 2 3 11389 65.00 M 11 2 3 11390 80.00 M 2 2 3 11391 60.00 F 3 2 3 11392 77.00 M 4 2 3 11393 48.00 M 4 2 2 11394 66.00 F 3 2 3 11395 45.00 M 3 2 2 11396 70.00 M 4 2 3 11397 45.00 F 1 2 2 11398 58.00 M 0 2 2 11399 78.00 F 19 2 3 11400 59.00 M 6 2 2 11401 70.00 M 4 2 3 11402 53.00 F 12 2 2 11403 56.00 M 4 2 2 11404 88.00 F 0 2 3 11405 49.00 F 0 2 2 11406 79.00 M 0 2 3 11407 70.00 M 1 2 3 11408 62.00 M 0 2 3 11409 85.00 M 9 2 3 11410 56.00 M 9 2 2 11411 64.00 M 2 2 3 11412 54.00 M 7 2 2 11413 17.00 F 6 2 1 11414 80.00 F 4 2 3 11415 65.00 M 2 2 3 11416 60.00 M 23 2 3 11417 73.00 M 6 2 3 11418 30.00 F 8 2 2 11419 52.00 M 5 2 2 11420 68.00 M 0 2 3 11421 74.00 M 7 2 3 11422 80.00 M 10 2 3 11423 65.00 M 8 2 3 11424 82.00 F 1 2 3 11425 65.00 F 6 2 3 11426 70.00 M 6 2 3 11427 36.00 M 2 2 2 11428 56.00 F 5 2 2 11429 17.00 M 1 2 1 11430 38.00 M 1 2 2 11431 68.00 M 3 2 3 11432 68.00 M 3 2 3 11433 76.00 M 3 2 3 11434 68.00 M 2 2 3 11435 38.00 F 0 2 2 11436 60.00 M 0 2 3 11437 65.00 F 0 2 3 11438 74.00 F 11 2 3 11439 75.00 M 7 2 3 11440 79.00 F 17 2 3 11441 65.00 M 11 2 3 11442 48.00 F 10 2 2 11443 81.00 M 1 2 3 11444 77.00 M 3 2 3 11445 70.00 M 0 2 3 11446 65.00 F 1 2 3 11447 89.00 M 1 2 3 11448 55.00 M 0 2 2 11449 68.00 M 4 2 3 11450 65.00 M 4 2 3 11451 70.00 M 10 2 3 11452 70.00 M 0 2 3 11453 82.00 M 11 2 3 11454 69.00 M 13 2 3 11455 60.00 M 2 2 3 11456 74.00 M 9 2 3 11457 48.00 F 3 2 2 11458 45.00 M 3 2 2 11459 67.00 M 6 2 3 11460 53.00 F 3 2 2 11461 73.00 M 4 2 3 11462 54.00 M 0 2 2 11463 60.00 M 2 2 3 11464 55.00 M 0 2 2 11465 48.00 M 3 2 2 11466 65.00 M 13 2 3 11467 65.00 F 11 2 3 11468 32.00 M 2 2 2 11469 60.00 M 5 2 3 11470 64.00 M 10 2 3 11471 87.00 F 9 2 3 11472 72.00 M 10 2 3 11473 62.00 M 10 2 3 11474 40.00 M 2 2 2 11475 71.00 M 4 2 3 11476 63.00 M 5 2 3 11477 82.00 M 6 2 3 11478 76.00 F 5 2 3 11479 78.00 M 5 2 3 11480 65.00 M 3 2 3 11481 75.00 M 3 2 3 11482 70.00 M 3 2 3 11483 52.00 F 5 2 2 11484 27.00 F 0 2 2 11485 75.00 M 20 2 3 11486 43.00 M 0 2 2 11487 60.00 M 20 2 3 11488 65.00 F 9 2 3 11489 70.00 F 4 2 3 11490 50.00 M 13 2 2 11491 48.00 M 3 2 2 11492 62.00 M 14 2 3 11493 70.00 M 5 2 3 11494 53.00 M 6 2 2 11495 49.00 M 12 2 2 11496 68.00 F 2 2 3 11497 45.00 M 8 2 2 11498 43.00 M 9 2 2 11499 85.00 M 9 2 3 11500 46.00 M 7 2 2 11501 35.00 M 9 2 2 11502 65.00 F 7 2 3 11503 91.00 F 6 2 3 11504 86.00 M 7 2 3 11505 94.00 M 1 2 3 11506 67.00 M 2 2 3 11507 55.00 F 2 2 2 11508 75.00 M 1 2 3 11509 36.00 M 1 2 2 11510 55.00 F 30 2 2 11511 41.00 M 18 1 2 11512 0.00 F 14 1 1 11513 13.00 F 17 1 1 11514 0.00 M 15 1 1 11515 26.00 M 7 1 2 11516 0.00 M 22 1 1 11517 32.00 M 14 1 2 11518 63.00 M 15 1 3 11519 20.00 F 15 1 2 11520 67.00 F 13 1 3 11521 25.00 M 13 1 2 11522 56.00 F 19 1 2 11523 35.00 M 18 1 2 11524 35.00 M 20 1 2 11525 53.00 F 22 1 2 11526 39.00 M 25 1 2 11527 21.00 M 24 1 2 11528 31.00 M 24 1 2 11529 35.00 M 17 1 2 11530 35.00 M 15 1 2 11531 64.00 F 16 1 3 11532 36.00 F 16 1 2 11533 27.00 M 15 1 2 11534 51.00 M 17 1 2 11535 22.00 M 14 1 2 11536 46.00 M 20 1 2 11537 38.00 M 15 1 2 11538 41.00 M 14 1 2 11539 30.00 F 22 1 2 11540 24.00 M 14 1 2 11541 60.00 M 27 1 3 11542 22.00 M 20 1 2 11543 32.00 M 14 1 2 11544 40.00 M 15 1 2 11545 65.00 M 15 1 3 11546 56.00 F 16 1 2 11547 56.00 F 24 1 2 11548 47.00 M 14 1 2 11549 70.00 F 20 1 3 11550 23.00 M 14 1 2 11551 37.00 F 12 1 2 11552 63.00 M 19 1 3 11553 59.00 F 19 1 2 11554 26.00 M 21 1 2 11555 26.00 M 19 1 2 11556 63.00 F 17 1 3 11557 69.00 M 17 1 3 11558 9.00 F 20 1 1 11559 7.00 F 20 1 1 11560 34.00 M 18 1 2 11561 35.00 M 16 1 2 11562 70.00 F 37 1 3 11563 64.00 M 23 1 3 11564 45.00 M 24 1 2 11565 0.80 M 16 1 1 11566 20.00 M 21 1 2 11567 25.00 F 21 1 2 11568 35.00 F 21 1 2 11569 33.00 F 18 1 2 11570 22.00 M 19 1 2 11571 18.00 M 13 1 2 11572 21.00 M 14 1 2 11573 54.00 F 18 1 2 11574 28.00 F 18 1 2 11575 23.00 F 18 1 2 11576 21.00 M 14 1 2 11577 23.00 M 15 1 2 11578 70.00 M 13 1 3 11579 32.00 F 15 1 2 11580 38.00 M 15 1 2 11581 18.00 M 15 1 2 11582 63.00 F 35 1 3 11583 20.00 M 9 1 2 11584 24.00 M 18 1 2 11585 39.00 M 20 1 2 11586 38.00 M 14 1 2 11587 21.00 M 14 1 2 11588 31.00 M 20 1 2 11589 42.00 M 14 1 2 11590 35.00 M 16 1 2 11591 29.00 M 21 1 2 11592 13.00 M 17 1 1 11593 32.00 M 13 1 2 11594 34.00 M 13 1 2 11595 21.00 M 15 1 2 11596 24.00 M 13 1 2 11597 52.00 M 23 1 2 11598 48.00 F 26 1 2 11599 26.00 F 23 1 2 11600 40.00 M 14 1 2 11601 19.00 M 17 1 2 11602 40.00 F 21 1 2 11603 35.00 M 13 1 2 11604 41.00 M 18 1 2 11605 34.00 M 14 1 2 11606 26.00 M 18 1 2 11607 60.00 F 16 1 3 11608 40.00 M 15 1 2 11609 62.00 F 50 1 3 11610 24.00 M 17 1 2 11611 37.00 M 25 1 2 11612 27.00 M 18 1 2 11613 33.00 M 13 1 2 11614 49.00 M 14 1 2 11615 26.00 M 12 1 2 11616 63.00 M 27 1 3 11617 63.00 M 17 1 3 11618 27.00 F 17 1 2 11619 24.00 M 23 1 2 11620 22.00 M 16 1 2 11621 14.00 M 41 1 1 11622 48.00 M 21 1 2 11623 30.00 M 21 1 2 11624 41.00 M 21 1 2 11625 66.00 M 21 1 3 11626 59.00 M 21 1 2 11627 39.00 M 21 1 2 11628 60.00 M 21 1 3 11629 63.00 M 30 1 3 11630 73.00 M 21 1 3 11631 45.00 M 21 1 2 11632 60.00 F 22 1 3 11633 70.00 M 18 1 3 11634 26.00 M 26 1 2 11635 20.00 M 18 1 2 11636 21.00 M 16 1 2 11637 57.00 M 24 1 2 11638 43.00 M 22 1 2 11639 78.00 M 13 1 3 11640 60.00 M 26 1 3 11641 38.00 M 17 1 2 11642 19.00 M 14 1 2 11643 39.00 M 17 1 2 11644 39.00 M 17 1 2 11645 54.00 M 14 1 2 11646 40.00 M 15 1 2 11647 34.00 M 24 1 2 11648 47.00 F 19 1 2 11649 63.00 F 14 1 3 11650 43.00 M 14 1 2 11651 52.00 M 14 1 2 11652 68.00 M 14 1 3 11653 62.00 F 14 1 3 11654 40.00 M 16 1 2 11655 67.00 F 27 1 3 11656 41.00 F 20 1 2 11657 41.00 M 21 1 2 11658 32.00 M 15 1 2 11659 62.00 F 22 1 3 11660 20.00 M 15 1 2 11661 37.00 M 12 1 2 11662 57.00 M 21 1 2 11663 22.00 M 16 1 2 11664 26.00 M 12 1 2 11665 32.00 F 22 1 2 11666 35.00 M 15 1 2 11667 56.00 F 15 1 2 11668 58.00 M 15 1 2 11669 43.00 M 15 1 2 11670 33.00 M 19 1 2 11671 41.00 F 19 1 2 11672 29.00 M 14 1 2 11673 50.00 M 14 1 2 11674 35.00 M 17 1 2 11675 68.00 M 17 1 3 11676 32.00 M 19 1 2 11677 36.00 M 19 1 2 11678 65.00 M 19 1 3 11679 28.00 F 17 1 2 11680 57.00 M 18 1 2 11681 26.00 F 16 1 2 11682 72.00 F 16 1 3 11683 35.00 M 26 1 2 11684 23.00 M 17 1 2 11685 27.00 F 18 1 2 11686 50.00 M 17 1 2 11687 55.00 M 21 1 2 11688 68.00 M 12 1 3 11689 32.00 M 17 1 2 11690 4.00 M 17 1 1 11691 13.00 M 17 1 1 11692 9.00 F 24 1 1 11693 19.00 F 17 1 2 11694 27.00 M 19 1 2 11695 48.00 F 14 1 2 11696 40.00 F 17 1 2 11697 22.00 M 25 1 2 11698 27.00 M 15 1 2 11699 42.00 M 17 1 2 11700 27.00 M 17 1 2 11701 48.00 M 16 1 2 11702 57.00 M 16 1 2 11703 8.00 M 11 1 1 11704 48.00 F 18 1 2 11705 33.00 M 12 1 2 11706 28.00 F 23 1 2 11707 48.00 F 34 1 2 11708 35.00 M 15 1 2 11709 11.00 F 15 1 1 11710 32.00 M 15 1 2 11711 46.00 M 15 1 2 11712 43.00 M 15 1 2 11713 50.00 F 21 1 2 11714 27.00 M 23 1 2 11715 31.00 M 17 1 2 11716 26.00 M 15 1 2 11717 32.00 M 16 1 2 11718 75.00 F 16 1 3 11719 58.00 M 16 1 2 11720 24.00 F 19 1 2 11721 60.00 F 15 1 3 11722 38.00 F 19 1 2 11723 19.00 M 37 1 2 11724 38.00 M 24 1 2 11725 55.00 M 24 1 2 11726 25.00 M 20 1 2 11727 2.00 M 19 1 1 11728 13.00 M 15 1 1 11729 12.00 F 15 1 1 11730 10.00 M 15 1 1 11731 49.00 M 15 1 2 11732 20.00 F 15 1 2 11733 5.00 M 21 1 1 11734 36.00 M 19 1 2 11735 7.00 F 19 1 1 11736 37.00 M 21 1 2 11737 60.00 F 23 1 3 11738 8.00 F 21 1 1 11739 18.00 M 21 1 2 11740 27.00 M 24 1 2 11741 16.00 F 24 1 1 11742 35.00 F 24 1 2 11743 20.00 M 23 1 2 11744 14.00 F 23 1 1 11745 45.00 F 23 1 2 11746 39.00 M 15 1 2 11747 62.00 M 20 1 3 11748 43.00 M 19 1 2 11749 32.00 F 19 1 2 11750 39.00 F 19 1 2 11751 26.00 M 18 1 2 11752 10.00 F 18 1 1 11753 51.00 M 18 1 2 11754 35.00 F 18 1 2 11755 33.00 M 26 1 2 11756 36.00 M 17 1 2 11757 59.00 M 15 1 2 11758 52.00 M 21 1 2 11759 39.00 M 21 1 2 11760 41.00 M 12 1 2 11761 30.00 M 18 1 2 11762 27.00 M 12 1 2 11763 35.00 M 18 1 2 11764 26.00 M 22 1 2 11765 23.00 M 12 1 2 11766 35.00 M 15 1 2 11767 28.00 M 12 1 2 11768 32.00 M 20 1 2 11769 72.00 M 14 1 3 11770 1.00 M 16 1 1 11771 38.00 F 37 1 2 11772 25.00 M 18 1 2 11773 32.00 F 15 1 2 11774 28.00 F 31 1 2 11775 13.00 M 14 1 1 11776 51.00 F 16 1 2 11777 42.00 M 16 1 2 11778 33.00 M 24 1 2 11779 16.00 F 16 1 1 11780 65.00 F 16 1 3 11781 30.00 F 24 1 2 11782 54.00 F 16 1 2 11783 58.00 F 20 1 2 11784 54.00 F 7 1 2 11785 43.00 M 14 1 2 11786 47.00 M 18 1 2 11787 25.00 M 20 1 2 11788 45.00 F 18 1 2 11789 30.00 M 18 1 2 11790 43.00 M 18 1 2 11791 50.00 M 20 1 2 11792 35.00 M 18 1 2 11793 25.00 M 24 1 2 11794 64.00 M 18 1 3 11795 23.00 F 14 1 2 11796 52.00 M 14 1 2 11797 59.00 F 15 1 2 11798 12.00 M 17 1 1 11799 65.00 M 15 1 3 11800 66.00 M 15 1 3 11801 37.00 M 15 1 2 11802 70.00 F 19 1 3 11803 1.50 F 15 1 1 11804 38.00 M 12 1 2 11805 26.00 F 12 1 2 11806 55.00 F 17 1 2 11807 32.00 M 16 1 2 11808 5.00 M 16 1 1 11809 55.00 M 14 1 2 11810 11.00 F 14 1 1 11811 50.00 F 12 1 2 11812 33.00 M 22 1 2 11813 33.00 M 16 1 2 11814 41.00 F 13 1 2 11815 25.00 M 19 1 2 11816 29.00 M 19 1 2 11817 45.00 M 22 1 2 11818 39.00 M 19 1 2 11819 6.00 M 14 1 1 11820 25.00 F 14 1 2 11821 18.00 M 20 1 2 11822 6.00 M 18 1 1 11823 28.00 F 18 1 2 11824 68.00 F 20 1 3 11825 21.00 M 14 1 2 11826 48.00 F 21 1 2 11827 10.00 F 21 1 1 11828 50.00 M 16 1 2 11829 24.00 M 14 1 2 11830 36.00 M 23 1 2 11831 20.00 M 23 1 2 11832 19.00 M 16 1 2 11833 38.00 M 12 1 2 11834 38.00 M 12 1 2 11835 26.00 M 16 1 2 11836 28.00 M 12 1 2 11837 22.00 M 12 1 2 11838 29.00 M 12 1 2 11839 26.00 M 12 1 2 11840 32.00 M 14 1 2 11841 23.00 M 14 1 2 11842 28.00 M 14 1 2 11843 21.00 M 14 1 2 11844 65.00 F 17 1 3 11845 34.00 M 17 1 2 11846 17.00 M 17 1 1 11847 37.00 M 17 1 2 11848 38.00 M 17 1 2 11849 34.00 M 16 1 2 11850 16.00 M 16 1 1 11851 60.00 M 13 1 3 11852 63.00 M 20 1 3 11853 30.00 M 12 1 2 11854 50.00 M 12 1 2 11855 65.00 M 17 1 3 11856 48.00 F 17 1 2 11857 65.00 M 12 1 3 11858 42.00 M 22 1 2 11859 39.00 M 18 1 2 11860 32.00 M 22 1 2 11861 32.00 M 18 1 2 11862 26.00 F 15 1 2 11863 55.00 F 16 1 2 11864 21.00 F 16 1 2 11865 43.00 M 18 1 2 11866 43.00 M 22 1 2 11867 47.00 M 17 1 2 11868 30.00 M 16 1 2 11869 36.00 M 13 1 2 11870 28.00 M 17 1 2 11871 46.00 M 25 1 2 11872 20.00 M 21 1 2 11873 39.00 M 16 1 2 11874 23.00 F 14 1 2 11875 30.00 F 25 1 2 11876 17.00 M 15 1 1 11877 13.00 F 12 1 1 11878 30.00 F 14 1 2 11879 50.00 M 16 1 2 11880 19.00 M 16 1 2 11881 24.00 M 20 1 2 11882 7.00 F 20 1 1 11883 36.00 M 38 1 2 11884 27.00 F 20 1 2 11885 25.00 F 14 1 2 11886 21.00 F 23 1 2 11887 28.00 M 20 1 2 11888 47.00 F 14 1 2 11889 10.00 M 14 1 1 11890 34.00 F 14 1 2 11891 38.00 F 17 1 2 11892 14.00 M 20 1 1 11893 27.00 M 23 1 2 11894 18.00 F 19 1 2 11895 30.00 F 37 1 2 11896 29.00 M 16 1 2 11897 61.00 M 16 1 3 11898 18.00 F 12 1 2 11899 26.00 M 12 1 2 11900 26.00 M 12 1 2 11901 25.00 F 27 1 2 11902 54.00 M 16 1 2 11903 28.00 F 15 1 2 11904 46.00 F 14 1 2 11905 35.00 F 17 1 2 11906 0.30 M 14 1 1 11907 26.00 F 14 1 2 11908 56.00 M 11 1 2 11909 32.00 M 13 1 2 11910 25.00 F 14 1 2 11911 30.00 F 27 1 2 11912 13.00 F 27 1 1 11913 30.00 M 29 1 2 11914 30.00 M 23 1 2 11915 22.00 M 23 1 2 11916 40.00 M 21 1 2 11917 30.00 M 15 1 2 11918 25.00 M 15 1 2 11919 37.00 M 15 1 2 11920 43.00 M 24 1 2 11921 24.00 M 15 1 2 11922 47.00 M 16 1 2 11923 28.00 F 16 1 2 11924 32.00 M 16 1 2 11925 49.00 M 13 1 2 11926 32.00 M 15 1 2 11927 10.00 F 24 1 1 11928 30.00 M 31 1 2 11929 22.00 M 23 1 2 11930 39.00 M 16 1 2 11931 35.00 M 22 1 2 11932 32.00 M 53 1 2 11933 23.00 M 22 1 2 11934 28.00 M 24 1 2 11935 46.00 M 18 1 2 11936 17.00 M 16 1 1 11937 26.00 M 31 1 2 11938 35.00 M 22 1 2 11939 31.00 M 22 1 2 11940 24.00 M 28 1 2 11941 60.00 M 27 1 3 11942 27.00 M 16 1 2 11943 14.00 M 16 1 1 11944 26.00 M 22 1 2 11945 20.00 M 22 1 2 11946 22.00 M 15 1 2 11947 58.00 M 19 1 2 11948 38.00 M 22 1 2 11949 44.00 M 22 1 2 11950 37.00 M 14 1 2 11951 21.00 M 7 1 2 11952 17.00 M 21 1 1 11953 19.00 F 31 1 2 11954 28.00 M 21 1 2 11955 37.00 M 25 1 2 11956 45.00 M 18 1 2 11957 38.00 M 27 1 2 11958 80.00 F 23 1 3 11959 55.00 F 18 1 2 11960 42.00 F 18 1 2 11961 39.00 F 18 1 2 11962 18.00 M 15 1 2 11963 33.00 F 18 1 2 11964 52.00 F 21 1 2 11965 6.00 M 18 1 1 11966 27.00 F 30 1 2 11967 20.00 M 18 1 2 11968 8.00 M 23 1 1 11969 30.00 F 23 1 2 11970 50.00 F 14 1 2 11971 27.00 M 30 1 2 11972 27.00 M 35 1 2 11973 66.00 F 30 1 3 11974 47.00 F 18 1 2 11975 65.00 F 14 1 3 11976 7.00 M 14 1 1 11977 13.00 M 16 1 1 11978 50.00 M 16 1 2 11979 45.00 M 25 1 2 11980 32.00 F 15 1 2 11981 21.00 F 15 1 2 11982 45.00 M 25 1 2 11983 27.00 M 13 1 2 11984 22.00 F 16 1 2 11985 48.00 M 27 1 2 11986 75.00 M 12 1 3 11987 55.00 M 20 1 2 11988 40.00 F 12 1 2 11989 43.00 M 12 1 2 11990 28.00 F 12 1 2 11991 45.00 F 12 1 2 11992 22.00 F 12 1 2 11993 20.00 F 14 1 2 11994 11.00 M 14 1 1 11995 22.00 M 14 1 2 11996 46.00 F 15 1 2 11997 28.00 M 11 1 2 11998 14.00 F 11 1 1 11999 22.00 M 11 1 2 12000 40.00 F 17 1 2 12001 20.00 M 11 1 2 12002 17.00 F 11 1 1 12003 12.00 F 11 1 1 12004 35.00 F 23 1 2 12005 62.00 M 12 1 3 12006 33.00 F 22 1 2 12007 9.00 M 18 1 1 12008 75.00 F 18 1 3 12009 48.00 F 25 1 2 12010 8.00 F 18 1 1 12011 65.00 F 17 1 3 12012 20.00 M 25 1 2 12013 28.00 M 13 1 2 12014 35.00 F 14 1 2 12015 15.00 M 17 1 1 12016 60.00 F 25 1 3 12017 16.00 F 17 1 1 12018 13.00 F 17 1 1 12019 35.00 M 47 1 2 12020 64.00 F 31 1 3 12021 25.00 M 32 1 2 12022 24.00 F 19 1 2 12023 27.00 M 32 1 2 12024 30.00 F 17 1 2 12025 19.00 M 12 1 2 12026 32.00 F 17 1 2 12027 13.00 M 12 1 1 12028 12.00 M 12 1 1 12029 55.00 M 31 1 2 12030 54.00 M 27 1 2 12031 69.00 M 17 1 3 12032 62.00 M 20 1 3 12033 31.00 F 19 1 2 12034 26.00 F 21 1 2 12035 34.00 M 33 1 2 12036 1.00 M 19 1 1 12037 18.00 F 19 1 2 12038 16.00 M 19 1 1 12039 40.00 F 17 1 2 12040 20.00 F 16 1 2 12041 57.00 M 22 1 2 12042 40.00 M 16 1 2 12043 29.00 F 16 1 2 12044 54.00 M 15 1 2 12045 22.00 M 23 1 2 12046 45.00 M 12 1 2 12047 23.00 M 17 1 2 12048 45.00 M 16 1 2 12049 38.00 F 15 1 2 12050 26.00 F 23 1 2 12051 30.00 M 15 1 2 12052 13.00 F 14 1 1 12053 54.00 M 14 1 2 12054 41.00 M 19 1 2 12055 68.00 M 23 1 3 12056 60.00 F 23 1 3 12057 23.00 F 21 1 2 12058 24.00 M 22 1 2 12059 35.00 F 16 1 2 12060 78.00 M 15 1 3 12061 22.00 M 14 1 2 12062 45.00 F 27 1 2 12063 24.00 F 28 1 2 12064 45.00 F 28 1 2 12065 30.00 M 24 1 2 12066 52.00 F 16 1 2 12067 38.00 M 16 1 2 12068 32.00 F 17 1 2 12069 35.00 M 26 1 2 12070 32.00 F 17 1 2 12071 12.00 F 20 1 1 12072 7.00 M 19 1 1 12073 38.00 M 17 1 2 12074 49.00 F 20 1 2 12075 27.00 M 27 1 2 12076 25.00 M 24 1 2 12077 33.00 M 20 1 2 12078 62.00 F 17 1 3 12079 34.00 F 31 1 2 12080 20.00 F 21 1 2 12081 22.00 F 21 1 2 12082 6.00 M 20 1 1 12083 17.00 M 24 1 1 12084 42.00 M 24 1 2 12085 11.00 M 16 1 1 12086 30.00 M 22 1 2 12087 20.00 F 25 1 2 12088 19.00 F 16 1 2 12089 32.00 M 21 1 2 12090 36.00 F 15 1 2 12091 37.00 M 19 1 2 12092 35.00 F 15 1 2 12093 46.00 F 15 1 2 12094 50.00 M 15 1 2 12095 16.00 M 15 1 1 12096 72.00 F 15 1 3 12097 22.00 M 15 1 2 12098 60.00 M 15 1 3 12099 40.00 M 4 1 2 12100 30.00 F 3 1 2 12101 34.00 M 26 1 2 12102 45.00 M 17 1 2 12103 29.00 F 13 1 2 12104 29.00 M 13 1 2 12105 51.00 M 45 1 2 12106 18.00 F 20 1 2 12107 30.00 M 17 1 2 12108 25.00 M 17 1 2 12109 51.00 M 19 1 2 12110 48.00 M 16 1 2 12111 52.00 F 17 1 2 12112 36.00 F 17 1 2 12113 15.00 F 19 1 1 12114 19.00 F 20 1 2 12115 27.00 M 19 1 2 12116 42.00 F 19 1 2 12117 5.00 M 19 1 1 12118 40.00 M 19 1 2 12119 26.00 M 31 1 2 12120 11.00 F 15 1 1 12121 35.00 F 44 1 2 12122 16.00 F 15 1 1 12123 40.00 F 25 1 2 12124 25.00 M 19 1 2 12125 52.00 M 16 1 2 12126 18.00 F 15 1 2 12127 45.00 M 15 1 2 12128 55.00 F 15 1 2 12129 26.00 M 16 1 2 12130 47.00 M 19 1 2 12131 30.00 F 15 1 2 12132 15.00 M 28 1 1 12133 40.00 F 15 1 2 12134 23.00 M 18 1 2 12135 0.80 M 15 1 1 12136 32.00 M 18 1 2 12137 30.00 M 22 1 2 12138 16.00 F 19 1 1 12139 35.00 F 19 1 2 12140 53.00 F 17 1 2 12141 40.00 F 15 1 2 12142 35.00 M 15 1 2 12143 36.00 F 15 1 2 12144 41.00 M 15 1 2 12145 13.00 F 18 1 1 12146 49.00 F 12 1 2 12147 55.00 F 15 1 2 12148 80.00 F 23 1 3 12149 19.00 F 19 1 2 12150 35.00 M 20 1 2 12151 23.00 M 14 1 2 12152 35.00 F 23 1 2 12153 22.00 M 14 1 2 12154 19.00 M 17 1 2 12155 40.00 M 23 1 2 12156 25.00 M 14 1 2 12157 58.00 M 17 1 2 12158 30.00 F 17 1 2 12159 20.00 M 17 1 2 12160 16.00 F 20 1 1 12161 21.00 F 24 1 2 12162 45.00 M 17 1 2 12163 38.00 F 17 1 2 12164 20.00 F 24 1 2 12165 23.00 M 17 1 2 12166 20.00 M 24 1 2 12167 10.00 M 16 1 1 12168 20.00 M 16 1 2 12169 18.00 F 16 1 2 12170 27.00 F 20 1 2 12171 18.00 F 16 1 2 12172 6.00 M 19 1 1 12173 9.00 M 16 1 1 12174 36.00 M 16 1 2 12175 32.00 F 15 1 2 12176 3.00 F 20 1 1 12177 13.00 F 15 1 1 12178 8.00 M 15 1 1 12179 38.00 F 20 1 2 12180 34.00 F 17 1 2 12181 25.00 F 16 1 2 12182 18.00 F 16 1 2 12183 11.00 F 16 1 1 12184 39.00 F 16 1 2 12185 33.00 M 16 1 2 12186 75.00 F 21 1 3 12187 12.00 F 16 1 1 12188 83.00 M 16 1 3 12189 0.40 F 21 1 1 12190 3.00 F 16 1 1 12191 60.00 M 16 1 3 12192 22.00 F 18 1 2 12193 64.00 M 16 1 3 12194 64.00 M 16 1 3 12195 64.00 M 23 1 3 12196 20.00 F 21 1 2 12197 45.00 M 16 1 2 12198 24.00 M 19 1 2 12199 24.00 M 14 1 2 12200 26.00 M 14 1 2 12201 36.00 M 16 1 2 12202 60.00 M 21 1 3 12203 55.00 F 16 1 2 12204 20.00 F 25 1 2 12205 40.00 F 16 1 2 12206 45.00 M 24 1 2 12207 20.00 F 25 1 2 12208 40.00 M 22 1 2 12209 24.00 M 21 1 2 12210 37.00 F 22 1 2 12211 11.00 F 13 1 1 12212 30.00 M 18 1 2 12213 12.00 F 18 1 1 12214 30.00 F 18 1 2 12215 46.00 M 16 1 2 12216 19.00 F 16 1 2 12217 31.00 F 22 1 2 12218 48.00 M 19 1 2 12219 30.00 M 41 1 2 12220 60.00 F 41 1 3 12221 70.00 F 41 1 3 12222 2.50 F 15 1 1 12223 65.00 M 15 1 3 12224 50.00 M 15 1 2 12225 68.00 M 10 1 3 12226 1.50 M 15 1 1 12227 17.00 F 17 1 1 12228 23.00 F 15 1 2 12229 34.00 M 15 1 2 12230 26.00 M 15 1 2 12231 17.00 M 22 1 1 12232 71.00 M 23 1 3 12233 32.00 F 15 1 2 12234 40.00 M 20 1 2 12235 27.00 M 24 1 2 12236 38.00 M 24 1 2 12237 29.00 M 37 1 2 12238 50.00 F 14 1 2 12239 15.00 M 14 1 1 12240 16.00 M 14 1 1 12241 42.00 M 14 1 2 12242 21.00 F 16 1 2 12243 31.00 M 16 1 2 12244 60.00 M 14 1 3 12245 22.00 M 39 1 2 12246 35.00 M 19 1 2 12247 30.00 M 19 1 2 12248 72.00 M 13 1 3 12249 65.00 M 17 1 3 12250 65.00 M 17 1 3 12251 18.00 M 22 1 2 12252 56.00 M 19 1 2 12253 43.00 M 19 1 2 12254 25.00 M 17 1 2 12255 27.00 M 19 1 2 12256 20.00 M 17 1 2 12257 33.00 M 16 1 2 12258 50.00 F 28 1 2 12259 29.00 F 40 1 2 12260 2.00 F 16 1 1 12261 38.00 M 22 1 2 12262 17.00 F 22 1 1 12263 60.00 F 16 1 3 12264 10.00 M 28 1 1 12265 14.00 F 22 1 1 12266 40.00 F 16 1 2 12267 63.00 M 16 1 3 12268 20.00 M 16 1 2 12269 56.00 F 33 1 2 12270 29.00 M 16 1 2 12271 60.00 F 22 1 3 12272 25.00 F 16 1 2 12273 3.00 F 22 1 1 12274 46.00 F 22 1 2 12275 50.00 F 22 1 2 12276 30.00 F 33 1 2 12277 8.00 F 22 1 1 12278 12.00 F 16 1 1 12279 22.00 M 36 1 2 12280 75.00 F 16 1 3 12281 12.00 M 16 1 1 12282 14.00 M 16 1 1 12283 27.00 F 22 1 2 12284 8.00 F 16 1 1 12285 3.00 M 22 1 1 12286 6.00 M 16 1 1 12287 22.00 M 14 1 2 12288 35.00 M 15 1 2 12289 38.00 M 14 1 2 12290 33.00 M 13 1 2 12291 30.00 F 17 1 2 12292 56.00 F 12 1 2 12293 26.00 M 16 1 2 12294 20.00 M 23 1 2 12295 28.00 M 14 1 2 12296 20.00 F 14 1 2 12297 50.00 M 19 1 2 12298 27.00 M 26 1 2 12299 55.00 F 16 1 2 12300 26.00 M 34 1 2 12301 30.00 F 18 1 2 12302 30.00 M 15 1 2 12303 46.00 M 18 1 2 12304 55.00 M 14 1 2 12305 14.00 M 17 1 1 12306 33.00 F 20 1 2 12307 38.00 M 20 1 2 12308 28.00 M 11 1 2 12309 16.00 M 14 1 1 12310 14.00 M 14 1 1 12311 33.00 M 14 1 2 12312 21.00 M 14 1 2 12313 19.00 M 14 1 2 12314 19.00 M 14 1 2 12315 34.00 M 14 1 2 12316 26.00 M 16 1 2 12317 50.00 F 16 1 2 12318 55.00 M 21 1 2 12319 31.00 M 21 1 2 12320 25.00 M 21 1 2 12321 70.00 M 21 1 3 12322 26.00 M 21 1 2 12323 18.00 M 21 1 2 12324 19.00 M 21 1 2 12325 20.00 M 21 1 2 12326 27.00 M 21 1 2 12327 33.00 F 18 1 2 12328 38.00 F 18 1 2 12329 38.00 F 19 1 2 12330 23.00 M 18 1 2 12331 30.00 M 18 1 2 12332 30.00 M 14 1 2 12333 17.00 M 14 1 1 12334 32.00 M 14 1 2 12335 20.00 M 14 1 2 12336 18.00 M 14 1 2 12337 29.00 M 18 1 2 12338 20.00 M 14 1 2 12339 36.00 M 22 1 2 12340 27.00 F 22 1 2 12341 7.00 F 28 1 1 12342 45.00 M 17 1 2 12343 4.00 F 28 1 1 12344 36.00 M 22 1 2 12345 22.00 F 18 1 2 12346 70.00 F 18 1 3 12347 22.00 M 18 1 2 12348 27.00 M 18 1 2 12349 21.00 M 18 1 2 12350 35.00 M 18 1 2 12351 61.00 M 14 1 3 12352 65.00 M 14 1 3 12353 17.00 F 18 1 1 12354 40.00 M 18 1 2 12355 20.00 M 50 1 2 12356 23.00 M 15 1 2 12357 45.00 M 13 1 2 12358 37.00 F 14 1 2 12359 2.00 F 13 1 1 12360 18.00 F 20 1 2 12361 16.00 F 24 1 1 12362 30.00 M 15 1 2 12363 18.00 M 15 1 2 12364 26.00 M 13 1 2 12365 38.00 F 15 1 2 12366 38.00 F 21 1 2 12367 17.00 M 23 1 1 12368 14.00 F 24 1 1 12369 43.00 M 27 1 2 12370 42.00 F 16 1 2 12371 30.00 F 12 1 2 12372 19.00 M 16 1 2 12373 28.00 F 16 1 2 12374 15.00 F 16 1 1 12375 35.00 F 16 1 2 12376 24.00 M 18 1 2 12377 40.00 M 15 1 2 12378 48.00 F 15 1 2 12379 38.00 M 17 1 2 12380 6.00 M 17 1 1 12381 26.00 M 15 1 2 12382 8.00 M 16 1 1 12383 10.00 M 17 1 1 12384 45.00 M 17 1 2 12385 40.00 F 16 1 2 12386 10.00 M 16 1 1 12387 47.00 M 20 1 2 12388 44.00 M 24 1 2 12389 28.00 M 14 1 2 12390 27.00 F 42 1 2 12391 23.00 M 20 1 2 12392 25.00 M 23 1 2 12393 37.00 M 11 1 2 12394 80.00 F 13 1 3 12395 28.00 M 15 1 2 12396 18.00 M 23 1 2 12397 32.00 F 15 1 2 12398 24.00 M 22 1 2 12399 3.00 F 16 1 1 12400 39.00 M 16 1 2 12401 42.00 M 17 1 2 12402 24.00 F 21 1 2 12403 7.00 M 19 1 1 12404 33.00 M 19 1 2 12405 21.00 F 25 1 2 12406 69.00 F 17 1 3 12407 6.00 M 13 1 1 12408 45.00 M 13 1 2 12409 33.00 F 13 1 2 12410 27.00 F 13 1 2 12411 81.00 M 39 1 3 12412 27.00 M 13 1 2 12413 76.00 M 35 1 3 12414 68.00 F 15 1 3 12415 37.00 M 13 1 2 12416 38.00 M 13 1 2 12417 65.00 M 13 1 3 12418 39.00 M 17 1 2 12419 40.00 M 13 1 2 12420 71.00 M 17 1 3 12421 40.00 M 17 1 2 12422 21.00 M 15 1 2 12423 21.00 M 15 1 2 12424 22.00 M 16 1 2 12425 28.00 M 15 1 2 12426 15.00 M 16 1 1 12427 27.00 M 15 1 2 12428 27.00 M 15 1 2 12429 33.00 M 16 1 2 12430 28.00 M 32 1 2 12431 30.00 M 16 1 2 12432 21.00 M 15 1 2 12433 52.00 M 16 1 2 12434 31.00 M 16 1 2 12435 33.00 F 16 1 2 12436 38.00 F 16 1 2 12437 37.00 M 16 1 2 12438 30.00 M 21 1 2 12439 18.00 M 19 1 2 12440 8.00 M 19 1 1 12441 30.00 F 14 1 2 12442 30.00 F 14 1 2 12443 80.00 M 12 1 3 12444 24.00 M 15 1 2 12445 36.00 M 17 1 2 12446 34.00 M 32 1 2 12447 33.00 M 16 1 2 12448 40.00 F 16 1 2 12449 50.00 M 16 1 2 12450 22.00 M 21 1 2 12451 28.00 M 21 1 2 12452 39.00 F 22 1 2 12453 9.00 F 24 1 1 12454 42.00 M 16 1 2 12455 15.00 M 16 1 1 12456 46.00 M 16 1 2 12457 6.00 F 18 1 1 12458 28.00 M 16 1 2 12459 40.00 M 23 1 2 12460 50.00 M 20 1 2 12461 1.00 F 15 1 1 12462 34.00 M 23 1 2 12463 65.00 F 14 1 3 12464 46.00 M 17 1 2 12465 33.00 M 14 1 2 12466 27.00 M 15 1 2 12467 25.00 M 14 1 2 12468 20.00 M 9 1 2 12469 50.00 M 15 1 2 12470 20.00 M 15 1 2 12471 27.00 M 15 1 2 12472 24.00 M 18 1 2 12473 23.00 M 15 1 2 12474 24.00 M 15 1 2 12475 26.00 M 15 1 2 12476 33.00 M 16 1 2 12477 17.00 M 15 1 1 12478 18.00 M 31 1 2 12479 19.00 M 15 1 2 12480 63.00 M 20 1 3 12481 21.00 F 18 1 2 12482 33.00 F 9 1 2 12483 15.00 F 9 1 1 12484 14.00 F 9 1 1 12485 55.00 M 9 1 2 12486 30.00 F 14 1 2 12487 50.00 F 9 1 2 12488 60.00 M 9 1 3 12489 10.00 F 9 1 1 12490 38.00 F 15 1 2 12491 42.00 M 15 1 2 12492 4.00 F 15 1 1 12493 4.00 F 12 1 1 12494 18.00 M 20 1 2 12495 31.00 M 13 1 2 12496 35.00 F 17 1 2 12497 27.00 M 20 1 2 12498 48.00 M 14 1 2 12499 33.00 F 14 1 2 12500 9.00 F 14 1 1 12501 11.00 F 14 1 1 12502 8.00 F 14 1 1 12503 28.00 F 14 1 2 12504 8.00 M 14 1 1 12505 58.00 M 14 1 2 12506 48.00 F 16 1 2 12507 32.00 M 14 1 2 12508 75.00 F 16 1 3 12509 44.00 M 14 1 2 12510 52.00 M 14 1 2 12511 35.00 F 14 1 2 12512 65.00 F 14 1 3 12513 60.00 F 14 1 3 12514 28.00 F 14 1 2 12515 32.00 F 14 1 2 12516 39.00 M 14 1 2 12517 1.00 M 14 1 1 12518 37.00 F 12 1 2 12519 33.00 M 19 1 2 12520 22.00 F 19 1 2 12521 3.00 F 19 1 1 12522 35.00 F 13 1 2 12523 39.00 M 16 1 2 12524 16.00 M 16 1 1 12525 53.00 M 14 1 2 12526 24.00 M 14 1 2 12527 51.00 M 14 1 2 12528 49.00 M 23 1 2 12529 35.00 F 22 1 2 12530 55.00 M 13 1 2 12531 10.00 M 13 1 1 12532 55.00 M 13 1 2 12533 36.00 M 13 1 2 12534 50.00 F 13 1 2 12535 13.00 M 13 1 1 12536 7.00 M 25 1 1 12537 40.00 M 13 1 2 12538 55.00 M 13 1 2 12539 30.00 M 11 1 2 12540 22.00 M 11 1 2 12541 34.00 M 11 1 2 12542 28.00 F 16 1 2 12543 25.00 M 16 1 2 12544 28.00 M 19 1 2 12545 24.00 M 12 1 2 12546 43.00 M 16 1 2 12547 68.00 M 9 1 3 12548 17.00 M 18 1 1 12549 40.00 F 11 1 2 12550 34.00 M 11 1 2 12551 29.00 F 11 1 2 12552 36.00 M 14 1 2 12553 37.00 F 14 1 2 12554 25.00 F 14 1 2 12555 32.00 F 14 1 2 12556 20.00 M 14 1 2 12557 44.00 M 14 1 2 12558 26.00 M 13 1 2 12559 26.00 M 16 1 2 12560 23.00 M 13 1 2 12561 28.00 M 13 1 2 12562 24.00 M 16 1 2 12563 25.00 M 13 1 2 12564 23.00 M 13 1 2 12565 27.00 M 13 1 2 12566 19.00 M 13 1 2 12567 25.00 M 13 1 2 12568 21.00 M 13 1 2 12569 32.00 M 13 1 2 12570 30.00 M 13 1 2 12571 19.00 M 13 1 2 12572 21.00 M 13 1 2 12573 24.00 M 14 1 2 12574 20.00 F 12 1 2 12575 25.00 M 12 1 2 12576 19.00 F 15 1 2 12577 45.00 M 24 1 2 12578 30.00 M 10 1 2 12579 33.00 M 20 1 2 12580 58.00 M 10 1 2 12581 32.00 M 10 1 2 12582 12.00 M 10 1 1 12583 10.00 M 19 1 1 12584 20.00 F 30 1 2 12585 24.00 M 10 1 2 12586 24.00 F 19 1 2 12587 25.00 F 10 1 2 12588 25.00 M 10 1 2 12589 30.00 M 10 1 2 12590 15.00 M 10 1 1 12591 30.00 M 10 1 2 12592 22.00 F 12 1 2 12593 24.00 F 12 1 2 12594 29.00 M 12 1 2 12595 27.00 F 12 1 2 12596 0.50 F 12 1 1 12597 27.00 M 15 1 2 12598 35.00 F 15 1 2 12599 28.00 F 15 1 2 12600 40.00 M 15 1 2 12601 8.00 M 19 1 1 12602 24.00 M 19 1 2 12603 10.00 F 19 1 1 12604 2.00 F 11 1 1 12605 20.00 M 13 1 2 12606 43.00 M 20 1 2 12607 14.00 M 13 1 1 12608 16.00 M 15 1 1 12609 22.00 M 29 1 2 12610 25.00 F 15 1 2 12611 28.00 M 15 1 2 12612 50.00 F 15 1 2 12613 10.00 M 15 1 1 12614 42.00 M 11 1 2 12615 31.00 M 15 1 2 12616 24.00 F 15 1 2 12617 35.00 M 15 1 2 12618 26.00 M 15 1 2 12619 33.00 M 15 1 2 12620 4.00 M 15 1 1 12621 40.00 F 23 1 2 12622 45.00 F 37 1 2 12623 46.00 M 13 1 2 12624 23.00 M 15 1 2 12625 23.00 F 15 1 2 12626 8.00 M 21 1 1 12627 30.00 M 15 1 2 12628 8.00 F 15 1 1 12629 3.00 F 15 1 1 12630 37.00 M 15 1 2 12631 30.00 M 32 1 2 12632 55.00 F 32 1 2 12633 28.00 F 13 1 2 12634 39.00 M 13 1 2 12635 32.00 M 13 1 2 12636 11.00 M 13 1 1 12637 30.00 F 13 1 2 12638 8.00 F 13 1 1 12639 4.00 F 12 1 1 12640 6.00 F 30 1 1 12641 4.00 M 12 1 1 12642 5.00 F 12 1 1 12643 25.00 F 12 1 2 12644 35.00 F 10 1 2 12645 27.00 M 9 1 2 12646 58.00 F 9 1 2 12647 22.00 F 10 1 2 12648 48.00 M 11 1 2 12649 14.00 M 11 1 1 12650 5.00 M 11 1 1 12651 30.00 M 11 1 2 12652 31.00 M 11 1 2 12653 2.00 M 9 1 1 12654 7.00 M 29 1 1 12655 42.00 M 11 1 2 12656 18.00 F 11 1 2 12657 8.00 F 11 1 1 12658 35.00 F 11 1 2 12659 32.00 M 11 1 2 12660 21.00 F 11 1 2 12661 40.00 M 11 1 2 12662 30.00 F 11 1 2 12663 30.00 F 11 1 2 12664 32.00 M 11 1 2 12665 54.00 F 11 1 2 12666 78.00 M 12 1 3 12667 1.00 M 16 1 1 12668 16.00 F 16 1 1 12669 24.00 F 16 1 2 12670 60.00 F 16 1 3 12671 40.00 F 16 1 2 12672 17.00 M 16 1 1 12673 20.00 F 16 1 2 12674 50.00 M 16 1 2 12675 52.00 F 16 1 2 12676 9.00 M 16 1 1 12677 33.00 F 16 1 2 12678 18.00 M 16 1 2 12679 65.00 M 19 1 3 12680 34.00 M 16 1 2 12681 25.00 M 16 1 2 12682 24.00 M 12 1 2 12683 24.00 F 12 1 2 12684 8.00 M 12 1 1 12685 38.00 M 12 1 2 12686 23.00 F 10 1 2 12687 36.00 F 15 1 2 12688 25.00 F 15 1 2 12689 43.00 M 8 1 2 12690 27.00 F 10 1 2 12691 34.00 F 12 1 2 12692 13.00 M 12 1 1 12693 20.00 M 12 1 2 12694 29.00 M 12 1 2 12695 39.00 F 12 1 2 12696 12.00 M 15 1 1 12697 15.00 F 12 1 1 12698 63.00 M 12 1 3 12699 20.00 F 13 1 2 12700 49.00 F 19 1 2 12701 28.00 M 12 1 2 12702 40.00 F 11 1 2 12703 17.00 F 17 1 1 12704 13.00 M 18 1 1 12705 38.00 F 17 1 2 12706 24.00 M 18 1 2 12707 16.00 F 18 1 1 12708 38.00 M 16 1 2 12709 30.00 F 16 1 2 12710 20.00 M 16 1 2 12711 45.00 M 16 1 2 12712 12.00 M 16 1 1 12713 39.00 F 19 1 2 12714 18.00 F 16 1 2 12715 19.00 F 16 1 2 12716 1.00 F 16 1 1 12717 50.00 F 16 1 2 12718 52.00 M 19 1 2 12719 45.00 F 16 1 2 12720 52.00 M 16 1 2 12721 44.00 M 16 1 2 12722 12.00 F 16 1 1 12723 32.00 F 19 1 2 12724 12.00 F 19 1 1 12725 34.00 M 16 1 2 12726 10.00 M 16 1 1 12727 28.00 F 16 1 2 12728 41.00 M 19 1 2 12729 10.00 M 16 1 1 12730 35.00 F 16 1 2 12731 47.00 F 19 1 2 12732 40.00 M 19 1 2 12733 16.00 F 16 1 1 12734 34.00 F 19 1 2 12735 37.00 M 28 1 2 12736 32.00 M 16 1 2 12737 8.00 F 19 1 1 12738 40.00 M 19 1 2 12739 38.00 M 16 1 2 12740 31.00 F 16 1 2 12741 37.00 M 16 1 2 12742 40.00 F 19 1 2 12743 33.00 F 16 1 2 12744 15.00 F 43 1 1 12745 47.00 M 16 1 2 12746 35.00 M 16 1 2 12747 54.00 M 31 1 2 12748 46.00 M 19 1 2 12749 33.00 F 16 1 2 12750 5.00 M 20 1 1 12751 26.00 M 16 1 2 12752 15.00 M 16 1 1 12753 27.00 F 16 1 2 12754 35.00 M 16 1 2 12755 31.00 F 18 1 2 12756 34.00 F 18 1 2 12757 19.00 M 11 1 2 12758 18.00 M 11 1 2 12759 25.00 M 11 1 2 12760 30.00 F 11 1 2 12761 20.00 M 11 1 2 12762 11.00 M 11 1 1 12763 13.00 F 11 1 1 12764 35.00 F 11 1 2 12765 70.00 M 11 1 3 12766 29.00 F 13 1 2 12767 6.00 F 11 1 1 12768 35.00 F 11 1 2 12769 69.00 M 10 1 3 12770 36.00 F 16 1 2 12771 30.00 M 23 1 2 12772 26.00 M 16 1 2 12773 13.00 F 16 1 1 12774 48.00 M 16 1 2 12775 20.00 M 16 1 2 12776 17.00 F 19 1 1 12777 37.00 F 16 1 2 12778 21.00 M 16 1 2 12779 7.00 M 12 1 1 12780 17.00 F 16 1 1 12781 10.00 M 13 1 1 12782 38.00 M 15 1 2 12783 11.00 F 18 1 1 12784 40.00 M 18 1 2 12785 23.00 M 18 1 2 12786 43.00 M 19 1 2 12787 30.00 M 11 1 2 12788 28.00 M 11 1 2 12789 30.00 M 9 1 2 12790 50.00 M 25 1 2 12791 36.00 F 16 1 2 12792 28.00 F 17 1 2 12793 30.00 F 19 1 2 12794 10.00 M 17 1 1 12795 12.00 F 17 1 1 12796 31.00 F 11 1 2 12797 40.00 M 11 1 2 12798 10.00 F 16 1 1 12799 39.00 M 16 1 2 12800 14.00 F 16 1 1 12801 44.00 M 19 1 2 12802 66.00 F 16 1 3 12803 27.00 F 21 1 2 12804 46.00 M 17 1 2 12805 35.00 F 9 1 2 12806 42.00 M 9 1 2 12807 36.00 M 14 1 2 12808 24.00 F 14 1 2 12809 22.00 M 9 1 2 12810 64.00 M 14 1 3 12811 40.00 M 20 1 2 12812 45.00 F 16 1 2 12813 31.00 F 16 1 2 12814 22.00 M 10 1 2 12815 35.00 M 10 1 2 12816 25.00 M 10 1 2 12817 22.00 F 10 1 2 12818 46.00 M 10 1 2 12819 26.00 M 10 1 2 12820 50.00 M 10 1 2 12821 24.00 F 12 1 2 12822 38.00 F 20 1 2 12823 55.00 M 11 1 2 12824 4.00 F 11 1 1 12825 15.00 F 11 1 1 12826 74.00 M 19 1 3 12827 31.00 F 11 1 2 12828 40.00 F 14 1 2 12829 13.00 M 9 1 1 12830 37.00 M 16 1 2 12831 38.00 M 9 1 2 12832 16.00 M 16 1 1 12833 13.00 M 9 1 1 12834 35.00 F 9 1 2 12835 28.00 F 16 1 2 12836 43.00 M 19 1 2 12837 7.00 F 17 1 1 12838 55.00 F 12 1 2 12839 47.00 F 11 1 2 12840 6.00 F 16 1 1 12841 12.00 F 12 1 1 12842 18.00 M 12 1 2 12843 56.00 M 12 1 2 12844 15.00 M 21 1 1 12845 45.00 M 12 1 2 12846 72.00 M 12 1 3 12847 9.00 F 29 1 1 12848 40.00 F 12 1 2 12849 26.00 F 24 1 2 12850 40.00 F 32 1 2 12851 12.00 F 30 1 1 12852 30.00 F 30 1 2 12853 40.00 F 10 1 2 12854 11.00 M 13 1 1 12855 7.00 F 8 1 1 12856 36.00 M 16 1 2 12857 27.00 M 16 1 2 12858 50.00 F 16 1 2 12859 23.00 M 16 1 2 12860 34.00 M 15 1 2 12861 37.00 M 12 1 2 12862 36.00 F 19 1 2 12863 16.00 M 16 1 1 12864 7.00 F 15 1 1 12865 60.00 M 33 1 3 12866 42.00 M 13 1 2 12867 44.00 M 26 1 2 12868 44.00 M 11 1 2 12869 35.00 M 29 1 2 12870 29.00 M 29 1 2 12871 47.00 M 15 1 2 12872 15.00 M 10 1 1 12873 40.00 F 15 1 2 12874 68.00 F 19 1 3 12875 22.00 M 16 1 2 12876 27.00 M 16 1 2 12877 6.00 F 10 1 1 12878 65.00 F 12 1 3 12879 63.00 F 12 1 3 12880 24.00 M 12 1 2 12881 25.00 M 12 1 2 12882 75.00 M 12 1 3 12883 30.00 M 7 1 2 12884 60.00 M 24 1 3 12885 7.00 F 12 1 1 12886 27.00 M 26 1 2 12887 60.00 F 10 1 3 12888 21.00 F 22 1 2 12889 3.00 M 25 1 1 12890 3.00 F 22 1 1 12891 56.00 M 10 1 2 12892 52.00 M 22 1 2 12893 29.00 F 34 1 2 12894 6.00 F 14 1 1 12895 29.00 F 14 1 2 12896 35.00 M 13 1 2 12897 18.00 M 7 1 2 12898 30.00 M 17 1 2 12899 2.00 M 10 1 1 12900 9.00 M 10 1 1 12901 32.00 F 10 1 2 12902 51.00 M 16 1 2 12903 33.00 M 10 1 2 12904 4.00 F 10 1 1 12905 6.00 M 10 1 1 12906 6.00 M 10 1 1 12907 4.00 M 10 1 1 12908 6.00 M 10 1 1 12909 7.00 F 10 1 1 12910 32.00 M 10 1 2 12911 51.00 F 10 1 2 12912 10.00 M 10 1 1 12913 6.00 M 10 1 1 12914 33.00 M 10 1 2 12915 3.00 F 10 1 1 12916 5.00 F 10 1 1 12917 35.00 F 17 1 2 12918 1.00 M 17 1 1 12919 26.00 F 10 1 2 12920 24.00 M 10 1 2 12921 21.00 M 10 1 2 12922 60.00 F 26 1 3 12923 9.00 M 21 1 1 12924 1.00 F 10 1 1 12925 2.00 M 10 1 1 12926 6.00 F 17 1 1 12927 38.00 F 20 1 2 12928 7.00 F 17 1 1 12929 14.00 M 13 1 1 12930 41.00 M 12 1 2 12931 33.00 M 13 1 2 12932 24.00 M 12 1 2 12933 20.00 F 12 1 2 12934 31.00 F 12 1 2 12935 31.00 F 12 1 2 12936 19.00 F 13 1 2 12937 15.00 F 10 1 1 12938 40.00 M 10 1 2 12939 17.00 F 10 1 1 12940 14.00 M 26 1 1 12941 35.00 F 16 1 2 12942 42.00 M 17 1 2 12943 35.00 F 16 1 2 12944 15.00 M 16 1 1 12945 33.00 F 17 1 2 12946 36.00 M 20 1 2 12947 42.00 M 17 1 2 12948 58.00 M 14 1 2 12949 43.00 F 12 1 2 12950 36.00 F 12 1 2 12951 48.00 F 13 1 2 12952 29.00 F 12 1 2 12953 32.00 M 15 1 2 12954 38.00 M 9 1 2 12955 39.00 M 8 1 2 12956 17.00 M 8 1 1 12957 18.00 F 8 1 2 12958 33.00 M 8 1 2 12959 4.00 M 13 1 1 12960 28.00 F 15 1 2 12961 41.00 M 15 1 2 12962 28.00 M 18 1 2 12963 23.00 M 15 1 2 12964 8.00 M 13 1 1 12965 52.00 M 15 1 2 12966 33.00 M 23 1 2 12967 12.00 M 11 1 1 12968 14.00 M 29 1 1 12969 32.00 F 35 1 2 12970 13.00 F 11 1 1 12971 47.00 F 16 1 2 12972 28.00 M 16 1 2 12973 32.00 M 20 1 2 12974 42.00 M 12 1 2 12975 37.00 F 19 1 2 12976 42.00 M 16 1 2 12977 32.00 F 16 1 2 12978 13.00 M 16 1 1 12979 11.00 M 16 1 1 12980 21.00 F 16 1 2 12981 56.00 F 16 1 2 12982 52.00 M 16 1 2 12983 16.00 M 16 1 1 12984 47.00 M 15 1 2 12985 35.00 M 29 1 2 12986 32.00 F 16 1 2 12987 12.00 M 16 1 1 12988 10.00 F 16 1 1 12989 29.00 M 19 1 2 12990 41.00 M 16 1 2 12991 36.00 M 11 1 2 12992 37.00 M 18 1 2 12993 22.00 F 9 1 2 12994 35.00 F 9 1 2 12995 45.00 F 9 1 2 12996 22.00 M 11 1 2 12997 23.00 M 11 1 2 12998 29.00 F 15 1 2 12999 39.00 M 17 1 2 13000 10.00 M 15 1 1 13001 21.00 M 17 1 2 13002 8.00 M 15 1 1 13003 17.00 F 20 1 1 13004 46.00 F 15 1 2 13005 45.00 M 18 1 2 13006 45.00 M 9 1 2 13007 14.00 M 19 1 1 13008 3.00 M 17 1 1 13009 14.00 M 17 1 1 13010 60.00 M 13 1 3 13011 50.00 M 12 1 2 13012 7.00 M 9 1 1 13013 49.00 M 10 1 2 13014 46.00 M 10 1 2 13015 48.00 F 10 1 2 13016 14.00 F 13 1 1 13017 25.00 M 14 1 2 13018 12.00 M 15 1 1 13019 32.00 F 9 1 2 13020 33.00 M 18 1 2 13021 32.00 M 14 1 2 13022 23.00 M 25 1 2 13023 12.00 M 9 1 1 13024 35.00 F 12 1 2 13025 35.00 M 15 1 2 13026 35.00 M 9 1 2 13027 25.00 F 18 1 2 13028 51.00 M 9 1 2 13029 17.00 F 12 1 1 13030 17.00 M 18 1 1 13031 35.00 M 25 1 2 13032 18.00 M 15 1 2 13033 1.00 F 21 1 1 13034 35.00 F 12 1 2 13035 53.00 F 9 1 2 13036 35.00 F 12 1 2 13037 14.00 F 9 1 1 13038 45.00 M 15 1 2 13039 31.00 F 20 1 2 13040 17.00 F 9 1 1 13041 55.00 M 20 1 2 13042 20.00 M 12 1 2 13043 42.00 F 9 1 2 13044 14.00 F 9 1 1 13045 18.00 M 9 1 2 13046 36.00 F 14 1 2 13047 34.00 M 14 1 2 13048 33.00 M 11 1 2 13049 60.00 M 18 1 3 13050 65.00 M 19 1 3 13051 23.00 F 18 1 2 13052 2.00 M 15 1 1 13053 32.00 M 10 1 2 13054 28.00 M 10 1 2 13055 42.00 M 9 1 2 13056 52.00 M 9 1 2 13057 34.00 M 21 1 2 13058 30.00 M 18 1 2 13059 22.00 F 9 1 2 13060 34.00 F 25 1 2 13061 15.00 M 15 1 1 13062 32.00 M 25 1 2 13063 7.00 M 15 1 1 13064 18.00 M 9 1 2 13065 34.00 F 18 1 2 13066 22.00 F 18 1 2 13067 15.00 M 15 1 1 13068 19.00 F 12 1 2 13069 66.00 M 15 1 3 13070 75.00 M 10 1 3 13071 24.00 F 9 1 2 13072 55.00 F 11 1 2 13073 28.00 F 11 1 2 13074 22.00 M 11 1 2 13075 36.00 M 9 1 2 13076 44.00 M 16 1 2 13077 29.00 F 28 1 2 13078 42.00 F 12 1 2 13079 33.00 F 34 1 2 13080 29.00 F 14 1 2 13081 35.00 M 14 1 2 13082 40.00 F 7 1 2 13083 45.00 M 7 1 2 13084 30.00 M 7 1 2 13085 17.00 M 7 1 1 13086 40.00 F 14 1 2 13087 47.00 M 7 1 2 13088 45.00 M 18 1 2 13089 40.00 M 14 1 2 13090 32.00 F 14 1 2 13091 38.00 M 14 1 2 13092 40.00 M 14 1 2 13093 33.00 F 20 1 2 13094 25.00 F 15 1 2 13095 27.00 F 10 1 2 13096 4.00 M 10 1 1 13097 31.00 M 10 1 2 13098 20.00 M 28 1 2 13099 25.00 F 32 1 2 13100 1.00 M 32 1 1 13101 13.00 F 16 1 1 13102 17.00 F 32 1 1 13103 45.00 M 10 1 2 13104 35.00 F 10 1 2 13105 60.00 F 18 1 3 13106 20.00 F 12 1 2 13107 30.00 M 20 1 2 13108 15.00 F 20 1 1 13109 36.00 F 15 1 2 13110 29.00 F 6 1 2 13111 20.00 M 6 1 2 13112 39.00 M 10 1 2 13113 18.00 M 10 1 2 13114 5.00 F 10 1 1 13115 42.00 F 9 1 2 13116 46.00 M 17 1 2 13117 50.00 M 17 1 2 13118 49.00 F 17 1 2 13119 20.00 F 17 1 2 13120 14.00 F 25 1 1 13121 31.00 M 19 1 2 13122 55.00 M 9 1 2 13123 48.00 F 17 1 2 13124 9.00 M 10 1 1 13125 25.00 M 15 1 2 13126 17.00 M 8 1 1 13127 7.00 F 15 1 1 13128 20.00 M 15 1 2 13129 50.00 F 18 1 2 13130 32.00 F 14 1 2 13131 8.00 M 14 1 1 13132 10.00 F 14 1 1 13133 28.00 F 14 1 2 13134 11.00 M 14 1 1 13135 30.00 F 14 1 2 13136 6.00 F 9 1 1 13137 1.00 F 28 1 1 13138 30.00 F 9 1 2 13139 30.00 M 16 1 2 13140 23.00 M 16 1 2 13141 30.00 M 16 1 2 13142 8.00 F 9 1 1 13143 17.00 F 15 1 1 13144 12.00 M 8 1 1 13145 38.00 M 11 1 2 13146 53.00 M 17 1 2 13147 34.00 M 17 1 2 13148 49.00 F 11 1 2 13149 26.00 M 7 1 2 13150 14.00 M 9 1 1 13151 38.00 M 31 1 2 13152 22.00 F 21 1 2 13153 8.00 F 33 1 1 13154 40.00 M 9 1 2 13155 55.00 M 9 1 2 13156 29.00 M 9 1 2 13157 40.00 M 9 1 2 13158 35.00 M 9 1 2 13159 54.00 F 24 1 2 13160 29.00 M 9 1 2 13161 65.00 F 9 1 3 13162 35.00 F 9 1 2 13163 7.00 M 6 1 1 13164 45.00 F 6 1 2 13165 54.00 M 6 1 2 13166 33.00 F 6 1 2 13167 0.30 M 24 1 1 13168 15.00 M 11 1 1 13169 16.00 M 8 1 1 13170 31.00 F 15 1 2 13171 41.00 M 15 1 2 13172 39.00 M 15 1 2 13173 39.00 F 15 1 2 13174 28.00 M 15 1 2 13175 15.00 F 15 1 1 13176 35.00 F 19 1 2 13177 11.00 M 15 1 1 13178 11.00 M 15 1 1 13179 6.00 M 15 1 1 13180 33.00 F 15 1 2 13181 17.00 F 15 1 1 13182 42.00 M 8 1 2 13183 69.00 F 8 1 3 13184 41.00 F 9 1 2 13185 30.00 M 14 1 2 13186 60.00 F 14 1 3 13187 13.00 M 10 1 1 13188 27.00 F 9 1 2 13189 34.00 M 9 1 2 13190 35.00 F 33 1 2 13191 13.00 F 24 1 1 13192 30.00 M 9 1 2 13193 9.00 M 9 1 1 13194 46.00 M 9 1 2 13195 45.00 M 27 1 2 13196 1.00 F 9 1 1 13197 48.00 M 9 1 2 13198 35.00 F 9 1 2 13199 33.00 F 27 1 2 13200 10.00 M 21 1 1 13201 70.00 F 9 1 3 13202 8.00 F 9 1 1 13203 6.00 F 24 1 1 13204 3.00 F 9 1 1 13205 30.00 M 33 1 2 13206 22.00 F 33 1 2 13207 24.00 M 15 1 2 13208 36.00 M 21 1 2 13209 2.00 F 9 1 1 13210 33.00 F 16 1 2 13211 46.00 M 9 1 2 13212 52.00 F 9 1 2 13213 4.00 M 14 1 1 13214 5.00 F 8 1 1 13215 35.00 M 34 1 2 13216 34.00 M 11 1 2 13217 7.00 M 19 1 1 13218 20.00 M 19 1 2 13219 27.00 M 17 1 2 13220 21.00 M 8 1 2 13221 27.00 M 11 1 2 13222 30.00 M 23 1 2 13223 40.00 M 14 1 2 13224 30.00 F 8 1 2 13225 45.00 M 8 1 2 13226 20.00 F 35 1 2 13227 35.00 F 27 1 2 13228 2.00 M 9 1 1 13229 45.00 M 33 1 2 13230 40.00 F 16 1 2 13231 25.00 M 16 1 2 13232 18.00 F 27 1 2 13233 18.00 F 16 1 2 13234 18.00 M 16 1 2 13235 17.00 F 29 1 1 13236 14.00 M 14 1 1 13237 40.00 F 33 1 2 13238 23.00 M 22 1 2 13239 48.00 F 14 1 2 13240 25.00 M 14 1 2 13241 31.00 M 14 1 2 13242 27.00 M 14 1 2 13243 7.00 F 14 1 1 13244 28.00 M 14 1 2 13245 26.00 F 14 1 2 13246 47.00 M 14 1 2 13247 2.00 F 9 1 1 13248 30.00 M 35 1 2 13249 24.00 M 18 1 2 13250 21.00 F 20 1 2 13251 28.00 M 16 1 2 13252 30.00 F 16 1 2 13253 8.00 F 9 1 1 13254 6.00 F 9 1 1 13255 23.00 M 35 1 2 13256 20.00 M 16 1 2 13257 21.00 F 16 1 2 13258 10.00 F 9 1 1 13259 24.00 M 27 1 2 13260 19.00 M 16 1 2 13261 42.00 M 16 1 2 13262 17.00 M 16 1 1 13263 15.00 M 9 1 1 13264 26.00 M 30 1 2 13265 18.00 M 16 1 2 13266 20.00 F 16 1 2 13267 52.00 M 20 1 2 13268 48.00 F 16 1 2 13269 22.00 F 16 1 2 13270 21.00 M 16 1 2 13271 35.00 F 16 1 2 13272 17.00 M 16 1 1 13273 55.00 M 14 1 2 13274 48.00 F 9 1 2 13275 32.00 M 16 1 2 13276 9.00 F 9 1 1 13277 7.00 M 9 1 1 13278 38.00 M 37 1 2 13279 31.00 M 16 1 2 13280 21.00 F 33 1 2 13281 32.00 F 18 1 2 13282 17.00 F 14 1 1 13283 15.00 F 9 1 1 13284 34.00 F 15 1 2 13285 23.00 M 15 1 2 13286 51.00 M 16 1 2 13287 20.00 F 15 1 2 13288 2.00 M 15 1 1 13289 45.00 M 15 1 2 13290 30.00 M 15 1 2 13291 58.00 F 15 1 2 13292 15.00 F 15 1 1 13293 45.00 M 15 1 2 13294 37.00 F 15 1 2 13295 13.00 M 15 1 1 13296 43.00 M 15 1 2 13297 20.00 F 15 1 2 13298 36.00 M 15 1 2 13299 16.00 F 19 1 1 13300 33.00 M 15 1 2 13301 23.00 F 15 1 2 13302 35.00 M 15 1 2 13303 57.00 M 22 1 2 13304 34.00 F 8 1 2 13305 50.00 F 13 1 2 13306 20.00 F 13 1 2 13307 22.00 F 13 1 2 13308 18.00 M 13 1 2 13309 18.00 F 13 1 2 13310 8.00 F 13 1 1 13311 21.00 M 13 1 2 13312 17.00 M 9 1 1 13313 40.00 M 21 1 2 13314 49.00 M 8 1 2 13315 29.00 F 14 1 2 13316 2.00 M 14 1 1 13317 49.00 F 18 1 2 13318 31.00 M 10 1 2 13319 11.00 M 10 1 1 13320 50.00 F 21 1 2 13321 23.00 M 10 1 2 13322 59.00 F 9 1 2 13323 25.00 F 9 1 2 13324 35.00 F 11 1 2 13325 35.00 F 11 1 2 13326 18.00 M 8 1 2 13327 28.00 M 8 1 2 13328 55.00 F 15 1 2 13329 32.00 M 10 1 2 13330 35.00 F 17 1 2 13331 60.00 F 10 1 3 13332 33.00 F 7 1 2 13333 33.00 F 7 1 2 13334 32.00 M 6 1 2 13335 20.00 M 6 1 2 13336 48.00 M 6 1 2 13337 50.00 F 6 1 2 13338 22.00 M 9 1 2 13339 50.00 M 15 1 2 13340 4.00 F 13 1 1 13341 17.00 F 19 1 1 13342 8.00 M 27 1 1 13343 25.00 M 17 1 2 13344 27.00 F 13 1 2 13345 43.00 M 18 1 2 13346 42.00 M 23 1 2 13347 15.00 F 16 1 1 13348 45.00 F 16 1 2 13349 37.00 F 13 1 2 13350 40.00 M 13 1 2 13351 14.00 M 16 1 1 13352 35.00 F 7 1 2 13353 11.00 F 16 1 1 13354 50.00 M 16 1 2 13355 70.00 F 7 1 3 13356 27.00 M 15 1 2 13357 24.00 M 13 1 2 13358 52.00 F 12 1 2 13359 24.00 F 12 1 2 13360 38.00 F 12 1 2 13361 38.00 M 10 1 2 13362 23.00 M 13 1 2 13363 45.00 M 13 1 2 13364 30.00 M 13 1 2 13365 24.00 F 20 1 2 13366 26.00 M 31 1 2 13367 31.00 M 20 1 2 13368 42.00 M 23 1 2 13369 21.00 F 16 1 2 13370 24.00 F 16 1 2 13371 42.00 F 16 1 2 13372 40.00 F 16 1 2 13373 22.00 M 26 1 2 13374 40.00 M 16 1 2 13375 18.00 F 16 1 2 13376 6.00 M 16 1 1 13377 6.00 M 16 1 1 13378 39.00 F 26 1 2 13379 32.00 M 16 1 2 13380 44.00 M 23 1 2 13381 38.00 M 23 1 2 13382 7.00 F 16 1 1 13383 20.00 F 14 1 2 13384 24.00 M 14 1 2 13385 42.00 M 8 1 2 13386 34.00 M 13 1 2 13387 35.00 F 10 1 2 13388 55.00 M 36 1 2 13389 16.00 M 15 1 1 13390 18.00 M 5 1 2 13391 23.00 M 13 1 2 13392 58.00 M 10 1 2 13393 26.00 F 18 1 2 13394 32.00 F 23 1 2 13395 22.00 M 13 1 2 13396 33.00 M 13 1 2 13397 20.00 M 13 1 2 13398 36.00 M 16 1 2 13399 32.00 F 13 1 2 13400 51.00 M 7 1 2 13401 41.00 M 7 1 2 13402 32.00 M 17 1 2 13403 4.00 M 7 1 1 13404 50.00 M 17 1 2 13405 22.00 F 5 1 2 13406 37.00 M 17 1 2 13407 26.00 M 17 1 2 13408 24.00 F 7 1 2 13409 35.00 F 11 1 2 13410 1.00 M 11 1 1 13411 29.00 M 7 1 2 13412 4.00 M 11 1 1 13413 29.00 F 21 1 2 13414 48.00 M 17 1 2 13415 23.00 F 11 1 2 13416 29.00 F 11 1 2 13417 30.00 M 24 1 2 13418 44.00 F 7 1 2 13419 54.00 M 13 1 2 13420 1.50 F 13 1 1 13421 7.00 M 13 1 1 13422 9.00 M 13 1 1 13423 25.00 M 13 1 2 13424 21.00 M 13 1 2 13425 2.00 M 15 1 1 13426 45.00 M 15 1 2 13427 26.00 M 21 1 2 13428 23.00 F 7 1 2 13429 22.00 F 17 1 2 13430 25.00 F 17 1 2 13431 21.00 F 13 1 2 13432 21.00 F 19 1 2 13433 70.00 F 13 1 3 13434 37.00 F 19 1 2 13435 21.00 F 19 1 2 13436 18.00 F 13 1 2 13437 31.00 M 13 1 2 13438 3.00 F 13 1 1 13439 14.00 M 13 1 1 13440 9.00 F 13 1 1 13441 26.00 M 19 1 2 13442 61.00 F 13 1 3 13443 1.00 F 13 1 1 13444 31.00 M 21 1 2 13445 21.00 M 21 1 2 13446 31.00 M 10 1 2 13447 74.00 M 22 1 3 13448 25.00 M 19 1 2 13449 30.00 F 13 1 2 13450 9.00 F 10 1 1 13451 34.00 M 16 1 2 13452 27.00 M 20 1 2 13453 54.00 F 20 1 2 13454 3.00 F 23 1 1 13455 30.00 F 23 1 2 13456 5.00 M 10 1 1 13457 4.00 M 10 1 1 13458 65.00 M 25 1 3 13459 10.00 M 25 1 1 13460 43.00 M 12 1 2 13461 6.00 F 6 1 1 13462 72.00 F 10 1 3 13463 9.00 F 14 1 1 13464 33.00 F 10 1 2 13465 11.00 F 16 1 1 13466 6.00 F 14 1 1 13467 67.00 F 16 1 3 13468 30.00 M 31 1 2 13469 25.00 M 10 1 2 13470 55.00 M 25 1 2 13471 3.00 F 12 1 1 13472 33.00 M 18 1 2 13473 25.00 M 18 1 2 13474 17.00 F 18 1 1 13475 22.00 F 18 1 2 13476 5.00 M 18 1 1 13477 40.00 M 25 1 2 13478 20.00 F 23 1 2 13479 3.00 M 33 1 1 13480 22.00 F 35 1 2 13481 25.00 F 18 1 2 13482 30.00 M 18 1 2 13483 22.00 F 12 1 2 13484 22.00 F 23 1 2 13485 20.00 F 22 1 2 13486 22.00 M 18 1 2 13487 48.00 M 12 1 2 13488 53.00 F 7 1 2 13489 25.00 M 7 1 2 13490 47.00 F 31 1 2 13491 21.00 F 16 1 2 13492 2.00 M 12 1 1 13493 34.00 M 10 1 2 13494 28.00 F 6 1 2 13495 60.00 M 12 1 3 13496 14.00 M 15 1 1 13497 42.00 M 12 1 2 13498 18.00 M 12 1 2 13499 30.00 M 12 1 2 13500 10.00 M 18 1 1 13501 55.00 F 12 1 2 13502 45.00 M 12 1 2 13503 18.00 M 12 1 2 13504 40.00 M 12 1 2 13505 15.00 F 12 1 1 13506 26.00 M 18 1 2 13507 29.00 F 18 1 2 13508 68.00 M 18 1 3 13509 35.00 F 12 1 2 13510 29.00 M 12 1 2 13511 40.00 F 19 1 2 13512 48.00 M 12 1 2 13513 23.00 M 9 1 2 13514 33.00 F 12 1 2 13515 17.00 M 12 1 1 13516 60.00 M 20 1 3 13517 20.00 F 6 1 2 13518 11.00 F 6 1 1 13519 58.00 F 24 1 2 13520 46.00 M 16 1 2 13521 1.00 F 16 1 1 13522 33.00 M 20 1 2 13523 38.00 M 6 1 2 13524 30.00 M 4 1 2 13525 65.00 F 14 1 3 13526 45.00 M 12 1 2 13527 26.00 F 14 1 2 13528 40.00 M 6 1 2 13529 46.00 M 23 1 2 13530 44.00 M 6 1 2 13531 57.00 M 5 1 2 13532 50.00 M 13 1 2 13533 48.00 M 5 1 2 13534 36.00 M 23 1 2 13535 21.00 F 12 1 2 13536 33.00 M 16 1 2 13537 47.00 M 17 1 2 13538 28.00 M 11 1 2 13539 9.00 M 11 1 1 13540 20.00 F 19 1 2 13541 25.00 M 19 1 2 13542 22.00 F 19 1 2 13543 25.00 M 25 1 2 13544 34.00 M 19 1 2 13545 15.00 M 19 1 1 13546 25.00 M 19 1 2 13547 37.00 M 37 1 2 13548 27.00 M 6 1 2 13549 30.00 M 21 1 2 13550 30.00 M 6 1 2 13551 6.00 M 19 1 1 13552 25.00 F 19 1 2 13553 19.00 M 19 1 2 13554 18.00 M 19 1 2 13555 45.00 M 20 1 2 13556 18.00 M 11 1 2 13557 34.00 M 24 1 2 13558 30.00 M 7 1 2 13559 60.00 M 13 1 3 13560 17.00 M 11 1 1 13561 47.00 F 11 1 2 13562 55.00 F 11 1 2 13563 28.00 M 15 1 2 13564 58.00 M 11 1 2 13565 43.00 M 11 1 2 13566 23.00 M 11 1 2 13567 42.00 F 11 1 2 13568 34.00 M 11 1 2 13569 43.00 M 14 1 2 13570 37.00 F 11 1 2 13571 16.00 M 14 1 1 13572 53.00 M 13 1 2 13573 20.00 F 14 1 2 13574 52.00 M 14 1 2 13575 14.00 M 14 1 1 13576 35.00 F 19 1 2 13577 40.00 F 14 1 2 13578 10.00 M 14 1 1 13579 52.00 M 14 1 2 13580 17.00 F 19 1 1 13581 45.00 M 16 1 2 13582 35.00 F 20 1 2 13583 27.00 M 11 1 2 13584 30.00 M 23 1 2 13585 30.00 F 21 1 2 13586 21.00 M 17 1 2 13587 33.00 M 11 1 2 13588 25.00 M 11 1 2 13589 46.00 M 17 1 2 13590 17.00 M 11 1 1 13591 23.00 M 17 1 2 13592 25.00 M 17 1 2 13593 31.00 M 17 1 2 13594 26.00 M 17 1 2 13595 30.00 M 11 1 2 13596 36.00 M 17 1 2 13597 20.00 M 17 1 2 13598 48.00 M 17 1 2 13599 27.00 M 11 1 2 13600 15.00 M 17 1 1 13601 30.00 M 17 1 2 13602 17.00 M 11 1 1 13603 20.00 M 11 1 2 13604 22.00 M 11 1 2 13605 31.00 M 17 1 2 13606 27.00 M 14 1 2 13607 35.00 M 9 1 2 13608 9.00 F 11 1 1 13609 65.00 F 11 1 3 13610 35.00 M 8 1 2 13611 27.00 F 8 1 2 13612 32.00 M 8 1 2 13613 56.00 M 8 1 2 13614 39.00 F 8 1 2 13615 43.00 M 17 1 2 13616 38.00 F 8 1 2 13617 38.00 F 17 1 2 13618 27.00 F 8 1 2 13619 39.00 M 17 1 2 13620 17.00 F 30 1 1 13621 38.00 M 17 1 2 13622 28.00 F 17 1 2 13623 54.00 M 11 1 2 13624 55.00 F 5 1 2 13625 38.00 M 5 1 2 13626 9.00 M 8 1 1 13627 36.00 F 5 1 2 13628 14.00 M 5 1 1 13629 63.00 F 8 1 3 13630 39.00 M 8 1 2 13631 9.00 M 5 1 1 13632 26.00 F 8 1 2 13633 12.00 M 16 1 1 13634 12.00 F 11 1 1 13635 35.00 M 23 1 2 13636 36.00 F 5 1 2 13637 46.00 M 13 1 2 13638 11.00 F 23 1 1 13639 59.00 F 16 1 2 13640 3.00 F 23 1 1 13641 26.00 M 11 1 2 13642 30.00 M 16 1 2 13643 36.00 F 14 1 2 13644 27.00 F 10 1 2 13645 6.00 F 10 1 1 13646 4.00 M 10 1 1 13647 13.00 M 16 1 1 13648 25.00 F 14 1 2 13649 39.00 M 14 1 2 13650 2.00 F 10 1 1 13651 3.00 M 10 1 1 13652 33.00 M 10 1 2 13653 1.00 F 10 1 1 13654 7.00 F 10 1 1 13655 26.00 F 16 1 2 13656 50.00 M 31 1 2 13657 45.00 M 8 1 2 13658 31.00 M 14 1 2 13659 25.00 F 10 1 2 13660 12.00 M 13 1 1 13661 31.00 F 13 1 2 13662 28.00 M 13 1 2 13663 35.00 M 10 1 2 13664 43.00 M 10 1 2 13665 34.00 M 13 1 2 13666 28.00 F 10 1 2 13667 25.00 M 10 1 2 13668 21.00 M 14 1 2 13669 20.00 M 10 1 2 13670 25.00 M 17 1 2 13671 30.00 M 29 1 2 13672 20.00 F 23 1 2 13673 60.00 F 29 1 3 13674 12.00 F 12 1 1 13675 37.00 F 29 1 2 13676 45.00 F 8 1 2 13677 22.00 M 8 1 2 13678 39.00 M 8 1 2 13679 45.00 M 7 1 2 13680 27.00 M 36 1 2 13681 57.00 M 10 1 2 13682 60.00 M 18 1 3 13683 25.00 F 7 1 2 13684 32.00 M 20 1 2 13685 40.00 M 7 1 2 13686 22.00 M 10 1 2 13687 49.00 M 10 1 2 13688 55.00 F 21 1 2 13689 21.00 M 14 1 2 13690 29.00 M 7 1 2 13691 32.00 M 8 1 2 13692 38.00 M 10 1 2 13693 17.00 F 10 1 1 13694 13.00 M 10 1 1 13695 18.00 F 10 1 2 13696 50.00 M 10 1 2 13697 40.00 M 10 1 2 13698 35.00 F 10 1 2 13699 17.00 M 10 1 1 13700 10.00 M 10 1 1 13701 34.00 M 16 1 2 13702 34.00 M 10 1 2 13703 7.00 F 10 1 1 13704 4.00 F 10 1 1 13705 41.00 M 10 1 2 13706 20.00 M 10 1 2 13707 36.00 M 10 1 2 13708 23.00 M 10 1 2 13709 16.00 M 10 1 1 13710 22.00 M 10 1 2 13711 27.00 M 10 1 2 13712 11.00 F 10 1 1 13713 7.00 M 10 1 1 13714 26.00 M 21 1 2 13715 40.00 M 10 1 2 13716 36.00 M 22 1 2 13717 23.00 F 7 1 2 13718 28.00 F 10 1 2 13719 22.00 F 7 1 2 13720 42.00 M 7 1 2 13721 19.00 M 10 1 2 13722 60.00 M 13 1 3 13723 50.00 F 12 1 2 13724 10.00 F 7 1 1 13725 9.00 F 10 1 1 13726 35.00 M 10 1 2 13727 39.00 M 13 1 2 13728 48.00 M 17 1 2 13729 38.00 F 18 1 2 13730 18.00 M 13 1 2 13731 2.00 F 11 1 1 13732 32.00 M 11 1 2 13733 28.00 M 11 1 2 13734 37.00 F 11 1 2 13735 22.00 F 7 1 2 13736 28.00 F 37 1 2 13737 41.00 M 21 1 2 13738 31.00 F 4 1 2 13739 27.00 M 14 1 2 13740 30.00 M 14 1 2 13741 32.00 M 4 1 2 13742 17.00 F 12 1 1 13743 34.00 M 29 1 2 13744 25.00 M 14 1 2 13745 24.00 M 10 1 2 13746 52.00 M 11 1 2 13747 9.00 M 11 1 1 13748 4.00 M 14 1 1 13749 9.00 M 8 1 1 13750 35.00 M 8 1 2 13751 3.00 F 7 1 1 13752 32.00 M 8 1 2 13753 31.00 M 8 1 2 13754 68.00 F 16 1 3 13755 30.00 F 10 1 2 13756 23.00 F 15 1 2 13757 40.00 F 10 1 2 13758 25.00 M 15 1 2 13759 16.00 F 7 1 1 13760 48.00 M 7 1 2 13761 21.00 F 7 1 2 13762 46.00 M 10 1 2 13763 20.00 M 8 1 2 13764 73.00 F 15 1 3 13765 46.00 M 14 1 2 13766 26.00 M 6 1 2 13767 32.00 M 14 1 2 13768 23.00 M 7 1 2 13769 30.00 F 11 1 2 13770 39.00 M 22 1 2 13771 61.00 M 19 1 3 13772 62.00 F 7 1 3 13773 27.00 M 28 1 2 13774 34.00 F 11 1 2 13775 28.00 M 11 1 2 13776 48.00 M 13 1 2 13777 32.00 M 21 1 2 13778 34.00 F 29 1 2 13779 29.00 F 11 1 2 13780 39.00 M 3 1 2 13781 32.00 M 3 1 2 13782 34.00 M 11 1 2 13783 34.00 M 11 1 2 13784 41.00 M 13 1 2 13785 12.00 M 6 1 1 13786 25.00 M 9 1 2 13787 46.00 M 9 1 2 13788 18.00 F 12 1 2 13789 30.00 F 6 1 2 13790 42.00 F 9 1 2 13791 45.00 M 6 1 2 13792 32.00 M 6 1 2 13793 30.00 M 6 1 2 13794 32.00 M 6 1 2 13795 44.00 M 16 1 2 13796 45.00 F 6 1 2 13797 40.00 M 12 1 2 13798 37.00 M 8 1 2 13799 15.00 M 9 1 1 13800 36.00 M 9 1 2 13801 19.00 M 9 1 2 13802 21.00 M 15 1 2 13803 24.00 M 15 1 2 13804 25.00 M 15 1 2 13805 48.00 M 11 1 2 13806 19.00 M 13 1 2 13807 43.00 M 11 1 2 13808 59.00 F 21 1 2 13809 30.00 F 11 1 2 13810 6.00 F 11 1 1 13811 33.00 F 11 1 2 13812 34.00 M 23 1 2 13813 50.00 M 13 1 2 13814 24.00 F 11 1 2 13815 23.00 M 8 1 2 13816 38.00 M 14 1 2 13817 44.00 M 14 1 2 13818 30.00 M 28 1 2 13819 46.00 M 20 1 2 13820 50.00 M 4 1 2 13821 25.00 M 10 1 2 13822 28.00 M 15 1 2 13823 24.00 M 20 1 2 13824 28.00 M 15 1 2 13825 24.00 F 15 1 2 13826 8.00 M 23 1 1 13827 45.00 M 25 1 2 13828 11.00 M 9 1 1 13829 36.00 M 9 1 2 13830 18.00 F 6 1 2 13831 31.00 F 14 1 2 13832 36.00 M 8 1 2 13833 35.00 F 2 1 2 13834 11.00 F 17 1 1 13835 30.00 F 11 1 2 13836 9.00 M 20 1 1 13837 2.00 M 13 1 1 13838 34.00 M 15 1 2 13839 28.00 F 13 1 2 13840 22.00 M 13 1 2 13841 43.00 M 18 1 2 13842 40.00 M 6 1 2 13843 31.00 F 9 1 2 13844 36.00 M 12 1 2 13845 25.00 M 17 1 2 13846 35.00 M 6 1 2 13847 25.00 F 6 1 2 13848 23.00 M 12 1 2 13849 2.00 M 7 1 1 13850 42.00 M 17 1 2 13851 46.00 F 9 1 2 13852 60.00 M 6 1 3 13853 47.00 M 9 1 2 13854 36.00 M 17 1 2 13855 65.00 M 17 1 3 13856 29.00 M 9 1 2 13857 30.00 F 9 1 2 13858 48.00 M 9 1 2 13859 47.00 M 13 1 2 13860 42.00 M 7 1 2 13861 25.00 F 11 1 2 13862 4.00 M 11 1 1 13863 34.00 M 12 1 2 13864 22.00 M 9 1 2 13865 17.00 M 9 1 1 13866 32.00 F 9 1 2 13867 59.00 M 9 1 2 13868 30.00 M 9 1 2 13869 31.00 F 13 1 2 13870 20.00 F 15 1 2 13871 51.00 M 9 1 2 13872 20.00 M 9 1 2 13873 10.00 M 9 1 1 13874 6.00 M 9 1 1 13875 49.00 M 10 1 2 13876 63.00 M 10 1 3 13877 38.00 F 19 1 2 13878 7.00 M 19 1 1 13879 39.00 M 13 1 2 13880 34.00 M 13 1 2 13881 36.00 M 19 1 2 13882 39.00 M 10 1 2 13883 80.00 F 8 1 3 13884 27.00 F 13 1 2 13885 41.00 M 8 1 2 13886 28.00 M 26 1 2 13887 6.00 M 10 1 1 13888 36.00 M 10 1 2 13889 10.00 M 12 1 1 13890 50.00 M 18 1 2 13891 35.00 M 34 1 2 13892 55.00 F 27 1 2 13893 22.00 F 29 1 2 13894 15.00 F 24 1 1 13895 10.00 F 31 1 1 13896 13.00 M 12 1 1 13897 30.00 M 14 1 2 13898 65.00 F 6 1 3 13899 68.00 F 6 1 3 13900 8.00 M 6 1 1 13901 68.00 F 6 1 3 13902 26.00 M 11 1 2 13903 23.00 F 7 1 2 13904 28.00 M 16 1 2 13905 28.00 M 20 1 2 13906 35.00 F 6 1 2 13907 33.00 M 19 1 2 13908 20.00 M 10 1 2 13909 25.00 F 10 1 2 13910 8.00 F 10 1 1 13911 23.00 M 10 1 2 13912 10.00 F 10 1 1 13913 20.00 M 10 1 2 13914 34.00 F 10 1 2 13915 36.00 F 14 1 2 13916 33.00 F 14 1 2 13917 6.00 M 10 1 1 13918 42.00 M 10 1 2 13919 32.00 F 10 1 2 13920 12.00 F 10 1 1 13921 35.00 M 10 1 2 13922 38.00 M 12 1 2 13923 23.00 M 7 1 2 13924 27.00 M 18 1 2 13925 20.00 M 22 1 2 13926 18.00 F 9 1 2 13927 54.00 M 21 1 2 13928 34.00 M 21 1 2 13929 13.00 M 27 1 1 13930 29.00 M 22 1 2 13931 32.00 M 9 1 2 13932 29.00 F 22 1 2 13933 20.00 M 21 1 2 13934 21.00 M 22 1 2 13935 20.00 M 22 1 2 13936 16.00 M 22 1 1 13937 41.00 F 21 1 2 13938 11.00 F 22 1 1 13939 12.00 M 22 1 1 13940 35.00 F 9 1 2 13941 24.00 F 21 1 2 13942 9.00 F 9 1 1 13943 49.00 M 25 1 2 13944 37.00 M 22 1 2 13945 54.00 F 23 1 2 13946 44.00 F 22 1 2 13947 46.00 M 9 1 2 13948 42.00 M 29 1 2 13949 40.00 M 18 1 2 13950 16.00 M 22 1 1 13951 35.00 F 23 1 2 13952 48.00 M 23 1 2 13953 34.00 F 9 1 2 13954 16.00 F 22 1 1 13955 48.00 F 22 1 2 13956 19.00 M 22 1 2 13957 32.00 M 18 1 2 13958 30.00 F 15 1 2 13959 35.00 M 22 1 2 13960 7.00 M 23 1 1 13961 11.00 M 22 1 1 13962 19.00 F 18 1 2 13963 18.00 M 9 1 2 13964 45.00 M 22 1 2 13965 22.00 M 22 1 2 13966 30.00 F 22 1 2 13967 16.00 F 9 1 1 13968 8.00 M 9 1 1 13969 13.00 M 9 1 1 13970 23.00 F 27 1 2 13971 17.00 F 9 1 1 13972 32.00 M 22 1 2 13973 34.00 M 22 1 2 13974 15.00 M 22 1 1 13975 38.00 F 22 1 2 13976 18.00 F 9 1 2 13977 22.00 M 22 1 2 13978 13.00 M 22 1 1 13979 18.00 M 22 1 2 13980 45.00 M 21 1 2 13981 15.00 M 9 1 1 13982 38.00 M 22 1 2 13983 26.00 M 35 1 2 13984 17.00 M 20 1 1 13985 32.00 M 24 1 2 13986 36.00 M 36 1 2 13987 49.00 F 35 1 2 13988 68.00 M 13 1 3 13989 31.00 M 35 1 2 13990 28.00 F 20 1 2 13991 25.00 M 14 1 2 13992 32.00 F 29 1 2 13993 3.00 M 29 1 1 13994 27.00 F 14 1 2 13995 26.00 M 14 1 2 13996 35.00 M 14 1 2 13997 38.00 M 14 1 2 13998 30.00 F 14 1 2 13999 27.00 M 14 1 2 14000 18.00 F 14 1 2 14001 17.00 F 14 1 1 14002 17.00 M 14 1 1 14003 44.00 M 14 1 2 14004 8.00 F 14 1 1 14005 5.00 M 24 1 1 14006 14.00 M 14 1 1 14007 53.00 M 14 1 2 14008 27.00 M 14 1 2 14009 25.00 M 16 1 2 14010 17.00 M 14 1 1 14011 27.00 M 14 1 2 14012 54.00 M 22 1 2 14013 24.00 F 12 1 2 14014 35.00 M 14 1 2 14015 12.00 M 12 1 1 14016 35.00 M 14 1 2 14017 8.00 M 29 1 1 14018 24.00 M 14 1 2 14019 3.00 F 12 1 1 14020 20.00 F 22 1 2 14021 40.00 F 14 1 2 14022 38.00 M 14 1 2 14023 24.00 M 14 1 2 14024 29.00 M 14 1 2 14025 50.00 M 14 1 2 14026 40.00 M 12 1 2 14027 10.00 F 12 1 1 14028 40.00 M 14 1 2 14029 12.00 M 12 1 1 14030 50.00 F 14 1 2 14031 48.00 M 14 1 2 14032 33.00 F 14 1 2 14033 35.00 F 14 1 2 14034 22.00 F 14 1 2 14035 2.00 M 12 1 1 14036 22.00 M 22 1 2 14037 24.00 F 14 1 2 14038 34.00 M 14 1 2 14039 25.00 F 14 1 2 14040 28.00 F 14 1 2 14041 37.00 M 14 1 2 14042 14.00 F 29 1 1 14043 30.00 M 14 1 2 14044 65.00 M 21 1 3 14045 26.00 M 10 1 2 14046 3.00 M 7 1 1 14047 30.00 M 16 1 2 14048 28.00 M 7 1 2 14049 50.00 F 10 1 2 14050 15.00 F 10 1 1 14051 13.00 F 10 1 1 14052 7.00 M 10 1 1 14053 6.00 M 10 1 1 14054 35.00 F 12 1 2 14055 20.00 F 10 1 2 14056 20.00 F 12 1 2 14057 25.00 M 10 1 2 14058 26.00 F 12 1 2 14059 2.00 F 12 1 1 14060 35.00 M 10 1 2 14061 37.00 F 12 1 2 14062 22.00 F 10 1 2 14063 32.00 M 12 1 2 14064 8.00 M 12 1 1 14065 20.00 F 10 1 2 14066 25.00 M 12 1 2 14067 23.00 M 10 1 2 14068 16.00 F 10 1 1 14069 48.00 M 10 1 2 14070 18.00 M 10 1 2 14071 13.00 F 10 1 1 14072 29.00 F 12 1 2 14073 21.00 M 12 1 2 14074 22.00 M 12 1 2 14075 55.00 M 10 1 2 14076 46.00 F 10 1 2 14077 17.00 F 10 1 1 14078 16.00 F 10 1 1 14079 30.00 M 10 1 2 14080 23.00 F 10 1 2 14081 38.00 M 19 1 2 14082 42.00 M 10 1 2 14083 38.00 F 19 1 2 14084 30.00 M 10 1 2 14085 26.00 F 10 1 2 14086 10.00 F 10 1 1 14087 20.00 M 10 1 2 14088 27.00 M 10 1 2 14089 22.00 F 10 1 2 14090 31.00 M 10 1 2 14091 35.00 M 12 1 2 14092 20.00 M 14 1 2 14093 60.00 F 12 1 3 14094 6.00 F 10 1 1 14095 48.00 M 8 1 2 14096 28.00 M 8 1 2 14097 38.00 M 8 1 2 14098 3.00 M 16 1 1 14099 23.00 M 40 1 2 14100 31.00 M 11 1 2 14101 41.00 F 17 1 2 14102 30.00 M 10 1 2 14103 22.00 M 10 1 2 14104 38.00 F 8 1 2 14105 47.00 M 15 1 2 14106 22.00 M 8 1 2 14107 20.00 F 8 1 2 14108 5.00 F 8 1 1 14109 27.00 F 6 1 2 14110 24.00 M 8 1 2 14111 25.00 F 8 1 2 14112 35.00 M 8 1 2 14113 34.00 F 4 1 2 14114 32.00 M 7 1 2 14115 30.00 M 9 1 2 14116 41.00 M 26 1 2 14117 25.00 M 26 1 2 14118 40.00 M 11 1 2 14119 37.00 M 9 1 2 14120 47.00 M 9 1 2 14121 36.00 M 11 1 2 14122 15.00 M 15 1 1 14123 40.00 M 27 1 2 14124 2.00 F 9 1 1 14125 47.00 F 19 1 2 14126 48.00 M 34 1 2 14127 29.00 M 13 1 2 14128 20.00 M 13 1 2 14129 45.00 M 13 1 2 14130 40.00 M 13 1 2 14131 43.00 M 13 1 2 14132 19.00 M 13 1 2 14133 11.00 M 13 1 1 14134 39.00 M 13 1 2 14135 32.00 M 13 1 2 14136 30.00 F 20 1 2 14137 27.00 F 23 1 2 14138 66.00 M 13 1 3 14139 17.00 M 28 1 1 14140 30.00 M 13 1 2 14141 7.00 F 13 1 1 14142 3.00 F 13 1 1 14143 2.00 M 13 1 1 14144 1.00 F 13 1 1 14145 19.00 M 28 1 2 14146 16.00 F 13 1 1 14147 24.00 M 4 1 2 14148 45.00 F 4 1 2 14149 33.00 F 5 1 2 14150 18.00 M 33 1 2 14151 55.00 F 10 1 2 14152 32.00 F 5 1 2 14153 40.00 M 12 1 2 14154 7.00 F 10 1 1 14155 32.00 M 10 1 2 14156 29.00 F 10 1 2 14157 38.00 F 10 1 2 14158 23.00 M 16 1 2 14159 27.00 M 13 1 2 14160 42.00 M 11 1 2 14161 32.00 M 6 1 2 14162 25.00 F 26 1 2 14163 28.00 M 25 1 2 14164 20.00 M 7 1 2 14165 35.00 M 20 1 2 14166 30.00 F 7 1 2 14167 37.00 F 9 1 2 14168 14.00 F 7 1 1 14169 28.00 M 8 1 2 14170 35.00 F 12 1 2 14171 15.00 M 14 1 1 14172 44.00 M 18 1 2 14173 35.00 F 13 1 2 14174 38.00 M 4 1 2 14175 44.00 M 24 1 2 14176 45.00 M 11 1 2 14177 65.00 M 11 1 3 14178 47.00 M 11 1 2 14179 23.00 M 13 1 2 14180 7.00 M 13 1 1 14181 3.00 F 13 1 1 14182 27.00 F 13 1 2 14183 19.00 M 9 1 2 14184 13.00 M 9 1 1 14185 15.00 M 9 1 1 14186 11.00 M 9 1 1 14187 51.00 F 17 1 2 14188 54.00 M 8 1 2 14189 24.00 M 21 1 2 14190 21.00 M 10 1 2 14191 38.00 M 17 1 2 14192 48.00 M 20 1 2 14193 38.00 F 20 1 2 14194 11.00 F 16 1 1 14195 61.00 M 5 1 3 14196 24.00 M 5 1 2 14197 31.00 M 10 1 2 14198 17.00 M 5 1 1 14199 20.00 M 16 1 2 14200 33.00 F 5 1 2 14201 26.00 M 4 1 2 14202 18.00 F 9 1 2 14203 32.00 M 39 1 2 14204 22.00 F 9 1 2 14205 19.00 M 9 1 2 14206 27.00 M 38 1 2 14207 18.00 M 9 1 2 14208 36.00 M 9 1 2 14209 29.00 M 16 1 2 14210 55.00 M 16 1 2 14211 30.00 M 34 1 2 14212 8.00 M 34 1 1 14213 30.00 M 15 1 2 14214 46.00 M 15 1 2 14215 29.00 M 4 1 2 14216 18.00 M 4 1 2 14217 20.00 M 6 1 2 14218 11.00 F 8 1 1 14219 12.00 M 34 1 1 14220 2.00 F 8 1 1 14221 36.00 F 6 1 2 14222 54.00 M 17 1 2 14223 19.00 F 4 1 2 14224 53.00 M 4 1 2 14225 29.00 M 4 1 2 14226 25.00 F 7 1 2 14227 35.00 F 7 1 2 14228 58.00 M 9 1 2 14229 17.00 F 9 1 1 14230 5.00 F 9 1 1 14231 26.00 F 9 1 2 14232 44.00 F 9 1 2 14233 16.00 F 17 1 1 14234 46.00 M 17 1 2 14235 34.00 M 17 1 2 14236 18.00 M 8 1 2 14237 12.00 F 34 1 1 14238 5.00 M 17 1 1 14239 17.00 M 34 1 1 14240 19.00 F 34 1 2 14241 30.00 M 17 1 2 14242 32.00 F 17 1 2 14243 33.00 F 13 1 2 14244 34.00 F 13 1 2 14245 45.00 M 10 1 2 14246 17.00 F 10 1 1 14247 5.00 F 13 1 1 14248 65.00 M 17 1 3 14249 70.00 M 7 1 3 14250 55.00 M 6 1 2 14251 55.00 F 6 1 2 14252 38.00 M 6 1 2 14253 28.00 F 7 1 2 14254 38.00 M 8 1 2 14255 30.00 M 8 1 2 14256 19.00 F 13 1 2 14257 24.00 M 16 1 2 14258 21.00 M 33 1 2 14259 8.00 M 16 1 1 14260 40.00 F 10 1 2 14261 25.00 F 25 1 2 14262 34.00 M 25 1 2 14263 36.00 M 25 1 2 14264 20.00 M 20 1 2 14265 30.00 M 25 1 2 14266 27.00 F 19 1 2 14267 6.00 M 25 1 1 14268 3.00 M 25 1 1 14269 25.00 M 21 1 2 14270 1.00 M 21 1 1 14271 40.00 F 27 1 2 14272 18.00 M 25 1 2 14273 12.00 M 19 1 1 14274 2.00 M 21 1 1 14275 40.00 M 25 1 2 14276 31.00 M 19 1 2 14277 45.00 M 16 1 2 14278 35.00 F 23 1 2 14279 25.00 F 8 1 2 14280 5.00 M 25 1 1 14281 22.00 F 12 1 2 14282 30.00 F 10 1 2 14283 25.00 M 10 1 2 14284 30.00 F 10 1 2 14285 20.00 M 27 1 2 14286 6.00 M 10 1 1 14287 28.00 M 9 1 2 14288 65.00 F 9 1 3 14289 34.00 F 9 1 2 14290 8.00 F 9 1 1 14291 60.00 F 10 1 3 14292 40.00 M 9 1 2 14293 44.00 F 9 1 2 14294 27.00 F 10 1 2 14295 6.00 F 10 1 1 14296 0.90 M 10 1 1 14297 25.00 M 10 1 2 14298 40.00 M 4 1 2 14299 35.00 F 10 1 2 14300 7.00 F 10 1 1 14301 6.00 F 10 1 1 14302 32.00 F 10 1 2 14303 18.00 M 24 1 2 14304 30.00 M 23 1 2 14305 29.00 M 9 1 2 14306 4.00 M 9 1 1 14307 31.00 M 9 1 2 14308 48.00 M 9 1 2 14309 38.00 F 9 1 2 14310 13.00 M 9 1 1 14311 32.00 M 9 1 2 14312 35.00 F 9 1 2 14313 21.00 F 9 1 2 14314 18.00 F 9 1 2 14315 62.00 M 9 1 3 14316 52.00 F 9 1 2 14317 24.00 M 10 1 2 14318 21.00 M 9 1 2 14319 48.00 M 9 1 2 14320 24.00 M 9 1 2 14321 11.00 F 9 1 1 14322 10.00 F 9 1 1 14323 27.00 M 9 1 2 14324 28.00 M 12 1 2 14325 32.00 F 12 1 2 14326 19.00 F 12 1 2 14327 6.00 F 9 1 1 14328 19.00 M 12 1 2 14329 37.00 F 10 1 2 14330 45.00 M 10 1 2 14331 46.00 F 16 1 2 14332 51.00 M 24 1 2 14333 27.00 F 16 1 2 14334 51.00 M 9 1 2 14335 32.00 M 8 1 2 14336 15.00 M 14 1 1 14337 46.00 M 23 1 2 14338 26.00 F 10 1 2 14339 37.00 F 10 1 2 14340 23.00 F 10 1 2 14341 32.00 M 16 1 2 14342 42.00 M 10 1 2 14343 26.00 F 14 1 2 14344 6.00 M 12 1 1 14345 36.00 M 14 1 2 14346 3.00 M 12 1 1 14347 18.00 M 12 1 2 14348 40.00 M 12 1 2 14349 29.00 M 12 1 2 14350 16.00 M 27 1 1 14351 11.00 M 12 1 1 14352 19.00 F 12 1 2 14353 12.00 M 19 1 1 14354 50.00 M 12 1 2 14355 50.00 F 33 1 2 14356 37.00 F 22 1 2 14357 18.00 F 27 1 2 14358 15.00 F 12 1 1 14359 13.00 M 12 1 1 14360 50.00 F 12 1 2 14361 11.00 F 12 1 1 14362 19.00 F 27 1 2 14363 25.00 F 12 1 2 14364 11.00 F 12 1 1 14365 16.00 M 12 1 1 14366 13.00 M 12 1 1 14367 25.00 M 12 1 2 14368 37.00 M 12 1 2 14369 18.00 F 12 1 2 14370 36.00 F 12 1 2 14371 14.00 M 12 1 1 14372 22.00 F 12 1 2 14373 30.00 F 12 1 2 14374 21.00 F 27 1 2 14375 18.00 F 12 1 2 14376 21.00 F 12 1 2 14377 4.00 F 12 1 1 14378 12.00 F 12 1 1 14379 42.00 M 22 1 2 14380 13.00 F 12 1 1 14381 22.00 F 12 1 2 14382 23.00 M 20 1 2 14383 6.00 M 20 1 1 14384 45.00 F 11 1 2 14385 31.00 F 11 1 2 14386 36.00 M 11 1 2 14387 28.00 F 16 1 2 14388 27.00 M 11 1 2 14389 50.00 M 11 1 2 14390 40.00 F 23 1 2 14391 27.00 F 5 1 2 14392 32.00 M 5 1 2 14393 22.00 M 5 1 2 14394 14.00 F 5 1 1 14395 38.00 M 16 1 2 14396 23.00 M 25 1 2 14397 35.00 M 25 1 2 14398 16.00 M 19 1 1 14399 24.00 M 19 1 2 14400 20.00 M 27 1 2 14401 22.00 M 8 1 2 14402 46.00 F 16 1 2 14403 42.00 M 21 1 2 14404 9.00 M 21 1 1 14405 13.00 F 27 1 1 14406 35.00 F 16 1 2 14407 13.00 F 8 1 1 14408 36.00 F 16 1 2 14409 35.00 M 19 1 2 14410 1.00 M 20 1 1 14411 28.00 M 8 1 2 14412 24.00 M 19 1 2 14413 18.00 F 8 1 2 14414 21.00 F 25 1 2 14415 20.00 F 16 1 2 14416 11.00 M 23 1 1 14417 35.00 F 25 1 2 14418 10.00 M 25 1 1 14419 18.00 M 8 1 2 14420 13.00 M 19 1 1 14421 17.00 F 25 1 1 14422 18.00 M 16 1 2 14423 35.00 M 20 1 2 14424 5.00 M 25 1 1 14425 5.00 M 16 1 1 14426 30.00 F 8 1 2 14427 36.00 M 25 1 2 14428 30.00 M 8 1 2 14429 30.00 M 25 1 2 14430 30.00 F 16 1 2 14431 18.00 F 31 1 2 14432 20.00 F 23 1 2 14433 40.00 M 8 1 2 14434 36.00 F 23 1 2 14435 25.00 F 31 1 2 14436 22.00 F 8 1 2 14437 22.00 F 20 1 2 14438 25.00 F 16 1 2 14439 18.00 F 25 1 2 14440 6.00 F 25 1 1 14441 20.00 M 25 1 2 14442 28.00 M 25 1 2 14443 48.00 F 16 1 2 14444 28.00 F 16 1 2 14445 34.00 F 19 1 2 14446 3.00 F 25 1 1 14447 20.00 F 31 1 2 14448 25.00 F 16 1 2 14449 22.00 M 16 1 2 14450 30.00 F 25 1 2 14451 3.00 M 19 1 1 14452 35.00 M 20 1 2 14453 6.00 F 20 1 1 14454 47.00 M 16 1 2 14455 18.00 M 20 1 2 14456 21.00 M 16 1 2 14457 50.00 M 19 1 2 14458 27.00 M 24 1 2 14459 32.00 M 7 1 2 14460 21.00 F 19 1 2 14461 1.00 M 26 1 1 14462 21.00 M 7 1 2 14463 23.00 M 12 1 2 14464 28.00 F 7 1 2 14465 35.00 M 7 1 2 14466 27.00 M 12 1 2 14467 25.00 M 15 1 2 14468 3.00 M 21 1 1 14469 47.00 M 15 1 2 14470 35.00 M 12 1 2 14471 55.00 M 24 1 2 14472 4.00 F 11 1 1 14473 45.00 F 8 1 2 14474 35.00 F 9 1 2 14475 23.00 F 9 1 2 14476 24.00 M 11 1 2 14477 62.00 M 13 1 3 14478 22.00 M 11 1 2 14479 26.00 F 18 1 2 14480 26.00 F 18 1 2 14481 25.00 M 10 1 2 14482 10.00 F 10 1 1 14483 4.00 M 18 1 1 14484 18.00 F 10 1 2 14485 30.00 M 10 1 2 14486 16.00 F 10 1 1 14487 16.00 F 10 1 1 14488 21.00 M 10 1 2 14489 35.00 F 10 1 2 14490 30.00 F 17 1 2 14491 30.00 F 24 1 2 14492 33.00 M 21 1 2 14493 59.00 M 8 1 2 14494 37.00 M 14 1 2 14495 5.00 M 8 1 1 14496 2.00 M 11 1 1 14497 20.00 F 16 1 2 14498 54.00 F 16 1 2 14499 30.00 M 8 1 2 14500 22.00 F 14 1 2 14501 25.00 F 14 1 2 14502 3.00 F 8 1 1 14503 28.00 F 19 1 2 14504 50.00 M 16 1 2 14505 49.00 M 18 1 2 14506 42.00 M 4 1 2 14507 35.00 M 10 1 2 14508 39.00 F 18 1 2 14509 29.00 M 5 1 2 14510 25.00 F 5 1 2 14511 31.00 M 6 1 2 14512 51.00 M 5 1 2 14513 32.00 M 10 1 2 14514 25.00 F 5 1 2 14515 6.00 F 12 1 1 14516 33.00 M 16 1 2 14517 43.00 M 7 1 2 14518 31.00 F 14 1 2 14519 27.00 M 18 1 2 14520 52.00 M 18 1 2 14521 50.00 M 18 1 2 14522 44.00 M 16 1 2 14523 30.00 M 7 1 2 14524 17.00 M 6 1 1 14525 31.00 M 6 1 2 14526 52.00 M 6 1 2 14527 35.00 F 6 1 2 14528 40.00 M 9 1 2 14529 38.00 F 6 1 2 14530 43.00 M 14 1 2 14531 20.00 M 10 1 2 14532 31.00 F 6 1 2 14533 42.00 F 17 1 2 14534 7.00 F 6 1 1 14535 36.00 M 6 1 2 14536 45.00 M 6 1 2 14537 12.00 M 5 1 1 14538 31.00 F 5 1 2 14539 28.00 M 10 1 2 14540 58.00 M 10 1 2 14541 36.00 M 10 1 2 14542 48.00 F 10 1 2 14543 10.00 M 12 1 1 14544 26.00 M 8 1 2 14545 42.00 M 8 1 2 14546 43.00 M 8 1 2 14547 16.00 F 8 1 1 14548 36.00 F 8 1 2 14549 14.00 M 12 1 1 14550 30.00 F 8 1 2 14551 14.00 F 12 1 1 14552 28.00 F 8 1 2 14553 43.00 F 8 1 2 14554 49.00 M 12 1 2 14555 32.00 F 8 1 2 14556 31.00 F 12 1 2 14557 5.00 F 8 1 1 14558 16.00 F 32 1 1 14559 20.00 M 12 1 2 14560 34.00 M 15 1 2 14561 64.00 F 8 1 3 14562 24.00 F 15 1 2 14563 10.00 M 15 1 1 14564 40.00 M 12 1 2 14565 44.00 M 12 1 2 14566 38.00 M 12 1 2 14567 40.00 M 13 1 2 14568 13.00 M 12 1 1 14569 42.00 M 9 1 2 14570 48.00 M 13 1 2 14571 11.00 M 15 1 1 14572 38.00 M 7 1 2 14573 35.00 M 7 1 2 14574 26.00 F 16 1 2 14575 54.00 F 16 1 2 14576 28.00 F 7 1 2 14577 25.00 M 7 1 2 14578 36.00 M 13 1 2 14579 29.00 M 3 1 2 14580 50.00 M 9 1 2 14581 32.00 F 7 1 2 14582 35.00 F 7 1 2 14583 29.00 M 5 1 2 14584 39.00 M 11 1 2 14585 25.00 M 7 1 2 14586 55.00 F 10 1 2 14587 67.00 M 5 1 3 14588 45.00 M 7 1 2 14589 10.00 F 3 1 1 14590 28.00 M 23 1 2 14591 56.00 M 6 1 2 14592 57.00 M 7 1 2 14593 22.00 M 7 1 2 14594 35.00 M 7 1 2 14595 37.00 F 5 1 2 14596 41.00 M 7 1 2 14597 65.00 M 5 1 3 14598 53.00 M 16 1 2 14599 33.00 M 7 1 2 14600 49.00 M 7 1 2 14601 59.00 M 7 1 2 14602 4.00 M 13 1 1 14603 43.00 M 3 1 2 14604 47.00 M 9 1 2 14605 33.00 M 7 1 2 14606 39.00 M 5 1 2 14607 43.00 M 3 1 2 14608 42.00 M 3 1 2 14609 34.00 F 15 1 2 14610 40.00 M 7 1 2 14611 33.00 F 7 1 2 14612 10.00 M 9 1 1 14613 43.00 M 3 1 2 14614 31.00 F 7 1 2 14615 29.00 M 7 1 2 14616 70.00 M 5 1 3 14617 9.00 F 13 1 1 14618 41.00 M 11 1 2 14619 39.00 M 13 1 2 14620 30.00 F 10 1 2 14621 16.00 M 13 1 1 14622 33.00 M 7 1 2 14623 22.00 M 14 1 2 14624 23.00 M 8 1 2 14625 29.00 M 11 1 2 14626 29.00 M 11 1 2 14627 24.00 M 11 1 2 14628 30.00 F 8 1 2 14629 52.00 M 11 1 2 14630 52.00 M 14 1 2 14631 49.00 M 8 1 2 14632 2.00 F 8 1 1 14633 28.00 M 8 1 2 14634 57.00 M 18 1 2 14635 35.00 F 23 1 2 14636 0.30 M 9 1 1 14637 8.00 F 15 1 1 14638 19.00 M 15 1 2 14639 20.00 M 12 1 2 14640 14.00 F 15 1 1 14641 51.00 M 15 1 2 14642 58.00 M 15 1 2 14643 43.00 M 12 1 2 14644 44.00 M 17 1 2 14645 30.00 F 7 1 2 14646 35.00 F 17 1 2 14647 55.00 M 7 1 2 14648 50.00 M 15 1 2 14649 13.00 F 15 1 1 14650 15.00 F 14 1 1 14651 9.00 M 14 1 1 14652 32.00 M 10 1 2 14653 30.00 F 10 1 2 14654 42.00 M 17 1 2 14655 50.00 M 9 1 2 14656 39.00 F 17 1 2 14657 15.00 M 13 1 1 14658 44.00 M 18 1 2 14659 36.00 M 11 1 2 14660 40.00 M 8 1 2 14661 55.00 F 13 1 2 14662 47.00 M 13 1 2 14663 30.00 M 9 1 2 14664 44.00 M 7 1 2 14665 45.00 M 7 1 2 14666 58.00 M 24 1 2 14667 50.00 M 9 1 2 14668 3.00 F 16 1 1 14669 13.00 F 7 1 1 14670 47.00 M 7 1 2 14671 37.00 M 7 1 2 14672 22.00 M 13 1 2 14673 47.00 M 13 1 2 14674 29.00 M 9 1 2 14675 36.00 F 5 1 2 14676 45.00 F 9 1 2 14677 24.00 F 9 1 2 14678 50.00 M 9 1 2 14679 27.00 M 9 1 2 14680 43.00 M 4 1 2 14681 48.00 F 6 1 2 14682 28.00 M 6 1 2 14683 29.00 M 13 1 2 14684 51.00 F 13 1 2 14685 27.00 F 6 1 2 14686 59.00 M 6 1 2 14687 27.00 M 13 1 2 14688 23.00 M 13 1 2 14689 15.00 F 13 1 1 14690 30.00 F 23 1 2 14691 37.00 F 23 1 2 14692 43.00 M 9 1 2 14693 22.00 F 9 1 2 14694 3.00 F 9 1 1 14695 7.00 M 10 1 1 14696 8.00 F 10 1 1 14697 12.00 F 10 1 1 14698 15.00 F 16 1 1 14699 35.00 F 16 1 2 14700 45.00 M 16 1 2 14701 65.00 F 9 1 3 14702 34.00 M 9 1 2 14703 16.00 M 9 1 1 14704 35.00 M 9 1 2 14705 20.00 M 9 1 2 14706 32.00 M 9 1 2 14707 30.00 M 9 1 2 14708 26.00 M 9 1 2 14709 20.00 M 9 1 2 14710 20.00 M 9 1 2 14711 19.00 M 9 1 2 14712 54.00 M 9 1 2 14713 44.00 M 9 1 2 14714 25.00 M 10 1 2 14715 25.00 M 9 1 2 14716 47.00 M 9 1 2 14717 25.00 M 9 1 2 14718 45.00 F 6 1 2 14719 50.00 M 6 1 2 14720 27.00 M 23 1 2 14721 28.00 F 4 1 2 14722 28.00 M 13 1 2 14723 15.00 F 8 1 1 14724 12.00 F 13 1 1 14725 38.00 F 16 1 2 14726 31.00 M 27 1 2 14727 28.00 F 10 1 2 14728 34.00 M 7 1 2 14729 31.00 M 5 1 2 14730 14.00 M 7 1 1 14731 30.00 F 10 1 2 14732 31.00 M 10 1 2 14733 13.00 F 10 1 1 14734 30.00 F 10 1 2 14735 4.00 M 11 1 1 14736 6.00 M 10 1 1 14737 65.00 F 9 1 3 14738 2.00 F 12 1 1 14739 11.00 M 6 1 1 14740 53.00 M 8 1 2 14741 31.00 M 8 1 2 14742 29.00 F 8 1 2 14743 35.00 M 8 1 2 14744 44.00 M 8 1 2 14745 38.00 M 8 1 2 14746 32.00 F 8 1 2 14747 26.00 M 8 1 2 14748 20.00 M 8 1 2 14749 48.00 M 8 1 2 14750 66.00 F 8 1 3 14751 42.00 M 10 1 2 14752 25.00 M 12 1 2 14753 47.00 M 12 1 2 14754 22.00 M 6 1 2 14755 21.00 M 6 1 2 14756 37.00 F 6 1 2 14757 30.00 M 6 1 2 14758 45.00 M 8 1 2 14759 35.00 M 16 1 2 14760 30.00 F 14 1 2 14761 40.00 M 10 1 2 14762 24.00 M 6 1 2 14763 30.00 M 6 1 2 14764 39.00 M 10 1 2 14765 36.00 M 12 1 2 14766 36.00 M 6 1 2 14767 28.00 M 10 1 2 14768 36.00 M 9 1 2 14769 8.00 M 6 1 1 14770 28.00 M 14 1 2 14771 32.00 M 14 1 2 14772 28.00 F 14 1 2 14773 50.00 M 14 1 2 14774 36.00 F 30 1 2 14775 59.00 F 30 1 2 14776 40.00 M 14 1 2 14777 18.00 F 10 1 2 14778 19.00 F 14 1 2 14779 21.00 M 14 1 2 14780 28.00 M 10 1 2 14781 38.00 F 5 1 2 14782 17.00 M 5 1 1 14783 24.00 F 5 1 2 14784 29.00 M 12 1 2 14785 37.00 M 12 1 2 14786 42.00 F 12 1 2 14787 30.00 F 11 1 2 14788 19.00 M 16 1 2 14789 12.00 F 10 1 1 14790 18.00 M 12 1 2 14791 40.00 M 10 1 2 14792 36.00 M 10 1 2 14793 33.00 M 10 1 2 14794 30.00 M 10 1 2 14795 29.00 F 10 1 2 14796 40.00 M 10 1 2 14797 28.00 F 15 1 2 14798 44.00 F 10 1 2 14799 30.00 F 15 1 2 14800 28.00 M 10 1 2 14801 24.00 F 10 1 2 14802 30.00 F 10 1 2 14803 28.00 M 12 1 2 14804 26.00 F 15 1 2 14805 4.00 M 12 1 1 14806 40.00 M 15 1 2 14807 35.00 F 15 1 2 14808 31.00 M 16 1 2 14809 21.00 M 12 1 2 14810 28.00 F 16 1 2 14811 22.00 F 12 1 2 14812 4.00 F 12 1 1 14813 1.00 F 12 1 1 14814 28.00 M 12 1 2 14815 2.00 F 15 1 1 14816 43.00 M 15 1 2 14817 35.00 F 15 1 2 14818 21.00 M 15 1 2 14819 42.00 M 12 1 2 14820 58.00 M 6 1 2 14821 30.00 M 10 1 2 14822 29.00 M 23 1 2 14823 36.00 M 6 1 2 14824 33.00 F 6 1 2 14825 36.00 M 11 1 2 14826 14.00 F 10 1 1 14827 20.00 M 12 1 2 14828 42.00 F 15 1 2 14829 42.00 M 12 1 2 14830 26.00 M 10 1 2 14831 27.00 M 6 1 2 14832 42.00 M 12 1 2 14833 20.00 M 12 1 2 14834 44.00 M 12 1 2 14835 22.00 M 14 1 2 14836 49.00 M 10 1 2 14837 21.00 M 9 1 2 14838 39.00 M 10 1 2 14839 16.00 F 10 1 1 14840 30.00 F 17 1 2 14841 42.00 F 10 1 2 14842 47.00 M 11 1 2 14843 26.00 F 10 1 2 14844 32.00 M 9 1 2 14845 56.00 M 10 1 2 14846 42.00 M 6 1 2 14847 38.00 M 10 1 2 14848 42.00 M 12 1 2 14849 37.00 M 6 1 2 14850 45.00 M 14 1 2 14851 24.00 M 10 1 2 14852 67.00 M 12 1 3 14853 48.00 M 14 1 2 14854 42.00 M 11 1 2 14855 34.00 F 12 1 2 14856 39.00 M 14 1 2 14857 33.00 M 14 1 2 14858 44.00 M 14 1 2 14859 29.00 F 6 1 2 14860 44.00 M 6 1 2 14861 42.00 M 12 1 2 14862 36.00 F 6 1 2 14863 29.00 M 10 1 2 14864 34.00 M 6 1 2 14865 23.00 M 17 1 2 14866 32.00 M 10 1 2 14867 21.00 M 23 1 2 14868 38.00 M 10 1 2 14869 29.00 F 6 1 2 14870 34.00 M 6 1 2 14871 39.00 M 6 1 2 14872 47.00 M 10 1 2 14873 32.00 M 24 1 2 14874 16.00 M 6 1 1 14875 38.00 M 12 1 2 14876 38.00 M 10 1 2 14877 29.00 M 14 1 2 14878 31.00 M 14 1 2 14879 30.00 M 15 1 2 14880 42.00 M 11 1 2 14881 36.00 M 6 1 2 14882 41.00 M 12 1 2 14883 26.00 M 23 1 2 14884 29.00 M 6 1 2 14885 33.00 F 10 1 2 14886 4.00 M 23 1 1 14887 47.00 M 11 1 2 14888 40.00 M 6 1 2 14889 32.00 F 10 1 2 14890 31.00 M 6 1 2 14891 54.00 M 15 1 2 14892 31.00 M 10 1 2 14893 32.00 M 11 1 2 14894 30.00 F 12 1 2 14895 25.00 M 12 1 2 14896 29.00 M 10 1 2 14897 43.00 M 14 1 2 14898 39.00 M 6 1 2 14899 33.00 F 14 1 2 14900 44.00 M 12 1 2 14901 31.00 M 11 1 2 14902 27.00 M 10 1 2 14903 32.00 F 11 1 2 14904 45.00 M 18 1 2 14905 26.00 M 14 1 2 14906 40.00 F 6 1 2 14907 28.00 M 14 1 2 14908 37.00 M 6 1 2 14909 35.00 M 6 1 2 14910 55.00 M 6 1 2 14911 47.00 M 6 1 2 14912 44.00 M 19 1 2 14913 38.00 M 19 1 2 14914 35.00 M 12 1 2 14915 33.00 M 11 1 2 14916 18.00 M 12 1 2 14917 40.00 M 12 1 2 14918 50.00 F 6 1 2 14919 35.00 M 6 1 2 14920 52.00 M 6 1 2 14921 24.00 F 12 1 2 14922 57.00 M 15 1 2 14923 18.00 M 10 1 2 14924 35.00 F 6 1 2 14925 36.00 M 12 1 2 14926 46.00 M 12 1 2 14927 50.00 M 14 1 2 14928 22.00 F 6 1 2 14929 43.00 M 12 1 2 14930 49.00 M 14 1 2 14931 34.00 F 6 1 2 14932 39.00 M 6 1 2 14933 37.00 F 14 1 2 14934 33.00 M 15 1 2 14935 36.00 M 10 1 2 14936 14.00 M 6 1 1 14937 46.00 M 13 1 2 14938 43.00 M 14 1 2 14939 33.00 F 11 1 2 14940 43.00 M 14 1 2 14941 42.00 M 6 1 2 14942 26.00 M 11 1 2 14943 24.00 M 6 1 2 14944 35.00 M 7 1 2 14945 32.00 M 7 1 2 14946 40.00 M 7 1 2 14947 0.20 F 10 1 1 14948 14.00 F 7 1 1 14949 30.00 F 10 1 2 14950 30.00 F 23 1 2 14951 6.00 F 23 1 1 14952 1.00 M 23 1 1 14953 22.00 M 17 1 2 14954 3.00 M 23 1 1 14955 27.00 M 17 1 2 14956 32.00 M 23 1 2 14957 49.00 F 19 1 2 14958 22.00 F 14 1 2 14959 42.00 M 23 1 2 14960 23.00 M 23 1 2 14961 21.00 M 23 1 2 14962 26.00 F 14 1 2 14963 35.00 M 18 1 2 14964 25.00 F 23 1 2 14965 5.00 F 11 1 1 14966 65.00 F 7 1 3 14967 37.00 F 5 1 2 14968 24.00 M 9 1 2 14969 46.00 F 9 1 2 14970 35.00 F 8 1 2 14971 24.00 M 14 1 2 14972 19.00 M 7 1 2 14973 48.00 M 10 1 2 14974 32.00 M 10 1 2 14975 42.00 F 10 1 2 14976 28.00 M 10 1 2 14977 24.00 F 10 1 2 14978 7.00 F 10 1 1 14979 23.00 M 13 1 2 14980 40.00 F 17 1 2 14981 21.00 M 22 1 2 14982 18.00 M 12 1 2 14983 25.00 M 17 1 2 14984 25.00 F 10 1 2 14985 45.00 M 12 1 2 14986 30.00 M 10 1 2 14987 34.00 M 10 1 2 14988 26.00 F 10 1 2 14989 43.00 M 12 1 2 14990 2.00 M 10 1 1 14991 55.00 M 10 1 2 14992 12.00 M 10 1 1 14993 29.00 M 13 1 2 14994 19.00 M 13 1 2 14995 16.00 F 8 1 1 14996 42.00 M 12 1 2 14997 14.00 M 10 1 1 14998 27.00 F 13 1 2 14999 37.00 F 10 1 2 15000 55.00 M 10 1 2 15001 32.00 M 17 1 2 15002 56.00 F 10 1 2 15003 20.00 M 10 1 2 15004 14.00 M 17 1 1 15005 31.00 F 5 1 2 15006 28.00 F 10 1 2 15007 45.00 M 10 1 2 15008 26.00 F 5 1 2 15009 62.00 F 5 1 3 15010 30.00 F 5 1 2 15011 32.00 F 5 1 2 15012 26.00 F 5 1 2 15013 13.00 M 5 1 1 15014 46.00 M 5 1 2 15015 48.00 F 32 1 2 15016 17.00 M 10 1 1 15017 47.00 M 5 1 2 15018 15.00 M 5 1 1 15019 45.00 M 5 1 2 15020 41.00 M 5 1 2 15021 6.00 M 5 1 1 15022 51.00 M 17 1 2 15023 22.00 F 5 1 2 15024 24.00 M 5 1 2 15025 42.00 F 5 1 2 15026 26.00 F 5 1 2 15027 41.00 F 17 1 2 15028 4.00 F 10 1 1 15029 65.00 F 5 1 3 15030 25.00 M 12 1 2 15031 30.00 M 12 1 2 15032 25.00 M 12 1 2 15033 30.00 F 10 1 2 15034 22.00 M 10 1 2 15035 26.00 M 10 1 2 15036 22.00 M 10 1 2 15037 30.00 M 10 1 2 15038 9.00 M 9 1 1 15039 10.00 M 12 1 1 15040 21.00 M 10 1 2 15041 39.00 M 10 1 2 15042 4.00 M 9 1 1 15043 32.00 F 9 1 2 15044 35.00 M 9 1 2 15045 65.00 F 9 1 3 15046 24.00 F 9 1 2 15047 35.00 F 9 1 2 15048 39.00 M 27 1 2 15049 45.00 M 12 1 2 15050 50.00 F 10 1 2 15051 48.00 F 10 1 2 15052 18.00 M 10 1 2 15053 6.00 F 10 1 1 15054 30.00 F 8 1 2 15055 35.00 F 12 1 2 15056 5.00 F 10 1 1 15057 30.00 M 10 1 2 15058 15.00 M 15 1 1 15059 13.00 F 10 1 1 15060 5.00 M 12 1 1 15061 30.00 F 15 1 2 15062 12.00 M 15 1 1 15063 37.00 F 10 1 2 15064 27.00 M 10 1 2 15065 4.00 F 10 1 1 15066 40.00 M 17 1 2 15067 24.00 M 17 1 2 15068 32.00 M 10 1 2 15069 30.00 M 10 1 2 15070 10.00 M 17 1 1 15071 35.00 M 12 1 2 15072 26.00 F 17 1 2 15073 33.00 F 12 1 2 15074 35.00 M 12 1 2 15075 11.00 M 12 1 1 15076 39.00 F 17 1 2 15077 48.00 F 12 1 2 15078 2.00 F 12 1 1 15079 5.00 M 15 1 1 15080 28.00 M 10 1 2 15081 6.00 M 12 1 1 15082 20.00 M 17 1 2 15083 25.00 F 12 1 2 15084 38.00 M 15 1 2 15085 13.00 M 15 1 1 15086 33.00 F 12 1 2 15087 35.00 M 12 1 2 15088 37.00 F 12 1 2 15089 32.00 F 12 1 2 15090 15.00 M 12 1 1 15091 42.00 M 12 1 2 15092 24.00 M 14 1 2 15093 25.00 F 10 1 2 15094 55.00 M 10 1 2 15095 8.00 M 12 1 1 15096 35.00 F 12 1 2 15097 38.00 M 10 1 2 15098 40.00 M 17 1 2 15099 50.00 M 17 1 2 15100 55.00 M 7 1 2 15101 32.00 F 14 1 2 15102 23.00 F 12 1 2 15103 40.00 F 12 1 2 15104 27.00 F 11 1 2 15105 38.00 M 5 1 2 15106 45.00 M 22 1 2 15107 43.00 M 11 1 2 15108 30.00 M 11 1 2 15109 51.00 M 22 1 2 15110 40.00 M 9 1 2 15111 36.00 F 11 1 2 15112 32.00 M 11 1 2 15113 35.00 M 15 1 2 15114 38.00 M 3 1 2 15115 39.00 M 15 1 2 15116 32.00 M 10 1 2 15117 35.00 M 10 1 2 15118 43.00 F 11 1 2 15119 59.00 F 15 1 2 15120 28.00 M 15 1 2 15121 35.00 M 14 1 2 15122 45.00 M 13 1 2 15123 37.00 M 14 1 2 15124 11.00 F 20 1 1 15125 43.00 M 18 1 2 15126 42.00 F 10 1 2 15127 61.00 F 10 1 3 15128 25.00 M 12 1 2 15129 29.00 F 9 1 2 15130 43.00 M 14 1 2 15131 35.00 M 22 1 2 15132 33.00 M 11 1 2 15133 35.00 M 5 1 2 15134 22.00 M 7 1 2 15135 11.00 F 11 1 1 15136 28.00 M 9 1 2 15137 10.00 M 13 1 1 15138 18.00 F 7 1 2 15139 34.00 F 13 1 2 15140 31.00 M 5 1 2 15141 30.00 M 13 1 2 15142 33.00 M 11 1 2 15143 27.00 M 13 1 2 15144 36.00 M 13 1 2 15145 23.00 M 9 1 2 15146 48.00 M 13 1 2 15147 37.00 M 11 1 2 15148 52.00 M 9 1 2 15149 33.00 F 7 1 2 15150 47.00 M 7 1 2 15151 66.00 M 3 1 3 15152 55.00 F 7 1 2 15153 3.00 F 9 1 1 15154 4.00 M 7 1 1 15155 63.00 M 15 1 3 15156 32.00 F 7 1 2 15157 49.00 M 22 1 2 15158 12.00 M 7 1 1 15159 5.00 F 9 1 1 15160 60.00 M 14 1 3 15161 37.00 M 9 1 2 15162 32.00 M 7 1 2 15163 23.00 M 11 1 2 15164 23.00 M 6 1 2 15165 25.00 M 22 1 2 15166 25.00 M 16 1 2 15167 40.00 M 18 1 2 15168 25.00 M 12 1 2 15169 36.00 M 11 1 2 15170 29.00 M 18 1 2 15171 45.00 M 5 1 2 15172 15.00 F 22 1 1 15173 23.00 F 22 1 2 15174 26.00 M 22 1 2 15175 35.00 F 5 1 2 15176 15.00 M 13 1 1 15177 10.00 F 5 1 1 15178 35.00 F 22 1 2 15179 30.00 M 5 1 2 15180 39.00 M 13 1 2 15181 16.00 M 5 1 1 15182 12.00 M 13 1 1 15183 27.00 M 5 1 2 15184 48.00 M 22 1 2 15185 28.00 F 5 1 2 15186 14.00 F 5 1 1 15187 42.00 M 5 1 2 15188 13.00 F 24 1 1 15189 11.00 F 5 1 1 15190 27.00 M 5 1 2 15191 28.00 M 24 1 2 15192 23.00 M 5 1 2 15193 47.00 F 5 1 2 15194 14.00 M 16 1 1 15195 49.00 M 5 1 2 15196 73.00 M 16 1 3 15197 36.00 M 5 1 2 15198 20.00 F 5 1 2 15199 30.00 F 5 1 2 15200 32.00 M 20 1 2 15201 45.00 M 20 1 2 15202 40.00 F 20 1 2 15203 28.00 F 20 1 2 15204 39.00 M 14 1 2 15205 23.00 M 13 1 2 15206 46.00 M 24 1 2 15207 36.00 F 14 1 2 15208 2.00 M 9 1 1 15209 1.00 M 12 1 1 15210 22.00 M 12 1 2 15211 54.00 M 8 1 2 15212 42.00 M 14 1 2 15213 33.00 M 14 1 2 15214 33.00 M 4 1 2 15215 53.00 M 20 1 2 15216 35.00 M 20 1 2 15217 47.00 M 17 1 2 15218 45.00 M 14 1 2 15219 55.00 M 17 1 2 15220 32.00 M 14 1 2 15221 49.00 M 20 1 2 15222 50.00 M 14 1 2 15223 52.00 M 17 1 2 15224 55.00 M 15 1 2 15225 35.00 F 7 1 2 15226 30.00 M 24 1 2 15227 64.00 F 7 1 3 15228 20.00 F 6 1 2 15229 37.00 F 9 1 2 15230 36.00 F 21 1 2 15231 35.00 M 17 1 2 15232 17.00 M 10 1 1 15233 13.00 M 10 1 1 15234 25.00 F 10 1 2 15235 40.00 F 10 1 2 15236 1.00 M 10 1 1 15237 35.00 M 10 1 2 15238 35.00 F 11 1 2 15239 35.00 M 9 1 2 15240 5.00 F 20 1 1 15241 21.00 F 10 1 2 15242 32.00 M 16 1 2 15243 7.00 M 10 1 1 15244 20.00 M 10 1 2 15245 60.00 M 20 1 3 15246 40.00 M 16 1 2 15247 38.00 M 10 1 2 15248 36.00 M 10 1 2 15249 26.00 F 10 1 2 15250 10.00 F 11 1 1 15251 24.00 M 10 1 2 15252 42.00 M 16 1 2 15253 38.00 F 16 1 2 15254 17.00 M 16 1 1 15255 12.00 F 18 1 1 15256 27.00 M 18 1 2 15257 28.00 M 15 1 2 15258 22.00 F 14 1 2 15259 2.00 M 14 1 1 15260 36.00 M 10 1 2 15261 25.00 F 10 1 2 15262 27.00 M 10 1 2 15263 20.00 F 14 1 2 15264 35.00 M 10 1 2 15265 8.00 M 10 1 1 15266 30.00 F 10 1 2 15267 7.00 F 10 1 1 15268 20.00 M 14 1 2 15269 36.00 M 16 1 2 15270 70.00 F 21 1 3 15271 70.00 F 14 1 3 15272 68.00 M 8 1 3 15273 55.00 F 11 1 2 15274 68.00 M 8 1 3 15275 26.00 M 7 1 2 15276 23.00 F 10 1 2 15277 24.00 M 10 1 2 15278 18.00 M 10 1 2 15279 68.00 F 10 1 3 15280 6.00 F 18 1 1 15281 28.00 M 18 1 2 15282 28.00 F 18 1 2 15283 30.00 M 14 1 2 15284 28.00 M 14 1 2 15285 35.00 F 10 1 2 15286 45.00 F 27 1 2 15287 27.00 F 13 1 2 15288 50.00 F 13 1 2 15289 29.00 M 29 1 2 15290 31.00 M 4 1 2 15291 30.00 M 11 1 2 15292 24.00 M 4 1 2 15293 39.00 M 11 1 2 15294 18.00 M 11 1 2 15295 20.00 M 11 1 2 15296 27.00 F 16 1 2 15297 54.00 M 16 1 2 15298 20.00 M 20 1 2 15299 22.00 M 20 1 2 15300 14.00 M 16 1 1 15301 24.00 F 16 1 2 15302 16.00 M 10 1 1 15303 18.00 M 10 1 2 15304 35.00 F 21 1 2 15305 7.00 F 14 1 1 15306 40.00 F 10 1 2 15307 3.00 F 16 1 1 15308 35.00 F 9 1 2 15309 45.00 M 14 1 2 15310 26.00 F 7 1 2 15311 12.00 M 16 1 1 15312 4.00 M 14 1 1 15313 14.00 F 25 1 1 15314 32.00 M 11 1 2 15315 12.00 M 34 1 1 15316 22.00 M 10 1 2 15317 25.00 M 9 1 2 15318 23.00 F 17 1 2 15319 39.00 M 16 1 2 15320 15.00 F 14 1 1 15321 12.00 M 17 1 1 15322 8.00 M 9 1 1 15323 40.00 M 9 1 2 15324 37.00 F 9 1 2 15325 17.00 M 9 1 1 15326 14.00 M 9 1 1 15327 33.00 M 13 1 2 15328 26.00 M 34 1 2 15329 65.00 M 13 1 3 15330 6.00 F 13 1 1 15331 31.00 M 11 1 2 15332 29.00 M 11 1 2 15333 26.00 M 21 1 2 15334 24.00 F 21 1 2 15335 11.00 M 11 1 1 15336 37.00 M 11 1 2 15337 13.00 M 11 1 1 15338 8.00 M 11 1 1 15339 20.00 M 21 1 2 15340 26.00 M 14 1 2 15341 18.00 M 13 1 2 15342 17.00 M 14 1 1 15343 50.00 F 14 1 2 15344 28.00 M 9 1 2 15345 24.00 M 11 1 2 15346 57.00 F 14 1 2 15347 25.00 M 11 1 2 15348 17.00 M 9 1 1 15349 22.00 M 9 1 2 15350 28.00 M 11 1 2 15351 21.00 M 10 1 2 15352 7.00 M 11 1 1 15353 56.00 F 14 1 2 15354 8.00 M 11 1 1 15355 27.00 F 15 1 2 15356 24.00 F 8 1 2 15357 40.00 F 21 1 2 15358 37.00 F 11 1 2 15359 18.00 F 8 1 2 15360 49.00 M 11 1 2 15361 25.00 M 11 1 2 15362 16.00 M 11 1 1 15363 58.00 F 8 1 2 15364 21.00 M 8 1 2 15365 24.00 M 8 1 2 15366 24.00 M 12 1 2 15367 10.00 F 11 1 1 15368 36.00 M 11 1 2 15369 54.00 M 7 1 2 15370 62.00 F 20 1 3 15371 55.00 F 6 1 2 15372 22.00 F 6 1 2 15373 36.00 M 11 1 2 15374 26.00 F 9 1 2 15375 5.00 F 6 1 1 15376 1.00 M 6 1 1 15377 35.00 F 9 1 2 15378 21.00 F 6 1 2 15379 55.00 M 6 1 2 15380 37.00 M 7 1 2 15381 35.00 F 7 1 2 15382 25.00 M 15 1 2 15383 65.00 M 23 1 3 15384 24.00 M 23 1 2 15385 30.00 M 23 1 2 15386 35.00 F 15 1 2 15387 28.00 M 23 1 2 15388 37.00 M 23 1 2 15389 33.00 M 19 1 2 15390 12.00 M 19 1 1 15391 18.00 M 19 1 2 15392 35.00 F 19 1 2 15393 40.00 M 19 1 2 15394 13.00 M 17 1 1 15395 16.00 F 17 1 1 15396 6.00 M 15 1 1 15397 11.00 M 15 1 1 15398 28.00 M 19 1 2 15399 12.00 F 12 1 1 15400 18.00 F 15 1 2 15401 11.00 M 12 1 1 15402 14.00 F 15 1 1 15403 35.00 F 12 1 2 15404 38.00 M 15 1 2 15405 9.00 M 17 1 1 15406 40.00 M 15 1 2 15407 14.00 F 19 1 1 15408 9.00 F 23 1 1 15409 35.00 M 16 1 2 15410 37.00 F 12 1 2 15411 19.00 M 23 1 2 15412 60.00 M 19 1 3 15413 6.00 F 19 1 1 15414 30.00 F 19 1 2 15415 9.00 M 15 1 1 15416 14.00 F 19 1 1 15417 21.00 F 15 1 2 15418 9.00 M 23 1 1 15419 12.00 M 19 1 1 15420 36.00 M 2 1 2 15421 3.00 M 12 1 1 15422 52.00 F 23 1 2 15423 8.00 F 15 1 1 15424 15.00 M 15 1 1 15425 18.00 F 19 1 2 15426 25.00 M 19 1 2 15427 1.00 F 17 1 1 15428 10.00 M 15 1 1 15429 37.00 M 17 1 2 15430 22.00 F 19 1 2 15431 32.00 M 19 1 2 15432 12.00 M 19 1 1 15433 7.00 F 19 1 1 15434 35.00 F 23 1 2 15435 10.00 M 16 1 1 15436 2.00 M 19 1 1 15437 42.00 M 16 1 2 15438 16.00 M 23 1 1 15439 30.00 F 23 1 2 15440 20.00 F 15 1 2 15441 35.00 M 23 1 2 15442 11.00 M 12 1 1 15443 3.00 M 19 1 1 15444 6.00 M 19 1 1 15445 41.00 M 23 1 2 15446 7.00 M 19 1 1 15447 30.00 M 23 1 2 15448 10.00 F 23 1 1 15449 25.00 F 23 1 2 15450 34.00 F 23 1 2 15451 35.00 M 17 1 2 15452 25.00 F 19 1 2 15453 35.00 F 19 1 2 15454 12.00 F 15 1 1 15455 12.00 F 12 1 1 15456 13.00 F 19 1 1 15457 32.00 F 23 1 2 15458 6.00 M 12 1 1 15459 17.00 M 12 1 1 15460 28.00 M 16 1 2 15461 25.00 F 9 1 2 15462 22.00 F 19 1 2 15463 39.00 M 12 1 2 15464 7.00 F 23 1 1 15465 1.00 M 30 1 1 15466 28.00 F 19 1 2 15467 3.00 M 12 1 1 15468 26.00 F 15 1 2 15469 35.00 M 14 1 2 15470 28.00 F 8 1 2 15471 48.00 M 21 1 2 15472 50.00 M 9 1 2 15473 3.00 M 10 1 1 15474 8.00 F 10 1 1 15475 32.00 M 10 1 2 15476 25.00 F 21 1 2 15477 23.00 F 9 1 2 15478 15.00 F 9 1 1 15479 27.00 M 21 1 2 15480 31.00 F 9 1 2 15481 9.00 M 21 1 1 15482 7.00 M 9 1 1 15483 34.00 M 9 1 2 15484 4.00 F 21 1 1 15485 42.00 F 9 1 2 15486 35.00 M 21 1 2 15487 42.00 F 9 1 2 15488 54.00 M 14 1 2 15489 33.00 M 14 1 2 15490 48.00 M 14 1 2 15491 7.00 M 14 1 1 15492 43.00 M 14 1 2 15493 39.00 M 14 1 2 15494 32.00 F 14 1 2 15495 9.00 M 14 1 1 15496 53.00 M 14 1 2 15497 28.00 M 14 1 2 15498 18.00 M 14 1 2 15499 21.00 F 19 1 2 15500 42.00 M 14 1 2 15501 41.00 F 14 1 2 15502 47.00 M 14 1 2 15503 29.00 F 5 1 2 15504 16.00 M 4 1 1 15505 47.00 M 4 1 2 15506 12.00 F 6 1 1 15507 42.00 M 4 1 2 15508 37.00 F 16 1 2 15509 36.00 M 9 1 2 15510 57.00 M 9 1 2 15511 46.00 M 9 1 2 15512 45.00 M 13 1 2 15513 45.00 M 13 1 2 15514 40.00 M 12 1 2 15515 25.00 M 10 1 2 15516 30.00 M 8 1 2 15517 28.00 M 4 1 2 15518 32.00 M 14 1 2 15519 52.00 M 4 1 2 15520 39.00 M 4 1 2 15521 28.00 M 4 1 2 15522 37.00 M 10 1 2 15523 43.00 M 4 1 2 15524 45.00 M 8 1 2 15525 29.00 M 12 1 2 15526 51.00 M 4 1 2 15527 38.00 M 9 1 2 15528 30.00 M 10 1 2 15529 34.00 F 22 1 2 15530 32.00 M 4 1 2 15531 42.00 M 10 1 2 15532 26.00 M 9 1 2 15533 47.00 F 20 1 2 15534 25.00 M 4 1 2 15535 25.00 M 4 1 2 15536 53.00 M 4 1 2 15537 39.00 M 12 1 2 15538 28.00 M 13 1 2 15539 27.00 M 8 1 2 15540 27.00 M 4 1 2 15541 33.00 F 8 1 2 15542 61.00 M 4 1 3 15543 50.00 M 8 1 2 15544 59.00 M 4 1 2 15545 54.00 M 10 1 2 15546 51.00 M 10 1 2 15547 21.00 M 4 1 2 15548 37.00 M 20 1 2 15549 54.00 M 6 1 2 15550 48.00 M 10 1 2 15551 25.00 F 6 1 2 15552 35.00 M 6 1 2 15553 30.00 M 9 1 2 15554 42.00 M 22 1 2 15555 29.00 F 6 1 2 15556 56.00 F 13 1 2 15557 26.00 F 13 1 2 15558 22.00 M 13 1 2 15559 51.00 M 13 1 2 15560 49.00 M 10 1 2 15561 39.00 M 6 1 2 15562 36.00 M 6 1 2 15563 23.00 M 11 1 2 15564 34.00 M 8 1 2 15565 33.00 M 9 1 2 15566 33.00 F 6 1 2 15567 19.00 M 10 1 2 15568 30.00 M 13 1 2 15569 34.00 M 11 1 2 15570 43.00 M 10 1 2 15571 29.00 M 8 1 2 15572 42.00 M 20 1 2 15573 26.00 M 13 1 2 15574 32.00 M 8 1 2 15575 22.00 M 13 1 2 15576 27.00 M 8 1 2 15577 53.00 M 6 1 2 15578 43.00 F 10 1 2 15579 45.00 M 13 1 2 15580 40.00 M 9 1 2 15581 19.00 M 7 1 2 15582 17.00 F 10 1 1 15583 44.00 M 13 1 2 15584 35.00 M 11 1 2 15585 42.00 M 10 1 2 15586 27.00 M 13 1 2 15587 41.00 M 22 1 2 15588 30.00 M 13 1 2 15589 35.00 M 13 1 2 15590 31.00 M 13 1 2 15591 20.00 M 22 1 2 15592 30.00 F 14 1 2 15593 9.00 F 4 1 1 15594 38.00 M 16 1 2 15595 32.00 M 8 1 2 15596 36.00 M 10 1 2 15597 54.00 M 10 1 2 15598 19.00 M 12 1 2 15599 19.00 M 29 1 2 15600 60.00 M 21 1 3 15601 55.00 F 21 1 2 15602 54.00 M 27 1 2 15603 51.00 F 27 1 2 15604 21.00 M 27 1 2 15605 18.00 M 27 1 2 15606 20.00 F 27 1 2 15607 55.00 F 27 1 2 15608 24.00 M 27 1 2 15609 32.00 M 27 1 2 15610 38.00 M 20 1 2 15611 38.00 M 20 1 2 15612 24.00 M 27 1 2 15613 46.00 M 27 1 2 15614 23.00 M 13 1 2 15615 25.00 M 21 1 2 15616 25.00 M 10 1 2 15617 27.00 M 7 1 2 15618 24.00 F 2 1 2 15619 18.00 M 9 1 2 15620 30.00 F 19 1 2 15621 28.00 M 19 1 2 15622 68.00 M 12 1 3 15623 23.00 M 28 1 2 15624 52.00 M 9 1 2 15625 2.00 M 6 1 1 15626 41.00 M 6 1 2 15627 2.00 M 6 1 1 15628 37.00 F 6 1 2 15629 48.00 M 10 1 2 15630 11.00 F 7 1 1 15631 18.00 M 7 1 2 15632 55.00 M 7 1 2 15633 25.00 M 7 1 2 15634 47.00 M 6 1 2 15635 47.00 M 15 1 2 15636 37.00 M 6 1 2 15637 34.00 F 7 1 2 15638 36.00 M 6 1 2 15639 22.00 M 6 1 2 15640 20.00 F 6 1 2 15641 48.00 M 7 1 2 15642 52.00 M 6 1 2 15643 13.00 M 6 1 1 15644 6.00 M 6 1 1 15645 16.00 M 6 1 1 15646 16.00 M 6 1 1 15647 21.00 F 13 1 2 15648 19.00 M 6 1 2 15649 35.00 F 7 1 2 15650 34.00 F 7 1 2 15651 40.00 M 6 1 2 15652 34.00 M 7 1 2 15653 30.00 F 6 1 2 15654 45.00 M 7 1 2 15655 40.00 F 6 1 2 15656 32.00 M 6 1 2 15657 27.00 M 7 1 2 15658 11.00 F 6 1 1 15659 13.00 M 6 1 1 15660 14.00 M 6 1 1 15661 30.00 M 6 1 2 15662 20.00 M 6 1 2 15663 18.00 F 10 1 2 15664 45.00 F 11 1 2 15665 21.00 F 20 1 2 15666 12.00 F 15 1 1 15667 37.00 M 11 1 2 15668 25.00 F 11 1 2 15669 28.00 M 11 1 2 15670 5.00 F 9 1 1 15671 35.00 M 11 1 2 15672 13.00 M 9 1 1 15673 16.00 M 11 1 1 15674 48.00 M 11 1 2 15675 19.00 M 12 1 2 15676 22.00 M 12 1 2 15677 20.00 F 12 1 2 15678 12.00 M 15 1 1 15679 60.00 F 22 1 3 15680 30.00 M 9 1 2 15681 8.00 F 22 1 1 15682 38.00 F 25 1 2 15683 10.00 F 15 1 1 15684 52.00 F 9 1 2 15685 36.00 F 11 1 2 15686 13.00 F 15 1 1 15687 14.00 F 11 1 1 15688 24.00 M 11 1 2 15689 11.00 F 15 1 1 15690 40.00 F 11 1 2 15691 50.00 M 11 1 2 15692 36.00 F 11 1 2 15693 20.00 M 11 1 2 15694 35.00 F 12 1 2 15695 28.00 M 11 1 2 15696 30.00 F 17 1 2 15697 13.00 F 9 1 1 15698 25.00 M 12 1 2 15699 37.00 M 12 1 2 15700 52.00 M 20 1 2 15701 44.00 M 7 1 2 15702 37.00 F 11 1 2 15703 25.00 M 11 1 2 15704 29.00 M 11 1 2 15705 40.00 F 11 1 2 15706 17.00 M 11 1 1 15707 18.00 M 11 1 2 15708 18.00 M 20 1 2 15709 36.00 M 11 1 2 15710 28.00 M 11 1 2 15711 40.00 M 11 1 2 15712 23.00 M 12 1 2 15713 27.00 F 11 1 2 15714 44.00 M 11 1 2 15715 38.00 M 11 1 2 15716 38.00 F 11 1 2 15717 48.00 M 11 1 2 15718 20.00 F 7 1 2 15719 14.00 F 7 1 1 15720 29.00 M 15 1 2 15721 8.00 F 9 1 1 15722 48.00 M 11 1 2 15723 51.00 M 12 1 2 15724 6.00 M 9 1 1 15725 11.00 M 9 1 1 15726 10.00 M 9 1 1 15727 47.00 F 11 1 2 15728 30.00 F 7 1 2 15729 18.00 M 7 1 2 15730 36.00 F 22 1 2 15731 30.00 F 7 1 2 15732 11.00 M 7 1 1 15733 42.00 M 7 1 2 15734 22.00 M 22 1 2 15735 27.00 M 7 1 2 15736 15.00 F 10 1 1 15737 18.00 F 10 1 2 15738 60.00 M 10 1 3 15739 32.00 M 12 1 2 15740 33.00 M 12 1 2 15741 23.00 M 12 1 2 15742 25.00 M 11 1 2 15743 7.00 M 12 1 1 15744 13.00 F 11 1 1 15745 31.00 M 15 1 2 15746 36.00 M 12 1 2 15747 30.00 F 9 1 2 15748 8.00 M 10 1 1 15749 13.00 F 11 1 1 15750 5.00 M 11 1 1 15751 28.00 F 7 1 2 15752 45.00 F 32 1 2 15753 3.00 M 9 1 1 15754 3.00 M 15 1 1 15755 36.00 M 12 1 2 15756 37.00 M 15 1 2 15757 56.00 F 12 1 2 15758 26.00 M 5 1 2 15759 8.00 M 12 1 1 15760 30.00 M 8 1 2 15761 33.00 M 7 1 2 15762 36.00 M 14 1 2 15763 32.00 F 12 1 2 15764 13.00 F 10 1 1 15765 46.00 M 10 1 2 15766 35.00 M 11 1 2 15767 39.00 M 11 1 2 15768 27.00 M 5 1 2 15769 45.00 F 5 1 2 15770 18.00 M 5 1 2 15771 2.00 F 5 1 1 15772 1.00 F 5 1 1 15773 22.00 M 5 1 2 15774 16.00 F 5 1 1 15775 6.00 M 5 1 1 15776 30.00 M 5 1 2 15777 14.00 M 5 1 1 15778 55.00 M 14 1 2 15779 21.00 M 18 1 2 15780 29.00 F 14 1 2 15781 35.00 M 18 1 2 15782 36.00 M 18 1 2 15783 50.00 M 14 1 2 15784 48.00 M 14 1 2 15785 47.00 F 18 1 2 15786 57.00 M 14 1 2 15787 14.00 M 14 1 1 15788 33.00 F 18 1 2 15789 43.00 M 18 1 2 15790 76.00 F 18 1 3 15791 58.00 M 7 1 2 15792 36.00 M 7 1 2 15793 52.00 M 4 1 2 15794 24.00 M 20 1 2 15795 60.00 F 7 1 3 15796 48.00 M 7 1 2 15797 43.00 M 1 1 2 15798 43.00 M 20 1 2 15799 57.00 M 16 1 2 15800 35.00 M 10 1 2 15801 22.00 F 18 1 2 15802 53.00 F 8 1 2 15803 32.00 F 16 1 2 15804 60.00 F 14 1 3 15805 62.00 M 7 1 3 15806 46.00 F 7 1 2 15807 17.00 F 9 1 1 15808 62.00 M 9 1 3 15809 22.00 M 9 1 2 15810 25.00 F 9 1 2 15811 10.00 F 9 1 1 15812 8.00 M 9 1 1 15813 29.00 F 9 1 2 15814 49.00 M 9 1 2 15815 17.00 M 7 1 1 15816 41.00 F 7 1 2 15817 55.00 M 10 1 2 15818 25.00 M 10 1 2 15819 26.00 M 7 1 2 15820 22.00 M 23 1 2 15821 23.00 M 20 1 2 15822 17.00 M 7 1 1 15823 25.00 M 10 1 2 15824 27.00 F 7 1 2 15825 30.00 M 7 1 2 15826 20.00 F 14 1 2 15827 24.00 M 10 1 2 15828 22.00 M 10 1 2 15829 45.00 M 19 1 2 15830 25.00 M 7 1 2 15831 32.00 M 14 1 2 15832 9.00 F 7 1 1 15833 36.00 M 5 1 2 15834 2.00 F 5 1 1 15835 12.00 F 25 1 1 15836 31.00 M 14 1 2 15837 56.00 M 14 1 2 15838 46.00 M 9 1 2 15839 12.00 F 14 1 1 15840 9.00 M 23 1 1 15841 5.00 M 19 1 1 15842 44.00 M 19 1 2 15843 17.00 M 14 1 1 15844 13.00 M 14 1 1 15845 31.00 M 14 1 2 15846 27.00 M 7 1 2 15847 58.00 M 5 1 2 15848 12.00 M 7 1 1 15849 21.00 M 3 1 2 15850 40.00 M 3 1 2 15851 28.00 F 6 1 2 15852 50.00 M 3 1 2 15853 8.00 F 3 1 1 15854 35.00 F 3 1 2 15855 25.00 M 3 1 2 15856 24.00 M 19 1 2 15857 24.00 M 3 1 2 15858 28.00 M 3 1 2 15859 16.00 F 3 1 1 15860 23.00 F 3 1 2 15861 9.00 F 3 1 1 15862 27.00 F 3 1 2 15863 16.00 M 3 1 1 15864 23.00 M 3 1 2 15865 30.00 M 3 1 2 15866 35.00 M 3 1 2 15867 35.00 F 3 1 2 15868 26.00 F 12 1 2 15869 23.00 M 4 1 2 15870 20.00 F 15 1 2 15871 39.00 M 3 1 2 15872 31.00 F 4 1 2 15873 20.00 F 6 1 2 15874 2.00 F 9 1 1 15875 39.00 M 11 1 2 15876 22.00 M 9 1 2 15877 61.00 M 7 1 3 15878 25.00 M 3 1 2 15879 42.00 M 3 1 2 15880 30.00 F 3 1 2 15881 52.00 M 7 1 2 15882 24.00 M 12 1 2 15883 32.00 M 12 1 2 15884 38.00 M 12 1 2 15885 11.00 M 7 1 1 15886 40.00 M 7 1 2 15887 33.00 M 12 1 2 15888 33.00 M 7 1 2 15889 39.00 M 9 1 2 15890 13.00 M 11 1 1 15891 47.00 M 20 1 2 15892 32.00 M 9 1 2 15893 24.00 M 21 1 2 15894 32.00 M 7 1 2 15895 26.00 F 7 1 2 15896 32.00 M 8 1 2 15897 39.00 F 9 1 2 15898 43.00 M 9 1 2 15899 42.00 M 6 1 2 15900 29.00 M 11 1 2 15901 46.00 M 7 1 2 15902 41.00 F 20 1 2 15903 36.00 F 9 1 2 15904 46.00 M 7 1 2 15905 50.00 M 7 1 2 15906 43.00 M 7 1 2 15907 49.00 M 8 1 2 15908 36.00 M 7 1 2 15909 16.00 F 11 1 1 15910 40.00 M 9 1 2 15911 30.00 F 11 1 2 15912 49.00 M 10 1 2 15913 32.00 M 8 1 2 15914 55.00 M 15 1 2 15915 48.00 M 9 1 2 15916 28.00 F 7 1 2 15917 28.00 F 9 1 2 15918 47.00 M 15 1 2 15919 42.00 F 5 1 2 15920 33.00 F 5 1 2 15921 40.00 M 11 1 2 15922 41.00 M 5 1 2 15923 42.00 M 8 1 2 15924 3.00 M 7 1 1 15925 41.00 M 20 1 2 15926 33.00 M 9 1 2 15927 37.00 F 9 1 2 15928 44.00 M 12 1 2 15929 54.00 M 3 1 2 15930 33.00 M 9 1 2 15931 41.00 M 8 1 2 15932 44.00 M 20 1 2 15933 56.00 F 7 1 2 15934 28.00 M 7 1 2 15935 49.00 M 11 1 2 15936 57.00 M 11 1 2 15937 11.00 M 12 1 1 15938 46.00 M 11 1 2 15939 39.00 M 5 1 2 15940 34.00 F 7 1 2 15941 56.00 M 7 1 2 15942 47.00 F 5 1 2 15943 33.00 M 7 1 2 15944 33.00 M 7 1 2 15945 30.00 F 7 1 2 15946 20.00 M 7 1 2 15947 19.00 M 9 1 2 15948 47.00 M 11 1 2 15949 30.00 M 9 1 2 15950 48.00 F 12 1 2 15951 18.00 M 11 1 2 15952 44.00 M 18 1 2 15953 55.00 M 5 1 2 15954 42.00 M 11 1 2 15955 44.00 M 9 1 2 15956 36.00 M 7 1 2 15957 24.00 M 8 1 2 15958 35.00 M 11 1 2 15959 20.00 M 7 1 2 15960 37.00 M 7 1 2 15961 54.00 M 7 1 2 15962 16.00 M 11 1 1 15963 44.00 M 10 1 2 15964 26.00 M 5 1 2 15965 51.00 M 11 1 2 15966 55.00 M 11 1 2 15967 39.00 M 7 1 2 15968 48.00 M 12 1 2 15969 42.00 M 11 1 2 15970 35.00 M 11 1 2 15971 40.00 F 5 1 2 15972 6.00 M 13 1 1 15973 42.00 M 5 1 2 15974 54.00 M 13 1 2 15975 18.00 M 9 1 2 15976 46.00 M 18 1 2 15977 25.00 M 7 1 2 15978 37.00 M 11 1 2 15979 42.00 M 5 1 2 15980 43.00 M 9 1 2 15981 42.00 M 7 1 2 15982 44.00 M 5 1 2 15983 61.00 M 7 1 3 15984 13.00 M 11 1 1 15985 40.00 F 11 1 2 15986 38.00 M 11 1 2 15987 41.00 M 11 1 2 15988 20.00 M 11 1 2 15989 58.00 M 5 1 2 15990 33.00 M 8 1 2 15991 19.00 M 7 1 2 15992 22.00 M 7 1 2 15993 18.00 F 11 1 2 15994 48.00 M 7 1 2 15995 22.00 M 7 1 2 15996 18.00 M 13 1 2 15997 37.00 F 8 1 2 15998 40.00 M 11 1 2 15999 22.00 M 11 1 2 16000 16.00 F 7 1 1 16001 41.00 M 13 1 2 16002 58.00 F 8 1 2 16003 26.00 F 11 1 2 16004 35.00 M 21 1 2 16005 27.00 M 12 1 2 16006 32.00 F 21 1 2 16007 42.00 M 8 1 2 16008 45.00 M 10 1 2 16009 45.00 M 3 1 2 16010 48.00 M 7 1 2 16011 41.00 M 11 1 2 16012 52.00 M 20 1 2 16013 42.00 M 12 1 2 16014 29.00 M 11 1 2 16015 26.00 M 8 1 2 16016 40.00 M 20 1 2 16017 48.00 M 9 1 2 16018 52.00 M 7 1 2 16019 18.00 F 20 1 2 16020 38.00 M 9 1 2 16021 41.00 M 7 1 2 16022 28.00 M 12 1 2 16023 33.00 F 13 1 2 16024 29.00 F 7 1 2 16025 39.00 F 3 1 2 16026 32.00 M 7 1 2 16027 41.00 M 7 1 2 16028 48.00 M 8 1 2 16029 55.00 M 12 1 2 16030 30.00 M 5 1 2 16031 26.00 M 5 1 2 16032 9.00 F 7 1 1 16033 37.00 M 8 1 2 16034 32.00 F 7 1 2 16035 42.00 M 10 1 2 16036 55.00 M 9 1 2 16037 33.00 M 5 1 2 16038 2.00 M 6 1 1 16039 32.00 F 6 1 2 16040 42.00 M 6 1 2 16041 28.00 F 5 1 2 16042 34.00 F 5 1 2 16043 50.00 M 8 1 2 16044 47.00 M 7 1 2 16045 40.00 M 5 1 2 16046 32.00 M 12 1 2 16047 26.00 M 9 1 2 16048 60.00 M 11 1 3 16049 38.00 M 9 1 2 16050 31.00 M 11 1 2 16051 28.00 M 9 1 2 16052 46.00 F 5 1 2 16053 32.00 F 5 1 2 16054 22.00 M 7 1 2 16055 41.00 M 7 1 2 16056 42.00 M 13 1 2 16057 32.00 M 9 1 2 16058 31.00 M 7 1 2 16059 52.00 M 13 1 2 16060 28.00 F 5 1 2 16061 33.00 M 11 1 2 16062 53.00 M 7 1 2 16063 37.00 F 9 1 2 16064 33.00 M 5 1 2 16065 25.00 F 9 1 2 16066 33.00 M 8 1 2 16067 21.00 M 7 1 2 16068 32.00 M 9 1 2 16069 33.00 M 9 1 2 16070 46.00 M 3 1 2 16071 47.00 M 11 1 2 16072 38.00 M 13 1 2 16073 18.00 M 6 1 2 16074 24.00 M 7 1 2 16075 18.00 M 7 1 2 16076 43.00 F 11 1 2 16077 39.00 M 7 1 2 16078 26.00 M 3 1 2 16079 60.00 M 6 1 3 16080 30.00 M 4 1 2 16081 36.00 M 12 1 2 16082 8.00 F 4 1 1 16083 19.00 M 4 1 2 16084 28.00 M 4 1 2 16085 45.00 M 4 1 2 16086 34.00 M 4 1 2 16087 45.00 F 4 1 2 16088 51.00 M 4 1 2 16089 35.00 M 4 1 2 16090 35.00 F 4 1 2 16091 69.00 M 11 1 3 16092 56.00 M 9 1 2 16093 39.00 M 4 1 2 16094 70.00 F 4 1 3 16095 65.00 F 15 1 3 16096 47.00 F 4 1 2 16097 58.00 F 8 1 2 16098 60.00 F 4 1 3 16099 58.00 M 19 1 2 16100 25.00 F 4 1 2 16101 70.00 M 6 1 3 16102 58.00 F 12 1 2 16103 70.00 M 4 1 3 16104 25.00 F 11 1 2 16105 33.00 M 7 1 2 16106 64.00 M 7 1 3 16107 36.00 F 10 1 2 16108 60.00 F 7 1 3 16109 35.00 F 10 1 2 16110 42.00 F 7 1 2 16111 29.00 M 13 1 2 16112 61.00 M 24 1 3 16113 27.00 F 8 1 2 16114 47.00 F 8 1 2 16115 4.00 M 12 1 1 16116 46.00 F 10 1 2 16117 45.00 F 18 1 2 16118 24.00 F 27 1 2 16119 24.00 M 10 1 2 16120 23.00 M 20 1 2 16121 42.00 M 32 1 2 16122 32.00 M 17 1 2 16123 45.00 F 27 1 2 16124 28.00 M 10 1 2 16125 37.00 F 5 1 2 16126 18.00 F 9 1 2 16127 40.00 M 14 1 2 16128 28.00 M 9 1 2 16129 60.00 F 9 1 3 16130 4.00 M 14 1 1 16131 50.00 M 9 1 2 16132 45.00 F 9 1 2 16133 46.00 M 9 1 2 16134 42.00 M 11 1 2 16135 25.00 M 16 1 2 16136 18.00 M 9 1 2 16137 16.00 M 9 1 1 16138 8.00 M 10 1 1 16139 29.00 M 9 1 2 16140 27.00 F 6 1 2 16141 7.00 F 9 1 1 16142 25.00 M 14 1 2 16143 20.00 M 11 1 2 16144 38.00 M 31 1 2 16145 16.00 F 11 1 1 16146 24.00 M 31 1 2 16147 56.00 F 9 1 2 16148 3.00 M 16 1 1 16149 60.00 F 10 1 3 16150 6.00 F 9 1 1 16151 19.00 M 11 1 2 16152 6.00 M 11 1 1 16153 4.00 M 11 1 1 16154 28.00 F 6 1 2 16155 42.00 M 11 1 2 16156 50.00 F 28 1 2 16157 35.00 F 10 1 2 16158 38.00 F 11 1 2 16159 5.00 M 11 1 1 16160 17.00 F 11 1 1 16161 14.00 M 9 1 1 16162 30.00 M 9 1 2 16163 11.00 M 9 1 1 16164 99.00 F 11 1 3 16165 35.00 M 9 1 2 16166 5.00 M 9 1 1 16167 30.00 F 20 1 2 16168 29.00 M 11 1 2 16169 12.00 M 11 1 1 16170 10.00 M 9 1 1 16171 35.00 M 9 1 2 16172 22.00 M 14 1 2 16173 5.00 F 11 1 1 16174 24.00 F 11 1 2 16175 4.00 F 11 1 1 16176 25.00 F 11 1 2 16177 1.00 F 9 1 1 16178 38.00 M 9 1 2 16179 29.00 M 9 1 2 16180 40.00 M 9 1 2 16181 30.00 M 11 1 2 16182 45.00 M 9 1 2 16183 2.00 M 9 1 1 16184 50.00 F 9 1 2 16185 36.00 F 11 1 2 16186 7.00 M 31 1 1 16187 13.00 F 11 1 1 16188 26.00 M 11 1 2 16189 35.00 M 31 1 2 16190 30.00 M 9 1 2 16191 25.00 F 11 1 2 16192 20.00 M 11 1 2 16193 30.00 M 11 1 2 16194 32.00 M 11 1 2 16195 18.00 F 11 1 2 16196 7.00 F 11 1 1 16197 28.00 M 11 1 2 16198 35.00 M 13 1 2 16199 24.00 F 13 1 2 16200 26.00 F 11 1 2 16201 32.00 M 11 1 2 16202 49.00 F 11 1 2 16203 30.00 M 11 1 2 16204 52.00 M 9 1 2 16205 20.00 M 17 1 2 16206 38.00 M 9 1 2 16207 22.00 F 11 1 2 16208 25.00 M 11 1 2 16209 40.00 F 11 1 2 16210 22.00 F 11 1 2 16211 45.00 M 11 1 2 16212 40.00 F 11 1 2 16213 18.00 M 11 1 2 16214 35.00 F 11 1 2 16215 28.00 M 11 1 2 16216 31.00 M 36 1 2 16217 27.00 M 11 1 2 16218 15.00 F 11 1 1 16219 12.00 F 11 1 1 16220 39.00 M 9 1 2 16221 20.00 F 9 1 2 16222 30.00 F 9 1 2 16223 7.00 F 9 1 1 16224 26.00 M 22 1 2 16225 23.00 F 9 1 2 16226 20.00 M 9 1 2 16227 25.00 F 21 1 2 16228 24.00 F 19 1 2 16229 48.00 F 6 1 2 16230 45.00 F 6 1 2 16231 27.00 M 21 1 2 16232 21.00 F 9 1 2 16233 23.00 F 9 1 2 16234 14.00 M 21 1 1 16235 12.00 M 8 1 1 16236 6.00 F 8 1 1 16237 9.00 M 21 1 1 16238 8.00 F 21 1 1 16239 19.00 F 11 1 2 16240 18.00 M 11 1 2 16241 17.00 M 11 1 1 16242 40.00 M 11 1 2 16243 16.00 F 11 1 1 16244 31.00 F 11 1 2 16245 35.00 M 10 1 2 16246 30.00 F 10 1 2 16247 10.00 M 10 1 1 16248 8.00 M 10 1 1 16249 30.00 M 11 1 2 16250 62.00 M 21 1 3 16251 45.00 M 11 1 2 16252 35.00 F 11 1 2 16253 21.00 F 11 1 2 16254 40.00 M 9 1 2 16255 35.00 F 9 1 2 16256 9.00 M 9 1 1 16257 12.00 M 21 1 1 16258 11.00 M 11 1 1 16259 52.00 M 11 1 2 16260 48.00 F 21 1 2 16261 15.00 F 11 1 1 16262 24.00 M 21 1 2 16263 34.00 M 8 1 2 16264 61.00 F 17 1 3 16265 50.00 F 6 1 2 16266 45.00 M 6 1 2 16267 27.00 F 6 1 2 16268 54.00 F 8 1 2 16269 36.00 M 8 1 2 16270 2.00 F 14 1 1 16271 40.00 M 10 1 2 16272 25.00 F 10 1 2 16273 30.00 M 11 1 2 16274 38.00 M 8 1 2 16275 42.00 F 11 1 2 16276 29.00 M 6 1 2 16277 28.00 M 7 1 2 16278 32.00 M 7 1 2 16279 29.00 M 7 1 2 16280 40.00 M 15 1 2 16281 35.00 M 13 1 2 16282 10.00 M 9 1 1 16283 8.00 F 6 1 1 16284 23.00 M 9 1 2 16285 35.00 F 11 1 2 16286 10.00 M 11 1 1 16287 8.00 M 21 1 1 16288 24.00 M 11 1 2 16289 30.00 M 11 1 2 16290 55.00 F 11 1 2 16291 55.00 F 6 1 2 16292 34.00 F 9 1 2 16293 17.00 M 21 1 1 16294 34.00 M 21 1 2 16295 12.00 M 8 1 1 16296 6.00 M 8 1 1 16297 5.00 F 8 1 1 16298 14.00 M 8 1 1 16299 55.00 F 11 1 2 16300 36.00 F 11 1 2 16301 2.00 M 8 1 1 16302 8.00 M 11 1 1 16303 21.00 M 11 1 2 16304 18.00 M 11 1 2 16305 20.00 M 21 1 2 16306 20.00 M 11 1 2 16307 24.00 M 21 1 2 16308 34.00 M 11 1 2 16309 58.00 M 10 1 2 16310 20.00 M 21 1 2 16311 7.00 M 16 1 1 16312 35.00 M 16 1 2 16313 50.00 M 11 1 2 16314 30.00 M 11 1 2 16315 35.00 M 11 1 2 16316 58.00 M 11 1 2 16317 26.00 M 8 1 2 16318 37.00 F 11 1 2 16319 29.00 M 11 1 2 16320 6.00 M 8 1 1 16321 2.00 M 8 1 1 16322 23.00 F 19 1 2 16323 29.00 M 11 1 2 16324 26.00 M 14 1 2 16325 30.00 M 13 1 2 16326 38.00 M 8 1 2 16327 44.00 F 8 1 2 16328 43.00 M 27 1 2 16329 36.00 M 6 1 2 16330 27.00 M 6 1 2 16331 37.00 M 6 1 2 16332 31.00 M 6 1 2 16333 35.00 F 6 1 2 16334 24.00 M 8 1 2 16335 33.00 M 6 1 2 16336 42.00 F 6 1 2 16337 13.00 F 3 1 1 16338 53.00 M 13 1 2 16339 42.00 F 13 1 2 16340 16.00 M 13 1 1 16341 29.00 M 6 1 2 16342 30.00 M 13 1 2 16343 15.00 M 6 1 1 16344 38.00 F 14 1 2 16345 49.00 M 1 1 2 16346 30.00 M 19 1 2 16347 24.00 M 6 1 2 16348 32.00 F 3 1 2 16349 6.00 F 13 1 1 16350 27.00 M 13 1 2 16351 9.00 M 13 1 1 16352 37.00 M 10 1 2 16353 50.00 M 10 1 2 16354 40.00 M 9 1 2 16355 38.00 F 6 1 2 16356 73.00 M 11 1 3 16357 34.00 M 7 1 2 16358 39.00 M 7 1 2 16359 43.00 M 4 1 2 16360 45.00 M 11 1 2 16361 49.00 M 7 1 2 16362 8.00 F 7 1 1 16363 48.00 F 7 1 2 16364 59.00 M 7 1 2 16365 55.00 F 7 1 2 16366 56.00 F 8 1 2 16367 41.00 M 8 1 2 16368 39.00 M 6 1 2 16369 26.00 F 6 1 2 16370 39.00 M 6 1 2 16371 3.00 F 11 1 1 16372 34.00 M 17 1 2 16373 61.00 M 12 1 3 16374 23.00 M 10 1 2 16375 35.00 M 11 1 2 16376 1.00 F 11 1 1 16377 48.00 F 7 1 2 16378 33.00 M 4 1 2 16379 33.00 M 7 1 2 16380 46.00 M 11 1 2 16381 12.00 F 7 1 1 16382 10.00 F 7 1 1 16383 55.00 M 11 1 2 16384 44.00 M 7 1 2 16385 10.00 M 7 1 1 16386 40.00 M 7 1 2 16387 36.00 M 7 1 2 16388 46.00 M 7 1 2 16389 13.00 F 7 1 1 16390 39.00 M 11 1 2 16391 24.00 M 7 1 2 16392 32.00 M 11 1 2 16393 20.00 F 9 1 2 16394 48.00 M 11 1 2 16395 35.00 M 7 1 2 16396 44.00 F 8 1 2 16397 31.00 M 7 1 2 16398 33.00 F 7 1 2 16399 35.00 F 11 1 2 16400 46.00 M 2 1 2 16401 6.00 M 6 1 1 16402 38.00 M 6 1 2 16403 36.00 M 4 1 2 16404 5.00 M 7 1 1 16405 10.00 M 4 1 1 16406 13.00 F 7 1 1 16407 42.00 M 7 1 2 16408 7.00 F 7 1 1 16409 13.00 F 11 1 1 16410 48.00 M 16 1 2 16411 39.00 F 11 1 2 16412 12.00 F 16 1 1 16413 17.00 F 11 1 1 16414 37.00 F 11 1 2 16415 12.00 F 11 1 1 16416 26.00 F 4 1 2 16417 45.00 M 4 1 2 16418 44.00 M 7 1 2 16419 43.00 M 11 1 2 16420 27.00 F 7 1 2 16421 37.00 M 11 1 2 16422 17.00 M 11 1 1 16423 50.00 M 7 1 2 16424 42.00 F 11 1 2 16425 37.00 M 7 1 2 16426 48.00 M 18 1 2 16427 60.00 M 7 1 3 16428 25.00 M 7 1 2 16429 33.00 M 9 1 2 16430 30.00 M 11 1 2 16431 42.00 M 7 1 2 16432 46.00 M 10 1 2 16433 46.00 M 7 1 2 16434 6.00 F 7 1 1 16435 71.00 M 11 1 3 16436 6.00 M 10 1 1 16437 36.00 F 10 1 2 16438 26.00 M 11 1 2 16439 33.00 M 6 1 2 16440 34.00 M 8 1 2 16441 31.00 M 6 1 2 16442 4.00 F 6 1 1 16443 46.00 M 8 1 2 16444 20.00 M 8 1 2 16445 34.00 F 6 1 2 16446 10.00 F 7 1 1 16447 38.00 F 12 1 2 16448 28.00 M 19 1 2 16449 52.00 F 10 1 2 16450 19.00 M 8 1 2 16451 33.00 M 11 1 2 16452 25.00 F 6 1 2 16453 48.00 F 6 1 2 16454 45.00 M 6 1 2 16455 45.00 F 10 1 2 16456 34.00 F 8 1 2 16457 13.00 M 6 1 1 16458 36.00 M 6 1 2 16459 31.00 M 6 1 2 16460 48.00 M 4 1 2 16461 43.00 F 5 1 2 16462 41.00 F 12 1 2 16463 46.00 M 8 1 2 16464 10.00 F 4 1 1 16465 38.00 M 4 1 2 16466 61.00 M 8 1 3 16467 1.00 M 5 1 1 16468 39.00 M 11 1 2 16469 4.00 M 7 1 1 16470 27.00 F 7 1 2 16471 19.00 M 11 1 2 16472 30.00 M 11 1 2 16473 28.00 M 2 1 2 16474 31.00 F 8 1 2 16475 64.00 M 4 1 3 16476 1.00 F 12 1 1 16477 52.00 M 8 1 2 16478 46.00 F 8 1 2 16479 26.00 F 8 1 2 16480 17.00 M 12 1 1 16481 65.00 M 8 1 3 16482 54.00 M 8 1 2 16483 47.00 F 15 1 2 16484 72.00 F 19 1 3 16485 65.00 F 9 1 3 16486 17.00 M 26 1 1 16487 20.00 F 31 1 2 16488 35.00 M 26 1 2 16489 12.00 M 15 1 1 16490 18.00 M 15 1 2 16491 26.00 M 15 1 2 16492 26.00 F 14 1 2 16493 19.00 F 13 1 2 16494 22.00 M 13 1 2 16495 44.00 F 13 1 2 16496 29.00 M 13 1 2 16497 18.00 M 13 1 2 16498 4.00 F 13 1 1 16499 10.00 F 28 1 1 16500 37.00 M 13 1 2 16501 33.00 F 14 1 2 16502 4.00 M 14 1 1 16503 45.00 M 13 1 2 16504 43.00 M 19 1 2 16505 24.00 F 31 1 2 16506 25.00 M 13 1 2 16507 18.00 M 26 1 2 16508 24.00 M 13 1 2 16509 45.00 M 13 1 2 16510 16.00 M 15 1 1 16511 22.00 M 15 1 2 16512 26.00 M 15 1 2 16513 24.00 F 19 1 2 16514 2.00 F 31 1 1 16515 28.00 F 15 1 2 16516 25.00 F 15 1 2 16517 7.00 M 15 1 1 16518 7.00 M 15 1 1 16519 51.00 M 13 1 2 16520 32.00 M 10 1 2 16521 30.00 F 10 1 2 16522 20.00 M 5 1 2 16523 20.00 M 5 1 2 16524 45.00 F 5 1 2 16525 55.00 F 5 1 2 16526 55.00 M 5 1 2 16527 19.00 F 10 1 2 16528 55.00 M 20 1 2 16529 3.00 F 9 1 1 16530 20.00 F 9 1 2 16531 10.00 F 9 1 1 16532 6.00 M 10 1 1 16533 60.00 M 9 1 3 16534 20.00 M 20 1 2 16535 25.00 M 5 1 2 16536 21.00 F 8 1 2 16537 35.00 F 5 1 2 16538 25.00 M 16 1 2 16539 20.00 F 16 1 2 16540 28.00 M 8 1 2 16541 18.00 F 21 1 2 16542 12.00 M 9 1 1 16543 9.00 M 9 1 1 16544 25.00 F 20 1 2 16545 10.00 F 20 1 1 16546 20.00 M 9 1 2 16547 35.00 F 8 1 2 16548 18.00 F 8 1 2 16549 40.00 M 9 1 2 16550 13.00 F 9 1 1 16551 25.00 M 10 1 2 16552 25.00 F 8 1 2 16553 52.00 M 10 1 2 16554 20.00 M 8 1 2 16555 18.00 M 8 1 2 16556 30.00 F 20 1 2 16557 32.00 M 8 1 2 16558 29.00 M 10 1 2 16559 71.00 F 7 1 3 16560 50.00 F 7 1 2 16561 23.00 F 6 1 2 16562 20.00 F 6 1 2 16563 46.00 F 6 1 2 16564 45.00 M 6 1 2 16565 42.00 F 6 1 2 16566 46.00 F 7 1 2 16567 24.00 F 6 1 2 16568 9.00 M 7 1 1 16569 42.00 M 7 1 2 16570 31.00 F 7 1 2 16571 36.00 F 7 1 2 16572 42.00 F 7 1 2 16573 48.00 F 7 1 2 16574 53.00 F 6 1 2 16575 44.00 M 7 1 2 16576 33.00 F 25 1 2 16577 49.00 F 25 1 2 16578 40.00 M 25 1 2 16579 26.00 M 25 1 2 16580 37.00 F 25 1 2 16581 32.00 F 9 1 2 16582 25.00 M 9 1 2 16583 57.00 F 11 1 2 16584 52.00 M 26 1 2 16585 57.00 M 9 1 2 16586 33.00 M 19 1 2 16587 50.00 F 16 1 2 16588 55.00 M 18 1 2 16589 18.00 M 9 1 2 16590 42.00 F 9 1 2 16591 48.00 F 9 1 2 16592 50.00 M 26 1 2 16593 22.00 F 26 1 2 16594 7.00 M 13 1 1 16595 17.00 F 10 1 1 16596 45.00 F 13 1 2 16597 16.00 F 13 1 1 16598 28.00 F 13 1 2 16599 38.00 F 10 1 2 16600 15.00 M 10 1 1 16601 54.00 M 10 1 2 16602 48.00 M 10 1 2 16603 13.00 M 13 1 1 16604 42.00 F 10 1 2 16605 16.00 F 10 1 1 16606 52.00 M 12 1 2 16607 37.00 M 14 1 2 16608 50.00 M 3 1 2 16609 17.00 M 3 1 1 16610 32.00 F 3 1 2 16611 52.00 M 8 1 2 16612 57.00 M 18 1 2 16613 32.00 M 7 1 2 16614 34.00 M 18 1 2 16615 33.00 M 14 1 2 16616 40.00 M 3 1 2 16617 41.00 F 3 1 2 16618 15.00 M 3 1 1 16619 40.00 F 6 1 2 16620 38.00 M 18 1 2 16621 41.00 M 18 1 2 16622 45.00 M 9 1 2 16623 14.00 M 6 1 1 16624 35.00 F 20 1 2 16625 12.00 F 19 1 1 16626 10.00 M 19 1 1 16627 50.00 M 7 1 2 16628 31.00 M 11 1 2 16629 39.00 M 7 1 2 16630 21.00 F 16 1 2 16631 24.00 F 16 1 2 16632 11.00 F 16 1 1 16633 59.00 M 9 1 2 16634 49.00 F 9 1 2 16635 14.00 M 14 1 1 16636 24.00 F 14 1 2 16637 35.00 M 8 1 2 16638 64.00 M 12 1 3 16639 61.00 F 5 1 3 16640 31.00 F 9 1 2 16641 25.00 M 5 1 2 16642 43.00 M 5 1 2 16643 24.00 M 9 1 2 16644 28.00 M 8 1 2 16645 36.00 M 12 1 2 16646 30.00 F 12 1 2 16647 20.00 M 5 1 2 16648 7.00 F 9 1 1 16649 4.00 F 5 1 1 16650 28.00 F 5 1 2 16651 36.00 M 5 1 2 16652 30.00 F 8 1 2 16653 5.00 M 27 1 1 16654 20.00 M 5 1 2 16655 10.00 F 27 1 1 16656 52.00 M 8 1 2 16657 20.00 M 9 1 2 16658 47.00 M 9 1 2 16659 20.00 M 9 1 2 16660 22.00 M 5 1 2 16661 26.00 M 5 1 2 16662 12.00 M 5 1 1 16663 25.00 M 7 1 2 16664 35.00 M 5 1 2 16665 17.00 M 5 1 1 16666 45.00 M 9 1 2 16667 24.00 M 12 1 2 16668 7.00 M 5 1 1 16669 28.00 M 5 1 2 16670 27.00 F 5 1 2 16671 6.00 F 5 1 1 16672 26.00 M 9 1 2 16673 13.00 M 13 1 1 16674 8.00 F 10 1 1 16675 28.00 F 10 1 2 16676 22.00 F 10 1 2 16677 18.00 M 9 1 2 16678 30.00 M 9 1 2 16679 6.00 F 9 1 1 16680 30.00 F 9 1 2 16681 2.00 F 8 1 1 16682 42.00 M 14 1 2 16683 50.00 M 18 1 2 16684 41.00 F 14 1 2 16685 15.00 M 14 1 1 16686 42.00 F 7 1 2 16687 32.00 F 6 1 2 16688 35.00 M 7 1 2 16689 47.00 F 18 1 2 16690 7.00 M 3 1 1 16691 42.00 M 5 1 2 16692 42.00 M 6 1 2 16693 57.00 M 10 1 2 16694 53.00 F 7 1 2 16695 52.00 M 3 1 2 16696 30.00 F 23 1 2 16697 45.00 M 20 1 2 16698 8.00 M 4 1 1 16699 23.00 M 17 1 2 16700 26.00 F 11 1 2 16701 23.00 M 10 1 2 16702 47.00 M 15 1 2 16703 38.00 F 15 1 2 16704 18.00 F 8 1 2 16705 48.00 F 15 1 2 16706 39.00 F 30 1 2 16707 10.00 F 15 1 1 16708 22.00 F 15 1 2 16709 16.00 M 16 1 1 16710 20.00 F 16 1 2 16711 36.00 M 16 1 2 16712 45.00 F 10 1 2 16713 64.00 F 19 1 3 16714 38.00 M 9 1 2 16715 34.00 F 9 1 2 16716 9.00 F 9 1 1 16717 20.00 M 9 1 2 16718 36.00 M 30 1 2 16719 23.00 F 15 1 2 16720 58.00 F 7 1 2 16721 46.00 M 17 1 2 16722 42.00 F 17 1 2 16723 14.00 M 17 1 1 16724 4.00 F 14 1 1 16725 30.00 F 17 1 2 16726 22.00 M 13 1 2 16727 42.00 F 13 1 2 16728 46.00 M 13 1 2 16729 12.00 M 17 1 1 16730 23.00 F 17 1 2 16731 14.00 M 16 1 1 16732 5.00 F 30 1 1 16733 24.00 F 9 1 2 16734 18.00 F 9 1 2 16735 38.00 F 14 1 2 16736 18.00 F 30 1 2 16737 30.00 M 30 1 2 16738 42.00 M 9 1 2 16739 27.00 F 9 1 2 16740 44.00 M 9 1 2 16741 42.00 F 14 1 2 16742 16.00 M 16 1 1 16743 20.00 M 14 1 2 16744 78.00 M 12 1 3 16745 29.00 F 16 1 2 16746 20.00 F 9 1 2 16747 31.00 M 9 1 2 16748 20.00 F 15 1 2 16749 45.00 F 9 1 2 16750 22.00 F 9 1 2 16751 20.00 F 9 1 2 16752 15.00 M 16 1 1 16753 23.00 M 9 1 2 16754 24.00 F 14 1 2 16755 42.00 F 9 1 2 16756 26.00 M 9 1 2 16757 32.00 F 9 1 2 16758 25.00 F 14 1 2 16759 71.00 F 29 1 3 16760 40.00 F 30 1 2 16761 18.00 M 9 1 2 16762 26.00 M 25 1 2 16763 10.00 M 9 1 1 16764 20.00 F 10 1 2 16765 7.00 M 12 1 1 16766 17.00 F 7 1 1 16767 30.00 F 7 1 2 16768 35.00 M 15 1 2 16769 33.00 M 12 1 2 16770 30.00 F 7 1 2 16771 8.00 M 7 1 1 16772 23.00 F 7 1 2 16773 28.00 F 7 1 2 16774 18.00 M 10 1 2 16775 27.00 M 7 1 2 16776 23.00 M 12 1 2 16777 34.00 M 10 1 2 16778 36.00 M 7 1 2 16779 30.00 M 15 1 2 16780 41.00 M 7 1 2 16781 42.00 M 7 1 2 16782 43.00 M 7 1 2 16783 29.00 M 7 1 2 16784 33.00 M 7 1 2 16785 28.00 M 7 1 2 16786 26.00 M 7 1 2 16787 22.00 M 10 1 2 16788 25.00 M 7 1 2 16789 27.00 M 7 1 2 16790 35.00 M 7 1 2 16791 25.00 M 7 1 2 16792 41.00 M 15 1 2 16793 28.00 F 7 1 2 16794 7.00 F 10 1 1 16795 12.00 M 7 1 1 16796 60.00 F 11 1 3 16797 30.00 F 7 1 2 16798 12.00 F 11 1 1 16799 30.00 M 7 1 2 16800 24.00 M 12 1 2 16801 25.00 F 7 1 2 16802 38.00 M 7 1 2 16803 32.00 F 10 1 2 16804 24.00 F 7 1 2 16805 16.00 F 10 1 1 16806 36.00 M 7 1 2 16807 6.00 M 7 1 1 16808 10.00 M 12 1 1 16809 13.00 M 10 1 1 16810 11.00 F 10 1 1 16811 35.00 F 10 1 2 16812 45.00 F 6 1 2 16813 54.00 M 6 1 2 16814 48.00 M 15 1 2 16815 34.00 M 13 1 2 16816 29.00 M 15 1 2 16817 42.00 M 15 1 2 16818 36.00 F 10 1 2 16819 44.00 M 19 1 2 16820 20.00 M 7 1 2 16821 19.00 F 7 1 2 16822 24.00 M 7 1 2 16823 3.00 M 9 1 1 16824 8.00 F 9 1 1 16825 40.00 M 20 1 2 16826 30.00 M 9 1 2 16827 25.00 F 9 1 2 16828 3.00 F 14 1 1 16829 25.00 F 9 1 2 16830 7.00 F 21 1 1 16831 36.00 M 9 1 2 16832 28.00 F 9 1 2 16833 20.00 F 9 1 2 16834 20.00 M 9 1 2 16835 48.00 M 17 1 2 16836 25.00 F 17 1 2 16837 30.00 M 21 1 2 16838 11.00 F 21 1 1 16839 21.00 M 9 1 2 16840 15.00 M 9 1 1 16841 20.00 M 7 1 2 16842 43.00 F 17 1 2 16843 28.00 M 17 1 2 16844 6.00 M 17 1 1 16845 47.00 F 21 1 2 16846 38.00 M 21 1 2 16847 5.00 F 17 1 1 16848 33.00 M 21 1 2 16849 6.00 F 14 1 1 16850 40.00 F 17 1 2 16851 17.00 F 14 1 1 16852 17.00 M 17 1 1 16853 17.00 F 19 1 1 16854 28.00 F 19 1 2 16855 8.00 F 7 1 1 16856 20.00 M 9 1 2 16857 28.00 F 19 1 2 16858 30.00 M 9 1 2 16859 5.00 F 9 1 1 16860 35.00 M 9 1 2 16861 40.00 M 12 1 2 16862 16.00 F 17 1 1 16863 16.00 F 9 1 1 16864 12.00 F 11 1 1 16865 18.00 M 15 1 2 16866 22.00 M 9 1 2 16867 58.00 F 15 1 2 16868 13.00 M 17 1 1 16869 33.00 M 9 1 2 16870 40.00 F 14 1 2 16871 12.00 M 14 1 1 16872 15.00 M 20 1 1 16873 30.00 F 15 1 2 16874 40.00 F 9 1 2 16875 23.00 M 9 1 2 16876 25.00 F 9 1 2 16877 48.00 F 15 1 2 16878 19.00 M 7 1 2 16879 42.00 M 9 1 2 16880 38.00 M 15 1 2 16881 18.00 F 7 1 2 16882 1.30 M 17 1 1 16883 30.00 M 17 1 2 16884 9.00 F 17 1 1 16885 65.00 M 19 1 3 16886 26.00 F 6 1 2 16887 43.00 M 6 1 2 16888 44.00 M 7 1 2 16889 53.00 M 5 1 2 16890 48.00 F 5 1 2 16891 26.00 M 6 1 2 16892 50.00 M 10 1 2 16893 17.00 M 5 1 1 16894 15.00 M 10 1 1 16895 28.00 M 5 1 2 16896 24.00 M 2 1 2 16897 36.00 M 2 1 2 16898 44.00 M 15 1 2 16899 35.00 M 13 1 2 16900 34.00 F 2 1 2 16901 33.00 F 2 1 2 16902 20.00 F 2 1 2 16903 52.00 M 2 1 2 16904 48.00 M 5 1 2 16905 47.00 M 2 1 2 16906 51.00 M 2 1 2 16907 6.00 M 6 1 1 16908 1.00 F 6 1 1 16909 36.00 F 6 1 2 16910 39.00 F 6 1 2 16911 16.00 M 6 1 1 16912 54.00 M 3 1 2 16913 22.00 M 18 1 2 16914 20.00 F 5 1 2 16915 36.00 M 5 1 2 16916 43.00 M 5 1 2 16917 27.00 F 18 1 2 16918 30.00 F 5 1 2 16919 13.00 M 7 1 1 16920 5.00 M 12 1 1 16921 52.00 M 17 1 2 16922 32.00 M 8 1 2 16923 55.00 M 6 1 2 16924 47.00 M 6 1 2 16925 56.00 M 8 1 2 16926 34.00 M 5 1 2 16927 33.00 F 4 1 2 16928 10.00 M 4 1 1 16929 30.00 F 10 1 2 16930 46.00 M 5 1 2 16931 61.00 M 12 1 3 16932 13.00 M 10 1 1 16933 30.00 F 32 1 2 16934 20.00 M 12 1 2 16935 30.00 F 12 1 2 16936 18.00 F 16 1 2 16937 3.00 M 12 1 1 16938 20.00 F 16 1 2 16939 50.00 M 12 1 2 16940 38.00 M 12 1 2 16941 19.00 M 15 1 2 16942 25.00 F 12 1 2 16943 22.00 M 11 1 2 16944 30.00 M 10 1 2 16945 22.00 M 10 1 2 16946 40.00 M 14 1 2 16947 27.00 F 16 1 2 16948 43.00 M 15 1 2 16949 50.00 M 10 1 2 16950 9.00 F 10 1 1 16951 25.00 F 21 1 2 16952 36.00 M 12 1 2 16953 20.00 F 11 1 2 16954 9.00 M 14 1 1 16955 25.00 M 14 1 2 16956 26.00 M 12 1 2 16957 27.00 M 14 1 2 16958 47.00 M 10 1 2 16959 24.00 F 15 1 2 16960 18.00 M 15 1 2 16961 45.00 M 15 1 2 16962 23.00 F 12 1 2 16963 27.00 M 10 1 2 16964 35.00 M 12 1 2 16965 21.00 F 16 1 2 16966 60.00 M 10 1 3 16967 25.00 M 29 1 2 16968 15.00 M 12 1 1 16969 26.00 F 10 1 2 16970 30.00 F 14 1 2 16971 34.00 M 10 1 2 16972 57.00 F 14 1 2 16973 45.00 M 15 1 2 16974 20.00 M 32 1 2 16975 22.00 M 32 1 2 16976 4.00 M 29 1 1 16977 81.00 M 14 1 3 16978 30.00 M 12 1 2 16979 55.00 F 10 1 2 16980 9.00 F 10 1 1 16981 25.00 F 10 1 2 16982 19.00 M 15 1 2 16983 24.00 F 14 1 2 16984 23.00 M 10 1 2 16985 62.00 M 10 1 3 16986 25.00 F 14 1 2 16987 12.00 F 32 1 1 16988 6.00 F 16 1 1 16989 26.00 M 14 1 2 16990 21.00 M 14 1 2 16991 44.00 F 12 1 2 16992 18.00 F 12 1 2 16993 25.00 F 13 1 2 16994 46.00 M 10 1 2 16995 30.00 M 10 1 2 16996 38.00 M 7 1 2 16997 32.00 M 10 1 2 16998 46.00 M 16 1 2 16999 24.00 M 7 1 2 17000 28.00 M 10 1 2 17001 27.00 M 12 1 2 17002 22.00 M 16 1 2 17003 25.00 M 7 1 2 17004 24.00 M 9 1 2 17005 31.00 M 16 1 2 17006 29.00 M 16 1 2 17007 26.00 M 16 1 2 17008 26.00 M 10 1 2 17009 28.00 M 16 1 2 17010 28.00 M 11 1 2 17011 24.00 M 7 1 2 17012 31.00 M 16 1 2 17013 28.00 M 17 1 2 17014 30.00 M 10 1 2 17015 27.00 M 10 1 2 17016 27.00 M 11 1 2 17017 24.00 M 16 1 2 17018 76.00 F 7 1 3 17019 30.00 M 24 1 2 17020 12.00 M 24 1 1 17021 50.00 F 9 1 2 17022 52.00 F 9 1 2 17023 38.00 F 15 1 2 17024 42.00 M 15 1 2 17025 34.00 F 24 1 2 17026 24.00 F 15 1 2 17027 32.00 M 15 1 2 17028 50.00 F 24 1 2 17029 32.00 M 24 1 2 17030 60.00 M 12 1 3 17031 24.00 M 15 1 2 17032 54.00 F 9 1 2 17033 34.00 F 24 1 2 17034 38.00 F 24 1 2 17035 68.00 F 24 1 3 17036 40.00 M 13 1 2 17037 11.00 F 9 1 1 17038 42.00 F 7 1 2 17039 34.00 F 7 1 2 17040 40.00 M 7 1 2 17041 62.00 M 7 1 3 17042 58.00 M 7 1 2 17043 48.00 F 7 1 2 17044 66.00 F 7 1 3 17045 36.00 F 7 1 2 17046 38.00 F 7 1 2 17047 58.00 M 8 1 2 17048 48.00 M 8 1 2 17049 27.00 M 8 1 2 17050 25.00 M 8 1 2 17051 68.00 M 18 1 3 17052 56.00 F 16 1 2 17053 38.00 F 20 1 2 17054 60.00 M 15 1 3 17055 65.00 M 14 1 3 17056 50.00 M 8 1 2 17057 45.00 F 5 1 2 17058 23.00 F 5 1 2 17059 52.00 M 5 1 2 17060 60.00 M 5 1 3 17061 18.00 M 12 1 2 17062 33.00 M 8 1 2 17063 28.00 M 14 1 2 17064 20.00 F 14 1 2 17065 52.00 M 14 1 2 17066 60.00 M 13 1 3 17067 21.00 M 8 1 2 17068 18.00 M 8 1 2 17069 52.00 M 16 1 2 17070 16.00 F 20 1 1 17071 25.00 M 8 1 2 17072 35.00 F 20 1 2 17073 30.00 F 20 1 2 17074 7.00 M 10 1 1 17075 25.00 F 18 1 2 17076 4.00 F 13 1 1 17077 2.00 F 18 1 1 17078 8.00 F 10 1 1 17079 50.00 M 20 1 2 17080 43.00 F 13 1 2 17081 13.00 M 10 1 1 17082 28.00 F 20 1 2 17083 21.00 M 16 1 2 17084 33.00 M 13 1 2 17085 33.00 M 13 1 2 17086 10.00 M 20 1 1 17087 4.00 F 16 1 1 17088 35.00 F 8 1 2 17089 16.00 M 8 1 1 17090 20.00 M 8 1 2 17091 50.00 F 14 1 2 17092 30.00 M 8 1 2 17093 20.00 M 8 1 2 17094 37.00 M 8 1 2 17095 28.00 F 18 1 2 17096 32.00 M 8 1 2 17097 30.00 F 20 1 2 17098 60.00 M 13 1 3 17099 15.00 F 10 1 1 17100 10.00 F 13 1 1 17101 35.00 M 8 1 2 17102 26.00 F 18 1 2 17103 20.00 M 8 1 2 17104 15.00 F 11 1 1 17105 30.00 F 13 1 2 17106 42.00 M 6 1 2 17107 25.00 M 18 1 2 17108 25.00 M 6 1 2 17109 29.00 M 11 1 2 17110 10.00 F 18 1 1 17111 46.00 M 16 1 2 17112 10.00 F 16 1 1 17113 22.00 M 8 1 2 17114 4.00 M 16 1 1 17115 30.00 F 10 1 2 17116 20.00 M 8 1 2 17117 15.00 F 16 1 1 17118 60.00 M 16 1 3 17119 13.00 F 16 1 1 17120 30.00 F 11 1 2 17121 15.00 M 18 1 1 17122 27.00 F 8 1 2 17123 45.00 M 8 1 2 17124 39.00 F 8 1 2 17125 20.00 M 8 1 2 17126 40.00 M 13 1 2 17127 32.00 F 10 1 2 17128 18.00 M 10 1 2 17129 30.00 M 9 1 2 17130 30.00 M 16 1 2 17131 20.00 F 14 1 2 17132 30.00 M 11 1 2 17133 27.00 F 14 1 2 17134 52.00 M 11 1 2 17135 45.00 M 11 1 2 17136 50.00 M 14 1 2 17137 53.00 M 14 1 2 17138 36.00 M 11 1 2 17139 56.00 F 11 1 2 17140 22.00 M 11 1 2 17141 22.00 M 16 1 2 17142 60.00 M 16 1 3 17143 29.00 M 8 1 2 17144 60.00 M 6 1 3 17145 30.00 M 1 1 2 17146 40.00 M 5 1 2 17147 10.00 M 28 1 1 17148 8.00 M 13 1 1 17149 30.00 F 28 1 2 17150 22.00 F 7 1 2 17151 35.00 M 13 1 2 17152 32.00 M 17 1 2 17153 10.00 M 17 1 1 17154 48.00 M 13 1 2 17155 17.00 F 15 1 1 17156 35.00 M 17 1 2 17157 25.00 M 15 1 2 17158 22.00 F 7 1 2 17159 45.00 M 13 1 2 17160 38.00 M 13 1 2 17161 17.00 M 7 1 1 17162 19.00 M 7 1 2 17163 19.00 M 7 1 2 17164 15.00 M 15 1 1 17165 10.00 M 15 1 1 17166 7.00 F 15 1 1 17167 25.00 F 17 1 2 17168 50.00 F 13 1 2 17169 36.00 F 13 1 2 17170 27.00 M 7 1 2 17171 17.00 M 7 1 1 17172 20.00 M 15 1 2 17173 60.00 F 15 1 3 17174 60.00 F 22 1 3 17175 28.00 M 17 1 2 17176 27.00 M 8 1 2 17177 5.00 F 15 1 1 17178 30.00 M 9 1 2 17179 7.00 M 9 1 1 17180 13.00 F 9 1 1 17181 35.00 M 15 1 2 17182 24.00 F 15 1 2 17183 13.00 M 10 1 1 17184 20.00 F 5 1 2 17185 2.00 F 9 1 1 17186 26.00 F 9 1 2 17187 61.00 M 31 1 3 17188 29.00 F 10 1 2 17189 31.00 F 15 1 2 17190 26.00 F 10 1 2 17191 5.00 F 5 1 1 17192 3.00 F 5 1 1 17193 50.00 F 6 1 2 17194 25.00 M 7 1 2 17195 24.00 M 7 1 2 17196 23.00 F 9 1 2 17197 7.00 M 3 1 1 17198 2.00 F 6 1 1 17199 1.00 M 3 1 1 17200 10.00 M 3 1 1 17201 25.00 F 7 1 2 17202 7.00 M 9 1 1 17203 25.00 F 13 1 2 17204 15.00 F 7 1 1 17205 23.00 F 15 1 2 17206 30.00 F 10 1 2 17207 32.00 F 15 1 2 17208 56.00 F 15 1 2 17209 35.00 F 15 1 2 17210 37.00 M 15 1 2 17211 28.00 M 9 1 2 17212 42.00 F 4 1 2 17213 46.00 F 7 1 2 17214 34.00 M 7 1 2 17215 25.00 F 9 1 2 17216 32.00 M 7 1 2 17217 19.00 M 7 1 2 17218 54.00 F 7 1 2 17219 62.00 F 7 1 3 17220 43.00 M 11 1 2 17221 34.00 F 24 1 2 17222 19.00 M 14 1 2 17223 16.00 M 6 1 1 17224 23.00 M 23 1 2 17225 60.00 M 24 1 3 17226 37.00 M 23 1 2 17227 28.00 M 23 1 2 17228 43.00 M 23 1 2 17229 22.00 F 13 1 2 17230 20.00 F 24 1 2 17231 29.00 M 24 1 2 17232 54.00 M 24 1 2 17233 27.00 F 11 1 2 17234 62.00 F 15 1 3 17235 57.00 M 32 1 2 17236 24.00 F 8 1 2 17237 17.00 M 17 1 1 17238 25.00 F 7 1 2 17239 39.00 M 10 1 2 17240 40.00 F 7 1 2 17241 32.00 F 10 1 2 17242 23.00 M 5 1 2 17243 23.00 F 5 1 2 17244 21.00 F 10 1 2 17245 34.00 M 10 1 2 17246 24.00 M 10 1 2 17247 17.00 M 10 1 1 17248 32.00 M 14 1 2 17249 38.00 F 18 1 2 17250 40.00 F 14 1 2 17251 65.00 F 14 1 3 17252 30.00 F 18 1 2 17253 7.00 F 16 1 1 17254 7.00 M 16 1 1 17255 10.00 M 14 1 1 17256 9.00 F 11 1 1 17257 35.00 M 16 1 2 17258 5.00 F 14 1 1 17259 25.00 M 10 1 2 17260 6.00 F 10 1 1 17261 24.00 F 10 1 2 17262 53.00 F 10 1 2 17263 24.00 F 10 1 2 17264 7.00 M 11 1 1 17265 20.00 M 14 1 2 17266 20.00 M 14 1 2 17267 29.00 F 10 1 2 17268 25.00 F 10 1 2 17269 38.00 F 10 1 2 17270 42.00 F 14 1 2 17271 20.00 F 10 1 2 17272 15.00 F 16 1 1 17273 50.00 F 16 1 2 17274 28.00 M 16 1 2 17275 10.00 F 14 1 1 17276 25.00 F 16 1 2 17277 30.00 M 14 1 2 17278 42.00 M 16 1 2 17279 24.00 F 18 1 2 17280 30.00 F 12 1 2 17281 8.00 F 16 1 1 17282 25.00 M 10 1 2 17283 45.00 M 14 1 2 17284 10.00 M 16 1 1 17285 21.00 M 16 1 2 17286 25.00 M 14 1 2 17287 30.00 F 16 1 2 17288 31.00 M 14 1 2 17289 35.00 F 10 1 2 17290 28.00 F 14 1 2 17291 47.00 F 10 1 2 17292 23.00 F 14 1 2 17293 17.00 F 14 1 1 17294 17.00 F 14 1 1 17295 17.00 F 14 1 1 17296 20.00 M 14 1 2 17297 30.00 F 14 1 2 17298 46.00 M 14 1 2 17299 23.00 M 14 1 2 17300 17.00 M 24 1 1 17301 20.00 F 16 1 2 17302 14.00 F 16 1 1 17303 46.00 F 10 1 2 17304 22.00 M 14 1 2 17305 29.00 M 14 1 2 17306 28.00 F 16 1 2 17307 35.00 M 6 1 2 17308 13.00 F 10 1 1 17309 7.00 M 10 1 1 17310 2.00 F 13 1 1 17311 45.00 F 14 1 2 17312 33.00 M 5 1 2 17313 15.00 M 6 1 1 17314 31.00 M 7 1 2 17315 29.00 M 5 1 2 17316 59.00 M 7 1 2 17317 24.00 M 14 1 2 17318 35.00 M 5 1 2 17319 32.00 M 11 1 2 17320 58.00 M 22 1 2 17321 23.00 F 13 1 2 17322 22.00 F 7 1 2 17323 25.00 F 7 1 2 17324 55.00 F 22 1 2 17325 45.00 M 23 1 2 17326 37.00 M 12 1 2 17327 43.00 F 8 1 2 17328 43.00 M 8 1 2 17329 25.00 M 15 1 2 17330 25.00 M 15 1 2 17331 26.00 M 15 1 2 17332 9.00 F 14 1 1 17333 27.00 M 9 1 2 17334 46.00 M 9 1 2 17335 52.00 M 9 1 2 17336 10.00 M 9 1 1 17337 47.00 M 9 1 2 17338 35.00 F 15 1 2 17339 66.00 M 15 1 3 17340 9.00 M 9 1 1 17341 52.00 M 9 1 2 17342 25.00 F 9 1 2 17343 27.00 F 7 1 2 17344 38.00 M 7 1 2 17345 38.00 F 7 1 2 17346 42.00 M 7 1 2 17347 18.00 F 7 1 2 17348 62.00 F 7 1 3 17349 66.00 M 7 1 3 17350 4.00 M 7 1 1 17351 64.00 M 9 1 3 17352 45.00 F 6 1 2 17353 58.00 M 14 1 2 17354 16.00 F 6 1 1 17355 22.00 F 9 1 2 17356 46.00 M 15 1 2 17357 22.00 M 4 1 2 17358 24.00 F 16 1 2 17359 2.00 F 16 1 1 17360 25.00 M 9 1 2 17361 23.00 M 9 1 2 17362 21.00 M 9 1 2 17363 0.60 F 8 1 1 17364 21.00 F 8 1 2 17365 3.00 F 8 1 1 17366 20.00 F 31 1 2 17367 5.00 M 17 1 1 17368 60.00 M 24 1 3 17369 14.00 F 8 1 1 17370 26.00 F 11 1 2 17371 29.00 F 8 1 2 17372 6.00 F 8 1 1 17373 40.00 M 14 1 2 17374 35.00 F 8 1 2 17375 14.00 M 4 1 1 17376 5.00 M 9 1 1 17377 32.00 M 20 1 2 17378 63.00 F 8 1 3 17379 33.00 M 5 1 2 17380 24.00 M 5 1 2 17381 40.00 F 5 1 2 17382 65.00 M 8 1 3 17383 56.00 F 5 1 2 17384 25.00 M 5 1 2 17385 28.00 M 5 1 2 17386 10.00 M 16 1 1 17387 35.00 F 5 1 2 17388 7.00 F 10 1 1 17389 33.00 F 10 1 2 17390 28.00 M 10 1 2 17391 4.00 F 10 1 1 17392 23.00 M 10 1 2 17393 22.00 F 10 1 2 17394 12.00 F 10 1 1 17395 11.00 F 10 1 1 17396 25.00 M 10 1 2 17397 13.00 F 10 1 1 17398 27.00 M 10 1 2 17399 30.00 M 10 1 2 17400 20.00 M 25 1 2 17401 65.00 M 12 1 3 17402 59.00 M 14 1 2 17403 11.00 F 5 1 1 17404 35.00 M 3 1 2 17405 36.00 F 14 1 2 17406 34.00 F 5 1 2 17407 25.00 F 3 1 2 17408 23.00 F 9 1 2 17409 30.00 F 7 1 2 17410 30.00 M 3 1 2 17411 47.00 M 12 1 2 17412 5.00 F 1 1 1 17413 35.00 F 1 1 2 17414 33.00 M 4 1 2 17415 39.00 M 1 1 2 17416 60.00 M 2 1 3 17417 60.00 M 2 1 3 17418 16.00 M 1 1 1 17419 72.00 F 2 1 3 17420 41.00 F 1 1 2 17421 30.00 M 2 1 2 17422 47.00 M 14 1 2 17423 30.00 M 1 1 2 17424 34.00 M 10 1 2 17425 20.00 M 12 1 2 17426 21.00 F 10 1 2 17427 34.00 M 10 1 2 17428 24.00 M 10 1 2 17429 56.00 M 9 1 2 17430 34.00 F 11 1 2 17431 72.00 F 21 1 3 17432 37.00 M 8 1 2 17433 40.00 M 13 1 2 17434 49.00 M 11 1 2 17435 63.00 M 12 1 3 17436 62.00 F 11 1 3 17437 34.00 M 13 1 2 17438 0.50 M 8 1 1 17439 50.00 M 13 1 2 17440 46.00 M 8 1 2 17441 33.00 F 8 1 2 17442 12.00 F 8 1 1 17443 33.00 M 8 1 2 17444 75.00 F 9 1 3 17445 35.00 M 9 1 2 17446 28.00 M 8 1 2 17447 32.00 F 13 1 2 17448 38.00 M 4 1 2 17449 22.00 M 4 1 2 17450 18.00 M 4 1 2 17451 18.00 M 6 1 2 17452 17.00 M 4 1 1 17453 15.00 M 6 1 1 17454 18.00 M 4 1 2 17455 24.00 F 4 1 2 17456 54.00 F 13 1 2 17457 38.00 F 10 1 2 17458 52.00 M 21 1 2 17459 52.00 M 6 1 2 17460 43.00 M 13 1 2 17461 36.00 M 10 1 2 17462 43.00 M 7 1 2 17463 26.00 M 13 1 2 17464 25.00 M 13 1 2 17465 30.00 M 10 1 2 17466 37.00 M 13 1 2 17467 45.00 M 13 1 2 17468 28.00 M 7 1 2 17469 29.00 M 7 1 2 17470 27.00 M 13 1 2 17471 45.00 M 10 1 2 17472 2.00 M 23 1 1 17473 29.00 M 19 1 2 17474 20.00 M 13 1 2 17475 23.00 M 13 1 2 17476 23.00 M 21 1 2 17477 35.00 M 13 1 2 17478 28.00 M 13 1 2 17479 52.00 M 13 1 2 17480 10.00 M 9 1 1 17481 55.00 M 9 1 2 17482 31.00 M 7 1 2 17483 26.00 F 8 1 2 17484 16.00 M 11 1 1 17485 54.00 M 11 1 2 17486 36.00 F 11 1 2 17487 60.00 F 11 1 3 17488 36.00 M 10 1 2 17489 23.00 F 10 1 2 17490 42.00 F 11 1 2 17491 34.00 M 11 1 2 17492 7.00 M 11 1 1 17493 12.00 F 11 1 1 17494 30.00 F 11 1 2 17495 11.00 F 11 1 1 17496 23.00 F 11 1 2 17497 25.00 F 30 1 2 17498 28.00 F 11 1 2 17499 38.00 F 12 1 2 17500 27.00 M 9 1 2 17501 24.00 M 9 1 2 17502 7.00 M 9 1 1 17503 34.00 F 9 1 2 17504 4.00 M 9 1 1 17505 35.00 F 9 1 2 17506 4.00 F 9 1 1 17507 25.00 M 9 1 2 17508 55.00 M 9 1 2 17509 56.00 F 9 1 2 17510 60.00 M 13 1 3 17511 33.00 M 1 1 2 17512 34.00 F 1 1 2 17513 33.00 F 1 1 2 17514 44.00 M 1 1 2 17515 52.00 M 1 1 2 17516 17.00 F 1 1 1 17517 8.00 F 1 1 1 17518 22.00 M 1 1 2 17519 40.00 F 1 1 2 17520 48.00 M 1 1 2 17521 43.00 M 1 1 2 17522 9.00 F 1 1 1 17523 47.00 M 1 1 2 17524 9.00 M 1 1 1 17525 42.00 M 2 1 2 17526 32.00 M 6 1 2 17527 28.00 F 2 1 2 17528 34.00 F 2 1 2 17529 46.00 M 13 1 2 17530 55.00 M 1 1 2 17531 71.00 M 12 1 3 17532 28.00 M 12 1 2 17533 27.00 F 21 1 2 17534 25.00 F 12 1 2 17535 46.00 M 13 1 2 17536 20.00 F 12 1 2 17537 73.00 F 22 1 3 17538 33.00 M 6 1 2 17539 54.00 F 21 1 2 17540 32.00 M 9 1 2 17541 76.00 M 21 1 3 17542 48.00 F 21 1 2 17543 30.00 M 21 1 2 17544 24.00 F 21 1 2 17545 19.00 F 21 1 2 17546 25.00 M 21 1 2 17547 64.00 F 12 1 3 17548 40.00 M 12 1 2 17549 24.00 F 21 1 2 17550 45.00 M 12 1 2 17551 22.00 F 12 1 2 17552 42.00 F 21 1 2 17553 53.00 F 9 1 2 17554 46.00 F 7 1 2 17555 41.00 M 12 1 2 17556 59.00 F 8 1 2 17557 41.00 M 9 1 2 17558 32.00 M 9 1 2 17559 35.00 M 10 1 2 17560 31.00 M 10 1 2 17561 60.00 F 10 1 3 17562 27.00 F 10 1 2 17563 12.00 F 10 1 1 17564 8.00 F 10 1 1 17565 3.00 M 10 1 1 17566 23.00 F 14 1 2 17567 25.00 M 14 1 2 17568 23.00 M 14 1 2 17569 55.00 F 26 1 2 17570 25.00 M 11 1 2 17571 24.00 F 8 1 2 17572 21.00 M 8 1 2 17573 21.00 M 11 1 2 17574 34.00 M 8 1 2 17575 38.00 M 8 1 2 17576 29.00 F 22 1 2 17577 50.00 F 14 1 2 17578 3.00 F 11 1 1 17579 34.00 M 8 1 2 17580 59.00 M 8 1 2 17581 30.00 F 6 1 2 17582 15.00 M 6 1 1 17583 32.00 M 6 1 2 17584 30.00 M 11 1 2 17585 22.00 M 6 1 2 17586 34.00 M 11 1 2 17587 34.00 M 15 1 2 17588 40.00 M 6 1 2 17589 41.00 M 6 1 2 17590 33.00 M 9 1 2 17591 48.00 M 16 1 2 17592 31.00 M 9 1 2 17593 20.00 F 6 1 2 17594 27.00 M 6 1 2 17595 31.00 M 15 1 2 17596 32.00 M 6 1 2 17597 27.00 M 11 1 2 17598 35.00 M 15 1 2 17599 51.00 M 6 1 2 17600 20.00 F 20 1 2 17601 9.00 F 14 1 1 17602 36.00 M 6 1 2 17603 67.00 F 9 1 3 17604 44.00 M 18 1 2 17605 30.00 F 6 1 2 17606 25.00 M 15 1 2 17607 24.00 M 9 1 2 17608 44.00 M 6 1 2 17609 32.00 M 6 1 2 17610 38.00 M 6 1 2 17611 50.00 M 6 1 2 17612 33.00 M 9 1 2 17613 31.00 M 18 1 2 17614 21.00 M 8 1 2 17615 26.00 M 6 1 2 17616 32.00 F 11 1 2 17617 22.00 M 9 1 2 17618 32.00 M 9 1 2 17619 29.00 M 6 1 2 17620 29.00 M 8 1 2 17621 29.00 M 11 1 2 17622 31.00 M 6 1 2 17623 25.00 M 6 1 2 17624 47.00 M 6 1 2 17625 42.00 M 8 1 2 17626 29.00 M 6 1 2 17627 54.00 M 11 1 2 17628 44.00 M 14 1 2 17629 43.00 M 6 1 2 17630 31.00 M 6 1 2 17631 46.00 M 14 1 2 17632 61.00 M 11 1 3 17633 23.00 M 6 1 2 17634 24.00 M 6 1 2 17635 22.00 M 11 1 2 17636 35.00 M 9 1 2 17637 60.00 F 11 1 3 17638 3.00 F 9 1 1 17639 24.00 M 14 1 2 17640 36.00 M 6 1 2 17641 31.00 M 11 1 2 17642 43.00 M 15 1 2 17643 50.00 M 9 1 2 17644 35.00 M 15 1 2 17645 51.00 M 15 1 2 17646 21.00 M 14 1 2 17647 20.00 F 15 1 2 17648 20.00 F 6 1 2 17649 21.00 M 11 1 2 17650 29.00 F 15 1 2 17651 42.00 M 15 1 2 17652 30.00 M 6 1 2 17653 42.00 M 8 1 2 17654 34.00 M 8 1 2 17655 35.00 M 11 1 2 17656 50.00 M 11 1 2 17657 63.00 F 6 1 3 17658 39.00 F 15 1 2 17659 58.00 F 15 1 2 17660 24.00 M 15 1 2 17661 24.00 F 9 1 2 17662 18.00 M 6 1 2 17663 40.00 M 6 1 2 17664 10.00 M 6 1 1 17665 46.00 M 8 1 2 17666 36.00 F 15 1 2 17667 55.00 M 14 1 2 17668 43.00 F 14 1 2 17669 42.00 M 11 1 2 17670 19.00 M 11 1 2 17671 45.00 M 15 1 2 17672 45.00 M 11 1 2 17673 31.00 F 15 1 2 17674 31.00 F 15 1 2 17675 24.00 M 7 1 2 17676 23.00 M 9 1 2 17677 34.00 F 9 1 2 17678 55.00 M 8 1 2 17679 4.00 M 10 1 1 17680 48.00 F 12 1 2 17681 29.00 F 10 1 2 17682 27.00 M 11 1 2 17683 10.00 F 12 1 1 17684 28.00 F 13 1 2 17685 23.00 M 12 1 2 17686 34.00 M 12 1 2 17687 33.00 M 12 1 2 17688 31.00 F 12 1 2 17689 58.00 F 8 1 2 17690 27.00 M 8 1 2 17691 2.00 M 12 1 1 17692 5.00 F 12 1 1 17693 31.00 F 16 1 2 17694 20.00 M 8 1 2 17695 19.00 M 11 1 2 17696 44.00 F 11 1 2 17697 46.00 M 11 1 2 17698 49.00 M 12 1 2 17699 54.00 M 8 1 2 17700 5.00 F 8 1 1 17701 24.00 F 12 1 2 17702 21.00 F 12 1 2 17703 40.00 M 8 1 2 17704 35.00 M 8 1 2 17705 38.00 F 8 1 2 17706 62.00 F 22 1 3 17707 19.00 M 20 1 2 17708 18.00 M 20 1 2 17709 63.00 M 20 1 3 17710 57.00 M 20 1 2 17711 54.00 M 20 1 2 17712 36.00 M 20 1 2 17713 20.00 M 12 1 2 17714 46.00 F 8 1 2 17715 40.00 F 11 1 2 17716 1.00 M 10 1 1 17717 68.00 M 20 1 3 17718 4.00 F 20 1 1 17719 28.00 F 20 1 2 17720 30.00 F 20 1 2 17721 38.00 F 10 1 2 17722 36.00 M 14 1 2 17723 85.00 F 13 1 3 17724 79.00 M 13 1 3 17725 17.00 F 13 1 1 17726 16.00 M 7 1 1 17727 24.00 M 7 1 2 17728 12.00 F 7 1 1 17729 23.00 M 13 1 2 17730 45.00 M 9 1 2 17731 12.00 M 9 1 1 17732 33.00 M 9 1 2 17733 39.00 M 12 1 2 17734 35.00 F 12 1 2 17735 50.00 M 9 1 2 17736 21.00 M 11 1 2 17737 46.00 M 6 1 2 17738 55.00 M 6 1 2 17739 58.00 M 7 1 2 17740 9.00 M 6 1 1 17741 23.00 M 8 1 2 17742 28.00 M 6 1 2 17743 31.00 M 6 1 2 17744 25.00 M 12 1 2 17745 29.00 M 8 1 2 17746 24.00 M 12 1 2 17747 30.00 M 9 1 2 17748 40.00 M 12 1 2 17749 46.00 M 8 1 2 17750 28.00 M 12 1 2 17751 55.00 F 8 1 2 17752 30.00 F 12 1 2 17753 8.00 F 12 1 1 17754 1.00 M 6 1 1 17755 27.00 F 6 1 2 17756 22.00 F 6 1 2 17757 4.00 M 12 1 1 17758 35.00 M 20 1 2 17759 25.00 F 6 1 2 17760 61.00 F 12 1 3 17761 1.00 M 6 1 1 17762 29.00 F 12 1 2 17763 24.00 M 12 1 2 17764 2.00 F 6 1 1 17765 8.00 M 12 1 1 17766 2.00 M 12 1 1 17767 20.00 F 6 1 2 17768 12.00 M 12 1 1 17769 4.00 F 20 1 1 17770 1.00 M 20 1 1 17771 60.00 M 22 1 3 17772 42.00 M 10 1 2 17773 35.00 M 9 1 2 17774 7.00 F 14 1 1 17775 9.00 F 24 1 1 17776 29.00 F 14 1 2 17777 39.00 M 10 1 2 17778 50.00 F 8 1 2 17779 25.00 M 12 1 2 17780 37.00 F 14 1 2 17781 24.00 M 25 1 2 17782 15.00 M 9 1 1 17783 5.00 M 10 1 1 17784 35.00 M 5 1 2 17785 19.00 M 12 1 2 17786 75.00 M 12 1 3 17787 50.00 M 16 1 2 17788 21.00 F 14 1 2 17789 14.00 M 12 1 1 17790 35.00 F 20 1 2 17791 37.00 M 12 1 2 17792 50.00 F 14 1 2 17793 0.25 F 12 1 1 17794 3.00 M 12 1 1 17795 5.00 M 12 1 1 17796 24.00 M 12 1 2 17797 28.00 M 12 1 2 17798 12.00 F 12 1 1 17799 6.00 M 12 1 1 17800 10.00 M 12 1 1 17801 30.00 F 14 1 2 17802 7.00 M 12 1 1 17803 19.00 M 12 1 2 17804 8.00 F 12 1 1 17805 10.00 M 14 1 1 17806 45.00 M 12 1 2 17807 12.00 F 12 1 1 17808 13.00 F 12 1 1 17809 33.00 F 12 1 2 17810 35.00 M 12 1 2 17811 25.00 F 12 1 2 17812 22.00 M 12 1 2 17813 28.00 M 12 1 2 17814 42.00 M 12 1 2 17815 30.00 M 12 1 2 17816 38.00 F 14 1 2 17817 13.00 M 14 1 1 17818 30.00 F 12 1 2 17819 38.00 F 12 1 2 17820 5.00 F 14 1 1 17821 25.00 F 12 1 2 17822 6.00 M 12 1 1 17823 38.00 M 12 1 2 17824 3.00 F 12 1 1 17825 18.00 F 12 1 2 17826 46.00 F 14 1 2 17827 30.00 F 12 1 2 17828 12.00 M 12 1 1 17829 35.00 M 12 1 2 17830 14.00 M 12 1 1 17831 16.00 F 12 1 1 17832 32.00 F 12 1 2 17833 35.00 F 12 1 2 17834 11.00 M 12 1 1 17835 12.00 F 12 1 1 17836 25.00 M 14 1 2 17837 35.00 M 19 1 2 17838 46.00 M 14 1 2 17839 80.00 F 19 1 3 17840 11.00 M 13 1 1 17841 50.00 M 15 1 2 17842 55.00 F 12 1 2 17843 60.00 F 12 1 3 17844 75.00 M 14 1 3 17845 38.00 F 13 1 2 17846 4.00 M 13 1 1 17847 35.00 F 8 1 2 17848 26.00 F 8 1 2 17849 17.00 M 8 1 1 17850 28.00 F 8 1 2 17851 38.00 M 8 1 2 17852 35.00 F 8 1 2 17853 28.00 F 8 1 2 17854 19.00 M 8 1 2 17855 5.00 M 8 1 1 17856 50.00 M 8 1 2 17857 33.00 M 8 1 2 17858 30.00 M 8 1 2 17859 32.00 M 8 1 2 17860 8.00 F 8 1 1 17861 27.00 M 8 1 2 17862 26.00 F 8 1 2 17863 28.00 M 10 1 2 17864 32.00 M 8 1 2 17865 30.00 M 8 1 2 17866 6.00 F 8 1 1 17867 5.00 M 8 1 1 17868 16.00 F 10 1 1 17869 14.00 M 10 1 1 17870 46.00 F 8 1 2 17871 48.00 M 8 1 2 17872 17.00 M 10 1 1 17873 26.00 M 8 1 2 17874 16.00 F 8 1 1 17875 11.00 F 8 1 1 17876 45.00 M 8 1 2 17877 14.00 M 8 1 1 17878 36.00 M 8 1 2 17879 18.00 M 8 1 2 17880 38.00 M 8 1 2 17881 36.00 M 10 1 2 17882 21.00 M 8 1 2 17883 5.00 M 8 1 1 17884 36.00 M 10 1 2 17885 27.00 M 8 1 2 17886 14.00 M 10 1 1 17887 14.00 F 10 1 1 17888 22.00 F 10 1 2 17889 40.00 M 10 1 2 17890 9.00 M 24 1 1 17891 24.00 F 10 1 2 17892 28.00 F 10 1 2 17893 28.00 F 10 1 2 17894 16.00 M 10 1 1 17895 11.00 F 17 1 1 17896 32.00 M 16 1 2 17897 6.00 M 10 1 1 17898 27.00 F 10 1 2 17899 47.00 F 17 1 2 17900 19.00 F 10 1 2 17901 16.00 M 10 1 1 17902 20.00 F 10 1 2 17903 42.00 M 10 1 2 17904 20.00 F 10 1 2 17905 38.00 M 10 1 2 17906 28.00 F 11 1 2 17907 45.00 M 11 1 2 17908 32.00 F 24 1 2 17909 23.00 F 11 1 2 17910 70.00 F 22 1 3 17911 33.00 M 11 1 2 17912 25.00 F 10 1 2 17913 3.00 M 11 1 1 17914 28.00 M 11 1 2 17915 30.00 F 11 1 2 17916 62.00 F 13 1 3 17917 35.00 F 11 1 2 17918 30.00 F 12 1 2 17919 71.00 M 13 1 3 17920 22.00 M 13 1 2 17921 55.00 M 13 1 2 17922 30.00 M 6 1 2 17923 8.00 F 11 1 1 17924 2.00 F 11 1 1 17925 33.00 F 11 1 2 17926 27.00 M 11 1 2 17927 25.00 F 11 1 2 17928 10.00 F 11 1 1 17929 2.00 M 11 1 1 17930 1.00 F 11 1 1 17931 35.00 M 11 1 2 17932 30.00 F 11 1 2 17933 18.00 F 11 1 2 17934 19.00 F 16 1 2 17935 2.00 M 11 1 1 17936 40.00 M 11 1 2 17937 18.00 M 11 1 2 17938 30.00 F 13 1 2 17939 43.00 M 16 1 2 17940 40.00 F 11 1 2 17941 16.00 F 11 1 1 17942 15.00 F 11 1 1 17943 8.00 F 11 1 1 17944 51.00 M 11 1 2 17945 35.00 M 11 1 2 17946 18.00 M 11 1 2 17947 28.00 M 11 1 2 17948 22.00 F 11 1 2 17949 40.00 M 11 1 2 17950 30.00 F 16 1 2 17951 29.00 M 11 1 2 17952 25.00 F 11 1 2 17953 2.00 M 24 1 1 17954 2.00 M 6 1 1 17955 4.00 M 26 1 1 17956 48.00 F 14 1 2 17957 30.00 F 6 1 2 17958 5.00 M 6 1 1 17959 60.00 F 6 1 3 17960 36.00 M 14 1 2 17961 37.00 M 2 1 2 17962 44.00 M 4 1 2 17963 40.00 M 1 1 2 17964 24.00 M 1 1 2 17965 59.00 M 1 1 2 17966 23.00 M 1 1 2 17967 24.00 F 5 1 2 17968 33.00 F 2 1 2 17969 40.00 M 1 1 2 17970 23.00 F 5 1 2 17971 62.00 M 5 1 3 17972 24.00 F 2 1 2 17973 6.00 F 1 1 1 17974 35.00 M 7 1 2 17975 3.00 M 5 1 1 17976 62.00 M 8 1 3 17977 26.00 M 12 1 2 17978 54.00 F 7 1 2 17979 28.00 F 7 1 2 17980 25.00 M 7 1 2 17981 46.00 M 25 1 2 17982 54.00 M 7 1 2 17983 30.00 F 11 1 2 17984 46.00 F 11 1 2 17985 49.00 F 21 1 2 17986 36.00 F 11 1 2 17987 8.00 M 11 1 1 17988 20.00 M 7 1 2 17989 20.00 M 15 1 2 17990 39.00 F 7 1 2 17991 35.00 F 9 1 2 17992 32.00 M 3 1 2 17993 60.00 M 5 1 3 17994 24.00 F 5 1 2 17995 12.00 M 5 1 1 17996 26.00 F 5 1 2 17997 45.00 M 13 1 2 17998 15.00 M 13 1 1 17999 30.00 F 13 1 2 18000 47.00 M 13 1 2 18001 62.00 M 8 1 3 18002 30.00 M 12 1 2 18003 25.00 M 1 1 2 18004 26.00 F 9 1 2 18005 45.00 M 7 1 2 18006 35.00 F 11 1 2 18007 12.00 M 7 1 1 18008 65.00 M 7 1 3 18009 38.00 M 7 1 2 18010 23.00 M 9 1 2 18011 11.00 F 21 1 1 18012 73.00 M 19 1 3 18013 40.00 F 9 1 2 18014 34.00 M 9 1 2 18015 38.00 M 24 1 2 18016 28.00 F 19 1 2 18017 73.00 M 19 1 3 18018 37.00 M 20 1 2 18019 56.00 F 20 1 2 18020 38.00 M 11 1 2 18021 36.00 M 19 1 2 18022 42.00 M 19 1 2 18023 25.00 M 11 1 2 18024 23.00 M 11 1 2 18025 53.00 M 20 1 2 18026 46.00 F 11 1 2 18027 33.00 M 19 1 2 18028 67.00 M 7 1 3 18029 68.00 F 21 1 3 18030 29.00 F 11 1 2 18031 51.00 F 11 1 2 18032 26.00 F 19 1 2 18033 7.00 F 11 1 1 18034 45.00 M 9 1 2 18035 36.00 M 10 1 2 18036 85.00 F 14 1 3 18037 79.00 M 10 1 3 18038 17.00 F 10 1 1 18039 21.00 M 12 1 2 18040 35.00 M 22 1 2 18041 35.00 M 12 1 2 18042 34.00 F 5 1 2 18043 38.00 M 11 1 2 18044 53.00 M 18 1 2 18045 52.00 M 7 1 2 18046 50.00 M 7 1 2 18047 13.00 F 2 1 1 18048 4.00 M 9 1 1 18049 28.00 M 4 1 2 18050 42.00 M 2 1 2 18051 23.00 M 2 1 2 18052 39.00 M 4 1 2 18053 28.00 F 1 1 2 18054 36.00 M 1 1 2 18055 34.00 M 1 1 2 18056 33.00 F 4 1 2 18057 32.00 M 1 1 2 18058 41.00 M 1 1 2 18059 37.00 F 4 1 2 18060 19.00 M 1 1 2 18061 47.00 M 2 1 2 18062 10.00 M 9 1 1 18063 35.00 F 9 1 2 18064 61.00 F 9 1 3 18065 65.00 F 9 1 3 18066 32.00 M 11 1 2 18067 24.00 F 27 1 2 18068 41.00 M 11 1 2 18069 33.00 F 21 1 2 18070 50.00 M 11 1 2 18071 21.00 M 13 1 2 18072 62.00 M 11 1 3 18073 28.00 F 11 1 2 18074 10.00 F 11 1 1 18075 6.00 F 11 1 1 18076 4.00 F 11 1 1 18077 26.00 F 13 1 2 18078 6.00 F 11 1 1 18079 8.00 F 11 1 1 18080 29.00 M 13 1 2 18081 25.00 F 11 1 2 18082 21.00 F 11 1 2 18083 17.00 F 13 1 1 18084 18.00 F 21 1 2 18085 22.00 F 9 1 2 18086 28.00 M 9 1 2 18087 26.00 F 9 1 2 18088 10.00 M 7 1 1 18089 23.00 F 9 1 2 18090 17.00 M 9 1 1 18091 30.00 M 9 1 2 18092 25.00 F 9 1 2 18093 41.00 M 9 1 2 18094 36.00 F 9 1 2 18095 12.00 M 7 1 1 18096 17.00 M 9 1 1 18097 65.00 M 9 1 3 18098 26.00 F 9 1 2 18099 14.00 F 9 1 1 18100 8.00 M 7 1 1 18101 14.00 F 9 1 1 18102 48.00 M 9 1 2 18103 36.00 M 9 1 2 18104 43.00 M 9 1 2 18105 27.00 M 9 1 2 18106 27.00 F 13 1 2 18107 60.00 F 21 1 3 18108 56.00 F 21 1 2 18109 63.00 M 21 1 3 18110 44.00 M 21 1 2 18111 18.00 F 9 1 2 18112 33.00 M 12 1 2 18113 22.00 F 12 1 2 18114 6.00 M 12 1 1 18115 24.00 F 9 1 2 18116 16.00 M 10 1 1 18117 2.00 M 5 1 1 18118 60.00 M 11 1 3 18119 2.00 F 5 1 1 18120 44.00 M 5 1 2 18121 45.00 M 5 1 2 18122 66.00 M 12 1 3 18123 34.00 M 13 1 2 18124 55.00 M 11 1 2 18125 46.00 M 11 1 2 18126 43.00 M 11 1 2 18127 43.00 M 13 1 2 18128 5.00 F 12 1 1 18129 34.00 M 9 1 2 18130 26.00 M 4 1 2 18131 25.00 F 10 1 2 18132 23.00 F 10 1 2 18133 58.00 M 18 1 2 18134 56.00 F 10 1 2 18135 26.00 F 4 1 2 18136 25.00 M 6 1 2 18137 44.00 M 6 1 2 18138 25.00 M 6 1 2 18139 22.00 M 11 1 2 18140 23.00 M 6 1 2 18141 24.00 M 18 1 2 18142 39.00 M 10 1 2 18143 42.00 M 10 1 2 18144 24.00 M 6 1 2 18145 47.00 M 10 1 2 18146 23.00 M 10 1 2 18147 23.00 M 10 1 2 18148 26.00 M 10 1 2 18149 23.00 M 6 1 2 18150 25.00 M 6 1 2 18151 39.00 M 10 1 2 18152 24.00 M 6 1 2 18153 51.00 F 10 1 2 18154 29.00 F 10 1 2 18155 26.00 M 7 1 2 18156 23.00 M 22 1 2 18157 23.00 M 22 1 2 18158 23.00 M 14 1 2 18159 41.00 M 8 1 2 18160 9.00 M 7 1 1 18161 50.00 M 8 1 2 18162 2.00 M 8 1 1 18163 36.00 M 12 1 2 18164 10.00 F 8 1 1 18165 57.00 F 10 1 2 18166 27.00 M 8 1 2 18167 25.00 M 10 1 2 18168 50.00 M 18 1 2 18169 72.00 M 10 1 3 18170 63.00 M 10 1 3 18171 78.00 M 10 1 3 18172 60.00 M 10 1 3 18173 55.00 F 18 1 2 18174 17.00 M 10 1 1 18175 40.00 M 10 1 2 18176 80.00 F 10 1 3 18177 30.00 F 10 1 2 18178 72.00 M 8 1 3 18179 8.00 M 10 1 1 18180 8.00 F 10 1 1 18181 58.00 M 10 1 2 18182 26.00 M 10 1 2 18183 15.00 F 10 1 1 18184 27.00 F 11 1 2 18185 45.00 F 10 1 2 18186 51.00 M 10 1 2 18187 15.00 M 10 1 1 18188 44.00 F 10 1 2 18189 65.00 F 6 1 3 18190 11.00 M 10 1 1 18191 35.00 F 10 1 2 18192 13.00 M 10 1 1 18193 24.00 F 5 1 2 18194 8.00 F 6 1 1 18195 36.00 F 12 1 2 18196 17.00 M 23 1 1 18197 26.00 F 23 1 2 18198 30.00 F 18 1 2 18199 44.00 M 8 1 2 18200 35.00 F 8 1 2 18201 40.00 M 5 1 2 18202 24.00 F 8 1 2 18203 27.00 M 14 1 2 18204 27.00 F 8 1 2 18205 63.00 M 8 1 3 18206 35.00 F 8 1 2 18207 19.00 M 8 1 2 18208 27.00 M 8 1 2 18209 25.00 F 8 1 2 18210 40.00 F 14 1 2 18211 15.00 M 14 1 1 18212 30.00 M 8 1 2 18213 25.00 F 10 1 2 18214 40.00 F 8 1 2 18215 32.00 M 10 1 2 18216 28.00 F 17 1 2 18217 28.00 F 12 1 2 18218 56.00 F 10 1 2 18219 16.00 F 8 1 1 18220 51.00 M 10 1 2 18221 30.00 M 10 1 2 18222 28.00 M 10 1 2 18223 35.00 F 10 1 2 18224 72.00 M 17 1 3 18225 3.00 M 7 1 1 18226 55.00 M 10 1 2 18227 36.00 M 10 1 2 18228 36.00 F 17 1 2 18229 22.00 M 11 1 2 18230 16.00 M 11 1 1 18231 37.00 F 11 1 2 18232 35.00 F 11 1 2 18233 22.00 F 11 1 2 18234 2.00 F 11 1 1 18235 2.00 F 12 1 1 18236 49.00 M 11 1 2 18237 43.00 F 11 1 2 18238 22.00 M 11 1 2 18239 48.00 M 11 1 2 18240 27.00 M 11 1 2 18241 26.00 M 11 1 2 18242 20.00 M 11 1 2 18243 35.00 M 17 1 2 18244 4.00 F 11 1 1 18245 28.00 M 15 1 2 18246 21.00 F 15 1 2 18247 21.00 F 12 1 2 18248 27.00 M 11 1 2 18249 33.00 M 11 1 2 18250 20.00 M 11 1 2 18251 55.00 F 11 1 2 18252 5.00 M 11 1 1 18253 8.00 F 11 1 1 18254 1.00 F 11 1 1 18255 25.00 F 11 1 2 18256 15.00 M 11 1 1 18257 43.00 F 11 1 2 18258 17.00 M 11 1 1 18259 36.00 F 11 1 2 18260 18.00 F 11 1 2 18261 42.00 M 10 1 2 18262 20.00 M 11 1 2 18263 44.00 M 8 1 2 18264 19.00 M 8 1 2 18265 21.00 M 8 1 2 18266 28.00 M 20 1 2 18267 40.00 M 11 1 2 18268 30.00 F 12 1 2 18269 46.00 M 13 1 2 18270 7.00 M 8 1 1 18271 12.00 F 10 1 1 18272 45.00 M 11 1 2 18273 40.00 F 11 1 2 18274 17.00 F 11 1 1 18275 15.00 M 11 1 1 18276 20.00 F 6 1 2 18277 30.00 F 6 1 2 18278 6.00 F 6 1 1 18279 29.00 M 19 1 2 18280 26.00 M 13 1 2 18281 4.00 F 16 1 1 18282 29.00 M 12 1 2 18283 21.00 M 4 1 2 18284 22.00 M 12 1 2 18285 14.00 F 6 1 1 18286 34.00 M 6 1 2 18287 38.00 M 6 1 2 18288 22.00 F 6 1 2 18289 34.00 M 12 1 2 18290 42.00 M 6 1 2 18291 35.00 F 12 1 2 18292 26.00 F 6 1 2 18293 37.00 M 4 1 2 18294 32.00 F 4 1 2 18295 46.00 F 6 1 2 18296 44.00 M 9 1 2 18297 36.00 M 10 1 2 18298 50.00 M 8 1 2 18299 53.00 M 8 1 2 18300 46.00 M 8 1 2 18301 68.00 F 9 1 3 18302 57.00 M 19 1 2 18303 69.00 M 18 1 3 18304 20.00 M 19 1 2 18305 57.00 M 20 1 2 18306 20.00 F 20 1 2 18307 36.00 F 18 1 2 18308 61.00 M 18 1 3 18309 18.00 F 18 1 2 18310 57.00 M 18 1 2 18311 60.00 M 19 1 3 18312 30.00 F 18 1 2 18313 64.00 F 18 1 3 18314 51.00 M 8 1 2 18315 35.00 F 9 1 2 18316 34.00 M 18 1 2 18317 40.00 M 8 1 2 18318 48.00 F 11 1 2 18319 26.00 M 11 1 2 18320 45.00 M 12 1 2 18321 50.00 M 12 1 2 18322 26.00 M 12 1 2 18323 33.00 M 7 1 2 18324 35.00 M 5 1 2 18325 33.00 M 9 1 2 18326 0.91 M 8 1 1 18327 47.00 M 18 1 2 18328 29.00 F 17 1 2 18329 30.00 M 17 1 2 18330 60.00 F 17 1 3 18331 27.00 M 18 1 2 18332 42.00 M 17 1 2 18333 20.00 M 17 1 2 18334 30.00 M 26 1 2 18335 29.00 M 9 1 2 18336 33.00 M 17 1 2 18337 78.00 M 17 1 3 18338 68.00 M 18 1 3 18339 64.00 M 21 1 3 18340 45.00 M 7 1 2 18341 62.00 M 17 1 3 18342 32.00 M 18 1 2 18343 38.00 M 17 1 2 18344 24.00 M 8 1 2 18345 60.00 M 19 1 3 18346 59.00 F 8 1 2 18347 38.00 M 18 1 2 18348 38.00 M 17 1 2 18349 34.00 M 13 1 2 18350 40.00 M 13 1 2 18351 25.00 F 13 1 2 18352 19.00 M 9 1 2 18353 25.00 F 9 1 2 18354 63.00 M 11 1 3 18355 3.00 M 9 1 1 18356 28.00 M 9 1 2 18357 78.00 F 11 1 3 18358 80.00 M 11 1 3 18359 35.00 M 15 1 2 18360 33.00 M 8 1 2 18361 38.00 F 8 1 2 18362 12.00 F 8 1 1 18363 8.00 M 8 1 1 18364 46.00 M 2 1 2 18365 17.00 F 9 1 1 18366 39.00 F 9 1 2 18367 18.00 F 9 1 2 18368 65.00 F 2 1 3 18369 44.00 F 9 1 2 18370 14.00 M 9 1 1 18371 17.00 M 9 1 1 18372 42.00 M 10 1 2 18373 8.00 M 8 1 1 18374 61.00 F 8 1 3 18375 65.00 M 10 1 3 18376 62.00 M 12 1 3 18377 63.00 M 10 1 3 18378 7.00 F 11 1 1 18379 24.00 M 5 1 2 18380 22.00 M 5 1 2 18381 22.00 M 5 1 2 18382 22.00 M 5 1 2 18383 23.00 M 10 1 2 18384 28.00 M 10 1 2 18385 26.00 M 5 1 2 18386 23.00 M 10 1 2 18387 24.00 M 10 1 2 18388 23.00 M 5 1 2 18389 25.00 M 9 1 2 18390 22.00 M 9 1 2 18391 46.00 M 9 1 2 18392 29.00 M 9 1 2 18393 26.00 M 17 1 2 18394 34.00 M 9 1 2 18395 35.00 M 5 1 2 18396 22.00 M 9 1 2 18397 25.00 F 5 1 2 18398 2.00 F 9 1 1 18399 26.00 F 9 1 2 18400 30.00 M 5 1 2 18401 55.00 F 9 1 2 18402 28.00 F 9 1 2 18403 25.00 M 6 1 2 18404 26.00 M 6 1 2 18405 26.00 M 9 1 2 18406 27.00 M 9 1 2 18407 25.00 M 17 1 2 18408 26.00 M 9 1 2 18409 28.00 M 9 1 2 18410 24.00 M 17 1 2 18411 25.00 M 17 1 2 18412 38.00 M 17 1 2 18413 38.00 M 9 1 2 18414 12.00 M 9 1 1 18415 36.00 M 6 1 2 18416 46.00 M 9 1 2 18417 34.00 M 9 1 2 18418 27.00 M 10 1 2 18419 27.00 M 10 1 2 18420 34.00 M 10 1 2 18421 40.00 M 10 1 2 18422 48.00 M 9 1 2 18423 39.00 M 9 1 2 18424 33.00 M 9 1 2 18425 40.00 M 6 1 2 18426 57.00 M 6 1 2 18427 47.00 M 6 1 2 18428 31.00 M 9 1 2 18429 36.00 M 9 1 2 18430 37.00 M 9 1 2 18431 42.00 M 9 1 2 18432 45.00 M 9 1 2 18433 32.00 M 9 1 2 18434 24.00 F 9 1 2 18435 25.00 M 9 1 2 18436 23.00 M 17 1 2 18437 20.00 M 9 1 2 18438 25.00 M 10 1 2 18439 31.00 M 9 1 2 18440 24.00 M 5 1 2 18441 25.00 M 9 1 2 18442 32.00 M 9 1 2 18443 29.00 M 6 1 2 18444 25.00 M 9 1 2 18445 27.00 M 9 1 2 18446 48.00 M 6 1 2 18447 23.00 M 9 1 2 18448 38.00 M 6 1 2 18449 32.00 M 10 1 2 18450 28.00 M 6 1 2 18451 31.00 M 9 1 2 18452 32.00 M 5 1 2 18453 44.00 M 9 1 2 18454 28.00 M 6 1 2 18455 26.00 M 10 1 2 18456 26.00 M 6 1 2 18457 33.00 M 9 1 2 18458 43.00 M 9 1 2 18459 30.00 M 9 1 2 18460 46.00 M 9 1 2 18461 49.00 F 9 1 2 18462 36.00 M 9 1 2 18463 12.00 M 10 1 1 18464 75.00 F 10 1 3 18465 83.00 M 10 1 3 18466 12.00 M 10 1 1 18467 57.00 M 8 1 2 18468 57.00 M 10 1 2 18469 49.00 M 10 1 2 18470 26.00 F 16 1 2 18471 11.00 F 16 1 1 18472 3.00 M 16 1 1 18473 21.00 F 18 1 2 18474 52.00 M 9 1 2 18475 6.00 M 8 1 1 18476 70.00 F 6 1 3 18477 55.00 F 5 1 2 18478 35.00 M 5 1 2 18479 34.00 M 5 1 2 18480 27.00 M 8 1 2 18481 36.00 M 7 1 2 18482 38.00 M 14 1 2 18483 21.00 M 10 1 2 18484 39.00 M 7 1 2 18485 25.00 F 12 1 2 18486 49.00 M 9 1 2 18487 31.00 M 7 1 2 18488 65.00 M 16 1 3 18489 32.00 M 9 1 2 18490 45.00 M 9 1 2 18491 35.00 F 9 1 2 18492 28.00 M 11 1 2 18493 23.00 F 10 1 2 18494 27.00 M 7 1 2 18495 7.00 M 10 1 1 18496 40.00 M 12 1 2 18497 31.00 M 9 1 2 18498 35.00 F 10 1 2 18499 5.00 F 7 1 1 18500 33.00 M 9 1 2 18501 3.00 F 7 1 1 18502 36.00 F 11 1 2 18503 27.00 M 9 1 2 18504 20.00 F 9 1 2 18505 38.00 F 9 1 2 18506 17.00 F 9 1 1 18507 28.00 F 9 1 2 18508 14.00 M 9 1 1 18509 40.00 F 9 1 2 18510 17.00 F 9 1 1 18511 23.00 M 9 1 2 18512 23.00 M 9 1 2 18513 22.00 F 9 1 2 18514 23.00 M 9 1 2 18515 54.00 F 9 1 2 18516 45.00 F 9 1 2 18517 21.00 F 9 1 2 18518 43.00 F 16 1 2 18519 21.00 M 7 1 2 18520 37.00 M 9 1 2 18521 23.00 M 9 1 2 18522 29.00 M 9 1 2 18523 5.00 F 7 1 1 18524 50.00 F 9 1 2 18525 9.00 F 10 1 1 18526 16.00 F 9 1 1 18527 27.00 M 9 1 2 18528 24.00 M 9 1 2 18529 30.00 F 9 1 2 18530 40.00 M 9 1 2 18531 21.00 F 11 1 2 18532 26.00 M 9 1 2 18533 25.00 M 16 1 2 18534 31.00 M 6 1 2 18535 30.00 F 6 1 2 18536 29.00 F 6 1 2 18537 41.00 M 8 1 2 18538 1.00 F 5 1 1 18539 12.00 M 5 1 1 18540 20.00 M 5 1 2 18541 21.00 F 5 1 2 18542 28.00 M 5 1 2 18543 35.00 F 5 1 2 18544 22.00 M 10 1 2 18545 25.00 M 14 1 2 18546 30.00 M 10 1 2 18547 45.00 M 10 1 2 18548 41.00 M 13 1 2 18549 24.00 F 7 1 2 18550 29.00 F 10 1 2 18551 22.00 M 7 1 2 18552 10.00 M 7 1 1 18553 31.00 M 11 1 2 18554 30.00 M 11 1 2 18555 25.00 F 14 1 2 18556 4.00 F 11 1 1 18557 46.00 M 16 1 2 18558 60.00 F 19 1 3 18559 23.00 F 9 1 2 18560 24.00 F 10 1 2 18561 35.00 F 11 1 2 18562 10.00 M 10 1 1 18563 8.00 F 10 1 1 18564 6.00 M 26 1 1 18565 29.00 F 26 1 2 18566 35.00 F 10 1 2 18567 40.00 M 10 1 2 18568 18.00 F 11 1 2 18569 27.00 M 11 1 2 18570 2.00 M 4 1 1 18571 28.00 M 10 1 2 18572 26.00 F 10 1 2 18573 24.00 F 4 1 2 18574 47.00 M 10 1 2 18575 42.00 M 12 1 2 18576 48.00 M 9 1 2 18577 37.00 F 11 1 2 18578 39.00 M 11 1 2 18579 39.00 M 11 1 2 18580 13.00 F 9 1 1 18581 45.00 M 26 1 2 18582 28.00 F 10 1 2 18583 6.00 M 26 1 1 18584 35.00 M 10 1 2 18585 58.00 F 10 1 2 18586 34.00 M 10 1 2 18587 25.00 F 10 1 2 18588 24.00 M 10 1 2 18589 36.00 F 11 1 2 18590 30.00 M 11 1 2 18591 29.00 M 10 1 2 18592 26.00 M 11 1 2 18593 30.00 F 11 1 2 18594 18.00 M 10 1 2 18595 40.00 F 10 1 2 18596 39.00 F 11 1 2 18597 5.00 F 23 1 1 18598 41.00 M 12 1 2 18599 36.00 M 19 1 2 18600 32.00 M 10 1 2 18601 15.00 M 10 1 1 18602 25.00 F 19 1 2 18603 37.00 M 16 1 2 18604 18.00 M 11 1 2 18605 30.00 F 10 1 2 18606 49.00 F 10 1 2 18607 35.00 M 15 1 2 18608 32.00 M 15 1 2 18609 17.00 M 15 1 1 18610 38.00 M 9 1 2 18611 27.00 F 9 1 2 18612 30.00 M 15 1 2 18613 33.00 M 18 1 2 18614 16.00 F 15 1 1 18615 57.00 M 18 1 2 18616 70.00 M 15 1 3 18617 50.00 M 18 1 2 18618 40.00 F 15 1 2 18619 29.00 M 15 1 2 18620 55.00 M 9 1 2 18621 59.00 M 9 1 2 18622 30.00 F 7 1 2 18623 10.00 F 9 1 1 18624 34.00 M 9 1 2 18625 33.00 M 9 1 2 18626 33.00 F 20 1 2 18627 35.00 M 9 1 2 18628 16.00 F 9 1 1 18629 47.00 M 9 1 2 18630 65.00 M 22 1 3 18631 52.00 F 8 1 2 18632 64.00 F 22 1 3 18633 35.00 M 8 1 2 18634 43.00 M 8 1 2 18635 30.00 F 16 1 2 18636 38.00 F 16 1 2 18637 12.00 F 16 1 1 18638 42.00 M 9 1 2 18639 35.00 M 16 1 2 18640 32.00 M 1 1 2 18641 45.00 M 10 1 2 18642 27.00 M 1 1 2 18643 9.00 F 13 1 1 18644 22.00 F 13 1 2 18645 9.00 M 7 1 1 18646 54.00 M 7 1 2 18647 16.00 M 10 1 1 18648 51.00 F 10 1 2 18649 24.00 F 10 1 2 18650 5.00 M 9 1 1 18651 45.00 M 9 1 2 18652 50.00 M 10 1 2 18653 20.00 F 7 1 2 18654 37.00 M 15 1 2 18655 56.00 F 10 1 2 18656 20.00 M 10 1 2 18657 25.00 F 10 1 2 18658 28.00 F 8 1 2 18659 24.00 F 8 1 2 18660 29.00 F 9 1 2 18661 55.00 M 9 1 2 18662 51.00 M 10 1 2 18663 20.00 F 10 1 2 18664 6.00 F 10 1 1 18665 10.00 M 10 1 1 18666 34.00 F 10 1 2 18667 68.00 F 10 1 3 18668 31.00 M 7 1 2 18669 23.00 F 8 1 2 18670 26.00 F 9 1 2 18671 56.00 F 18 1 2 18672 35.00 M 16 1 2 18673 63.00 F 20 1 3 18674 33.00 M 16 1 2 18675 22.00 F 16 1 2 18676 36.00 M 16 1 2 18677 33.00 F 17 1 2 18678 34.00 F 16 1 2 18679 19.00 F 16 1 2 18680 67.00 M 17 1 3 18681 35.00 M 18 1 2 18682 44.00 M 17 1 2 18683 49.00 M 16 1 2 18684 24.00 M 17 1 2 18685 46.00 M 17 1 2 18686 24.00 F 17 1 2 18687 36.00 M 7 1 2 18688 59.00 M 17 1 2 18689 57.00 M 17 1 2 18690 54.00 M 17 1 2 18691 18.00 F 16 1 2 18692 40.00 F 16 1 2 18693 32.00 F 16 1 2 18694 4.00 M 16 1 1 18695 35.00 M 18 1 2 18696 28.00 M 16 1 2 18697 15.00 F 16 1 1 18698 30.00 F 10 1 2 18699 13.00 M 10 1 1 18700 25.00 F 16 1 2 18701 5.00 M 11 1 1 18702 23.00 M 16 1 2 18703 30.00 M 14 1 2 18704 26.00 F 14 1 2 18705 14.00 F 14 1 1 18706 31.00 F 18 1 2 18707 37.00 M 14 1 2 18708 29.00 F 10 1 2 18709 6.00 F 10 1 1 18710 40.00 M 10 1 2 18711 10.00 F 10 1 1 18712 25.00 F 14 1 2 18713 11.00 F 18 1 1 18714 58.00 F 14 1 2 18715 18.00 M 14 1 2 18716 35.00 M 18 1 2 18717 45.00 F 10 1 2 18718 55.00 M 10 1 2 18719 25.00 F 10 1 2 18720 3.00 M 10 1 1 18721 15.00 F 25 1 1 18722 6.00 F 10 1 1 18723 26.00 M 14 1 2 18724 23.00 F 14 1 2 18725 35.00 M 25 1 2 18726 6.00 M 10 1 1 18727 20.00 M 14 1 2 18728 48.00 F 9 1 2 18729 19.00 M 18 1 2 18730 2.00 M 9 1 1 18731 37.00 M 8 1 2 18732 23.00 M 9 1 2 18733 9.00 M 9 1 1 18734 13.00 F 8 1 1 18735 4.00 M 8 1 1 18736 50.00 M 8 1 2 18737 23.00 F 8 1 2 18738 32.00 F 8 1 2 18739 4.00 M 8 1 1 18740 3.00 M 8 1 1 18741 2.00 F 15 1 1 18742 41.00 F 15 1 2 18743 45.00 F 15 1 2 18744 7.00 M 10 1 1 18745 9.00 F 10 1 1 18746 1.00 F 7 1 1 18747 9.00 M 7 1 1 18748 35.00 F 7 1 2 18749 30.00 M 7 1 2 18750 28.00 F 7 1 2 18751 31.00 F 7 1 2 18752 44.00 M 7 1 2 18753 4.00 M 7 1 1 18754 11.00 F 7 1 1 18755 10.00 M 7 1 1 18756 30.00 M 7 1 2 18757 25.00 M 13 1 2 18758 34.00 M 8 1 2 18759 36.00 F 8 1 2 18760 43.00 M 8 1 2 18761 10.00 F 9 1 1 18762 61.00 M 24 1 3 18763 5.00 F 6 1 1 18764 50.00 M 10 1 2 18765 7.00 F 6 1 1 18766 45.00 M 10 1 2 18767 49.00 M 13 1 2 18768 48.00 M 8 1 2 18769 14.00 F 8 1 1 18770 43.00 M 8 1 2 18771 40.00 F 8 1 2 18772 28.00 F 6 1 2 18773 52.00 M 13 1 2 18774 8.00 M 9 1 1 18775 10.00 F 9 1 1 18776 1.00 M 6 1 1 18777 27.00 M 9 1 2 18778 62.00 M 15 1 3 18779 29.00 F 13 1 2 18780 6.00 M 9 1 1 18781 43.00 M 10 1 2 18782 28.00 M 10 1 2 18783 49.00 M 24 1 2 18784 10.00 M 14 1 1 18785 34.00 M 14 1 2 18786 44.00 M 14 1 2 18787 13.00 M 14 1 1 18788 22.00 M 14 1 2 18789 35.00 F 14 1 2 18790 15.00 M 14 1 1 18791 63.00 M 9 1 3 18792 4.00 F 20 1 1 18793 3.00 F 9 1 1 18794 23.00 M 15 1 2 18795 50.00 M 8 1 2 18796 22.00 M 15 1 2 18797 58.00 M 8 1 2 18798 25.00 M 15 1 2 18799 34.00 M 8 1 2 18800 28.00 M 8 1 2 18801 23.00 M 8 1 2 18802 35.00 M 8 1 2 18803 30.00 M 15 1 2 18804 48.00 F 8 1 2 18805 44.00 F 8 1 2 18806 27.00 M 8 1 2 18807 24.00 M 8 1 2 18808 45.00 M 8 1 2 18809 38.00 M 8 1 2 18810 27.00 M 15 1 2 18811 36.00 M 8 1 2 18812 39.00 M 8 1 2 18813 25.00 M 15 1 2 18814 23.00 M 8 1 2 18815 5.00 F 7 1 1 18816 39.00 F 7 1 2 18817 21.00 F 7 1 2 18818 60.00 M 7 1 3 18819 69.00 M 7 1 3 18820 19.00 F 7 1 2 18821 18.00 M 7 1 2 18822 30.00 M 6 1 2 18823 52.00 M 9 1 2 18824 50.00 M 9 1 2 18825 15.00 F 11 1 1 18826 50.00 F 11 1 2 18827 21.00 M 11 1 2 18828 32.00 M 11 1 2 18829 26.00 M 11 1 2 18830 32.00 F 11 1 2 18831 20.00 M 11 1 2 18832 25.00 M 11 1 2 18833 55.00 M 21 1 2 18834 45.00 F 11 1 2 18835 43.00 M 11 1 2 18836 26.00 F 11 1 2 18837 3.00 F 11 1 1 18838 29.00 F 11 1 2 18839 72.00 F 13 1 3 18840 12.00 M 11 1 1 18841 40.00 M 11 1 2 18842 23.00 M 11 1 2 18843 25.00 F 8 1 2 18844 30.00 M 5 1 2 18845 32.00 F 5 1 2 18846 27.00 M 7 1 2 18847 25.00 M 8 1 2 18848 37.00 F 8 1 2 18849 53.00 F 8 1 2 18850 30.00 M 11 1 2 18851 56.00 M 10 1 2 18852 5.00 M 9 1 1 18853 28.00 M 9 1 2 18854 30.00 M 10 1 2 18855 30.00 F 7 1 2 18856 8.00 M 9 1 1 18857 37.00 M 10 1 2 18858 23.00 M 10 1 2 18859 40.00 M 13 1 2 18860 45.00 F 13 1 2 18861 23.00 M 13 1 2 18862 39.00 M 10 1 2 18863 28.00 F 8 1 2 18864 21.00 M 8 1 2 18865 42.00 F 14 1 2 18866 18.00 F 12 1 2 18867 35.00 F 12 1 2 18868 23.00 F 8 1 2 18869 37.00 M 9 1 2 18870 46.00 F 9 1 2 18871 52.00 M 9 1 2 18872 48.00 M 9 1 2 18873 30.00 M 9 1 2 18874 34.00 M 9 1 2 18875 30.00 M 12 1 2 18876 35.00 F 9 1 2 18877 40.00 F 9 1 2 18878 40.00 F 9 1 2 18879 15.00 M 9 1 1 18880 30.00 M 9 1 2 18881 60.00 M 9 1 3 18882 32.00 F 12 1 2 18883 41.00 F 8 1 2 18884 25.00 M 9 1 2 18885 32.00 M 9 1 2 18886 34.00 M 9 1 2 18887 52.00 M 9 1 2 18888 22.00 M 14 1 2 18889 42.00 M 23 1 2 18890 50.00 M 14 1 2 18891 31.00 M 12 1 2 18892 29.00 M 12 1 2 18893 40.00 M 12 1 2 18894 16.00 M 12 1 1 18895 38.00 F 12 1 2 18896 32.00 M 12 1 2 18897 27.00 M 9 1 2 18898 28.00 M 12 1 2 18899 22.00 F 9 1 2 18900 3.00 F 12 1 1 18901 64.00 M 12 1 3 18902 37.00 M 14 1 2 18903 48.00 F 9 1 2 18904 26.00 M 15 1 2 18905 22.00 M 14 1 2 18906 70.00 M 14 1 3 18907 30.00 F 14 1 2 18908 8.00 M 12 1 1 18909 7.00 F 9 1 1 18910 30.00 F 15 1 2 18911 45.00 F 16 1 2 18912 65.00 M 16 1 3 18913 17.00 M 9 1 1 18914 17.00 F 9 1 1 18915 31.00 F 11 1 2 18916 24.00 M 24 1 2 18917 30.00 M 10 1 2 18918 26.00 F 10 1 2 18919 7.00 M 10 1 1 18920 38.00 F 10 1 2 18921 36.00 F 10 1 2 18922 35.00 F 9 1 2 18923 30.00 M 7 1 2 18924 11.00 M 7 1 1 18925 12.00 M 17 1 1 18926 11.00 F 9 1 1 18927 54.00 M 24 1 2 18928 52.00 F 10 1 2 18929 1.00 F 7 1 1 18930 40.00 F 17 1 2 18931 54.00 M 17 1 2 18932 36.00 F 3 1 2 18933 26.00 M 10 1 2 18934 33.00 M 10 1 2 18935 3.00 F 10 1 1 18936 11.00 F 11 1 1 18937 40.00 F 11 1 2 18938 14.00 M 11 1 1 18939 13.00 F 11 1 1 18940 65.00 M 11 1 3 18941 22.00 F 11 1 2 18942 60.00 M 11 1 3 18943 75.00 F 11 1 3 18944 26.00 M 10 1 2 18945 23.00 F 10 1 2 18946 27.00 F 10 1 2 18947 1.00 F 21 1 1 18948 12.00 M 15 1 1 18949 48.00 M 24 1 2 18950 10.00 F 10 1 1 18951 15.00 F 10 1 1 18952 8.00 F 24 1 1 18953 41.00 M 10 1 2 18954 17.00 F 10 1 1 18955 4.00 M 9 1 1 18956 66.00 M 21 1 3 18957 7.00 F 10 1 1 18958 50.00 F 10 1 2 18959 22.00 M 10 1 2 18960 30.00 M 7 1 2 18961 6.00 F 7 1 1 18962 8.00 F 7 1 1 18963 7.00 M 9 1 1 18964 25.00 F 7 1 2 18965 42.00 M 7 1 2 18966 34.00 F 7 1 2 18967 40.00 M 10 1 2 18968 47.00 F 11 1 2 18969 42.00 M 22 1 2 18970 54.00 M 9 1 2 18971 51.00 M 9 1 2 18972 55.00 F 21 1 2 18973 55.00 F 7 1 2 18974 2.00 M 7 1 1 18975 25.00 F 16 1 2 18976 50.00 F 6 1 2 18977 31.00 M 6 1 2 18978 24.00 M 6 1 2 18979 49.00 M 6 1 2 18980 45.00 M 6 1 2 18981 30.00 M 11 1 2 18982 28.00 M 11 1 2 18983 35.00 F 7 1 2 18984 25.00 M 13 1 2 18985 30.00 M 8 1 2 18986 24.00 M 7 1 2 18987 37.00 M 11 1 2 18988 28.00 F 7 1 2 18989 40.00 M 9 1 2 18990 36.00 F 22 1 2 18991 5.00 F 11 1 1 18992 24.00 M 13 1 2 18993 28.00 F 11 1 2 18994 2.00 M 8 1 1 18995 28.00 M 13 1 2 18996 65.00 M 22 1 3 18997 38.00 M 11 1 2 18998 43.00 M 8 1 2 18999 56.00 M 13 1 2 19000 48.00 F 13 1 2 19001 29.00 M 13 1 2 19002 64.00 M 11 1 3 19003 25.00 M 22 1 2 19004 40.00 M 7 1 2 19005 30.00 M 7 1 2 19006 43.00 M 13 1 2 19007 49.00 M 11 1 2 19008 36.00 M 7 1 2 19009 41.00 F 7 1 2 19010 23.00 M 8 1 2 19011 18.00 M 13 1 2 19012 22.00 M 8 1 2 19013 26.00 M 8 1 2 19014 34.00 M 8 1 2 19015 25.00 M 13 1 2 19016 44.00 M 7 1 2 19017 57.00 M 8 1 2 19018 46.00 F 13 1 2 19019 33.00 M 8 1 2 19020 43.00 M 14 1 2 19021 22.00 M 7 1 2 19022 23.00 M 7 1 2 19023 22.00 M 7 1 2 19024 78.00 M 14 1 3 19025 22.00 M 9 1 2 19026 34.00 F 8 1 2 19027 24.00 F 8 1 2 19028 34.00 F 8 1 2 19029 27.00 F 8 1 2 19030 38.00 M 8 1 2 19031 21.00 F 8 1 2 19032 55.00 F 8 1 2 19033 50.00 M 8 1 2 19034 32.00 M 8 1 2 19035 82.00 F 6 1 3 19036 60.00 F 8 1 3 19037 30.00 F 8 1 2 19038 29.00 F 6 1 2 19039 35.00 M 8 1 2 19040 20.00 M 8 1 2 19041 40.00 M 8 1 2 19042 8.00 M 8 1 1 19043 41.00 M 8 1 2 19044 7.00 F 9 1 1 19045 32.00 F 8 1 2 19046 37.00 M 8 1 2 19047 63.00 M 9 1 3 19048 54.00 M 9 1 2 19049 27.00 F 6 1 2 19050 36.00 M 7 1 2 19051 36.00 F 8 1 2 19052 23.00 F 14 1 2 19053 49.00 M 14 1 2 19054 26.00 F 19 1 2 19055 30.00 F 14 1 2 19056 37.00 M 18 1 2 19057 41.00 M 18 1 2 19058 40.00 M 19 1 2 19059 32.00 F 14 1 2 19060 7.00 F 19 1 1 19061 10.00 M 14 1 1 19062 60.00 M 14 1 3 19063 33.00 F 18 1 2 19064 13.00 F 14 1 1 19065 10.00 M 19 1 1 19066 56.00 F 19 1 2 19067 35.00 F 14 1 2 19068 38.00 M 19 1 2 19069 13.00 F 14 1 1 19070 7.00 M 19 1 1 19071 42.00 M 12 1 2 19072 41.00 F 12 1 2 19073 17.00 F 12 1 1 19074 38.00 M 12 1 2 19075 65.00 M 12 1 3 19076 14.00 F 8 1 1 19077 26.00 F 11 1 2 19078 50.00 F 23 1 2 19079 20.00 F 9 1 2 19080 65.00 F 9 1 3 19081 42.00 M 10 1 2 19082 28.00 F 7 1 2 19083 18.00 F 7 1 2 19084 20.00 F 4 1 2 19085 22.00 F 4 1 2 19086 21.00 F 4 1 2 19087 23.00 F 4 1 2 19088 54.00 F 7 1 2 19089 12.00 M 7 1 1 19090 60.00 F 7 1 3 19091 24.00 F 7 1 2 19092 48.00 F 7 1 2 19093 65.00 M 7 1 3 19094 35.00 M 12 1 2 19095 55.00 M 12 1 2 19096 37.00 F 13 1 2 19097 16.00 F 13 1 1 19098 31.00 M 13 1 2 19099 59.00 M 13 1 2 19100 25.00 M 8 1 2 19101 15.00 M 8 1 1 19102 27.00 M 8 1 2 19103 24.00 F 14 1 2 19104 50.00 M 10 1 2 19105 49.00 M 8 1 2 19106 40.00 F 8 1 2 19107 55.00 F 18 1 2 19108 42.00 F 18 1 2 19109 26.00 M 18 1 2 19110 35.00 M 18 1 2 19111 41.00 M 18 1 2 19112 61.00 F 15 1 3 19113 50.00 F 15 1 2 19114 64.00 F 16 1 3 19115 53.00 M 15 1 2 19116 35.00 M 18 1 2 19117 36.00 M 15 1 2 19118 53.00 M 14 1 2 19119 32.00 F 14 1 2 19120 34.00 M 15 1 2 19121 55.00 M 17 1 2 19122 61.00 F 17 1 3 19123 40.00 M 14 1 2 19124 29.00 F 14 1 2 19125 59.00 F 14 1 2 19126 61.00 F 16 1 3 19127 32.00 M 16 1 2 19128 33.00 M 17 1 2 19129 24.00 M 14 1 2 19130 45.00 F 16 1 2 19131 65.00 M 16 1 3 19132 26.00 M 14 1 2 19133 54.00 M 16 1 2 19134 17.00 F 16 1 1 19135 13.00 F 16 1 1 19136 12.00 F 16 1 1 19137 16.00 F 16 1 1 19138 22.00 F 16 1 2 19139 42.00 F 16 1 2 19140 21.00 F 16 1 2 19141 45.00 F 16 1 2 19142 18.00 F 14 1 2 19143 15.00 M 14 1 1 19144 27.00 F 14 1 2 19145 7.00 F 16 1 1 19146 45.00 F 16 1 2 19147 26.00 M 14 1 2 19148 19.00 M 16 1 2 19149 33.00 M 7 1 2 19150 19.00 F 7 1 2 19151 62.00 M 14 1 3 19152 55.00 F 7 1 2 19153 25.00 M 7 1 2 19154 30.00 M 14 1 2 19155 31.00 F 7 1 2 19156 24.00 M 7 1 2 19157 45.00 F 7 1 2 19158 33.00 M 7 1 2 19159 1.00 F 7 1 1 19160 17.00 M 7 1 1 19161 15.00 M 16 1 1 19162 25.00 M 7 1 2 19163 5.00 F 16 1 1 19164 60.00 M 14 1 3 19165 70.00 M 16 1 3 19166 42.00 M 16 1 2 19167 35.00 M 16 1 2 19168 70.00 M 15 1 3 19169 69.00 M 16 1 3 19170 36.00 M 15 1 2 19171 53.00 M 14 1 2 19172 1.00 F 15 1 1 19173 22.00 F 14 1 2 19174 50.00 F 15 1 2 19175 46.00 F 15 1 2 19176 45.00 F 15 1 2 19177 47.00 M 14 1 2 19178 56.00 F 15 1 2 19179 25.00 F 14 1 2 19180 15.00 F 14 1 1 19181 46.00 F 16 1 2 19182 52.00 M 14 1 2 19183 48.00 M 14 1 2 19184 75.00 M 14 1 3 19185 72.00 F 14 1 3 19186 29.00 M 15 1 2 19187 53.00 F 14 1 2 19188 21.00 F 15 1 2 19189 31.00 F 14 1 2 19190 47.00 M 15 1 2 19191 28.00 M 15 1 2 19192 44.00 M 15 1 2 19193 49.00 F 15 1 2 19194 23.00 M 14 1 2 19195 33.00 F 16 1 2 19196 57.00 M 15 1 2 19197 22.00 M 15 1 2 19198 66.00 F 14 1 3 19199 99.00 F 15 1 3 19200 28.00 M 14 1 2 19201 70.00 F 14 1 3 19202 31.00 F 14 1 2 19203 74.00 M 15 1 3 19204 68.00 F 16 1 3 19205 51.00 M 8 1 2 19206 50.00 M 7 1 2 19207 63.00 M 11 1 3 19208 57.00 M 11 1 2 19209 33.00 M 11 1 2 19210 22.00 F 11 1 2 19211 27.00 F 9 1 2 19212 31.00 M 9 1 2 19213 32.00 F 6 1 2 19214 67.00 M 23 1 3 19215 37.00 F 9 1 2 19216 50.00 F 23 1 2 19217 26.00 M 10 1 2 19218 50.00 M 9 1 2 19219 20.00 F 10 1 2 19220 20.00 M 9 1 2 19221 19.00 F 10 1 2 19222 23.00 M 9 1 2 19223 62.00 F 9 1 3 19224 30.00 F 10 1 2 19225 11.00 M 10 1 1 19226 32.00 M 12 1 2 19227 29.00 M 9 1 2 19228 19.00 M 9 1 2 19229 35.00 F 17 1 2 19230 48.00 M 9 1 2 19231 40.00 F 23 1 2 19232 40.00 F 9 1 2 19233 20.00 F 9 1 2 19234 18.00 F 9 1 2 19235 8.00 M 9 1 1 19236 27.00 F 9 1 2 19237 22.00 F 9 1 2 19238 21.00 M 13 1 2 19239 26.00 F 9 1 2 19240 35.00 M 9 1 2 19241 48.00 M 14 1 2 19242 34.00 M 9 1 2 19243 39.00 M 11 1 2 19244 37.00 F 10 1 2 19245 9.00 M 9 1 1 19246 18.00 F 9 1 2 19247 25.00 F 9 1 2 19248 6.00 M 9 1 1 19249 0.50 M 9 1 1 19250 35.00 M 7 1 2 19251 35.00 M 9 1 2 19252 28.00 M 10 1 2 19253 24.00 F 17 1 2 19254 40.00 F 10 1 2 19255 26.00 F 9 1 2 19256 34.00 M 9 1 2 19257 20.00 F 9 1 2 19258 55.00 M 14 1 2 19259 68.00 F 10 1 3 19260 45.00 F 14 1 2 19261 28.00 M 11 1 2 19262 25.00 F 11 1 2 19263 69.00 F 4 1 3 19264 36.00 F 7 1 2 19265 24.00 M 16 1 2 19266 45.00 M 7 1 2 19267 26.00 F 7 1 2 19268 65.00 F 13 1 3 19269 43.00 M 8 1 2 19270 48.00 M 8 1 2 19271 40.00 F 8 1 2 19272 44.00 F 17 1 2 19273 48.00 M 19 1 2 19274 23.00 M 12 1 2 19275 16.00 F 12 1 1 19276 85.00 F 17 1 3 19277 81.00 M 11 1 3 19278 25.00 M 11 1 2 19279 18.00 M 8 1 2 19280 29.00 M 15 1 2 19281 50.00 F 6 1 2 19282 23.00 F 8 1 2 19283 4.00 F 8 1 1 19284 42.00 F 8 1 2 19285 59.00 M 10 1 2 19286 17.00 F 8 1 1 19287 36.00 M 8 1 2 19288 27.00 M 8 1 2 19289 35.00 F 8 1 2 19290 44.00 M 8 1 2 19291 38.00 M 17 1 2 19292 49.00 M 15 1 2 19293 17.00 M 15 1 1 19294 39.00 F 15 1 2 19295 18.00 M 15 1 2 19296 30.00 M 8 1 2 19297 57.00 M 8 1 2 19298 21.00 M 8 1 2 19299 21.00 F 7 1 2 19300 23.00 F 9 1 2 19301 38.00 M 9 1 2 19302 54.00 M 9 1 2 19303 31.00 M 9 1 2 19304 47.00 M 9 1 2 19305 18.00 M 9 1 2 19306 50.00 M 9 1 2 19307 25.00 M 9 1 2 19308 55.00 M 15 1 2 19309 60.00 M 17 1 3 19310 62.00 M 9 1 3 19311 32.00 M 9 1 2 19312 46.00 M 6 1 2 19313 54.00 M 9 1 2 19314 6.00 F 12 1 1 19315 65.00 M 12 1 3 19316 3.00 F 7 1 1 19317 2.00 M 12 1 1 19318 24.00 F 12 1 2 19319 45.00 F 12 1 2 19320 29.00 F 18 1 2 19321 4.00 F 18 1 1 19322 13.00 F 18 1 1 19323 8.00 M 18 1 1 19324 59.00 M 18 1 2 19325 37.00 M 10 1 2 19326 40.00 F 10 1 2 19327 16.00 F 18 1 1 19328 33.00 F 18 1 2 19329 31.00 M 18 1 2 19330 56.00 M 18 1 2 19331 50.00 F 18 1 2 19332 42.00 F 10 1 2 19333 16.00 M 18 1 1 19334 12.00 F 18 1 1 19335 28.00 M 10 1 2 19336 23.00 F 10 1 2 19337 23.00 M 12 1 2 19338 31.00 M 8 1 2 19339 27.00 M 10 1 2 19340 40.00 M 8 1 2 19341 42.00 M 10 1 2 19342 36.00 M 8 1 2 19343 26.00 M 21 1 2 19344 34.00 M 10 1 2 19345 34.00 M 10 1 2 19346 39.00 M 10 1 2 19347 43.00 M 10 1 2 19348 43.00 M 8 1 2 19349 31.00 M 12 1 2 19350 40.00 M 10 1 2 19351 36.00 M 12 1 2 19352 25.00 M 10 1 2 19353 50.00 F 10 1 2 19354 29.00 F 10 1 2 19355 21.00 F 10 1 2 19356 60.00 M 10 1 3 19357 24.00 F 10 1 2 19358 21.00 M 12 1 2 19359 19.00 F 6 1 2 19360 32.00 M 10 1 2 19361 24.00 M 12 1 2 19362 56.00 M 10 1 2 19363 28.00 M 10 1 2 19364 35.00 F 10 1 2 19365 39.00 F 12 1 2 19366 38.00 F 10 1 2 19367 60.00 M 10 1 3 19368 27.00 F 10 1 2 19369 30.00 M 8 1 2 19370 0.30 M 8 1 1 19371 42.00 M 8 1 2 19372 19.00 M 5 1 2 19373 28.00 F 5 1 2 19374 45.00 F 5 1 2 19375 47.00 M 10 1 2 19376 46.00 M 10 1 2 19377 65.00 F 10 1 3 19378 45.00 F 10 1 2 19379 44.00 F 10 1 2 19380 43.00 F 7 1 2 19381 25.00 F 10 1 2 19382 22.00 F 7 1 2 19383 20.00 F 7 1 2 19384 16.00 F 7 1 1 19385 13.00 M 7 1 1 19386 15.00 F 7 1 1 19387 8.00 M 10 1 1 19388 48.00 M 10 1 2 19389 23.00 M 7 1 2 19390 24.00 M 7 1 2 19391 16.00 M 7 1 1 19392 19.00 M 7 1 2 19393 47.00 M 7 1 2 19394 62.00 F 7 1 3 19395 48.00 M 7 1 2 19396 70.00 M 7 1 3 19397 70.00 F 7 1 3 19398 38.00 M 7 1 2 19399 42.00 M 7 1 2 19400 26.00 M 7 1 2 19401 68.00 F 7 1 3 19402 28.00 M 7 1 2 19403 24.00 M 7 1 2 19404 24.00 M 7 1 2 19405 19.00 F 7 1 2 19406 30.00 M 7 1 2 19407 60.00 F 7 1 3 19408 38.00 M 7 1 2 19409 26.00 M 7 1 2 19410 38.00 F 7 1 2 19411 10.00 M 7 1 1 19412 50.00 M 7 1 2 19413 52.00 M 7 1 2 19414 40.00 M 7 1 2 19415 20.00 F 7 1 2 19416 8.00 F 7 1 1 19417 75.00 M 7 1 3 19418 65.00 F 7 1 3 19419 75.00 F 7 1 3 19420 26.00 M 7 1 2 19421 38.00 F 7 1 2 19422 64.00 M 16 1 3 19423 62.00 F 7 1 3 19424 14.00 M 7 1 1 19425 6.00 M 7 1 1 19426 38.00 M 7 1 2 19427 13.00 F 7 1 1 19428 30.00 M 7 1 2 19429 30.00 F 7 1 2 19430 55.00 F 3 1 2 19431 45.00 F 7 1 2 19432 40.00 F 7 1 2 19433 4.00 F 7 1 1 19434 33.00 M 7 1 2 19435 7.00 M 7 1 1 19436 24.00 M 7 1 2 19437 21.00 F 7 1 2 19438 28.00 M 7 1 2 19439 30.00 M 7 1 2 19440 12.00 F 7 1 1 19441 20.00 F 7 1 2 19442 9.00 F 7 1 1 19443 31.00 M 8 1 2 19444 36.00 M 8 1 2 19445 24.00 M 8 1 2 19446 33.00 M 8 1 2 19447 30.00 M 8 1 2 19448 23.00 M 8 1 2 19449 22.00 M 8 1 2 19450 42.00 M 8 1 2 19451 54.00 F 5 1 2 19452 49.00 M 8 1 2 19453 53.00 M 8 1 2 19454 52.00 M 8 1 2 19455 22.00 M 8 1 2 19456 30.00 M 8 1 2 19457 24.00 M 8 1 2 19458 28.00 M 8 1 2 19459 23.00 M 8 1 2 19460 22.00 M 8 1 2 19461 25.00 M 8 1 2 19462 21.00 M 6 1 2 19463 49.00 F 5 1 2 19464 19.00 M 8 1 2 19465 38.00 M 9 1 2 19466 30.00 F 9 1 2 19467 54.00 F 14 1 2 19468 51.00 M 9 1 2 19469 51.00 M 9 1 2 19470 38.00 F 11 1 2 19471 42.00 M 11 1 2 19472 15.00 M 11 1 1 19473 27.00 M 11 1 2 19474 17.00 M 11 1 1 19475 50.00 F 9 1 2 19476 19.00 M 9 1 2 19477 54.00 M 9 1 2 19478 33.00 M 11 1 2 19479 36.00 M 9 1 2 19480 20.00 M 9 1 2 19481 21.00 F 19 1 2 19482 55.00 F 9 1 2 19483 31.00 F 9 1 2 19484 25.00 F 9 1 2 19485 32.00 F 9 1 2 19486 4.00 F 9 1 1 19487 70.00 F 9 1 3 19488 42.00 M 9 1 2 19489 20.00 M 9 1 2 19490 32.00 F 9 1 2 19491 52.00 M 9 1 2 19492 32.00 F 9 1 2 19493 21.00 F 9 1 2 19494 60.00 F 9 1 3 19495 23.00 M 9 1 2 19496 35.00 M 9 1 2 19497 19.00 M 9 1 2 19498 20.00 F 9 1 2 19499 22.00 F 9 1 2 19500 72.00 F 9 1 3 19501 22.00 F 9 1 2 19502 20.00 M 9 1 2 19503 40.00 F 9 1 2 19504 48.00 F 9 1 2 19505 45.00 F 9 1 2 19506 80.00 F 9 1 3 19507 24.00 F 19 1 2 19508 28.00 M 9 1 2 19509 42.00 M 9 1 2 19510 30.00 F 12 1 2 19511 60.00 F 14 1 3 19512 35.00 M 13 1 2 19513 12.00 F 6 1 1 19514 21.00 M 14 1 2 19515 32.00 M 21 1 2 19516 35.00 M 14 1 2 19517 45.00 F 13 1 2 19518 36.00 M 13 1 2 19519 60.00 F 12 1 3 19520 21.00 F 14 1 2 19521 30.00 F 15 1 2 19522 22.00 F 14 1 2 19523 62.00 M 13 1 3 19524 52.00 F 14 1 2 19525 60.00 M 15 1 3 19526 69.00 M 14 1 3 19527 45.00 F 12 1 2 19528 54.00 M 14 1 2 19529 24.00 F 15 1 2 19530 54.00 F 14 1 2 19531 53.00 M 12 1 2 19532 27.00 F 13 1 2 19533 68.00 M 22 1 3 19534 50.00 F 14 1 2 19535 36.00 M 14 1 2 19536 41.00 M 14 1 2 19537 61.00 M 14 1 3 19538 37.00 F 12 1 2 19539 34.00 M 13 1 2 19540 34.00 F 13 1 2 19541 44.00 F 13 1 2 19542 65.00 F 13 1 3 19543 15.00 F 14 1 1 19544 70.00 F 14 1 3 19545 32.00 F 13 1 2 19546 53.00 F 14 1 2 19547 54.00 M 10 1 2 19548 48.00 F 10 1 2 19549 45.00 F 12 1 2 19550 20.00 F 12 1 2 19551 15.00 F 12 1 1 19552 4.00 M 12 1 1 19553 60.00 M 12 1 3 19554 40.00 M 12 1 2 19555 30.00 M 14 1 2 19556 40.00 F 14 1 2 19557 16.00 M 14 1 1 19558 16.00 M 14 1 1 19559 30.00 F 14 1 2 19560 19.00 M 7 1 2 19561 28.00 M 7 1 2 19562 35.00 F 17 1 2 19563 25.00 M 14 1 2 19564 35.00 M 14 1 2 19565 30.00 F 14 1 2 19566 18.00 M 14 1 2 19567 25.00 F 7 1 2 19568 9.00 M 8 1 1 19569 40.00 F 9 1 2 19570 28.00 F 16 1 2 19571 62.00 M 9 1 3 19572 28.00 F 17 1 2 19573 10.00 F 16 1 1 19574 60.00 F 22 1 3 19575 19.00 M 14 1 2 19576 40.00 F 10 1 2 19577 40.00 F 10 1 2 19578 50.00 M 10 1 2 19579 22.00 F 10 1 2 19580 30.00 M 9 1 2 19581 53.00 F 8 1 2 19582 55.00 M 9 1 2 19583 27.00 F 10 1 2 19584 31.00 M 10 1 2 19585 30.00 M 10 1 2 19586 24.00 F 10 1 2 19587 0.75 F 10 1 1 19588 2.00 F 16 1 1 19589 40.00 F 9 1 2 19590 8.00 M 10 1 1 19591 10.00 M 9 1 1 19592 44.00 M 9 1 2 19593 27.00 M 9 1 2 19594 24.00 F 16 1 2 19595 15.00 M 9 1 1 19596 9.00 F 9 1 1 19597 28.00 M 10 1 2 19598 25.00 F 3 1 2 19599 45.00 F 12 1 2 19600 23.00 F 21 1 2 19601 38.00 F 12 1 2 19602 6.00 F 14 1 1 19603 36.00 F 14 1 2 19604 12.00 F 5 1 1 19605 55.00 F 5 1 2 19606 56.00 M 5 1 2 19607 14.00 M 5 1 1 19608 45.00 F 5 1 2 19609 50.00 F 14 1 2 19610 36.00 M 5 1 2 19611 25.00 F 10 1 2 19612 58.00 F 10 1 2 19613 0.41 F 10 1 1 19614 33.00 M 10 1 2 19615 17.00 M 6 1 1 19616 43.00 F 7 1 2 19617 69.00 F 6 1 3 19618 50.00 M 6 1 2 19619 42.00 F 7 1 2 19620 19.00 F 6 1 2 19621 45.00 M 6 1 2 19622 29.00 F 12 1 2 19623 35.00 M 12 1 2 19624 65.00 M 10 1 3 19625 75.00 F 12 1 3 19626 27.00 M 11 1 2 19627 28.00 F 11 1 2 19628 53.00 F 11 1 2 19629 6.00 M 11 1 1 19630 31.00 F 11 1 2 19631 55.00 M 13 1 2 19632 24.00 M 11 1 2 19633 21.00 F 12 1 2 19634 33.00 M 12 1 2 19635 68.00 F 12 1 3 19636 6.00 F 12 1 1 19637 31.00 M 12 1 2 19638 12.00 M 12 1 1 19639 5.00 M 12 1 1 19640 27.00 F 9 1 2 19641 8.00 F 8 1 1 19642 12.00 M 8 1 1 19643 34.00 F 8 1 2 19644 36.00 M 8 1 2 19645 25.00 M 8 1 2 19646 15.00 M 8 1 1 19647 30.00 F 8 1 2 19648 37.00 M 8 1 2 19649 66.00 M 7 1 3 19650 28.00 M 7 1 2 19651 50.00 F 7 1 2 19652 50.00 M 7 1 2 19653 60.00 M 7 1 3 19654 65.00 F 7 1 3 19655 60.00 F 7 1 3 19656 59.00 F 7 1 2 19657 30.00 F 7 1 2 19658 61.00 M 12 1 3 19659 65.00 F 7 1 3 19660 22.00 M 7 1 2 19661 45.00 M 7 1 2 19662 16.00 M 7 1 1 19663 62.00 M 7 1 3 19664 70.00 M 7 1 3 19665 10.00 F 7 1 1 19666 8.00 M 7 1 1 19667 48.00 F 7 1 2 19668 65.00 M 3 1 3 19669 25.00 M 7 1 2 19670 70.00 F 1 1 3 19671 30.00 F 7 1 2 19672 85.00 M 7 1 3 19673 29.00 M 7 1 2 19674 58.00 F 7 1 2 19675 31.00 F 7 1 2 19676 29.00 F 7 1 2 19677 4.00 F 7 1 1 19678 1.00 M 7 1 1 19679 34.00 F 7 1 2 19680 15.00 M 7 1 1 19681 23.00 M 7 1 2 19682 20.00 F 7 1 2 19683 26.00 F 7 1 2 19684 25.00 F 7 1 2 19685 59.00 M 9 1 2 19686 42.00 M 9 1 2 19687 58.00 F 9 1 2 19688 56.00 F 10 1 2 19689 65.00 F 10 1 3 19690 26.00 M 10 1 2 19691 25.00 M 10 1 2 19692 31.00 M 7 1 2 19693 39.00 M 7 1 2 19694 58.00 F 6 1 2 19695 14.00 M 6 1 1 19696 56.00 F 7 1 2 19697 60.00 F 7 1 3 19698 59.00 M 7 1 2 19699 47.00 M 7 1 2 19700 26.00 F 10 1 2 19701 18.00 M 13 1 2 19702 31.00 M 7 1 2 19703 71.00 F 10 1 3 19704 30.00 F 10 1 2 19705 24.00 F 3 1 2 19706 29.00 F 7 1 2 19707 65.00 M 18 1 3 19708 25.00 M 4 1 2 19709 35.00 M 11 1 2 19710 60.00 F 10 1 3 19711 38.00 F 10 1 2 19712 65.00 M 9 1 3 19713 21.00 F 9 1 2 19714 38.00 M 13 1 2 19715 37.00 M 14 1 2 19716 52.00 F 13 1 2 19717 23.00 M 13 1 2 19718 45.00 F 12 1 2 19719 32.00 M 12 1 2 19720 27.00 M 12 1 2 19721 62.00 F 15 1 3 19722 48.00 M 12 1 2 19723 26.00 M 13 1 2 19724 80.00 F 13 1 3 19725 44.00 M 12 1 2 19726 34.00 M 11 1 2 19727 58.00 M 11 1 2 19728 30.00 M 14 1 2 19729 6.00 F 13 1 1 19730 68.00 M 12 1 3 19731 23.00 F 14 1 2 19732 58.00 M 14 1 2 19733 56.00 M 13 1 2 19734 46.00 M 14 1 2 19735 47.00 M 12 1 2 19736 27.00 F 13 1 2 19737 35.00 F 12 1 2 19738 64.00 F 17 1 3 19739 52.00 F 17 1 2 19740 27.00 F 13 1 2 19741 30.00 F 12 1 2 19742 30.00 M 13 1 2 19743 36.00 M 13 1 2 19744 32.00 F 12 1 2 19745 25.00 F 11 1 2 19746 51.00 F 13 1 2 19747 55.00 F 13 1 2 19748 52.00 M 13 1 2 19749 36.00 F 13 1 2 19750 63.00 F 15 1 3 19751 59.00 M 13 1 2 19752 48.00 M 13 1 2 19753 27.00 M 13 1 2 19754 59.00 M 12 1 2 19755 81.00 M 13 1 3 19756 55.00 M 13 1 2 19757 55.00 M 12 1 2 19758 55.00 M 13 1 2 19759 16.00 M 13 1 1 19760 51.00 F 12 1 2 19761 23.00 M 11 1 2 19762 15.00 F 12 1 1 19763 49.00 F 11 1 2 19764 66.00 F 11 1 3 19765 24.00 F 11 1 2 19766 19.00 F 13 1 2 19767 16.00 F 11 1 1 19768 8.00 F 11 1 1 19769 37.00 F 11 1 2 19770 52.00 F 12 1 2 19771 70.00 M 13 1 3 19772 56.00 M 16 1 2 19773 55.00 M 12 1 2 19774 1.00 M 12 1 1 19775 27.00 F 12 1 2 19776 32.00 M 12 1 2 19777 4.00 F 12 1 1 19778 27.00 M 14 1 2 19779 73.00 M 14 1 3 19780 50.00 F 13 1 2 19781 23.00 F 14 1 2 19782 54.00 M 13 1 2 19783 11.00 M 13 1 1 19784 68.00 M 20 1 3 19785 38.00 M 13 1 2 19786 43.00 F 11 1 2 19787 30.00 M 12 1 2 19788 62.00 F 12 1 3 19789 50.00 M 12 1 2 19790 49.00 M 14 1 2 19791 57.00 F 13 1 2 19792 68.00 F 15 1 3 19793 23.00 F 11 1 2 19794 25.00 M 13 1 2 19795 35.00 M 13 1 2 19796 24.00 F 13 1 2 19797 65.00 M 12 1 3 19798 33.00 M 12 1 2 19799 49.00 F 13 1 2 19800 36.00 M 13 1 2 19801 57.00 M 14 1 2 19802 63.00 M 13 1 3 19803 48.00 M 13 1 2 19804 66.00 M 13 1 3 19805 85.00 M 13 1 3 19806 16.00 M 11 1 1 19807 42.00 M 13 1 2 19808 26.00 F 13 1 2 19809 27.00 M 13 1 2 19810 28.00 M 13 1 2 19811 75.00 M 13 1 3 19812 55.00 F 13 1 2 19813 50.00 M 13 1 2 19814 55.00 M 14 1 2 19815 24.00 M 13 1 2 19816 56.00 M 13 1 2 19817 54.00 F 13 1 2 19818 42.00 M 13 1 2 19819 56.00 F 12 1 2 19820 57.00 M 12 1 2 19821 27.00 M 17 1 2 19822 27.00 F 13 1 2 19823 57.00 M 15 1 2 19824 56.00 F 13 1 2 19825 55.00 F 13 1 2 19826 29.00 M 13 1 2 19827 28.00 M 13 1 2 19828 49.00 M 13 1 2 19829 65.00 M 14 1 3 19830 67.00 M 13 1 3 19831 31.00 F 13 1 2 19832 51.00 M 4 1 2 19833 4.00 M 13 1 1 19834 10.00 F 13 1 1 19835 8.00 M 13 1 1 19836 58.00 M 13 1 2 19837 59.00 M 13 1 2 19838 51.00 M 13 1 2 19839 59.00 M 14 1 2 19840 20.00 M 13 1 2 19841 27.00 M 14 1 2 19842 25.00 M 14 1 2 19843 17.00 M 14 1 1 19844 14.00 M 14 1 1 19845 14.00 F 14 1 1 19846 70.00 M 7 1 3 19847 26.00 F 7 1 2 19848 32.00 F 8 1 2 19849 59.00 M 8 1 2 19850 30.00 F 8 1 2 19851 38.00 M 8 1 2 19852 36.00 M 9 1 2 19853 42.00 M 12 1 2 19854 54.00 M 9 1 2 19855 43.00 M 17 1 2 19856 17.00 M 17 1 1 19857 32.00 M 9 1 2 19858 50.00 M 7 1 2 19859 42.00 M 7 1 2 19860 48.00 M 7 1 2 19861 22.00 M 7 1 2 19862 56.00 M 7 1 2 19863 38.00 M 7 1 2 19864 9.00 M 7 1 1 19865 13.00 F 7 1 1 19866 30.00 M 7 1 2 19867 31.00 F 7 1 2 19868 65.00 M 10 1 3 19869 62.00 M 9 1 3 19870 33.00 F 7 1 2 19871 64.00 M 7 1 3 19872 64.00 M 7 1 3 19873 30.00 M 11 1 2 19874 35.00 M 9 1 2 19875 56.00 M 11 1 2 19876 65.00 F 8 1 3 19877 25.00 M 17 1 2 19878 32.00 M 8 1 2 19879 23.00 F 8 1 2 19880 30.00 F 8 1 2 19881 30.00 F 8 1 2 19882 37.00 F 8 1 2 19883 30.00 F 8 1 2 19884 28.00 M 8 1 2 19885 36.00 F 15 1 2 19886 65.00 M 10 1 3 19887 50.00 F 11 1 2 19888 25.00 F 20 1 2 19889 28.00 M 7 1 2 19890 31.00 M 9 1 2 19891 29.00 M 7 1 2 19892 29.00 M 7 1 2 19893 30.00 M 9 1 2 19894 29.00 F 9 1 2 19895 58.00 M 9 1 2 19896 33.00 F 9 1 2 19897 38.00 F 9 1 2 19898 19.00 M 9 1 2 19899 14.00 F 9 1 1 19900 30.00 M 9 1 2 19901 13.00 F 9 1 1 19902 25.00 M 9 1 2 19903 15.00 F 9 1 1 19904 38.00 F 12 1 2 19905 24.00 M 9 1 2 19906 28.00 M 9 1 2 19907 41.00 F 9 1 2 19908 19.00 F 9 1 2 19909 19.00 F 9 1 2 19910 50.00 M 9 1 2 19911 24.00 M 9 1 2 19912 40.00 F 9 1 2 19913 32.00 M 9 1 2 19914 6.00 M 7 1 1 19915 3.00 M 7 1 1 19916 34.00 M 9 1 2 19917 37.00 M 9 1 2 19918 30.00 M 20 1 2 19919 31.00 M 20 1 2 19920 22.00 F 9 1 2 19921 77.00 M 11 1 3 19922 72.00 M 20 1 3 19923 32.00 M 9 1 2 19924 35.00 M 20 1 2 19925 50.00 F 20 1 2 19926 69.00 F 9 1 3 19927 42.00 F 21 1 2 19928 32.00 M 2 1 2 19929 25.00 M 8 1 2 19930 24.00 F 9 1 2 19931 3.00 M 9 1 1 19932 50.00 F 9 1 2 19933 25.00 M 10 1 2 19934 50.00 M 9 1 2 19935 7.00 F 9 1 1 19936 31.00 M 9 1 2 19937 3.00 M 9 1 1 19938 26.00 M 9 1 2 19939 45.00 F 9 1 2 19940 1.00 M 9 1 1 19941 30.00 F 12 1 2 19942 12.00 F 12 1 1 19943 40.00 M 13 1 2 19944 62.00 M 8 1 3 19945 39.00 M 8 1 2 19946 57.00 F 8 1 2 19947 30.00 F 9 1 2 19948 7.00 M 8 1 1 19949 30.00 F 9 1 2 19950 45.00 M 9 1 2 19951 2.00 F 15 1 1 19952 30.00 M 13 1 2 19953 18.00 F 13 1 2 19954 9.00 F 15 1 1 19955 29.00 M 10 1 2 19956 30.00 M 15 1 2 19957 8.00 M 16 1 1 19958 52.00 M 11 1 2 19959 12.00 M 9 1 1 19960 24.00 M 9 1 2 19961 24.00 M 9 1 2 19962 22.00 M 9 1 2 19963 1.00 M 14 1 1 19964 29.00 M 4 1 2 19965 40.00 F 9 1 2 19966 42.00 F 10 1 2 19967 28.00 F 13 1 2 19968 19.00 F 14 1 2 19969 21.00 M 14 1 2 19970 57.00 F 20 1 2 19971 54.00 M 13 1 2 19972 24.00 F 9 1 2 19973 25.00 M 13 1 2 19974 30.00 F 9 1 2 19975 64.00 F 11 1 3 19976 72.00 F 8 1 3 19977 43.00 M 8 1 2 19978 30.00 M 8 1 2 19979 35.00 F 8 1 2 19980 60.00 F 6 1 3 19981 75.00 M 12 1 3 19982 19.00 F 17 1 2 19983 13.00 M 17 1 1 19984 25.00 M 12 1 2 19985 50.00 M 17 1 2 19986 20.00 F 6 1 2 19987 20.00 F 6 1 2 19988 60.00 F 6 1 3 19989 20.00 F 6 1 2 19990 32.00 F 6 1 2 19991 28.00 F 6 1 2 19992 68.00 F 8 1 3 19993 20.00 F 6 1 2 19994 70.00 M 6 1 3 19995 30.00 M 6 1 2 19996 20.00 M 6 1 2 19997 52.00 F 6 1 2 19998 33.00 M 6 1 2 19999 56.00 M 9 1 2 [ reached 'max' / getOption(\"max.print\") -- omitted 6742 rows ]"},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-preparing-the-data","dir":"Articles > Interactive_tte_tutorial","previous_headings":"The study and the data","what":"Preparing the data","title":"visR","text":"analysis, slight modifications need implemented data. Since visR developed goal speed clinical development process, follows cdisc ADaM standards. Additionally, functions data-type sensitive give informative summaries proper data-type present. following changes necessary: per ADaM guidelines, event indicated 0 censoring indicated >0. data use, 2 stands event 1 stands censoring. Therefore, censoring values adjusted. column Age_Cat parsed integer Sex character. Converting factor result informative output. Furthermore, Age_Cat encoded numerical value 1-3. adding respective names categories, output readable.","code":"# 1. Adjust censoring data$Status = abs(data$Status - 2) # 2. Convert to factors and add the age categories data = data %>% dplyr::mutate( Age_Cat = recode_factor(Age_Cat, `1` = \"<18yr\", `2` =\"18yr-60yr\", `3` = \">60yr\"), Sex = as.factor(Sex)) data"},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-live-demo","dir":"Articles > Interactive_tte_tutorial","previous_headings":"The study and the data","what":"Live Demo","title":"visR","text":"","code":"# Live demo"},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-generation-of-summary-tables","dir":"Articles > Interactive_tte_tutorial","previous_headings":"","what":"Generation of summary tables","title":"visR","text":"typical clinical report contains demography table, detailing distribution patients across different arms clinical trial. Commonly reported variables age, sex baseline disease characteristics. table sometimes referred Table 1. visR provides set functions generate render tables. rendering, visR enforces specification data source title. functions demonstrated demonstrated . default, table generated whole population stratifier can defined. Exercise 1: Generate table using Sex stratifier. Exercise 2: Generate table using Sex Age_Cat stratifier. Exercise 3: Add additional footnote table.","code":"# Define meta-data DATASOURCE = \"https://github.com/vntkumar8/covid-survival\" TITLE = \"Indian Covid Data\" data %>% tableone(title = TITLE, datasource = DATASOURCE) # Have fun!"},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-note","dir":"Articles > Interactive_tte_tutorial","previous_headings":"Generation of summary tables","what":"Note","title":"visR","text":"notice tables contain NAs stratifier split . workaround first get table 1 data.frame, remove stratifier, render . examples demonstrates modular built compatibility visR. tableone command actually wrapper around functions get_tableone builds data.frame summary statistics render command displays nicely. (fixed upcoming release.)","code":"data %>% get_tableone(strata = c(\"Sex\", \"Age_Cat\")) %>% filter(variable != \"Sex\" & variable != \"Age_Cat\") %>% render(title = TITLE, datasource = DATASOURCE)"},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-fitting-survival-models","dir":"Articles > Interactive_tte_tutorial","previous_headings":"","what":"Fitting survival models","title":"visR","text":"mentioned, visR defaults following CDISC ADaM standard. data set uses well, estimating plotting survival curves particularly straightforward.","code":"# The dataset that comes with visR is cdisc ADaM compliant mod = visR::adtte %>% estimate_KM() # When no strata is specified, the overall patient cohort is analysed mod mod %>% visr()"},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-survival-analysis-of-the-indian-covid-data","dir":"Articles > Interactive_tte_tutorial","previous_headings":"Fitting survival models","what":"Survival analysis of the Indian COVID data","title":"visR","text":"Since ADaM standards utilized beyond clinical trial analysis reporting,, functions visR parameters allowing specification respective column names without modifying actual data. model estimated, different summary statistics easy get_ Exercise 1: Calculate quantiles model.","code":"mod = data %>% estimate_KM(strata = \"Sex\", CNSR = \"Status\", AVAL = \"Stay\") mod mod %>% get_pvalue() # Have fun!"},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-plotting-survival-models","dir":"Articles > Interactive_tte_tutorial","previous_headings":"","what":"Plotting survival models","title":"visR","text":"survival models can easily plotted using visR. visR function provides several convenient functions adjust aesthetics plot. Exercise 1: Change stratifier survival model Age_Cat. Exercise 2: Plot new model.","code":"mod %>% visr() mod %>% visr(legend_position = \"top\", x_label = \"\") mod %>% visr(legend_position = \"top\", x_units = \"years\") mod %>% visr(legend_position = \"top\", fun = \"log\") # Have fun!"},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-improving-survival-plots","dir":"Articles > Interactive_tte_tutorial","previous_headings":"Plotting survival models","what":"Improving survival plots","title":"visR","text":"top , visR provides several functions improve plots. , example, easy add confidence intervals censoring markers. Exercise 1: Add markers censoring. (Hint: functions adding statistics plot visR usually start add_). Also, function provided annotate plot additional information. Exercise 1: Add information statistical significance tests survival plot. (Hint: Combine add_annotation() get_pvalue()).","code":"mod %>% visr() %>% add_CI() # Have fun! mod %>% visr() %>% visR::add_annotation(label = \"Hello world\", xmin = 0, ymin = 0.5) # Have fun!"},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-styling","dir":"Articles > Interactive_tte_tutorial","previous_headings":"Plotting survival models","what":"Styling","title":"visR","text":"Particular attention paid stay compatible ggplot2 ecosystem. Therefore, created objects can example styled like ggplot. Exercise 1: Try recreate Figure 5 Indian Covid data publication close possible using learned now. Alternatively, can create visually pleasing variant.","code":"gg = mod %>% visr() gg + ggplot2::theme_dark() # Have fun!"},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-combining-plots-with-summary-statistics","dir":"Articles > Interactive_tte_tutorial","previous_headings":"","what":"Combining plots with summary statistics","title":"visR","text":"Another good practice provide summary statistics accompany survival plot. purpose, visR provides handy function can appended normal piping framework. NOTE: breaks compatibility ggplot2 functions. Therefore, styling happen adding risktable. Analogous functions creating showing Table 1, risktables can also generated independently (using get_ function) can rendered. Exercise 1: Create render risktable survival model","code":"mod %>% visr() %>% add_risktable(statlist = c(\"n.risk\", \"n.event\", \"n.censor\")) # Have fun!"},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-advanced-usage","dir":"Articles > Interactive_tte_tutorial","previous_headings":"","what":"Advanced usage","title":"visR","text":"demonstrate advanced options might useful cases.","code":""},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-attrition","dir":"Articles > Interactive_tte_tutorial","previous_headings":"Advanced usage","what":"Attrition","title":"visR","text":"Often subgroups population analysed complete data sets need filtered according specific criteria. function get_attrition allows list filter statements explanations, can visualized table (render) plotted (visr). function apply_attrition filters data.frame.","code":"data$Patient = 1:nrow(data) condition = \"Age_Cat != '<18yr'\" filters = data %>% get_attrition(subject_column_name = \"Patient\", criteria_descriptions = \"18 and older\", criteria_conditions = condition) filters %>% visr() filters %>% render(title = \"Attrition Table\", datasource = DATASOURCE) data %>% apply_attrition(condition)"},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-custom-summary-functions-for-the-table-1","dir":"Articles > Interactive_tte_tutorial","previous_headings":"Advanced usage","what":"Custom summary functions for the Table 1","title":"visR","text":"tableone function accepts custom functions run columns. purpose, different possible data-type considered. simplicity, behaviour numeric columns changed example .","code":"# This is basically the default function but doesn't return the missing values. my_func = function(x) { if (is.numeric(x)) { dat = list( `Mean (SD)` = paste0(format(mean(x, na.rm = TRUE), digits = 3), \" (\", format(sd(x, na.rm = TRUE), digits = 3), \")\"), `Median (IQR)` = paste0(format(median(x, na.rm = TRUE), digits = 3), \" (\", format(quantile(x, probs=0.25, na.rm = TRUE), digits = 3), \"-\", format(quantile(x, probs=0.75, na.rm = TRUE), digits = 3), \")\"), `Min-max` = paste0(format(min(x, na.rm = TRUE), digits = 3), \"-\", format(max(x, na.rm = TRUE), digits = 3)) ) list(dat) } else { visR::summarize_short(x) } } data %>% get_tableone(strata = c(\"Sex\", \"Age_Cat\"), summary_function = my_func) %>% filter(variable != \"Sex\" & variable != \"Age_Cat\") %>% render(title = TITLE, datasource = DATASOURCE)"},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-different-rendering-engines-for-table-output","dir":"Articles > Interactive_tte_tutorial","previous_headings":"Advanced usage","what":"Different rendering engines for table output","title":"visR","text":"default, tables rendered gt. However, options like example kable dt also implemented.","code":"mod %>% get_pvalue() %>% render(title = TITLE, datasource = DATASOURCE, engine = \"kable\") # dt launches a child process which crashes on shinyapps.io?"},{"path":"https://openpharma.github.io/visR/articles/interactive_tte_tutorial/tte_tutorial.html","id":"section-possible-solution-to-the-exercise-for-recreating-figure-5","dir":"Articles > Interactive_tte_tutorial","previous_headings":"Advanced usage","what":"Possible solution to the exercise for recreating figure 5","title":"visR","text":"library(\"learnr\") library(\"visR\") library(\"ggplot2\") library(\"dplyr\") tutorial_options(exercise.timelimit = 120) # prep work one chunk well can always reference one # \"exercise-setup\" chunk data = read.csv(\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\") data$Status = abs(data$Status - 2) data = data %>% dplyr::mutate( Age_Cat = recode_factor(Age_Cat, `1` = \"<18yr\", `2` =\"18yr-60yr\", `3` = \">60yr\"), Sex = .factor(Sex)) DATASOURCE = \"https://github.com/vntkumar8/covid-survival\" TITLE = \"Indian Covid Data\" mod = data %>% estimate_KM(strata = \"Sex\", CNSR = \"Status\", AVAL = \"Stay\") assign(\"data\", data, envir = globalenv()) assign(\"DATASOURCE\", DATASOURCE, envir = globalenv()) assign(\"TITLE\", TITLE, envir = globalenv()) assign(\"mod\", mod, envir = globalenv()) theme_set(theme_bw()) learnr:::register_http_handlers(session, metadata = NULL) learnr:::prepare_tutorial_state(session) learnr:::i18n_observe_tutorial_language(input, session) session$onSessionEnded(function() { learnr:::event_trigger(session, \"session_stop\") }) `tutorial-exercise-load-data-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-load-data-code-editor`)), session) output$`tutorial-exercise-load-data-output` <- renderUI({ `tutorial-exercise-load-data-result`() }) learnr:::store_exercise_cache(structure(list(label = \"load-data\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = NULL, chunks = list(list(label = \"load-data\", code = \"\\n# First, set default ggplot2 theme\\ntheme_set(theme_bw())\\n\\n# , directly load data GitHub repository\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\n\\ndata\\n\", opts = list(label = \"\\\"load-data\\\"\", exercise = \"TRUE\", exercise.eval = \"TRUE\", exercise.startover = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list(eval = TRUE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/home/runner/work/visR/visR/docs/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"load-data\", exercise = TRUE, exercise.eval = TRUE, exercise.startover = FALSE, code = c(\"\", \"# First, set default ggplot2 theme\", \"theme_set(theme_bw())\", \"\", \"# , directly load data GitHub repository\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"\", \"data\", \"\"), .width.px = 700, .height.px = 432.632880098888, params.src = \"load-data, exercise = TRUE, exercise.eval = TRUE, exercise.startover = FALSE\", fig.alt = NULL, fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\"))) `tutorial-exercise-prepare-data-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-prepare-data-code-editor`)), session) output$`tutorial-exercise-prepare-data-output` <- renderUI({ `tutorial-exercise-prepare-data-result`() }) learnr:::store_exercise_cache(structure(list(label = \"prepare-data\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"\\n# First, set default ggplot2 theme\\ntheme_set(theme_bw())\\n\\n# , directly load data GitHub repository\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\n\\ndata\\n\", chunks = list(list(label = \"load-data\", code = \"\\n# First, set default ggplot2 theme\\ntheme_set(theme_bw())\\n\\n# , directly load data GitHub repository\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\n\\ndata\\n\", opts = list(label = \"\\\"load-data\\\"\", exercise = \"TRUE\", exercise.eval = \"TRUE\", exercise.startover = \"FALSE\"), engine = \"r\"), list(label = \"prepare-data\", code = \"\\n# 1. Adjust censoring\\ndata$Status = abs(data$Status - 2)\\n\\n# 2. Convert factors add age categories\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\n\\ndata\", opts = list(label = \"\\\"prepare-data\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"load-data\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list(eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/home/runner/work/visR/visR/docs/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"prepare-data\", exercise = TRUE, exercise.setup = \"load-data\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"# 1. Adjust censoring\", \"data$Status = abs(data$Status - 2)\", \"\", \"# 2. Convert factors add age categories\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"\", \"data\"), .width.px = 700, .height.px = 432.632880098888, params.src = \"prepare-data, exercise = TRUE, exercise.setup = \\\"load-data\\\", exercise.startover = FALSE, exercise.eval = FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-live-demo-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-live-demo-code-editor`)), session) output$`tutorial-exercise-live-demo-output` <- renderUI({ `tutorial-exercise-live-demo-result`() }) learnr:::store_exercise_cache(structure(list(label = \"live-demo\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"live-demo\", code = \"# Live demo\", opts = list(label = \"\\\"live-demo\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\", exercise.lines = \"30\", fig.width = \"9\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list( eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/home/runner/work/visR/visR/docs/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 9, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 864, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"live-demo\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, exercise.lines = 30, code = \"# Live demo\", .width.px = 864, .height.px = 432.632880098888, params.src = \"live-demo, exercise = TRUE, exercise.setup = \\\"setup\\\", exercise.startover = FALSE, exercise.eval = FALSE, exercise.lines = 30, fig.width=9\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-basic-tableone-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-basic-tableone-code-editor`)), session) output$`tutorial-exercise-basic-tableone-output` <- renderUI({ `tutorial-exercise-basic-tableone-result`() }) learnr:::store_exercise_cache(structure(list(label = \"basic-tableone\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"basic-tableone\", code = \"\\n# Define meta-data\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\n\\ndata %>% tableone(title = TITLE, datasource = DATASOURCE)\", opts = list(label = \"\\\"basic-tableone\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list(eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/home/runner/work/visR/visR/docs/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"basic-tableone\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"# Define meta-data\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"\", \"data %>% tableone(title = TITLE, datasource = DATASOURCE)\" ), .width.px = 700, .height.px = 432.632880098888, params.src = \"basic-tableone, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-survival-plot-exercise-1-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-survival-plot-exercise-1-code-editor`)), session) output$`tutorial-exercise-survival-plot-exercise-1-output` <- renderUI({ `tutorial-exercise-survival-plot-exercise-1-result`() }) learnr:::store_exercise_cache(structure(list(label = \"survival-plot-exercise-1\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"survival-plot-exercise-1\", code = \"\\n# fun!\\n\", opts = list(label = \"\\\"survival-plot-exercise-1\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list( eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/home/runner/work/visR/visR/docs/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"survival-plot-exercise-1\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"# fun!\", \"\" ), .width.px = 700, .height.px = 432.632880098888, params.src = \"survival-plot-exercise-1, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-fixed-tableone-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-fixed-tableone-code-editor`)), session) output$`tutorial-exercise-fixed-tableone-output` <- renderUI({ `tutorial-exercise-fixed-tableone-result`() }) learnr:::store_exercise_cache(structure(list(label = \"fixed-tableone\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"fixed-tableone\", code = \"\\ndata %>% \\n get_tableone(strata = c(\\\"Sex\\\", \\\"Age_Cat\\\")) %>% \\n filter(variable != \\\"Sex\\\" & variable != \\\"Age_Cat\\\") %>% \\n render(title = TITLE, datasource = DATASOURCE)\", opts = list(label = \"\\\"fixed-tableone\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list(eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/home/runner/work/visR/visR/docs/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"fixed-tableone\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"data %>% \", \" get_tableone(strata = c(\\\"Sex\\\", \\\"Age_Cat\\\")) %>% \", \" filter(variable != \\\"Sex\\\" & variable != \\\"Age_Cat\\\") %>% \", \" render(title = TITLE, datasource = DATASOURCE)\"), .width.px = 700, .height.px = 432.632880098888, params.src = \"fixed-tableone, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-cdisc-survival-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-cdisc-survival-code-editor`)), session) output$`tutorial-exercise-cdisc-survival-output` <- renderUI({ `tutorial-exercise-cdisc-survival-result`() }) learnr:::store_exercise_cache(structure(list(label = \"cdisc-survival\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"cdisc-survival\", code = \"\\n# dataset comes visR cdisc ADaM compliant \\nmod = visR::adtte %>% estimate_KM() \\n\\n# strata specified, overall patient cohort analysed\\nmod\\n\\nmod %>% visr()\\n\", opts = list(label = \"\\\"cdisc-survival\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list(eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/home/runner/work/visR/visR/docs/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"cdisc-survival\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"# dataset comes visR cdisc ADaM compliant \", \"mod = visR::adtte %>% estimate_KM() \", \"\", \"# strata specified, overall patient cohort analysed\", \"mod\", \"\", \"mod %>% visr()\", \"\"), .width.px = 700, .height.px = 432.632880098888, params.src = \"cdisc-survival, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-indian-survival-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-indian-survival-code-editor`)), session) output$`tutorial-exercise-indian-survival-output` <- renderUI({ `tutorial-exercise-indian-survival-result`() }) learnr:::store_exercise_cache(structure(list(label = \"indian-survival\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"indian-survival\", code = \"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\nmod\", opts = list(label = \"\\\"indian-survival\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list(eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/home/runner/work/visR/visR/docs/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"indian-survival\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"mod\"), .width.px = 700, .height.px = 432.632880098888, params.src = \"indian-survival, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-get_pvalue-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-get_pvalue-code-editor`)), session) output$`tutorial-exercise-get_pvalue-output` <- renderUI({ `tutorial-exercise-get_pvalue-result`() }) learnr:::store_exercise_cache(structure(list(label = \"get_pvalue\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"get_pvalue\", code = \"\\nmod %>% get_pvalue()\\n\", opts = list(label = \"\\\"get_pvalue\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list(eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/home/runner/work/visR/visR/docs/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"get_pvalue\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"mod %>% get_pvalue()\", \"\"), .width.px = 700, .height.px = 432.632880098888, params.src = \"get_pvalue, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-survival-plot-exercise_1-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-survival-plot-exercise_1-code-editor`)), session) output$`tutorial-exercise-survival-plot-exercise_1-output` <- renderUI({ `tutorial-exercise-survival-plot-exercise_1-result`() }) learnr:::store_exercise_cache(structure(list(label = \"survival-plot-exercise_1\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"survival-plot-exercise_1\", code = \"\\n# fun!\\n\", opts = list(label = \"\\\"survival-plot-exercise_1\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list( eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/home/runner/work/visR/visR/docs/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"survival-plot-exercise_1\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"# fun!\", \"\" ), .width.px = 700, .height.px = 432.632880098888, params.src = \"survival-plot-exercise_1, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-basic-survival-plot-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-basic-survival-plot-code-editor`)), session) output$`tutorial-exercise-basic-survival-plot-output` <- renderUI({ `tutorial-exercise-basic-survival-plot-result`() }) learnr:::store_exercise_cache(structure(list(label = \"basic-survival-plot\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"basic-survival-plot\", code = \"\\nmod %>% visr()\\n\", opts = list(label = \"\\\"basic-survival-plot\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list(eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/home/runner/work/visR/visR/docs/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"basic-survival-plot\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"mod %>% visr()\", \"\"), .width.px = 700, .height.px = 432.632880098888, params.src = \"basic-survival-plot, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-basic-survival-plot-options-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-basic-survival-plot-options-code-editor`)), session) output$`tutorial-exercise-basic-survival-plot-options-output` <- renderUI({ `tutorial-exercise-basic-survival-plot-options-result`() }) learnr:::store_exercise_cache(structure(list(label = \"basic-survival-plot-options\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"basic-survival-plot-options\", code = \"\\nmod %>%\\n visr(legend_position = \\\"top\\\",\\n x_label = \\\"\\\")\\nmod %>%\\n visr(legend_position = \\\"top\\\",\\n x_units = \\\"years\\\")\\nmod %>%\\n visr(legend_position = \\\"top\\\",\\n fun = \\\"log\\\")\\n\", opts = list(label = \"\\\"basic-survival-plot-options\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list( eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/home/runner/work/visR/visR/docs/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"basic-survival-plot-options\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"mod %>%\", \" visr(legend_position = \\\"top\\\",\", \" x_label = \\\"\\\")\", \"mod %>%\", \" visr(legend_position = \\\"top\\\",\", \" x_units = \\\"years\\\")\", \"mod %>%\", \" visr(legend_position = \\\"top\\\",\", \" fun = \\\"log\\\")\", \"\"), .width.px = 700, .height.px = 432.632880098888, params.src = \"basic-survival-plot-options, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-survival-plot-exercise-3-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-survival-plot-exercise-3-code-editor`)), session) output$`tutorial-exercise-survival-plot-exercise-3-output` <- renderUI({ `tutorial-exercise-survival-plot-exercise-3-result`() }) learnr:::store_exercise_cache(structure(list(label = \"survival-plot-exercise-3\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"survival-plot-exercise-3\", code = \"\\n# fun!\\n\", opts = list(label = \"\\\"survival-plot-exercise-3\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list( eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/home/runner/work/visR/visR/docs/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"survival-plot-exercise-3\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"# fun!\", \"\" ), .width.px = 700, .height.px = 432.632880098888, params.src = \"survival-plot-exercise-3, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-survival-plot-add-x-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-survival-plot-add-x-code-editor`)), session) output$`tutorial-exercise-survival-plot-add-x-output` <- renderUI({ `tutorial-exercise-survival-plot-add-x-result`() }) learnr:::store_exercise_cache(structure(list(label = \"survival-plot-add-x\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"survival-plot-add-x\", code = \"\\nmod %>%\\n visr() %>%\\n add_CI()\\n\", opts = list(label = \"\\\"survival-plot-add-x\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list(eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/home/runner/work/visR/visR/docs/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"survival-plot-add-x\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"mod %>%\", \" visr() %>%\", \" add_CI()\", \"\"), .width.px = 700, .height.px = 432.632880098888, params.src = \"survival-plot-add-x, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-survival-plot-exercise-4-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-survival-plot-exercise-4-code-editor`)), session) output$`tutorial-exercise-survival-plot-exercise-4-output` <- renderUI({ `tutorial-exercise-survival-plot-exercise-4-result`() }) learnr:::store_exercise_cache(structure(list(label = \"survival-plot-exercise-4\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"survival-plot-exercise-4\", code = \"\\n# fun!\\n\", opts = list(label = \"\\\"survival-plot-exercise-4\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list( eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/home/runner/work/visR/visR/docs/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"survival-plot-exercise-4\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"# fun!\", \"\" ), .width.px = 700, .height.px = 432.632880098888, params.src = \"survival-plot-exercise-4, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-survival-plot-annotate-basic-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-survival-plot-annotate-basic-code-editor`)), session) output$`tutorial-exercise-survival-plot-annotate-basic-output` <- renderUI({ `tutorial-exercise-survival-plot-annotate-basic-result`() }) learnr:::store_exercise_cache(structure(list(label = \"survival-plot-annotate-basic\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"survival-plot-annotate-basic\", code = \"\\nmod %>%\\n visr() %>%\\n visR::add_annotation(label = \\\"Hello world\\\", xmin = 0, ymin = 0.5)\\n\", opts = list(label = \"\\\"survival-plot-annotate-basic\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list( eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/home/runner/work/visR/visR/docs/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"survival-plot-annotate-basic\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"mod %>%\", \" visr() %>%\", \" visR::add_annotation(label = \\\"Hello world\\\", xmin = 0, ymin = 0.5)\", \"\"), .width.px = 700, .height.px = 432.632880098888, params.src = \"survival-plot-annotate-basic, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-survival-plot-exercise-5-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-survival-plot-exercise-5-code-editor`)), session) output$`tutorial-exercise-survival-plot-exercise-5-output` <- renderUI({ `tutorial-exercise-survival-plot-exercise-5-result`() }) learnr:::store_exercise_cache(structure(list(label = \"survival-plot-exercise-5\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"survival-plot-exercise-5\", code = \"\\n# fun!\\n\", opts = list(label = \"\\\"survival-plot-exercise-5\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list( eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/home/runner/work/visR/visR/docs/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"survival-plot-exercise-5\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"# fun!\", \"\" ), .width.px = 700, .height.px = 432.632880098888, params.src = \"survival-plot-exercise-5, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-survival-plot-style-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-survival-plot-style-code-editor`)), session) output$`tutorial-exercise-survival-plot-style-output` <- renderUI({ `tutorial-exercise-survival-plot-style-result`() }) learnr:::store_exercise_cache(structure(list(label = \"survival-plot-style\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"survival-plot-style\", code = \"\\ngg = mod %>% visr() \\n \\ngg + ggplot2::theme_dark()\\n\", opts = list(label = \"\\\"survival-plot-style\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list(eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/home/runner/work/visR/visR/docs/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"survival-plot-style\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"gg = mod %>% visr() \", \" \", \"gg + ggplot2::theme_dark()\", \"\"), .width.px = 700, .height.px = 432.632880098888, params.src = \"survival-plot-style, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-survival-plot-exercise-6-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-survival-plot-exercise-6-code-editor`)), session) output$`tutorial-exercise-survival-plot-exercise-6-output` <- renderUI({ `tutorial-exercise-survival-plot-exercise-6-result`() }) learnr:::store_exercise_cache(structure(list(label = \"survival-plot-exercise-6\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"survival-plot-exercise-6\", code = \"\\n# fun!\\n\", opts = list(label = \"\\\"survival-plot-exercise-6\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list( eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/home/runner/work/visR/visR/docs/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"survival-plot-exercise-6\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"# fun!\", \"\" ), .width.px = 700, .height.px = 432.632880098888, params.src = \"survival-plot-exercise-6, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-survival-plot-risktable-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-survival-plot-risktable-code-editor`)), session) output$`tutorial-exercise-survival-plot-risktable-output` <- renderUI({ `tutorial-exercise-survival-plot-risktable-result`() }) learnr:::store_exercise_cache(structure(list(label = \"survival-plot-risktable\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"survival-plot-risktable\", code = \"\\nmod %>%\\n visr() %>%\\n add_risktable(statlist = c(\\\"n.risk\\\", \\\"n.event\\\", \\\"n.censor\\\"))\\n\", opts = list(label = \"\\\"survival-plot-risktable\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\", fig.height = \"7\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list(eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/home/runner/work/visR/visR/docs/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 7, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"survival-plot-risktable\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"mod %>%\", \" visr() %>%\", \" add_risktable(statlist = c(\\\"n.risk\\\", \\\"n.event\\\", \\\"n.censor\\\"))\", \"\"), .width.px = 700, .height.px = 672, params.src = \"survival-plot-risktable, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE, fig.height = 7\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-survival-plot-exercise-7-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-survival-plot-exercise-7-code-editor`)), session) output$`tutorial-exercise-survival-plot-exercise-7-output` <- renderUI({ `tutorial-exercise-survival-plot-exercise-7-result`() }) learnr:::store_exercise_cache(structure(list(label = \"survival-plot-exercise-7\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"survival-plot-exercise-7\", code = \"\\n# fun!\\n\", opts = list(label = \"\\\"survival-plot-exercise-7\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list( eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/home/runner/work/visR/visR/docs/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"survival-plot-exercise-7\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"# fun!\", \"\" ), .width.px = 700, .height.px = 432.632880098888, params.src = \"survival-plot-exercise-7, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-basic-attrition-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-basic-attrition-code-editor`)), session) output$`tutorial-exercise-basic-attrition-output` <- renderUI({ `tutorial-exercise-basic-attrition-result`() }) learnr:::store_exercise_cache(structure(list(label = \"basic-attrition\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"basic-attrition\", code = \"\\ndata$Patient = 1:nrow(data) \\n\\ncondition = \\\"Age_Cat != '<18yr'\\\"\\n\\nfilters = data %>% get_attrition(subject_column_name = \\\"Patient\\\", \\n criteria_descriptions = \\\"18 older\\\", \\n criteria_conditions = condition) \\n\\nfilters %>% visr()\\n\\nfilters %>% render(title = \\\"Attrition Table\\\", datasource = DATASOURCE)\\n\\ndata %>% apply_attrition(condition)\\n\\n\", opts = list(label = \"\\\"basic-attrition\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list(eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/home/runner/work/visR/visR/docs/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"basic-attrition\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"data$Patient = 1:nrow(data) \", \"\", \"condition = \\\"Age_Cat != '<18yr'\\\"\", \"\", \"filters = data %>% get_attrition(subject_column_name = \\\"Patient\\\", \", \" criteria_descriptions = \\\"18 older\\\", \", \" criteria_conditions = condition) \", \"\", \"filters %>% visr()\", \"\", \"filters %>% render(title = \\\"Attrition Table\\\", datasource = DATASOURCE)\", \"\", \"data %>% apply_attrition(condition)\", \"\", \"\"), .width.px = 700, .height.px = 432.632880098888, params.src = \"basic-attrition, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-custom-func-tableone-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-custom-func-tableone-code-editor`)), session) output$`tutorial-exercise-custom-func-tableone-output` <- renderUI({ `tutorial-exercise-custom-func-tableone-result`() }) learnr:::store_exercise_cache(structure(list(label = \"custom-func-tableone\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"custom-func-tableone\", code = \"\\n# basically default function return missing values.\\nmy_func = function(x) {\\n \\n (.numeric(x)) {\\n \\n dat = list(\\n `Mean (SD)` = paste0(format(mean(x, na.rm = TRUE), digits = 3), \\n \\\" (\\\", \\n format(sd(x, na.rm = TRUE), digits = 3), \\n \\\")\\\"),\\n `Median (IQR)` = paste0(format(median(x, na.rm = TRUE), digits = 3), \\n \\\" (\\\", \\n format(quantile(x, probs=0.25, na.rm = TRUE), digits = 3),\\n \\\"-\\\", \\n format(quantile(x, probs=0.75, na.rm = TRUE), digits = 3), \\n \\\")\\\"),\\n `Min-max` = paste0(format(min(x, na.rm = TRUE), digits = 3), \\n \\\"-\\\", format(max(x, na.rm = TRUE), digits = 3))\\n )\\n \\n list(dat)\\n \\n } else {\\n \\n visR::summarize_short(x)\\n \\n }\\n}\\n\\ndata %>% \\n get_tableone(strata = c(\\\"Sex\\\", \\\"Age_Cat\\\"), summary_function = my_func) %>% \\n filter(variable != \\\"Sex\\\" & variable != \\\"Age_Cat\\\") %>% \\n render(title = TITLE, datasource = DATASOURCE)\", opts = list(label = \"\\\"custom-func-tableone\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\", exercise.lines = \"35\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list( eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/home/runner/work/visR/visR/docs/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"custom-func-tableone\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, exercise.lines = 35, code = c(\"\", \"# basically default function return missing values.\", \"my_func = function(x) {\", \" \", \" (.numeric(x)) {\", \" \", \" dat = list(\", \" `Mean (SD)` = paste0(format(mean(x, na.rm = TRUE), digits = 3), \", \" \\\" (\\\", \", \" format(sd(x, na.rm = TRUE), digits = 3), \", \" \\\")\\\"),\", \" `Median (IQR)` = paste0(format(median(x, na.rm = TRUE), digits = 3), \", \" \\\" (\\\", \", \" format(quantile(x, probs=0.25, na.rm = TRUE), digits = 3),\", \" \\\"-\\\", \", \" format(quantile(x, probs=0.75, na.rm = TRUE), digits = 3), \", \" \\\")\\\"),\", \" `Min-max` = paste0(format(min(x, na.rm = TRUE), digits = 3), \", \" \\\"-\\\", format(max(x, na.rm = TRUE), digits = 3))\", \" )\", \" \", \" list(dat)\", \" \", \" } else {\", \" \", \" visR::summarize_short(x)\", \" \", \" }\", \"}\", \"\", \"data %>% \", \" get_tableone(strata = c(\\\"Sex\\\", \\\"Age_Cat\\\"), summary_function = my_func) %>% \", \" filter(variable != \\\"Sex\\\" & variable != \\\"Age_Cat\\\") %>% \", \" render(title = TITLE, datasource = DATASOURCE)\"), .width.px = 700, .height.px = 432.632880098888, params.src = \"custom-func-tableone, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE, exercise.lines=35\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-rendering-engines-dt-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-rendering-engines-dt-code-editor`)), session) output$`tutorial-exercise-rendering-engines-dt-output` <- renderUI({ `tutorial-exercise-rendering-engines-dt-result`() }) learnr:::store_exercise_cache(structure(list(label = \"rendering-engines-dt\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"rendering-engines-dt\", code = \"\\nmod %>% \\n get_pvalue() %>% \\n render(title = TITLE, \\n datasource = DATASOURCE, \\n engine = \\\"kable\\\") # dt launches child process crashes shinyapps.io? \\n\", opts = list(label = \"\\\"rendering-engines-dt\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list(eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/home/runner/work/visR/visR/docs/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"rendering-engines-dt\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"mod %>% \", \" get_pvalue() %>% \", \" render(title = TITLE, \", \" datasource = DATASOURCE, \", \" engine = \\\"kable\\\") # dt launches child process crashes shinyapps.io? \", \"\"), .width.px = 700, .height.px = 432.632880098888, params.src = \"rendering-engines-dt, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" ))) `tutorial-exercise-solution-figure5-result` <- learnr:::setup_exercise_handler(reactive(req(input$`tutorial-exercise-solution-figure5-code-editor`)), session) output$`tutorial-exercise-solution-figure5-output` <- renderUI({ `tutorial-exercise-solution-figure5-result`() }) learnr:::store_exercise_cache(structure(list(label = \"solution-figure5\", global_setup = structure(c(\"library(\\\"learnr\\\")\", \"library(\\\"visR\\\")\", \"library(\\\"ggplot2\\\")\", \"library(\\\"dplyr\\\")\", \"tutorial_options(exercise.timelimit = 120)\", \"\", \"# prep work one chunk well can always reference one \", \"# \\\"exercise-setup\\\" chunk\", \"data = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\", \"data$Status = abs(data$Status - 2)\", \"data = data %>%\", \" dplyr::mutate(\", \" Age_Cat = recode_factor(Age_Cat,\", \" `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\", \" Sex = .factor(Sex))\", \"DATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\", \"TITLE = \\\"Indian Covid Data\\\"\", \"mod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\", \"\", \"assign(\\\"data\\\", data, envir = globalenv())\", \"assign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\", \"assign(\\\"TITLE\\\", TITLE, envir = globalenv())\", \"assign(\\\"mod\\\", mod, envir = globalenv())\", \"\", \"theme_set(theme_bw())\", \"\"), chunk_opts = list(label = \"setup\", include = FALSE)), setup = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", chunks = list(list(label = \"setup\", code = \"library(\\\"learnr\\\")\\nlibrary(\\\"visR\\\")\\nlibrary(\\\"ggplot2\\\")\\nlibrary(\\\"dplyr\\\")\\ntutorial_options(exercise.timelimit = 120)\\n\\n# prep work one chunk well can always reference one \\n# \\\"exercise-setup\\\" chunk\\ndata = read.csv(\\\"https://raw.githubusercontent.com/vntkumar8/covid-survival/main/data/final.csv\\\")\\ndata$Status = abs(data$Status - 2)\\ndata = data %>%\\n dplyr::mutate(\\n Age_Cat = recode_factor(Age_Cat,\\n `1` = \\\"<18yr\\\", `2` =\\\"18yr-60yr\\\", `3` = \\\">60yr\\\"),\\n Sex = .factor(Sex))\\nDATASOURCE = \\\"https://github.com/vntkumar8/covid-survival\\\"\\nTITLE = \\\"Indian Covid Data\\\"\\nmod = data %>% estimate_KM(strata = \\\"Sex\\\", CNSR = \\\"Status\\\", AVAL = \\\"Stay\\\")\\n\\nassign(\\\"data\\\", data, envir = globalenv())\\nassign(\\\"DATASOURCE\\\", DATASOURCE, envir = globalenv())\\nassign(\\\"TITLE\\\", TITLE, envir = globalenv())\\nassign(\\\"mod\\\", mod, envir = globalenv())\\n\\ntheme_set(theme_bw())\\n\", opts = list(label = \"\\\"setup\\\"\", include = \"FALSE\"), engine = \"r\"), list(label = \"solution-figure5\", code = \"\\nm = data %>% estimate_KM(strata = c(\\\"Sex\\\", \\\"Age_Cat\\\"),\\n CNSR = \\\"Status\\\", \\n AVAL = \\\"Stay\\\")\\n\\nhalf_surv_df = m %>% \\n get_quantile(probs = 0.5) %>% \\n dplyr::filter(quantity == \\\"quantile\\\") %>%\\n dplyr::mutate(pos1 = `50`, pos2 = 0.5) %>%\\n dplyr::select(-c(quantity, `50`))\\n \\nhalf_surv_df_horizontal = half_surv_df %>% dplyr::mutate(pos1 = 0)\\n \\nhalf_surv_df_vertical = half_surv_df %>% dplyr::mutate(pos2 = 0)\\n \\nhalf_surv_df = rbind(half_surv_df, half_surv_df_horizontal, half_surv_df_vertical) \\n \\nm %>%\\n visr() %>%\\n add_CI() %>%\\n add_CNSR() +\\n ggplot2::geom_line(data = half_surv_df, ggplot2::aes(pos1, pos2, group = strata), linetype = \\\"dashed\\\")\\n\", opts = list(label = \"\\\"solution-figure5\\\"\", exercise = \"TRUE\", exercise.setup = \"\\\"setup\\\"\", exercise.startover = \"FALSE\", exercise.eval = \"FALSE\"), engine = \"r\")), code_check = NULL, error_check = NULL, check = NULL, solution = NULL, tests = NULL, options = list(eval = FALSE, echo = TRUE, results = \"markup\", tidy = FALSE, tidy.opts = NULL, collapse = FALSE, prompt = FALSE, comment = NA, highlight = FALSE, size = \"normalsize\", background = \"#F7F7F7\", strip.white = TRUE, cache = 0, cache.path = \"tte_tutorial_cache/html/\", cache.vars = NULL, cache.lazy = TRUE, dependson = NULL, autodep = FALSE, cache.rebuild = FALSE, fig.keep = \"high\", fig.show = \"asis\", fig.align = \"default\", fig.path = \"/home/runner/work/visR/visR/docs/articles/interactive_tte_tutorial/tte_tutorial_files/figure-html/\", dev = \"ragg_png\", dev.args = list(bg = NA), dpi = 192L, fig.ext = \"png\", fig.width = 7.29166666666667, fig.height = 4.50659250103008, fig.env = \"figure\", fig.cap = NULL, fig.scap = NULL, fig.lp = \"fig:\", fig.subcap = NULL, fig.pos = \"\", .width = 700, .height = NULL, .extra = NULL, fig.retina = 2L, external = TRUE, sanitize = FALSE, interval = 1, aniopts = \"controls,loop\", warning = TRUE, error = FALSE, message = TRUE, render = NULL, ref.label = NULL, child = NULL, engine = \"r\", split = FALSE, include = TRUE, purl = TRUE, .parameters = list(), exercise.timelimit = 120, label = \"solution-figure5\", exercise = TRUE, exercise.setup = \"setup\", exercise.startover = FALSE, exercise.eval = FALSE, code = c(\"\", \"m = data %>% estimate_KM(strata = c(\\\"Sex\\\", \\\"Age_Cat\\\"),\", \" CNSR = \\\"Status\\\", \", \" AVAL = \\\"Stay\\\")\", \"\", \"half_surv_df = m %>% \", \" get_quantile(probs = 0.5) %>% \", \" dplyr::filter(quantity == \\\"quantile\\\") %>%\", \" dplyr::mutate(pos1 = `50`, pos2 = 0.5) %>%\", \" dplyr::select(-c(quantity, `50`))\", \" \", \"half_surv_df_horizontal = half_surv_df %>% dplyr::mutate(pos1 = 0)\", \" \", \"half_surv_df_vertical = half_surv_df %>% dplyr::mutate(pos2 = 0)\", \" \", \"half_surv_df = rbind(half_surv_df, half_surv_df_horizontal, half_surv_df_vertical) \", \" \", \"m %>%\", \" visr() %>%\", \" add_CI() %>%\", \" add_CNSR() +\", \" ggplot2::geom_line(data = half_surv_df, ggplot2::aes(pos1, pos2, group = strata), linetype = \\\"dashed\\\")\", \"\"), .width.px = 700, .height.px = 432.632880098888, params.src = \"solution-figure5, exercise=TRUE, exercise.setup = \\\"setup\\\", exercise.startover=FALSE, exercise.eval=FALSE\", fig.num = 0, exercise.df_print = \"default\", exercise.checker = \"NULL\"), engine = \"r\", version = \"4\"), class = c(\"r\", \"tutorial_exercise\" )))","code":"m = data %>% estimate_KM(strata = c(\"Sex\", \"Age_Cat\"), CNSR = \"Status\", AVAL = \"Stay\") half_surv_df = m %>% get_quantile(probs = 0.5) %>% dplyr::filter(quantity == \"quantile\") %>% dplyr::mutate(pos1 = `50`, pos2 = 0.5) %>% dplyr::select(-c(quantity, `50`)) half_surv_df_horizontal = half_surv_df %>% dplyr::mutate(pos1 = 0) half_surv_df_vertical = half_surv_df %>% dplyr::mutate(pos2 = 0) half_surv_df = rbind(half_surv_df, half_surv_df_horizontal, half_surv_df_vertical) m %>% visr() %>% add_CI() %>% add_CNSR() + ggplot2::geom_line(data = half_surv_df, ggplot2::aes(pos1, pos2, group = strata), linetype = \"dashed\")"},{"path":"https://openpharma.github.io/visR/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Mark Baillie. Author, maintainer, copyright holder. Diego Saldana. Author. Charlotta Fruechtenicht. Author. Marc Vandemeulebroecke. Author. Thanos Siadimas. Author. Pawel Kawski. Author. Steven Haesendonckx. Author. James Black. Author. Pelagia Alexandra Papadopoulou. Author. Tim Treis. Author. Rebecca Albrecht. Author. Ardalan Mirshani. Contributor. Daniel D. Sjoberg. Author.","code":""},{"path":"https://openpharma.github.io/visR/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Baillie M, Saldana D, Fruechtenicht C, Vandemeulebroecke M, Siadimas T, Kawski P, Haesendonckx S, Black J, Alexandra Papadopoulou P, Treis T, Albrecht R, Sjoberg D (2024). visR: Clinical Graphs Tables Adhering Graphical Principles. R package version 0.4.0, https://github.com/openpharma/visR, https://openpharma.github.io/visR/.","code":"@Manual{, title = {visR: Clinical Graphs and Tables Adhering to Graphical Principles}, author = {Mark Baillie and Diego Saldana and Charlotta Fruechtenicht and Marc Vandemeulebroecke and Thanos Siadimas and Pawel Kawski and Steven Haesendonckx and James Black and Pelagia {Alexandra Papadopoulou} and Tim Treis and Rebecca Albrecht and Daniel D. Sjoberg}, year = {2024}, note = {R package version 0.4.0, https://github.com/openpharma/visR}, url = {https://openpharma.github.io/visR/}, }"},{"path":"https://openpharma.github.io/visR/contributing.html","id":null,"dir":"","previous_headings":"","what":"Contributing to visR","title":"Contributing to visR","text":"detailed info contributing, please see development contributing guide.","code":""},{"path":"https://openpharma.github.io/visR/contributing.html","id":"fixing-typos","dir":"","previous_headings":"","what":"Fixing typos","title":"Contributing to visR","text":"can fix typos, spelling mistakes, grammatical errors documentation directly using GitHub web interface, long changes made source file. generally means ’ll need edit roxygen2 comments .R, .Rd file. can find .R file generates .Rd reading comment first line.","code":""},{"path":"https://openpharma.github.io/visR/contributing.html","id":"bigger-changes","dir":"","previous_headings":"","what":"Bigger changes","title":"Contributing to visR","text":"want make bigger contribution, ’s good idea first file issue make sure someone team agrees ’s needed. ’ve found bug, please file issue illustrates bug minimal reprex (also help write unit test, needed).","code":""},{"path":"https://openpharma.github.io/visR/contributing.html","id":"pull-request-process","dir":"","previous_headings":"Bigger changes","what":"Pull request process","title":"Contributing to visR","text":"Fork package clone onto computer. haven’t done , recommend using usethis::create_from_github(\"openpharma/visR\", fork = TRUE). Install development dependencies devtools::install_dev_deps(), make sure package passes R CMD check running devtools::check(). R CMD check doesn’t pass cleanly, ’s good idea ask help continuing. Create Git branch pull request (PR). recommend using usethis::pr_init(\"brief-description--change\"). Make changes, commit git, create PR running usethis::pr_push(), following prompts browser. title PR briefly describe change. body PR contain Fixes #issue-number. user-facing changes, add bullet top NEWS.md (.e. just first header). Follow style described https://style.tidyverse.org/news.html.","code":""},{"path":[]},{"path":"https://openpharma.github.io/visR/contributing.html","id":"general-coding-principles","dir":"","previous_headings":"Code style","what":"General coding principles","title":"Contributing to visR","text":"new functions preferably built using widely adapted tidyverse (please see namespace allowed package dependencies). Dependencies kept minimum. Please don’t restyle code nothing PR. Use roxygen2, Markdown syntax, updating creating documentation. Use testthat unit tests. Contributions accompanied extensive user acceptance testing. Please reach team need help. CRAN requires us use TRUE/FALSE, don’t use T/F. Subset using ‘[[’ rather ‘$’ avoid surprises partial matching","code":""},{"path":"https://openpharma.github.io/visR/contributing.html","id":"data-manipulation","dir":"","previous_headings":"Code style","what":"Data Manipulation","title":"Contributing to visR","text":"Data expected present tidy form (one row per observation) unless otherwise noted. Dataframes, rather tibbles returned functions. magrittr pipe (%>%) can used consecutive operations data. models broom package easily converts key information models tidy data tibbles subsequent wrangling visualisation. Note implemented methods lazy extract key information, used common downstream processing. visR custom tidiers extract informtation model objects dataframe users information required downstream processing.","code":""},{"path":"https://openpharma.github.io/visR/contributing.html","id":"figures","dir":"","previous_headings":"Code style","what":"Figures","title":"Contributing to visR","text":"Plotting implemented using ggplot2 unless possible. Interactivity may provided using ggplotly - needed plotly packages.","code":""},{"path":"https://openpharma.github.io/visR/contributing.html","id":"tables","dir":"","previous_headings":"Code style","what":"Tables","title":"Contributing to visR","text":"Tables always also available raw dataframes.","code":""},{"path":"https://openpharma.github.io/visR/contributing.html","id":"testing","dir":"","previous_headings":"","what":"Testing","title":"Contributing to visR","text":"Write tests soon function somewhat usable state. Improving easier starting. Add new test every issue/bug identified. Use vdiffr comparison anything plotted library manually curated plots. Educate break: Rather just stopping parameters provided don’t make sense, like shape = NULL, warn user required argument set reasonable default.","code":""},{"path":"https://openpharma.github.io/visR/contributing.html","id":"package-maintenance","dir":"","previous_headings":"","what":"Package maintenance","title":"Contributing to visR","text":"integrated several “watchdogs” testing routine ensure adherence certain standards ’ve set. routines scan codebase possible style violations:","code":""},{"path":"https://openpharma.github.io/visR/contributing.html","id":"cran-watchdog","dir":"","previous_headings":"Package maintenance","what":"CRAN watchdog","title":"Contributing to visR","text":"successful submission CRAN, certain rules set place CRAN team, example usage TRUE/FALSE T/F. continuously ensure compliance , CRAN watchdog scans respective files violations .","code":""},{"path":"https://openpharma.github.io/visR/contributing.html","id":"validation-watchdog-in-pr","dir":"","previous_headings":"Package maintenance","what":"Validation watchdog (in PR)","title":"Contributing to visR","text":"want make easy use package stringent environment might require packages validated. Based discussions similar projects decided implement traceability testing files. Therefore, tests well last change , automatically written files potential scraping. details last change gathered usage git log table contents unit test specifications generated based strings actual tests.","code":""},{"path":"https://openpharma.github.io/visR/contributing.html","id":"code-of-conduct","dir":"","previous_headings":"","what":"Code of Conduct","title":"Contributing to visR","text":"Please note visR project released Contributor Code Conduct. contributing project agree abide terms.","code":""},{"path":"https://openpharma.github.io/visR/index.html","id":"visr-","dir":"","previous_headings":"","what":"Clinical Graphs and Tables Adhering to Graphical Principles","title":"Clinical Graphs and Tables Adhering to Graphical Principles","text":"goal visR enable fit--purpose, reusable clinical medical research focused visualizations tables sensible defaults based sound graphical principles. Package documentation","code":""},{"path":"https://openpharma.github.io/visR/index.html","id":"motivation","dir":"","previous_headings":"","what":"Motivation","title":"Clinical Graphs and Tables Adhering to Graphical Principles","text":"using common package visualising data analysis results clinical development process, want positive influence choice visualisation making easy explore different visualisation use impactful visualisations fit--purpose effective visual communication making easy implement best practices judging visualisation chose research question, want facilitate support good practice. can read philosophy architecture repo wiki.","code":""},{"path":"https://openpharma.github.io/visR/index.html","id":"installation","dir":"","previous_headings":"","what":"Installation","title":"Clinical Graphs and Tables Adhering to Graphical Principles","text":"easiest way get visR install CRAN: Install development version GitHub :","code":"install.packages(\"visR\") # defaults to main branch devtools::install_github(\"openpharma/visR\")"},{"path":"https://openpharma.github.io/visR/index.html","id":"cite-visr","dir":"","previous_headings":"","what":"Cite visR","title":"Clinical Graphs and Tables Adhering to Graphical Principles","text":"","code":"> citation(\"visR\")"},{"path":"https://openpharma.github.io/visR/index.html","id":"contributing","dir":"","previous_headings":"","what":"Contributing","title":"Clinical Graphs and Tables Adhering to Graphical Principles","text":"Please note visR project released Contributor Code Conduct. contributing project, agree abide terms. Thank contributors: @AlexandraP-21, @ardeeshany, @bailliem, @cschaerfe, @ddsjoberg, @diego-s, @epijim, @galachad, @gdario, @ginberg, @jameshunterbr, @jinjooshim, @joanacmbarros, @Jonnie-Bevan, @kawap, @kawap93, @kentm4, @krystian8207, @kzalocusky, @lcomm, @lesniewa, @prabhushanmup, @rebecca-albrecht, @SHAESEN2, @thanos-siadimas, @therneau, @thomas-neitmann, @timtreis, @yonicd","code":""},{"path":"https://openpharma.github.io/visR/reference/Surv_CNSR.html","id":null,"dir":"Reference","previous_headings":"","what":"Create a Survival Object from CDISC Data — Surv_CNSR","title":"Create a Survival Object from CDISC Data — Surv_CNSR","text":"aim Surv_CNSR() map inconsistency convention survival package CDISC ADaM ADTTE data model. function creates survival object (e.g. survival::Surv()) uses CDISC ADaM ADTTE coding conventions converts arguments status/event variable convention used survival package. AVAL CNSR arguments passed survival::Surv(time = AVAL, event = 1 - CNSR, type = \"right\", origin = 0).","code":""},{"path":"https://openpharma.github.io/visR/reference/Surv_CNSR.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create a Survival Object from CDISC Data — Surv_CNSR","text":"","code":"Surv_CNSR(AVAL, CNSR)"},{"path":"https://openpharma.github.io/visR/reference/Surv_CNSR.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create a Survival Object from CDISC Data — Surv_CNSR","text":"AVAL follow-time. follow-time assumed originate zero. argument passed, default value column/vector named AVAL. CNSR censoring indicator 1=censored 0=death/event. argument passed, default value column/vector named CNSR.","code":""},{"path":"https://openpharma.github.io/visR/reference/Surv_CNSR.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create a Survival Object from CDISC Data — Surv_CNSR","text":"Object class 'Surv'","code":""},{"path":"https://openpharma.github.io/visR/reference/Surv_CNSR.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Create a Survival Object from CDISC Data — Surv_CNSR","text":"Surv_CNSR() function creates survival object utilizing expected data structure CDISC ADaM ADTTE data model, mapping CDISC ADaM ADTTE coding conventions expected status/event variable convention used survival package---specifically, coding convention used status/event indicator. survival package expects status/event indicator following format: 0=alive, 1=dead. accepted choices TRUE/FALSE (TRUE = death) 1/2 (2=death). final risky option omit indicator variable, case subjects assumed event. CDISC ADaM ADTTE data model adopts different coding convention event/status indicator. Using convention, event/status variable named 'CNSR' uses following coding: censor = 1, status/event = 0.","code":""},{"path":[]},{"path":"https://openpharma.github.io/visR/reference/Surv_CNSR.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Create a Survival Object from CDISC Data — Surv_CNSR","text":"","code":"# Use the `Surv_CNSR()` function with visR functions adtte %>% visR::estimate_KM(formula = visR::Surv_CNSR() ~ SEX) #> Warning: `estimate_KM()` was deprecated in visR 0.4.0. #> ℹ Please use `ggsurvfit::ggsurvfit()` instead. #> Call: ~survival::survfit(formula = visR::Surv_CNSR() ~ SEX, data = data) #> #> n events median 0.95LCL 0.95UCL #> SEX=F 143 80 64 47 96 #> SEX=M 111 72 41 30 57 # Use the `Surv_CNSR()` function with functions from other packages as well survival::survfit(visR::Surv_CNSR() ~ SEX, data = adtte) #> Call: survfit(formula = visR::Surv_CNSR() ~ SEX, data = adtte) #> #> n events median 0.95LCL 0.95UCL #> SEX=F 143 80 64 47 96 #> SEX=M 111 72 41 30 57 survival::survreg(visR::Surv_CNSR() ~ SEX + AGE, data = adtte) %>% broom::tidy() #> # A tibble: 4 × 5 #> term estimate std.error statistic p.value #> #> 1 (Intercept) 3.97 0.993 4.00 0.0000645 #> 2 SEXM -0.412 0.226 -1.82 0.0689 #> 3 AGE 0.0131 0.0131 0.997 0.319 #> 4 Log(scale) 0.326 0.0676 4.83 0.00000139"},{"path":"https://openpharma.github.io/visR/reference/add_CI.html","id":null,"dir":"Reference","previous_headings":"","what":"Add confidence interval (CI) to visR object — add_CI","title":"Add confidence interval (CI) to visR object — add_CI","text":"Method add pointwise confidence intervals object created visR S3 method. method set use pipe %>%. two options display CI's, \"ribbon\" \"step\" lines. default method available moment.","code":""},{"path":"https://openpharma.github.io/visR/reference/add_CI.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Add confidence interval (CI) to visR object — add_CI","text":"","code":"add_CI(gg, ...) # S3 method for ggsurvfit add_CI(gg, alpha = 0.1, style = \"ribbon\", linetype, ...) # S3 method for ggtidycuminc add_CI(gg, alpha = 0.1, style = \"ribbon\", linetype, ...)"},{"path":"https://openpharma.github.io/visR/reference/add_CI.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Add confidence interval (CI) to visR object — add_CI","text":"gg ggplot created visR ... arguments passed method modify geom_ribbon alpha aesthetic ggplot2 geom_ribbon. Default 0.1. style aesthetic ggplot2 geom_ribbon. Default \"ribbon\". alternative option \"step\" uses line display interval bounds. linetype aesthetic ggplot2 geom_ribbon.","code":""},{"path":"https://openpharma.github.io/visR/reference/add_CI.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Add confidence interval (CI) to visR object — add_CI","text":"Pointwise confidence interval overlayed visR ggplot","code":""},{"path":"https://openpharma.github.io/visR/reference/add_CI.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Add confidence interval (CI) to visR object — add_CI","text":"","code":"library(visR) # Estimate KM curves by treatment group survfit_object <- survival::survfit(data = adtte, survival::Surv(AVAL, 1 - CNSR) ~ TRTP) ## plot without confidence intervals (CI) p <- visR::visr(survfit_object) #> Warning: `visr.survfit()` was deprecated in visR 0.4.0. #> ℹ Please use `ggsurvfit::ggsurvfit()` instead. p # add CI to plot with default settings p %>% add_CI() # change transparency of CI ribbon p %>% add_CI(alpha = 0.9, style = \"ribbon\") # plot CI as a step line instead of ribbon p %>% add_CI(alpha = 0.1, style = \"step\") # change linetype of CI p %>% add_CI(style = \"step\", linetype = 1)"},{"path":"https://openpharma.github.io/visR/reference/add_CNSR.html","id":null,"dir":"Reference","previous_headings":"","what":"Add censoring symbols to a visR object — add_CNSR","title":"Add censoring symbols to a visR object — add_CNSR","text":"Add censoring symbols visR ggplot S3 method. S3 method adding censoring symbols visR ggplot. method set use pipe %>%. default method available moment.","code":""},{"path":"https://openpharma.github.io/visR/reference/add_CNSR.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Add censoring symbols to a visR object — add_CNSR","text":"","code":"add_CNSR(gg, ...) # S3 method for ggsurvfit add_CNSR(gg, shape = 3, size = 2, ...) # S3 method for ggtidycuminc add_CNSR(gg, shape = 3, size = 2, ...)"},{"path":"https://openpharma.github.io/visR/reference/add_CNSR.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Add censoring symbols to a visR object — add_CNSR","text":"gg ggplot created visR ... arguments passed method modify geom_point shape aesthetic ggplot2 geom_point. Default 3. size aesthetic ggplot2 geom_point. Default 2.","code":""},{"path":"https://openpharma.github.io/visR/reference/add_CNSR.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Add censoring symbols to a visR object — add_CNSR","text":"Censoring symbols overlayed visR ggplot","code":""},{"path":"https://openpharma.github.io/visR/reference/add_CNSR.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Add censoring symbols to a visR object — add_CNSR","text":"","code":"library(visR) # Estimate KM curves by treatment group survfit_object <- survival::survfit(data = adtte, survival::Surv(AVAL, 1 - CNSR) ~ TRTP) ## plot without confidence intervals p <- visR::visr(survfit_object) p # add censoring to plot p %>% visR::add_CNSR() # change censor symbol shape p %>% visR::add_CNSR(shape = 1) # change size and shape p %>% visR::add_CNSR(size = 4, shape = 2)"},{"path":"https://openpharma.github.io/visR/reference/add_annotation.html","id":null,"dir":"Reference","previous_headings":"","what":"Add annotations to a visR object — add_annotation","title":"Add annotations to a visR object — add_annotation","text":"Wrapper around ggplot2::annotation_custom simplified annotation ggplot2 plots. function accepts string, dataframe, data.table, tibble customized objects class gtable places specified location ggplot. layout fixed: bold column headers plain body. font size type can chosen. initial plot individual annotation stored attribute component final object.","code":""},{"path":"https://openpharma.github.io/visR/reference/add_annotation.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Add annotations to a visR object — add_annotation","text":"","code":"add_annotation( gg = NULL, label = NULL, base_family = \"sans\", base_size = 11, xmin = -Inf, xmax = Inf, ymin = -Inf, ymax = Inf )"},{"path":"https://openpharma.github.io/visR/reference/add_annotation.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Add annotations to a visR object — add_annotation","text":"gg Object class ggplot. label String, dataframe, data.table, tibble used annotate ggplot. base_family character. Base font family base_size numeric. Base font size pt xmin x coordinates giving horizontal location raster fit annotation. xmax x coordinates giving horizontal location raster fit annotation. ymin y coordinates giving vertical location raster fit annotation. ymax y coordinates giving vertical location raster fit annotation.","code":""},{"path":"https://openpharma.github.io/visR/reference/add_annotation.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Add annotations to a visR object — add_annotation","text":"Object class ggplot added annotation object class gtable.","code":""},{"path":[]},{"path":"https://openpharma.github.io/visR/reference/add_annotation.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Add annotations to a visR object — add_annotation","text":"","code":"## Estimate survival surv_object <- visR::estimate_KM(data = adtte, strata = \"TRTP\") ## We want to annotate the survival KM plot with a simple string comment visR::visr(surv_object) %>% visR::add_annotation( label = \"My simple comment\", base_family = \"sans\", base_size = 15, xmin = 110, xmax = 180, ymin = 0.80 ) ## Currently, care needs to be taken on the x-y values relative ## to the plot data area. Here we are plotting outside of the data area. visR::visr(surv_object) %>% visR::add_annotation( label = \"My simple comment\", base_family = \"sans\", base_size = 15, xmin = 210, xmax = 380, ymin = 1.0 ) ## We may also want to annotate a KM plot with information ## from additional tests or estimates. This example we annotate ## with p-values contained in a tibble ## we calculate p-values for \"Equality across strata\" lbl <- visR::get_pvalue(surv_object, statlist = c(\"test\", \"pvalue\"), type = \"All\" ) ## display p-values lbl #> Equality across strata p-value #> 1 Log-Rank <0.001 #> 2 Wilcoxon <0.001 #> 3 Tarone-Ware <0.001 ## Now annotate survival KM plot with the p-values visR::visr(surv_object) %>% visR::add_annotation( label = lbl, base_family = \"sans\", base_size = 9, xmin = 100, xmax = 180, ymin = 0.80 )"},{"path":"https://openpharma.github.io/visR/reference/add_highlight.html","id":null,"dir":"Reference","previous_headings":"","what":"Highlight a specific strata — add_highlight","title":"Highlight a specific strata — add_highlight","text":"S3 method highlighting specific strata lowering opacity strata.","code":""},{"path":"https://openpharma.github.io/visR/reference/add_highlight.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Highlight a specific strata — add_highlight","text":"","code":"add_highlight(gg, ...) # S3 method for ggsurvfit add_highlight(gg = NULL, strata = NULL, bg_alpha = 0.2, ...)"},{"path":"https://openpharma.github.io/visR/reference/add_highlight.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Highlight a specific strata — add_highlight","text":"gg ggplot created visR ... arguments passed method strata String representing name value strata highlighted shown legend. bg_alpha numerical value 0 1 used decrease opacity strata chosen highlighted strata. strata's existing alpha values multiplied bg_alpha decrease opacity, highlighting target strata. works colour fill properties, example present applying visR::add_CI().","code":""},{"path":"https://openpharma.github.io/visR/reference/add_highlight.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Highlight a specific strata — add_highlight","text":"input ggsurvfit object adjusted alpha values","code":""},{"path":"https://openpharma.github.io/visR/reference/add_highlight.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Highlight a specific strata — add_highlight","text":"","code":"adtte %>% visR::estimate_KM(strata = \"SEX\") %>% visR::visr() %>% visR::add_CI(alpha = 0.4) %>% visR::add_highlight(strata = \"M\", bg_alpha = 0.2) strata <- c(\"Placebo\", \"Xanomeline Low Dose\") adtte %>% visR::estimate_KM(strata = \"TRTP\") %>% visR::visr() %>% visR::add_CI(alpha = 0.4) %>% visR::add_highlight(strata = strata, bg_alpha = 0.2)"},{"path":"https://openpharma.github.io/visR/reference/add_quantiles.html","id":null,"dir":"Reference","previous_headings":"","what":"Add quantile indicators to visR plot — add_quantiles","title":"Add quantile indicators to visR plot — add_quantiles","text":"Method add quantile lines plot.","code":""},{"path":"https://openpharma.github.io/visR/reference/add_quantiles.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Add quantile indicators to visR plot — add_quantiles","text":"","code":"add_quantiles(gg, ...) # S3 method for ggsurvfit add_quantiles( gg, quantiles = 0.5, linetype = \"dashed\", linecolour = \"grey50\", alpha = 1, ... )"},{"path":"https://openpharma.github.io/visR/reference/add_quantiles.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Add quantile indicators to visR plot — add_quantiles","text":"gg ggplot created visR ... arguments passed method modify geom_line quantiles vector quantiles displayed probability scale, default: 0.5 linetype string indicating linetype described aesthetics ggplot2 geom_line, default: dashed (also supports \"mixed\" -> horizontal lines solid, vertical ones dashed) linecolour string indicating linetype described aesthetics ggplot2 geom_line, default: grey, (also supports \"strata\" -> horizontal lines grey50, vertical ones colour respective strata) alpha numeric value 0 1 described aesthetics ggplot2 geom_line, default: 1","code":""},{"path":"https://openpharma.github.io/visR/reference/add_quantiles.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Add quantile indicators to visR plot — add_quantiles","text":"Lines indicating quantiles overlayed visR ggplot","code":""},{"path":"https://openpharma.github.io/visR/reference/add_quantiles.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Add quantile indicators to visR plot — add_quantiles","text":"","code":"library(visR) adtte %>% estimate_KM(\"SEX\") %>% visr() %>% add_quantiles() #> Warning: no non-missing arguments to min; returning Inf adtte %>% estimate_KM(\"SEX\") %>% visr() %>% add_quantiles(quantiles = c(0.25, 0.50)) #> Warning: no non-missing arguments to min; returning Inf adtte %>% estimate_KM(\"SEX\") %>% visr() %>% add_quantiles( quantiles = c(0.25, 0.50), linetype = \"solid\", linecolour = \"grey\" ) #> Warning: no non-missing arguments to min; returning Inf adtte %>% estimate_KM(\"SEX\") %>% visr() %>% add_quantiles( quantiles = c(0.25, 0.50), linetype = \"mixed\", linecolour = \"strata\" ) #> Warning: no non-missing arguments to min; returning Inf"},{"path":"https://openpharma.github.io/visR/reference/add_risktable.html","id":null,"dir":"Reference","previous_headings":"","what":"Add risk tables to visR plots through an S3 method — add_risktable","title":"Add risk tables to visR plots through an S3 method — add_risktable","text":"S3 method adding risk tables visR plots. function following workflow: risktables calculated using get_risktable risktables placed underneath visR plots using plot_grid initial visR plot individual risktables stored attribute component final object allow post-modification individual plots desired","code":""},{"path":"https://openpharma.github.io/visR/reference/add_risktable.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Add risk tables to visR plots through an S3 method — add_risktable","text":"","code":"add_risktable(gg, ...) # S3 method for ggsurvfit add_risktable( gg, times = NULL, statlist = \"n.risk\", label = NULL, group = \"strata\", collapse = FALSE, rowgutter = 0.16, ... ) # S3 method for ggtidycuminc add_risktable( gg, times = NULL, statlist = \"n.risk\", label = NULL, group = \"strata\", collapse = FALSE, rowgutter = 0.16, ... )"},{"path":"https://openpharma.github.io/visR/reference/add_risktable.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Add risk tables to visR plots through an S3 method — add_risktable","text":"gg visR plot class ggsurvfit ggtidycmprsk ... arguments passed method add_risktable times Numeric vector indicating times risk set, censored subjects, events calculated. statlist Character vector indicating summary data present. Current choices \"n.risk\" \"n.event\" \"n.censor\", \"cum.event\", \"cum.censor\". Default \"n.risk\". label Character vector labels statlist. Default matches \"n.risk\" \"risk\", \"n.event\" \"Events\", \"n.censor\" \"Censored\", \"cum.event\" \"Cum. Event\", \"cum.censor\" \"Cum. Censor\". group String indicating grouping variable risk tables. Current options : \"strata\": groups risk tables per stratum. label specifies label within risk table. strata levels used titles risk tables. default \"statlist\": groups risk tables per statlist. label specifies title risk table. strata levels used labeling within risk table. Default \"strata\". collapse Boolean, indicates whether present data overall. Default FALSE. rowgutter numeric relative value 0 1 indicates height used table versus height used plot, described cowplot::plot_grid(rel_heights=). default 0.16.","code":""},{"path":"https://openpharma.github.io/visR/reference/add_risktable.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Add risk tables to visR plots through an S3 method — add_risktable","text":"Object class ggplot added risk table.","code":""},{"path":[]},{"path":"https://openpharma.github.io/visR/reference/add_risktable.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Add risk tables to visR plots through an S3 method — add_risktable","text":"","code":"## Display 2 risk tables, 1 per statlist adtte %>% visR::estimate_KM(strata = \"TRTP\") %>% visR::visr() %>% visR::add_risktable( label = c(\"Subjects at Risk\", \"Censored\"), statlist = c(\"n.risk\", \"n.censor\", \"n.event\"), group = \"statlist\" ) ## Display overall risk table at selected times adtte %>% visR::estimate_KM(strata = \"TRTP\") %>% visR::visr() %>% visR::add_risktable( label = c(\"Subjects at Risk\", \"Censored\"), statlist = c(\"n.risk\", \"n.censor\"), collapse = TRUE, times = c(0, 20, 40, 60) ) ## Add risk set as specified times adtte %>% visR::estimate_KM(strata = \"TRTP\") %>% visR::visr() %>% visR::add_risktable(times = c(0, 20, 40, 100, 111, 200))"},{"path":"https://openpharma.github.io/visR/reference/adtte.html","id":null,"dir":"Reference","previous_headings":"","what":"adtte - CDISC ADaM compliant time to event data set — adtte","title":"adtte - CDISC ADaM compliant time to event data set — adtte","text":"ADTTE data copied 2013 CDISC Pilot","code":""},{"path":"https://openpharma.github.io/visR/reference/adtte.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"adtte - CDISC ADaM compliant time to event data set — adtte","text":"","code":"adtte"},{"path":"https://openpharma.github.io/visR/reference/adtte.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"adtte - CDISC ADaM compliant time to event data set — adtte","text":"data frame 254 rows 26 variables: STUDYID Study Identifier SITEID Study Site Identifier USUBJID Unique Subject Identifier AGE Age AGEGR1 Pooled Age Group 1 AGEGR1N Pooled Age Group 1 (N) RACE Race RACEN Race (N) SEX Sex TRTSDT Date First Exposure Treatment TRTEDT Date Last Exposure Treatment TRTDUR Duration treatment (days) TRTP Planned Treatment TRTA Actual Treatment TRTAN Actual Treatment (N) PARAM Parameter Description PARAMCD Parameter Code AVAL Analysis Value STARTDT Time Event Origin Date Subject ADT Analysis Date CNSR Censor EVNTDESC Event Censoring Description SRCDOM Source Domain SRCVAR Source Variable SRCSEQ Source Sequence Number SAFFL Safety Population Flag","code":""},{"path":"https://openpharma.github.io/visR/reference/adtte.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"adtte - CDISC ADaM compliant time to event data set — adtte","text":"CDISC SDTM/ADAM Pilot Project. https://github.com/phuse-org/phuse-scripts/tree/master/data","code":""},{"path":"https://openpharma.github.io/visR/reference/adtte.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"adtte - CDISC ADaM compliant time to event data set — adtte","text":"","code":"data(\"adtte\")"},{"path":"https://openpharma.github.io/visR/reference/align_plots.html","id":null,"dir":"Reference","previous_headings":"","what":"Align multiple ggplot graphs, taking into account the legend — align_plots","title":"Align multiple ggplot graphs, taking into account the legend — align_plots","text":"function aligns multiple ggplot graphs making width taking account legend width.","code":""},{"path":"https://openpharma.github.io/visR/reference/align_plots.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Align multiple ggplot graphs, taking into account the legend — align_plots","text":"","code":"align_plots(pltlist)"},{"path":"https://openpharma.github.io/visR/reference/align_plots.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Align multiple ggplot graphs, taking into account the legend — align_plots","text":"pltlist list plots","code":""},{"path":"https://openpharma.github.io/visR/reference/align_plots.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Align multiple ggplot graphs, taking into account the legend — align_plots","text":"List ggplot equal width.","code":""},{"path":"https://openpharma.github.io/visR/reference/align_plots.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Align multiple ggplot graphs, taking into account the legend — align_plots","text":"https://stackoverflow.com/questions/26159495","code":""},{"path":"https://openpharma.github.io/visR/reference/align_plots.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Align multiple ggplot graphs, taking into account the legend — align_plots","text":"","code":"# \\donttest{ ## create 2 graphs p1 <- ggplot2::ggplot(adtte, ggplot2::aes(x = as.numeric(AGE), fill = \"Age\")) + ggplot2::geom_histogram(bins = 15) p2 <- ggplot2::ggplot(adtte, ggplot2::aes(x = as.numeric(AGE))) + ggplot2::geom_histogram(bins = 15) ## default alignment does not take into account legend size cowplot::plot_grid( plotlist = list(p1, p2), align = \"none\", nrow = 2 ) ## align_plots() takes into account legend width cowplot::plot_grid( plotlist = visR::align_plots(pltlist = list(p1, p2)), align = \"none\", nrow = 2 ) # }"},{"path":"https://openpharma.github.io/visR/reference/apply_attrition.html","id":null,"dir":"Reference","previous_headings":"","what":"Apply list of inclusion/exclusion criteria to a patient-level dataframe — apply_attrition","title":"Apply list of inclusion/exclusion criteria to a patient-level dataframe — apply_attrition","text":"Apply list inclusion/exclusion criteria patient-level dataframe","code":""},{"path":"https://openpharma.github.io/visR/reference/apply_attrition.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Apply list of inclusion/exclusion criteria to a patient-level dataframe — apply_attrition","text":"","code":"apply_attrition(data, criteria_conditions)"},{"path":"https://openpharma.github.io/visR/reference/apply_attrition.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Apply list of inclusion/exclusion criteria to a patient-level dataframe — apply_attrition","text":"data data.frame. Data set filtered criteria_conditions character dplyr-filter compatible conditions filtering criteria. conditions applied filter input data set obtain final analysis data set","code":""},{"path":"https://openpharma.github.io/visR/reference/apply_attrition.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Apply list of inclusion/exclusion criteria to a patient-level dataframe — apply_attrition","text":"Filtered data frame","code":""},{"path":"https://openpharma.github.io/visR/reference/apply_attrition.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Apply list of inclusion/exclusion criteria to a patient-level dataframe — apply_attrition","text":"","code":"adtte_filtered <- visR::apply_attrition(adtte, criteria_conditions = c( \"TRTP=='Placebo'\", \"AGE>=75\", \"RACE=='WHITE'\", \"SITEID==709\" ) )"},{"path":"https://openpharma.github.io/visR/reference/apply_theme.html","id":null,"dir":"Reference","previous_headings":"","what":"Applies a theme to a ggplot object. — apply_theme","title":"Applies a theme to a ggplot object. — apply_theme","text":"Takes styling options defined visR::define_theme applies plot.","code":""},{"path":"https://openpharma.github.io/visR/reference/apply_theme.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Applies a theme to a ggplot object. — apply_theme","text":"","code":"apply_theme(gg, visR_theme_dict = NULL)"},{"path":"https://openpharma.github.io/visR/reference/apply_theme.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Applies a theme to a ggplot object. — apply_theme","text":"gg object class ggplot visR_theme_dict nested list containing possible font options","code":""},{"path":"https://openpharma.github.io/visR/reference/apply_theme.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Applies a theme to a ggplot object. — apply_theme","text":"object class ggplot","code":""},{"path":"https://openpharma.github.io/visR/reference/apply_theme.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Applies a theme to a ggplot object. — apply_theme","text":"","code":"library(visR) theme <- visR::define_theme( strata = list( \"SEX\" = list( \"F\" = \"red\", \"M\" = \"blue\" ), \"TRTA\" = list( \"Placebo\" = \"cyan\", \"Xanomeline High Dose\" = \"purple\", \"Xanomeline Low Dose\" = \"brown\" ) ), fontsizes = list( \"axis\" = 12, \"ticks\" = 10, \"legend_title\" = 10, \"legend_text\" = 8 ), fontfamily = \"Helvetica\", grid = FALSE, bg = \"transparent\", legend_position = \"top\" ) gg <- adtte %>% visR::estimate_KM(strata = \"SEX\") %>% visR::visr() %>% visR::apply_theme(theme) gg"},{"path":"https://openpharma.github.io/visR/reference/brca_cohort.html","id":null,"dir":"Reference","previous_headings":"","what":"Cancer survival data — brca_cohort","title":"Cancer survival data — brca_cohort","text":"Creation script data-raw","code":""},{"path":"https://openpharma.github.io/visR/reference/brca_cohort.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Cancer survival data — brca_cohort","text":"","code":"brca_cohort"},{"path":"https://openpharma.github.io/visR/reference/brca_cohort.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Cancer survival data — brca_cohort","text":"object class data.frame 1098 rows 10 columns.","code":""},{"path":"https://openpharma.github.io/visR/reference/define_theme.html","id":null,"dir":"Reference","previous_headings":"","what":"Provides a simple wrapper for themes — define_theme","title":"Provides a simple wrapper for themes — define_theme","text":"function collects several lists present. absent, reasonable defaults used. strata defined theme, default grey50 presented legend.","code":""},{"path":"https://openpharma.github.io/visR/reference/define_theme.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Provides a simple wrapper for themes — define_theme","text":"","code":"define_theme( strata = NULL, fontsizes = NULL, fontfamily = \"Helvetica\", grid = FALSE, bg = \"transparent\", legend_position = NULL )"},{"path":"https://openpharma.github.io/visR/reference/define_theme.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Provides a simple wrapper for themes — define_theme","text":"strata named list containing different strata name:colour value pairs fontsizes named list containing font sizes different options fontfamily string name supported font grid boolean specifies whether major minor grid drawn. drawing major minor gridlines can manipulated separately using boolean indicator named list elements major minor. bg string defining colour background plot legend_position string defining legend position. Valid options NULL, 'top' 'bottom' 'right' 'left'","code":""},{"path":"https://openpharma.github.io/visR/reference/define_theme.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Provides a simple wrapper for themes — define_theme","text":"Nested list styling preferences ggplot object","code":""},{"path":"https://openpharma.github.io/visR/reference/define_theme.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Provides a simple wrapper for themes — define_theme","text":"","code":"theme <- visR::define_theme( strata = list(\"SEX\" = list( \"F\" = \"red\", \"M\" = \"blue\" )), fontsizes = list( \"axis\" = 12, \"ticks\" = 10, \"legend_title\" = 10, \"legend_text\" = 8 ), fontfamily = \"Helvetica\", grid = list( \"major\" = FALSE, \"minor\" = FALSE ), bg = \"transparent\", legend_position = \"top\" )"},{"path":"https://openpharma.github.io/visR/reference/dot-convert_alpha.html","id":null,"dir":"Reference","previous_headings":"","what":"Converts an alpha value between its numeric and its hex-encoded form. — .convert_alpha","title":"Converts an alpha value between its numeric and its hex-encoded form. — .convert_alpha","text":"function accepts numeric (NULL/NA) two-character hex encoded alpha representation returns respective representation.","code":""},{"path":"https://openpharma.github.io/visR/reference/dot-convert_alpha.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Converts an alpha value between its numeric and its hex-encoded form. — .convert_alpha","text":"","code":".convert_alpha(numeric_alpha = NULL, hex_alpha = NULL)"},{"path":"https://openpharma.github.io/visR/reference/dot-convert_alpha.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Converts an alpha value between its numeric and its hex-encoded form. — .convert_alpha","text":"numeric_alpha numerical value 0 1. hex_alpha two-letter character string.","code":""},{"path":"https://openpharma.github.io/visR/reference/dot-convert_alpha.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Converts an alpha value between its numeric and its hex-encoded form. — .convert_alpha","text":"numeric_alpha specified, two-letter representation returned. hex_alpha specified, numeric representation returned.","code":""},{"path":"https://openpharma.github.io/visR/reference/dot-get_alpha_from_hex_colour.html","id":null,"dir":"Reference","previous_headings":"","what":"Extract the numerical alpha representation of #RRGGBBAA colour — .get_alpha_from_hex_colour","title":"Extract the numerical alpha representation of #RRGGBBAA colour — .get_alpha_from_hex_colour","text":"RGB colours can encoded hexadecimal values, example internally used ggplot2. , numerical RGB values mapped 0-255 value range two-character hex-values. yields string form '#RRGGBB'. Additionally, fourth optional block can present encoding alpha transparency colour. extends string '#RRGGBBAA'. function takes string input hex_colour, extracts 'AA' part returns numerical representation .","code":""},{"path":"https://openpharma.github.io/visR/reference/dot-get_alpha_from_hex_colour.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extract the numerical alpha representation of #RRGGBBAA colour — .get_alpha_from_hex_colour","text":"","code":".get_alpha_from_hex_colour(hex_colour = NULL)"},{"path":"https://openpharma.github.io/visR/reference/dot-get_alpha_from_hex_colour.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extract the numerical alpha representation of #RRGGBBAA colour — .get_alpha_from_hex_colour","text":"hex_colour string format '#RRGGBBAA'","code":""},{"path":"https://openpharma.github.io/visR/reference/dot-get_alpha_from_hex_colour.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extract the numerical alpha representation of #RRGGBBAA colour — .get_alpha_from_hex_colour","text":"numeric representation colors' alpha value, rounded 2 digits.","code":""},{"path":"https://openpharma.github.io/visR/reference/dot-get_strata.html","id":null,"dir":"Reference","previous_headings":"","what":"Get strata level combinations — .get_strata","title":"Get strata level combinations — .get_strata","text":"Extracts strata level combinations survival objects without specified strata.","code":""},{"path":"https://openpharma.github.io/visR/reference/dot-get_strata.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get strata level combinations — .get_strata","text":"","code":".get_strata(strata)"},{"path":"https://openpharma.github.io/visR/reference/dot-get_strata.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get strata level combinations — .get_strata","text":"strata strata survival object","code":""},{"path":"https://openpharma.github.io/visR/reference/dot-get_strata.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get strata level combinations — .get_strata","text":"strata level combinations survival objects without specified strata.","code":""},{"path":"https://openpharma.github.io/visR/reference/dot-replace_hex_alpha.html","id":null,"dir":"Reference","previous_headings":"","what":"Replaces the AA part of a #RRGGBBAA hex-colour. — .replace_hex_alpha","title":"Replaces the AA part of a #RRGGBBAA hex-colour. — .replace_hex_alpha","text":"RGB colours can encoded hexadecimal values, example internally used ggplot2. , numerical RGB values mapped 0-255 value range two-character hex-values. yields string form '#RRGGBB'. Additionally, fourth optional block can present encoding alpha transparency colour. extends string '#RRGGBBAA'. function takes '#RRGGBBAA' string input colour two-character hex-representation alpha value input new_alpha, replaces 'AA' part colour new_alpha returns new colour.","code":""},{"path":"https://openpharma.github.io/visR/reference/dot-replace_hex_alpha.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Replaces the AA part of a #RRGGBBAA hex-colour. — .replace_hex_alpha","text":"","code":".replace_hex_alpha(colour, new_alpha)"},{"path":"https://openpharma.github.io/visR/reference/dot-replace_hex_alpha.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Replaces the AA part of a #RRGGBBAA hex-colour. — .replace_hex_alpha","text":"colour character string format #RRGGBBAA. new_alpha two-character string new alpha value.","code":""},{"path":"https://openpharma.github.io/visR/reference/dot-replace_hex_alpha.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Replaces the AA part of a #RRGGBBAA hex-colour. — .replace_hex_alpha","text":"hex-encoded RGBA colour.","code":""},{"path":"https://openpharma.github.io/visR/reference/estimate_KM.html","id":null,"dir":"Reference","previous_headings":"","what":"Wrapper for Kaplan-Meier Time-to-Event analysis — estimate_KM","title":"Wrapper for Kaplan-Meier Time-to-Event analysis — estimate_KM","text":"function wrapper around survival::survfit.formula() perform Kaplan-Meier analysis, assuming right-censored data. result object class survfit can used downstream functions methods rely survfit class. function can leverage conventions controlled vocabulary CDISC ADaM ADTTE data model, also works standard, non-CDISC datasets formula argument.","code":""},{"path":"https://openpharma.github.io/visR/reference/estimate_KM.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Wrapper for Kaplan-Meier Time-to-Event analysis — estimate_KM","text":"","code":"estimate_KM( data = NULL, strata = NULL, CNSR = \"CNSR\", AVAL = \"AVAL\", formula = NULL, ... )"},{"path":"https://openpharma.github.io/visR/reference/estimate_KM.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Wrapper for Kaplan-Meier Time-to-Event analysis — estimate_KM","text":"data data frame. dataset expected one record per subject per analysis parameter. Rows missing observations included analysis removed. AVAL, CNSR, strata arguments used construct formula passed survival::survfit(formula=Surv(AVAL, 1-CNSR)~strata). arguments' default values follow naming conventions CDISC. AVAL Analysis value Time--Event analysis. Default \"AVAL\", per CDISC ADaM guiding principles. CNSR Censor Time--Event analysis. Default \"CNSR\", per CDISC ADaM guiding principles. expected CNSR = 1 censoring CNSR = 0 event interest. strata Character vector, representing strata Time--Event analysis. NULL, overall analysis performed. Default NULL. formula formula Surv() RHS stratifying variables LHS. Use ~1 LHS unstratified estimates. argument passed survival::survfit(formula=). argument used, arguments AVAL, CNSR, strata ignored. ... additional arguments passed ellipsis call survival::survfit.formula(...). Use ?survival::survfit.formula ?survival::survfitCI information.","code":""},{"path":"https://openpharma.github.io/visR/reference/estimate_KM.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Wrapper for Kaplan-Meier Time-to-Event analysis — estimate_KM","text":"survfit object ready downstream processing estimation visualization functions methods.","code":""},{"path":"https://openpharma.github.io/visR/reference/estimate_KM.html","id":"estimation-of-survfit-object","dir":"Reference","previous_headings":"","what":"Estimation of 'survfit' object","title":"Wrapper for Kaplan-Meier Time-to-Event analysis — estimate_KM","text":"estimate_KM() function utilizes defaults survival::survfit(): Kaplan Meier estimate estimated directly (stype = 1). cumulative hazard estimated using Nelson-Aalen estimator (ctype = 1): H.tilde = cumsum(x$n.event/x$n.risk). MLE (H.hat(t) = -log(S.hat(t))) requested. two-sided pointwise 0.95 confidence interval estimated using log transformation (conf.type = \"log\"). strata present, returned survfit object supplemented named list stratum associated label. support full traceability, data set name captured named list call captured within corresponding environment.","code":""},{"path":"https://openpharma.github.io/visR/reference/estimate_KM.html","id":"param-paramcd-and-cdisc","dir":"Reference","previous_headings":"","what":"PARAM/PARAMCD and CDISC","title":"Wrapper for Kaplan-Meier Time-to-Event analysis — estimate_KM","text":"data frame includes columns PARAM/PARAMCD (part CDISC format), function expects data filtered parameter interest.","code":""},{"path":"https://openpharma.github.io/visR/reference/estimate_KM.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Wrapper for Kaplan-Meier Time-to-Event analysis — estimate_KM","text":"https://github.com/therneau/survival","code":""},{"path":[]},{"path":"https://openpharma.github.io/visR/reference/estimate_KM.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Wrapper for Kaplan-Meier Time-to-Event analysis — estimate_KM","text":"","code":"## No stratification visR::estimate_KM(data = adtte) #> Call: ~survival::survfit(formula = survival::Surv(AVAL, 1 - CNSR) ~ #> 1, data = data) #> #> n events median 0.95LCL 0.95UCL #> [1,] 254 152 51 44 70 ## Stratified Kaplan-Meier analysis by `TRTP` visR::estimate_KM(data = adtte, strata = \"TRTP\") #> Call: ~survival::survfit(formula = survival::Surv(AVAL, 1 - CNSR) ~ #> TRTP, data = data) #> #> n events median 0.95LCL 0.95UCL #> TRTP=Placebo 86 29 NA NA NA #> TRTP=Xanomeline High Dose 84 61 36 25 47 #> TRTP=Xanomeline Low Dose 84 62 33 28 51 ## Stratified Kaplan-Meier analysis by `TRTP` and `SEX` visR::estimate_KM(data = adtte, strata = c(\"TRTP\", \"SEX\")) #> Call: ~survival::survfit(formula = survival::Surv(AVAL, 1 - CNSR) ~ #> TRTP + SEX, data = data) #> #> n events median 0.95LCL 0.95UCL #> TRTP=Placebo, SEX=F 53 19 NA 90 NA #> TRTP=Placebo, SEX=M 33 10 NA NA NA #> TRTP=Xanomeline High Dose, SEX=F 40 27 46 30 70 #> TRTP=Xanomeline High Dose, SEX=M 44 34 25 20 46 #> TRTP=Xanomeline Low Dose, SEX=F 50 34 43 29 100 #> TRTP=Xanomeline Low Dose, SEX=M 34 28 27 21 51 ## Stratification with one level visR::estimate_KM(data = adtte, strata = \"PARAMCD\") #> Call: ~survival::survfit(formula = survival::Surv(AVAL, 1 - CNSR) ~ #> PARAMCD, data = data) #> #> n events median 0.95LCL 0.95UCL #> [1,] 254 152 51 44 70 ## Analysis on subset of adtte visR::estimate_KM(data = adtte[adtte$SEX == \"F\", ]) #> Call: ~survival::survfit(formula = survival::Surv(AVAL, 1 - CNSR) ~ #> 1, data = data) #> #> n events median 0.95LCL 0.95UCL #> [1,] 143 80 64 47 96 ## Modify the default analysis by using the ellipsis visR::estimate_KM( data = adtte, strata = NULL, type = \"kaplan-meier\", conf.int = FALSE, timefix = TRUE ) #> Call: ~survival::survfit(formula = survival::Surv(AVAL, 1 - CNSR) ~ #> 1, data = data, timefix = TRUE, type = \"kaplan-meier\", conf.int = FALSE) #> #> n events median #> [1,] 254 152 51 ## Example working with non CDISC data head(survival::veteran[c(\"time\", \"status\", \"trt\")]) #> time status trt #> 1 72 1 1 #> 2 411 1 1 #> 3 228 1 1 #> 4 126 1 1 #> 5 118 1 1 #> 6 10 1 1 # Using non-CDSIC data visR::estimate_KM(data = survival::veteran, formula = Surv(time, status) ~ trt) #> Call: ~survival::survfit(formula = Surv(time, status) ~ trt, data = data) #> #> n events median 0.95LCL 0.95UCL #> trt=1 69 64 103.0 59 132 #> trt=2 68 64 52.5 44 95"},{"path":"https://openpharma.github.io/visR/reference/estimate_cuminc.html","id":null,"dir":"Reference","previous_headings":"","what":"Competing Events Cumulative Incidence — estimate_cuminc","title":"Competing Events Cumulative Incidence — estimate_cuminc","text":"Function creates cumulative incidence object using tidycmprsk::cuminc() function.","code":""},{"path":"https://openpharma.github.io/visR/reference/estimate_cuminc.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Competing Events Cumulative Incidence — estimate_cuminc","text":"","code":"estimate_cuminc( data = NULL, strata = NULL, CNSR = \"CNSR\", AVAL = \"AVAL\", conf.int = 0.95, ... )"},{"path":"https://openpharma.github.io/visR/reference/estimate_cuminc.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Competing Events Cumulative Incidence — estimate_cuminc","text":"data data frame. dataset expected one record per subject per analysis parameter. Rows missing observations included analysis removed. AVAL, CNSR, strata arguments used construct formula passed tidycmprsk::cuminc(formula=). AVAL Analysis value Time--Event analysis. Default \"AVAL\", per CDISC ADaM guiding principles. CNSR Column name indicating outcome censoring statuses. Column must factor first level indicates censoring, next level outcome interest, remaining levels competing events. Default \"CNSR\" strata Character vector, representing strata Time--Event analysis. NULL, overall analysis performed. Default NULL. conf.int Confidence internal level. Default 0.95. Parameter passed tidycmprsk::cuminc(conf.level=) ... Additional argument passed tidycmprsk::cuminc()","code":""},{"path":"https://openpharma.github.io/visR/reference/estimate_cuminc.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Competing Events Cumulative Incidence — estimate_cuminc","text":"cumulative incidence object explained https://mskcc-epi-bio.github.io/tidycmprsk/reference/cuminc.html","code":""},{"path":"https://openpharma.github.io/visR/reference/estimate_cuminc.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Competing Events Cumulative Incidence — estimate_cuminc","text":"","code":"cuminc <- visR::estimate_cuminc( data = tidycmprsk::trial, strata = \"trt\", CNSR = \"death_cr\", AVAL = \"ttdeath\" ) cuminc #> #> ── cuminc() ──────────────────────────────────────────────────────────────────── #> #> • Failure type \"death from cancer\" #> strata time n.risk estimate std.error 95% CI #> Drug A 5.00 97 0.000 0.000 NA, NA #> Drug A 10.0 94 0.020 0.014 0.004, 0.065 #> Drug A 15.0 83 0.071 0.026 0.031, 0.134 #> Drug A 20.0 61 0.173 0.039 0.106, 0.255 #> Drug B 5.00 102 0.000 0.000 NA, NA #> Drug B 10.0 95 0.039 0.019 0.013, 0.090 #> Drug B 15.0 75 0.167 0.037 0.102, 0.246 #> Drug B 20.0 55 0.255 0.043 0.175, 0.343 #> #> • Failure type \"death other causes\" #> strata time n.risk estimate std.error 95% CI #> Drug A 5.00 97 0.010 0.010 0.001, 0.050 #> Drug A 10.0 94 0.020 0.014 0.004, 0.065 #> Drug A 15.0 83 0.082 0.028 0.038, 0.147 #> Drug A 20.0 61 0.204 0.041 0.131, 0.289 #> Drug B 5.00 102 0.000 0.000 NA, NA #> Drug B 10.0 95 0.029 0.017 0.008, 0.077 #> Drug B 15.0 75 0.098 0.030 0.050, 0.165 #> Drug B 20.0 55 0.206 0.040 0.133, 0.289 #> #> • Tests #> outcome statistic df p.value #> death from cancer 1.99 1.00 0.16 #> death other causes 0.089 1.00 0.77 cuminc %>% visR::visr() %>% visR::add_CI() %>% visR::add_risktable(statlist = c(\"n.risk\", \"cum.event\")) #> Warning: `visr.tidycuminc()` was deprecated in visR 0.4.0. #> ℹ Please use `ggsurvfit::ggcuminc()` instead."},{"path":"https://openpharma.github.io/visR/reference/get_COX_HR.html","id":null,"dir":"Reference","previous_headings":"","what":"Summarize Hazard Ratio from a survival object using S3 method — get_COX_HR","title":"Summarize Hazard Ratio from a survival object using S3 method — get_COX_HR","text":"S3 method extracting information regarding Hazard Ratios. function allows survival object's formula updated. default method available moment.","code":""},{"path":"https://openpharma.github.io/visR/reference/get_COX_HR.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Summarize Hazard Ratio from a survival object using S3 method — get_COX_HR","text":"","code":"get_COX_HR(x, ...) # S3 method for survfit get_COX_HR(x, update_formula = NULL, ...)"},{"path":"https://openpharma.github.io/visR/reference/get_COX_HR.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Summarize Hazard Ratio from a survival object using S3 method — get_COX_HR","text":"x object class survfit ... arguments passed method survival::coxph update_formula Template specifies update formula survfit object update.formula","code":""},{"path":"https://openpharma.github.io/visR/reference/get_COX_HR.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Summarize Hazard Ratio from a survival object using S3 method — get_COX_HR","text":"tidied object class coxph containing Hazard Ratios","code":""},{"path":[]},{"path":"https://openpharma.github.io/visR/reference/get_COX_HR.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Summarize Hazard Ratio from a survival object using S3 method — get_COX_HR","text":"","code":"## treatment effect survfit_object_trt <- visR::estimate_KM(data = adtte, strata = c(\"TRTP\")) visR::get_COX_HR(survfit_object_trt) #> tidyme S3 default method (broom::tidy) used. #> term estimate std.error statistic p.value #> 1 TRTPXanomeline High Dose 1.614618 0.2332605 6.921953 4.454580e-12 #> 2 TRTPXanomeline Low Dose 1.422555 0.2295098 6.198232 5.710099e-10 ## treatment and gender effect survfit_object_trt_sex <- visR::estimate_KM(data = adtte, strata = c(\"TRTP\", \"SEX\")) visR::get_COX_HR(survfit_object_trt_sex) #> tidyme S3 default method (broom::tidy) used. #> term estimate std.error statistic p.value #> 1 TRTPXanomeline High Dose 1.6159986 0.2339757 6.906695 4.960732e-12 #> 2 TRTPXanomeline Low Dose 1.4755033 0.2317331 6.367252 1.924446e-10 #> 3 SEXM 0.3745729 0.1651854 2.267591 2.335412e-02 ## update formula of KM estimates by treatment to include \"SEX\" for HR estimation visR::get_COX_HR(survfit_object_trt, update_formula = \". ~ . + SEX\") #> tidyme S3 default method (broom::tidy) used. #> term estimate std.error statistic p.value #> 1 TRTPXanomeline High Dose 1.6159986 0.2339757 6.906695 4.960732e-12 #> 2 TRTPXanomeline Low Dose 1.4755033 0.2317331 6.367252 1.924446e-10 #> 3 SEXM 0.3745729 0.1651854 2.267591 2.335412e-02 ## update formula of KM estimates by treatment to include \"AGE\" for ## HR estimation with ties considered via the efron method visR::get_COX_HR(survfit_object_trt, update_formula = \". ~ . + survival::strata(AGE)\", ties = \"efron\" ) #> Warning: Loglik converged before variable 3,7,18,36,37 ; coefficient may be infinite. #> tidyme S3 default method (broom::tidy) used. #> term estimate std.error statistic #> 1 TRTPXanomeline High Dose 1.5676387 2.555278e-01 6.1349054151 #> 2 TRTPXanomeline Low Dose 1.3216405 2.530283e-01 5.2232906436 #> 3 survival::strata(AGE)AGE=52 -18.1640265 5.298844e+03 -0.0034279227 #> 4 survival::strata(AGE)AGE=54 -0.2090228 1.415797e+00 -0.1476361992 #> 5 survival::strata(AGE)AGE=56 -1.6206873 1.097690e+00 -1.4764526121 #> 6 survival::strata(AGE)AGE=57 -1.1398148 1.166518e+00 -0.9771082854 #> 7 survival::strata(AGE)AGE=59 -18.1578569 3.767502e+03 -0.0048196009 #> 8 survival::strata(AGE)AGE=60 -1.3242727 1.241054e+00 -1.0670547450 #> 9 survival::strata(AGE)AGE=61 -1.4515246 1.133242e+00 -1.2808598926 #> 10 survival::strata(AGE)AGE=62 -1.4077265 1.428274e+00 -0.9856138035 #> 11 survival::strata(AGE)AGE=63 -1.7199741 1.245995e+00 -1.3804019425 #> 12 survival::strata(AGE)AGE=64 -1.4654615 1.256398e+00 -1.1663993068 #> 13 survival::strata(AGE)AGE=65 -1.8714042 1.236610e+00 -1.5133340637 #> 14 survival::strata(AGE)AGE=66 -0.7392248 1.443026e+00 -0.5122740113 #> 15 survival::strata(AGE)AGE=67 -1.7065320 1.132933e+00 -1.5062959259 #> 16 survival::strata(AGE)AGE=68 -1.5389556 1.104752e+00 -1.3930331338 #> 17 survival::strata(AGE)AGE=69 -1.1214615 1.136235e+00 -0.9869979981 #> 18 survival::strata(AGE)AGE=70 -18.2495027 2.607234e+03 -0.0069995634 #> 19 survival::strata(AGE)AGE=71 -1.3835479 1.085266e+00 -1.2748469333 #> 20 survival::strata(AGE)AGE=72 -1.5861528 1.109620e+00 -1.4294562988 #> 21 survival::strata(AGE)AGE=73 -1.3311583 1.078529e+00 -1.2342349648 #> 22 survival::strata(AGE)AGE=74 -1.8664225 1.086626e+00 -1.7176312590 #> 23 survival::strata(AGE)AGE=75 -1.0701874 1.094268e+00 -0.9779939016 #> 24 survival::strata(AGE)AGE=76 -1.5673346 1.094736e+00 -1.4317009758 #> 25 survival::strata(AGE)AGE=77 -1.6854602 1.064611e+00 -1.5831705057 #> 26 survival::strata(AGE)AGE=78 -1.3770729 1.070742e+00 -1.2860927604 #> 27 survival::strata(AGE)AGE=79 -1.4209295 1.057330e+00 -1.3438841443 #> 28 survival::strata(AGE)AGE=80 -1.0569092 1.073982e+00 -0.9841035589 #> 29 survival::strata(AGE)AGE=81 -2.4638433 1.083968e+00 -2.2729862787 #> 30 survival::strata(AGE)AGE=82 -1.9384962 1.095070e+00 -1.7702034739 #> 31 survival::strata(AGE)AGE=83 -0.9201888 1.089830e+00 -0.8443416072 #> 32 survival::strata(AGE)AGE=84 -1.4853330 1.059185e+00 -1.4023361544 #> 33 survival::strata(AGE)AGE=85 -1.5477944 1.140473e+00 -1.3571508894 #> 34 survival::strata(AGE)AGE=86 -2.2322079 1.172337e+00 -1.9040670529 #> 35 survival::strata(AGE)AGE=87 -2.6816908 1.423263e+00 -1.8841844010 #> 36 survival::strata(AGE)AGE=88 -18.7682740 2.704813e+03 -0.0069388434 #> 37 survival::strata(AGE)AGE=89 -18.1983764 1.889752e+04 -0.0009630034 #> p.value #> 1 8.520988e-10 #> 2 1.757712e-07 #> 3 9.972649e-01 #> 4 8.826299e-01 #> 5 1.398224e-01 #> 6 3.285155e-01 #> 7 9.961545e-01 #> 8 2.859471e-01 #> 9 2.002429e-01 #> 10 3.243227e-01 #> 11 1.674629e-01 #> 12 2.434530e-01 #> 13 1.301948e-01 #> 14 6.084593e-01 #> 15 1.319912e-01 #> 16 1.636098e-01 #> 17 3.236436e-01 #> 18 9.944152e-01 #> 19 2.023634e-01 #> 20 1.528731e-01 #> 21 2.171154e-01 #> 22 8.586389e-02 #> 23 3.280773e-01 #> 24 1.522294e-01 #> 25 1.133826e-01 #> 26 1.984107e-01 #> 27 1.789859e-01 #> 28 3.250646e-01 #> 29 2.302701e-02 #> 30 7.669325e-02 #> 31 3.984785e-01 #> 32 1.608149e-01 #> 33 1.747333e-01 #> 34 5.690145e-02 #> 35 5.954004e-02 #> 36 9.944636e-01 #> 37 9.992316e-01"},{"path":"https://openpharma.github.io/visR/reference/get_attrition.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate cohort attrition table — get_attrition","title":"Generate cohort attrition table — get_attrition","text":"experimental function may developed time. function calculates subjects counts excluded included step cohort selection process.","code":""},{"path":"https://openpharma.github.io/visR/reference/get_attrition.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate cohort attrition table — get_attrition","text":"","code":"get_attrition(data, criteria_descriptions, criteria_conditions, subject_column_name)"},{"path":"https://openpharma.github.io/visR/reference/get_attrition.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate cohort attrition table — get_attrition","text":"data Dataframe. used input data count subjects meets criteria interest criteria_descriptions character contains descriptions inclusion/exclusion criteria. element vector corresponds description criterion. criteria_conditions character contains corresponding conditions criteria. conditions used table compute counts subjects. subject_column_name character column name table contains subject id.","code":""},{"path":"https://openpharma.github.io/visR/reference/get_attrition.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate cohort attrition table — get_attrition","text":"counts percentages remaining excluded subjects step cohort selection table format.","code":""},{"path":"https://openpharma.github.io/visR/reference/get_attrition.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Generate cohort attrition table — get_attrition","text":"criteria_descriptions criteria_conditions need length","code":""},{"path":"https://openpharma.github.io/visR/reference/get_attrition.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Generate cohort attrition table — get_attrition","text":"","code":"visR::get_attrition(adtte, criteria_descriptions = c( \"1. Placebo Group\", \"2. Be 75 years of age or older.\", \"3. White\", \"4. Site 709\" ), criteria_conditions = c( \"TRTP=='Placebo'\", \"AGE>=75\", \"RACE=='WHITE'\", \"SITEID==709\" ), subject_column_name = \"USUBJID\" ) #> # A tibble: 5 × 6 #> Criteria Condition `Remaining N` `Remaining %` `Excluded N` `Excluded %` #> #> 1 Total cohort … none 254 100 0 0 #> 2 1. Placebo Gr… TRTP=='P… 86 33.9 168 66.1 #> 3 2. Be 75 year… AGE>=75 48 18.9 38 15.0 #> 4 3. White RACE=='W… 45 17.7 3 1.18 #> 5 4. Site 709 SITEID==… 3 1.18 42 16.5"},{"path":"https://openpharma.github.io/visR/reference/get_pvalue.html","id":null,"dir":"Reference","previous_headings":"","what":"Summarize the test for equality across strata from a survival object using S3 method — get_pvalue","title":"Summarize the test for equality across strata from a survival object using S3 method — get_pvalue","text":"Wrapper around survival::survdiff tests null hypothesis equality across strata.","code":""},{"path":"https://openpharma.github.io/visR/reference/get_pvalue.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Summarize the test for equality across strata from a survival object using S3 method — get_pvalue","text":"","code":"get_pvalue( survfit_object, ptype = \"All\", rho = NULL, statlist = c(\"test\", \"Chisq\", \"df\", \"pvalue\"), ... )"},{"path":"https://openpharma.github.io/visR/reference/get_pvalue.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Summarize the test for equality across strata from a survival object using S3 method — get_pvalue","text":"survfit_object object class survfit ptype Character vector containing type p-value desired. Current options \"Log-Rank\" \"Wilcoxon\" \"Tarone-Ware\" \"Custom\" \"\". \"Custom\" allows user specify weights Kaplan-Meier estimates using argument rho. default \"\" displaying types possible. rho specified context \"\", also custom p-value displayed. rho scalar parameter controls type test. statlist Character vector containing desired information displayed. order arguments determines order displayed final result. Default test name (\"test\"), Chi-squared test statistic (\"Chisq\"), degrees freedom (\"df\") p-value (\"pvalue\"). ... arguments passed method","code":""},{"path":"https://openpharma.github.io/visR/reference/get_pvalue.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Summarize the test for equality across strata from a survival object using S3 method — get_pvalue","text":"data frame summary measures Test Equality Across Strata","code":""},{"path":[]},{"path":"https://openpharma.github.io/visR/reference/get_pvalue.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Summarize the test for equality across strata from a survival object using S3 method — get_pvalue","text":"","code":"## general examples survfit_object <- visR::estimate_KM(data = adtte, strata = \"TRTP\") visR::get_pvalue(survfit_object) #> Equality across strata Chisq df p-value #> 1 Log-Rank 60.270 2 <0.001 #> 2 Wilcoxon 48.023 2 <0.001 #> 3 Tarone-Ware 41.850 2 <0.001 visR::get_pvalue(survfit_object, ptype = \"All\") #> Equality across strata Chisq df p-value #> 1 Log-Rank 60.270 2 <0.001 #> 2 Wilcoxon 48.023 2 <0.001 #> 3 Tarone-Ware 41.850 2 <0.001 ## examples to obtain specific tests visR::get_pvalue(survfit_object, ptype = \"Log-Rank\") #> Equality across strata Chisq df p-value #> 1 Log-Rank 60.270 2 <0.001 visR::get_pvalue(survfit_object, ptype = \"Wilcoxon\") #> Equality across strata Chisq df p-value #> 1 Wilcoxon 48.023 2 <0.001 visR::get_pvalue(survfit_object, ptype = \"Tarone-Ware\") #> Equality across strata Chisq df p-value #> 1 Tarone-Ware 41.850 2 <0.001 ## Custom example - obtain Harrington and Fleming test visR::get_pvalue(survfit_object, ptype = \"Custom\", rho = 1) #> Equality across strata Chisq df p-value #> 1 Harrington and Fleming test (rho = 1) 48.023 2 <0.001 ## Get specific information and statistics visR::get_pvalue(survfit_object, ptype = \"Log-Rank\", statlist = c(\"test\", \"Chisq\", \"df\", \"pvalue\")) #> Equality across strata Chisq df p-value #> 1 Log-Rank 60.270 2 <0.001 visR::get_pvalue(survfit_object, ptype = \"Wilcoxon\", statlist = c(\"pvalue\")) #> p-value #> 1 <0.001"},{"path":"https://openpharma.github.io/visR/reference/get_quantile.html","id":null,"dir":"Reference","previous_headings":"","what":"Wrapper around quantile methods — get_quantile","title":"Wrapper around quantile methods — get_quantile","text":"S3 method extracting quantiles. default method available moment.","code":""},{"path":"https://openpharma.github.io/visR/reference/get_quantile.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Wrapper around quantile methods — get_quantile","text":"","code":"get_quantile(x, ...) # S3 method for survfit get_quantile( x, ..., probs = c(0.25, 0.5, 0.75), conf.int = TRUE, tolerance = sqrt(.Machine$double.eps) )"},{"path":"https://openpharma.github.io/visR/reference/get_quantile.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Wrapper around quantile methods — get_quantile","text":"x object class survfit ... arguments passed method probs probabilities Default = c(0.25,0.50,0.75) conf.int lower upper confidence limits returned? tolerance tolerance checking survival curve exactly equals one quantiles","code":""},{"path":"https://openpharma.github.io/visR/reference/get_quantile.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Wrapper around quantile methods — get_quantile","text":"data frame quantiles object","code":""},{"path":[]},{"path":"https://openpharma.github.io/visR/reference/get_quantile.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Wrapper around quantile methods — get_quantile","text":"","code":"## Kaplan-Meier estimates survfit_object <- visR::estimate_KM(data = adtte, strata = c(\"TRTP\")) ## visR quantiles visR::get_quantile(survfit_object) #> strata quantity 25 50 75 #> 4 TRTP=Placebo lower 35 NA NA #> 1 TRTP=Placebo quantile 70 NA NA #> 7 TRTP=Placebo upper 177 NA NA #> 5 TRTP=Xanomeline High Dose lower 5 25 50 #> 2 TRTP=Xanomeline High Dose quantile 14 36 58 #> 8 TRTP=Xanomeline High Dose upper 22 47 94 #> 6 TRTP=Xanomeline Low Dose lower 15 28 57 #> 3 TRTP=Xanomeline Low Dose quantile 19 33 80 #> 9 TRTP=Xanomeline Low Dose upper 27 51 126 ## survival quantiles quantile(survfit_object) #> $quantile #> 25 50 75 #> TRTP=Placebo 70 NA NA #> TRTP=Xanomeline High Dose 14 36 58 #> TRTP=Xanomeline Low Dose 19 33 80 #> #> $lower #> 25 50 75 #> TRTP=Placebo 35 NA NA #> TRTP=Xanomeline High Dose 5 25 50 #> TRTP=Xanomeline Low Dose 15 28 57 #> #> $upper #> 25 50 75 #> TRTP=Placebo 177 NA NA #> TRTP=Xanomeline High Dose 22 47 94 #> TRTP=Xanomeline Low Dose 27 51 126 #>"},{"path":"https://openpharma.github.io/visR/reference/get_risktable.html","id":null,"dir":"Reference","previous_headings":"","what":"Obtain risk tables for tables and plots — get_risktable","title":"Obtain risk tables for tables and plots — get_risktable","text":"Create risk table object using S3 method. Currently, default method defined.","code":""},{"path":"https://openpharma.github.io/visR/reference/get_risktable.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Obtain risk tables for tables and plots — get_risktable","text":"","code":"get_risktable(x, ...) # S3 method for survfit get_risktable( x, times = NULL, statlist = \"n.risk\", label = NULL, group = c(\"strata\", \"statlist\"), collapse = FALSE, ... ) # S3 method for tidycuminc get_risktable( x, times = pretty(x$tidy$time, 10), statlist = \"n.risk\", label = NULL, group = c(\"strata\", \"statlist\"), collapse = FALSE, ... )"},{"path":"https://openpharma.github.io/visR/reference/get_risktable.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Obtain risk tables for tables and plots — get_risktable","text":"x object class survfit tidycuminc ... arguments passed method times Numeric vector indicating times risk set, censored subjects, events calculated. statlist Character vector indicating summary data present. Current choices \"n.risk\" \"n.event\" \"n.censor\", \"cum.event\", \"cum.censor\". Default \"n.risk\". label Character vector labels statlist. Default matches \"n.risk\" \"risk\", \"n.event\" \"Events\", \"n.censor\" \"Censored\", \"cum.event\" \"Cum. Event\", \"cum.censor\" \"Cum. Censor\". group String indicating grouping variable risk tables. Current options : \"strata\": groups risk tables per stratum. label specifies label within risk table. strata levels used titles risk tables. default \"statlist\": groups risk tables per statlist. label specifies title risk table. strata levels used labeling within risk table. Default \"strata\". collapse Boolean, indicates whether present data overall. Default FALSE.","code":""},{"path":"https://openpharma.github.io/visR/reference/get_risktable.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Obtain risk tables for tables and plots — get_risktable","text":"return list attributes form risk table .e. number patients risk per strata","code":""},{"path":[]},{"path":"https://openpharma.github.io/visR/reference/get_summary.html","id":null,"dir":"Reference","previous_headings":"","what":"Summarize the descriptive statistics across strata from a survival object using S3 method — get_summary","title":"Summarize the descriptive statistics across strata from a survival object using S3 method — get_summary","text":"S3 method extracting descriptive statistics across strata. default method available moment.","code":""},{"path":"https://openpharma.github.io/visR/reference/get_summary.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Summarize the descriptive statistics across strata from a survival object using S3 method — get_summary","text":"","code":"get_summary(x, ...) # S3 method for survfit get_summary( x, statlist = c(\"strata\", \"records\", \"events\", \"median\", \"LCL\", \"UCL\", \"CI\"), ... )"},{"path":"https://openpharma.github.io/visR/reference/get_summary.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Summarize the descriptive statistics across strata from a survival object using S3 method — get_summary","text":"x object class survfit ... arguments passed method statlist Character vector containing desired information displayed. order arguments determines order displayed final result. Default strata (\"strata\"), number subjects (\"records\"), number events (\"events\"), median survival time (\"median\"), Confidence Interval (\"CI\"), Lower Confidence Limit (\"UCL\") Upper Confidence Limit (\"UCL\").","code":""},{"path":"https://openpharma.github.io/visR/reference/get_summary.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Summarize the descriptive statistics across strata from a survival object using S3 method — get_summary","text":"list summary statistics survfit object data frame summary measures survfit object","code":""},{"path":"https://openpharma.github.io/visR/reference/get_summary.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Summarize the descriptive statistics across strata from a survival object using S3 method — get_summary","text":"","code":"survfit_object <- survival::survfit(data = adtte, survival::Surv(AVAL, 1 - CNSR) ~ TRTP) get_summary(survfit_object) #> strata No. of subjects #> TRTP=Placebo TRTP=Placebo 86 #> TRTP=Xanomeline High Dose TRTP=Xanomeline High Dose 84 #> TRTP=Xanomeline Low Dose TRTP=Xanomeline Low Dose 84 #> No. of events Median(surv.time) 0.95LCL 0.95UCL #> TRTP=Placebo 29 NA NA NA #> TRTP=Xanomeline High Dose 61 36 25 47 #> TRTP=Xanomeline Low Dose 62 33 28 51 #> 0.95CI #> TRTP=Placebo (NA;NA) #> TRTP=Xanomeline High Dose (25;47) #> TRTP=Xanomeline Low Dose (28;51)"},{"path":"https://openpharma.github.io/visR/reference/get_tableone.html","id":null,"dir":"Reference","previous_headings":"","what":"Calculate summary statistics — get_tableone","title":"Calculate summary statistics — get_tableone","text":"S3 method creating table summary statistics. summary statistics can used presentation tables table one baseline demography tables. summary statistics estimated conditional variable type: continuous, binary, categorical, etc. default following summary stats calculated: Numeric variables: mean, min, 25th-percentile, median, 75th-percentile, maximum, standard deviation Factor variables: proportion factor level overall dataset Default: number unique values number missing values","code":""},{"path":"https://openpharma.github.io/visR/reference/get_tableone.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Calculate summary statistics — get_tableone","text":"","code":"get_tableone( data, strata = NULL, overall = TRUE, summary_function = summarize_short ) # S3 method for default get_tableone( data, strata = NULL, overall = TRUE, summary_function = summarize_short )"},{"path":"https://openpharma.github.io/visR/reference/get_tableone.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Calculate summary statistics — get_tableone","text":"data dataset summarize dataframe tibble strata Stratifying/Grouping variable name(s) character vector. NULL, overall results returned overall TRUE, summary statistics overall dataset also calculated summary_function function defining summary statistics numeric categorical values","code":""},{"path":"https://openpharma.github.io/visR/reference/get_tableone.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Calculate summary statistics — get_tableone","text":"object class tableone. list data specified summaries input variables.","code":""},{"path":"https://openpharma.github.io/visR/reference/get_tableone.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Calculate summary statistics — get_tableone","text":"possible provide summary function. Please loot summary inspiration.","code":""},{"path":"https://openpharma.github.io/visR/reference/get_tableone.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Calculate summary statistics — get_tableone","text":"columns table summarized. columns shall used, please select variables prior creating summary table using dplyr::select()","code":""},{"path":"https://openpharma.github.io/visR/reference/get_tableone.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Calculate summary statistics — get_tableone","text":"","code":"# Example using the ovarian data set survival::ovarian %>% dplyr::select(-fustat) %>% dplyr::mutate( age_group = factor( dplyr::case_when( age <= 50 ~ \"<= 50 years\", age <= 60 ~ \"<= 60 years\", age <= 70 ~ \"<= 70 years\", TRUE ~ \"> 70 years\" ) ), rx = factor(rx), ecog.ps = factor(ecog.ps) ) %>% dplyr::select(age, age_group, everything()) %>% visR::get_tableone() #> Warning: There was 1 warning in `summarise()`. #> ℹ In argument: `age_group = (function (x) ...`. #> ℹ In group 1: `all = \"Total\"`. #> Caused by warning: #> ! `fct_explicit_na()` was deprecated in forcats 1.0.0. #> ℹ Please use `fct_na_value_to_level()` instead. #> ℹ The deprecated feature was likely used in the visR package. #> Please report the issue at . #> # A tibble: 21 × 3 #> variable statistic Total #> #> 1 Sample N 26 #> 2 age Mean (SD) 56.2 (10.1) #> 3 age Median (IQR) 56.8 (50.2-62.4) #> 4 age Min-max 38.9-74.5 #> 5 age Missing 0 (0%) #> 6 age_group <= 50 years 6 (23.1%) #> 7 age_group <= 60 years 13 (50.0%) #> 8 age_group <= 70 years 4 (15.4%) #> 9 age_group > 70 years 3 (11.5%) #> 10 futime Mean (SD) 600 (340) #> # ℹ 11 more rows # Examples using ADaM data # display patients in an analysis set adtte %>% dplyr::filter(SAFFL == \"Y\") %>% dplyr::select(TRTA) %>% visR::get_tableone() #> # A tibble: 4 × 3 #> variable statistic Total #> #> 1 Sample N 254 #> 2 TRTA Placebo 86 (33.9%) #> 3 TRTA Xanomeline High Dose 84 (33.1%) #> 4 TRTA Xanomeline Low Dose 84 (33.1%) ## display overall summaries for demog adtte %>% dplyr::filter(SAFFL == \"Y\") %>% dplyr::select(AGE, AGEGR1, SEX, RACE) %>% visR::get_tableone() #> # A tibble: 13 × 3 #> variable statistic Total #> #> 1 Sample N 254 #> 2 AGE Mean (SD) 75.1 (8.25) #> 3 AGE Median (IQR) 77 (70-81) #> 4 AGE Min-max 51-89 #> 5 AGE Missing 0 (0%) #> 6 AGEGR1 <65 33 (13.0%) #> 7 AGEGR1 >80 77 (30.3%) #> 8 AGEGR1 65-80 144 (56.7%) #> 9 SEX F 143 (56.3%) #> 10 SEX M 111 (43.7%) #> 11 RACE AMERICAN INDIAN OR ALASKA NATIVE 1 (0.394%) #> 12 RACE BLACK OR AFRICAN AMERICAN 23 (9.055%) #> 13 RACE WHITE 230 (90.551%) ## By actual treatment adtte %>% dplyr::filter(SAFFL == \"Y\") %>% dplyr::select(AGE, AGEGR1, SEX, RACE, TRTA) %>% visR::get_tableone(strata = \"TRTA\") #> # A tibble: 13 × 6 #> variable statistic Total Placebo `Xanomeline High Dose` `Xanomeline Low Dose` #> #> 1 Sample N 254 86 84 84 #> 2 AGE Mean (SD) 75.1… 75.2 (… 74.4 (7.89) 75.7 (8.29) #> 3 AGE Median (… 77 (… 76 (69… 76 (70.8-80) 77.5 (71-82) #> 4 AGE Min-max 51-89 52-89 56-88 51-88 #> 5 AGE Missing 0 (0… 0 (0%) 0 (0%) 0 (0%) #> 6 AGEGR1 <65 33 (… 14 (16… 11 (13.1%) 8 (9.52%) #> 7 AGEGR1 >80 77 (… 30 (34… 18 (21.4%) 29 (34.52%) #> 8 AGEGR1 65-80 144 … 42 (48… 55 (65.5%) 47 (55.95%) #> 9 SEX F 143 … 53 (61… 40 (47.6%) 50 (59.5%) #> 10 SEX M 111 … 33 (38… 44 (52.4%) 34 (40.5%) #> 11 RACE AMERICAN… 1 (0… NA 1 (1.19%) NA #> 12 RACE BLACK OR… 23 (… 8 (9.3… 9 (10.71%) 6 (7.14%) #> 13 RACE WHITE 230 … 78 (90… 74 (88.10%) 78 (92.86%) ## By actual treatment, without overall adtte %>% dplyr::filter(SAFFL == \"Y\") %>% dplyr::select(AGE, AGEGR1, SEX, EVNTDESC, TRTA) %>% visR::get_tableone(strata = \"TRTA\", overall = FALSE) #> # A tibble: 12 × 5 #> variable statistic Placebo `Xanomeline High Dose` `Xanomeline Low Dose` #> #> 1 Sample N 86 84 84 #> 2 AGE Mean (SD) 75.2 (… 74.4 (7.89) 75.7 (8.29) #> 3 AGE Median (IQR) 76 (69… 76 (70.8-80) 77.5 (71-82) #> 4 AGE Min-max 52-89 56-88 51-88 #> 5 AGE Missing 0 (0%) 0 (0%) 0 (0%) #> 6 AGEGR1 <65 14 (16… 11 (13.1%) 8 (9.52%) #> 7 AGEGR1 >80 30 (34… 18 (21.4%) 29 (34.52%) #> 8 AGEGR1 65-80 42 (48… 55 (65.5%) 47 (55.95%) #> 9 SEX F 53 (61… 40 (47.6%) 50 (59.5%) #> 10 SEX M 33 (38… 44 (52.4%) 34 (40.5%) #> 11 EVNTDESC Dematologic Ev… 29 (33… 61 (72.6%) 62 (73.8%) #> 12 EVNTDESC Study Completi… 57 (66… 23 (27.4%) 22 (26.2%)"},{"path":"https://openpharma.github.io/visR/reference/legendopts.html","id":null,"dir":"Reference","previous_headings":"","what":"Translates options for legend into a list that can be passed to ggplot2 — legendopts","title":"Translates options for legend into a list that can be passed to ggplot2 — legendopts","text":"function takes legend position orientation, defined user puts list ggplot2.","code":""},{"path":"https://openpharma.github.io/visR/reference/legendopts.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Translates options for legend into a list that can be passed to ggplot2 — legendopts","text":"","code":"legendopts(legend_position = \"right\", legend_orientation = NULL)"},{"path":"https://openpharma.github.io/visR/reference/legendopts.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Translates options for legend into a list that can be passed to ggplot2 — legendopts","text":"legend_position Default = \"right\". legend_orientation Default = NULL.","code":""},{"path":"https://openpharma.github.io/visR/reference/legendopts.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Translates options for legend into a list that can be passed to ggplot2 — legendopts","text":"List legend options ggplot2.","code":""},{"path":"https://openpharma.github.io/visR/reference/reexports.html","id":null,"dir":"Reference","previous_headings":"","what":"Objects exported from other packages — reexports","title":"Objects exported from other packages — reexports","text":"objects imported packages. Follow links see documentation. dplyr %>% survival Surv","code":""},{"path":"https://openpharma.github.io/visR/reference/render.html","id":null,"dir":"Reference","previous_headings":"","what":"Render a data.frame, risktable, or tableone object as a table — render","title":"Render a data.frame, risktable, or tableone object as a table — render","text":"Render previously created data.frame, tibble tableone object html, rtf latex","code":""},{"path":"https://openpharma.github.io/visR/reference/render.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Render a data.frame, risktable, or tableone object as a table — render","text":"","code":"render( data, title = \"\", datasource, footnote = \"\", output_format = \"html\", engine = \"gt\", download_format = c(\"copy\", \"csv\", \"excel\") )"},{"path":"https://openpharma.github.io/visR/reference/render.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Render a data.frame, risktable, or tableone object as a table — render","text":"data Input data.frame tibble visualize title Specify title text string displayed rendered table. Default title. datasource String specifying data source underlying data set. Default title. footnote String specifying additional information displayed footnote alongside data source specifications statistical tests. output_format Type output returned, can \"html\" \"latex\". Default \"html\". engine \"html\" selected output_format, one can chose using kable, gt DT engine render output table. Default \"gt\". download_format Options formats generated downloading data. Default list \"c('copy', 'csv', 'excel')\".","code":""},{"path":"https://openpharma.github.io/visR/reference/render.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Render a data.frame, risktable, or tableone object as a table — render","text":"table data structure possible interactive functionality depending choice engine.","code":""},{"path":"https://openpharma.github.io/visR/reference/stat_stepribbon.html","id":null,"dir":"Reference","previous_headings":"","what":"Step ribbon statistic — stat_stepribbon","title":"Step ribbon statistic — stat_stepribbon","text":"Provides stair-step values ribbon plots, often using conjunction ggplot2::geom_step(). step ribbon can added stat_stepribbon() identically ggplot2::geom_ribbon(stat = \"stepribbon\")","code":""},{"path":"https://openpharma.github.io/visR/reference/stat_stepribbon.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Step ribbon statistic — stat_stepribbon","text":"","code":"stat_stepribbon( mapping = NULL, data = NULL, geom = \"ribbon\", position = \"identity\", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, direction = \"hv\", ... ) StatStepribbon"},{"path":"https://openpharma.github.io/visR/reference/stat_stepribbon.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Step ribbon statistic — stat_stepribbon","text":"object class StatStepRibbon (inherits Stat, ggproto, gg) length 3.","code":""},{"path":"https://openpharma.github.io/visR/reference/stat_stepribbon.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Step ribbon statistic — stat_stepribbon","text":"mapping Set aesthetic mappings created aes(). specified inherit.aes = TRUE (default), combined default mapping top level plot. must supply mapping plot mapping. data data displayed layer. three options: NULL, default, data inherited plot data specified call ggplot(). data.frame, object, override plot data. objects fortified produce data frame. See fortify() variables created. function called single argument, plot data. return value must data.frame, used layer data. function can created formula (e.g. ~ head(.x, 10)). geom geom use; defaults \"ribbon\" position Position adjustment, either string naming adjustment (e.g. \"jitter\" use position_jitter), result call position adjustment function. Use latter need change settings adjustment. na.rm FALSE, default, missing values removed warning. TRUE, missing values silently removed. show.legend logical. layer included legends? NA, default, includes aesthetics mapped. FALSE never includes, TRUE always includes. can also named logical vector finely select aesthetics display. inherit.aes FALSE, overrides default aesthetics, rather combining . useful helper functions define data aesthetics inherit behaviour default plot specification, e.g. borders(). direction hv horizontal-vertical steps, vh vertical-horizontal steps ... arguments passed layer(). often aesthetics, used set aesthetic fixed value, like colour = \"red\" size = 3. may also parameters paired geom/stat.","code":""},{"path":"https://openpharma.github.io/visR/reference/stat_stepribbon.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Step ribbon statistic — stat_stepribbon","text":"ggplot","code":""},{"path":"https://openpharma.github.io/visR/reference/stat_stepribbon.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Step ribbon statistic — stat_stepribbon","text":"https://groups.google.com/forum/?fromgroups=#!topic/ggplot2/9cFWHaH1CPs","code":""},{"path":"https://openpharma.github.io/visR/reference/stat_stepribbon.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Step ribbon statistic — stat_stepribbon","text":"","code":"# using ggplot2::geom_ribbon() survival::survfit(survival::Surv(time, status) ~ 1, data = survival::lung) %>% survival::survfit0() %>% broom::tidy() %>% ggplot2::ggplot(ggplot2::aes(x = time, y = estimate, ymin = conf.low, ymax = conf.high)) + ggplot2::geom_step() + ggplot2::geom_ribbon(stat = \"stepribbon\", alpha = 0.2) # using stat_stepribbon() with the same result survival::survfit(survival::Surv(time, status) ~ 1, data = survival::lung) %>% survival::survfit0() %>% broom::tidy() %>% ggplot2::ggplot(ggplot2::aes(x = time, y = estimate, ymin = conf.low, ymax = conf.high)) + ggplot2::geom_step() + visR::stat_stepribbon(alpha = 0.2)"},{"path":"https://openpharma.github.io/visR/reference/summarize_long.html","id":null,"dir":"Reference","previous_headings":"","what":"Calculate summary statistics from a vector — summarize_long","title":"Calculate summary statistics from a vector — summarize_long","text":"Calculates several summary statistics. summary statistics depend vector class","code":""},{"path":"https://openpharma.github.io/visR/reference/summarize_long.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Calculate summary statistics from a vector — summarize_long","text":"","code":"summarize_long(x) # S3 method for factor summarize_long(x) # S3 method for integer summarize_long(x) # S3 method for numeric summarize_long(x) # S3 method for default summarize_long(x)"},{"path":"https://openpharma.github.io/visR/reference/summarize_long.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Calculate summary statistics from a vector — summarize_long","text":"x object","code":""},{"path":"https://openpharma.github.io/visR/reference/summarize_long.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Calculate summary statistics from a vector — summarize_long","text":"summarized version input.","code":""},{"path":"https://openpharma.github.io/visR/reference/summarize_short.html","id":null,"dir":"Reference","previous_headings":"","what":"Create abbreviated variable summary for table1 — summarize_short","title":"Create abbreviated variable summary for table1 — summarize_short","text":"function creates summaries combines multiple summary measures single formatted string. Create variable summary numeric variables. Calculates mean (standard deviation), median (IQR), min-max range N/% missing elements numeric vector. Create variable summary integer variables Calculates mean (standard deviation), median (IQR), min-max range N/% missing elements integer vector.","code":""},{"path":"https://openpharma.github.io/visR/reference/summarize_short.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create abbreviated variable summary for table1 — summarize_short","text":"","code":"summarize_short(x) # S3 method for factor summarize_short(x) # S3 method for numeric summarize_short(x) # S3 method for integer summarize_short(x) # S3 method for default summarize_short(x)"},{"path":"https://openpharma.github.io/visR/reference/summarize_short.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create abbreviated variable summary for table1 — summarize_short","text":"x vector summarized","code":""},{"path":"https://openpharma.github.io/visR/reference/summarize_short.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create abbreviated variable summary for table1 — summarize_short","text":"summarized less detailed version input.","code":""},{"path":"https://openpharma.github.io/visR/reference/tableone.html","id":null,"dir":"Reference","previous_headings":"","what":"Display a summary Table (i.e. table one) — tableone","title":"Display a summary Table (i.e. table one) — tableone","text":"Wrapper function produce summary table (.e. Table One). Create render summary table dataset. typical example summary table \"table one\", first table applied medical research manuscript. Calculate summary statistics present formatted table","code":""},{"path":"https://openpharma.github.io/visR/reference/tableone.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Display a summary Table (i.e. table one) — tableone","text":"","code":"tableone( data, title, datasource, footnote = \"\", strata = NULL, overall = TRUE, summary_function = summarize_short, ... )"},{"path":"https://openpharma.github.io/visR/reference/tableone.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Display a summary Table (i.e. table one) — tableone","text":"data dataframe tibble visualize title Table title include rendered table. Input text string. datasource String specifying datasource underlying data set footnote Table footnote include rendered table. Input text string. strata Character vector column names use stratification summary table. Default: NULL , indicates stratification. overall TRUE, summary statistics overall dataset also calculated summary_function function defining summary statistics numeric categorical values Pre-implemented functions summarize_long summarize_short ... Pass options render_table","code":""},{"path":"https://openpharma.github.io/visR/reference/tableone.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Display a summary Table (i.e. table one) — tableone","text":"table-like data structure, possibly interactive depending choice engine","code":""},{"path":"https://openpharma.github.io/visR/reference/tableone.html","id":"example-output","dir":"Reference","previous_headings":"","what":"Example Output","title":"Display a summary Table (i.e. table one) — tableone","text":"tableone(engine = \"gt\") tableone(engine = \"DT\") tableone(engine = \"kable\") tableone(engine = \"kable\", output_format = \"latex\")","code":""},{"path":"https://openpharma.github.io/visR/reference/tableone.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Display a summary Table (i.e. table one) — tableone","text":"","code":"# metadata for table t1_title <- \"Cohort Summary\" t1_ds <- \"ADaM Interim Dataset for Time-to-Event Analysis\" t1_fn <- \"My table one footnote\" ## table by treatment - without overall and render with GT tbl_gt <- adtte %>% dplyr::filter(SAFFL == \"Y\") %>% dplyr::select(AGE, AGEGR1, SEX, EVNTDESC, TRTA) %>% visR::tableone( strata = \"TRTA\", overall = FALSE, title = t1_title, datasource = t1_ds, footnote = t1_fn, engine = \"gt\" ) ## table by treatment - without overall and render with DT tbl_DT <- adtte %>% dplyr::filter(SAFFL == \"Y\") %>% dplyr::select(AGE, AGEGR1, SEX, EVNTDESC, TRTA) %>% visR::tableone( strata = \"TRTA\", overall = FALSE, title = t1_title, datasource = t1_ds, footnote = t1_fn, engine = \"DT\" ) ## table by treatment - without overall and render with kable tbl_kable_html <- adtte %>% dplyr::filter(SAFFL == \"Y\") %>% dplyr::select(AGE, AGEGR1, SEX, EVNTDESC, TRTA) %>% visR::tableone( strata = \"TRTA\", overall = FALSE, title = t1_title, datasource = t1_ds, footnote = t1_fn, engine = \"kable\" ) ## table by treatment - without overall and render with kable as ## a latex table format rather than html tbl_kable_latex <- adtte %>% dplyr::filter(SAFFL == \"Y\") %>% dplyr::select(AGE, AGEGR1, SEX, EVNTDESC, TRTA) %>% visR::tableone( strata = \"TRTA\", overall = FALSE, title = t1_title, datasource = t1_ds, footnote = t1_fn, output_format = \"latex\", engine = \"kable\" )"},{"path":"https://openpharma.github.io/visR/reference/the_lhs.html","id":null,"dir":"Reference","previous_headings":"","what":"Find the ","title":"Find the ","text":"function finds left-hand sided symbol magrittr pipe returns character.","code":""},{"path":"https://openpharma.github.io/visR/reference/the_lhs.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Find the ","text":"","code":"the_lhs()"},{"path":"https://openpharma.github.io/visR/reference/the_lhs.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Find the ","text":"Left-hand sided symbol string magrittr pipe.","code":""},{"path":"https://openpharma.github.io/visR/reference/the_lhs.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Find the ","text":"https://github.com/tidyverse/magrittr/issues/115#issuecomment-173894787","code":""},{"path":"https://openpharma.github.io/visR/reference/the_lhs.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Find the ","text":"","code":"blah <- function(x) the_lhs() adtte %>% blah() #> [1] \"adtte\""},{"path":"https://openpharma.github.io/visR/reference/tidyme.html","id":null,"dir":"Reference","previous_headings":"","what":"Extended tidy cleaning of selected objects using S3 method — tidyme","title":"Extended tidy cleaning of selected objects using S3 method — tidyme","text":"S3 method extended tidying selected model outputs. Note visR method retains original nomenclature objects, adds one broom::tidy ensure compatibility tidy workflows. default method relies broom::tidy return tidied object","code":""},{"path":"https://openpharma.github.io/visR/reference/tidyme.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extended tidy cleaning of selected objects using S3 method — tidyme","text":"","code":"tidyme(x, ...) # S3 method for default tidyme(x, ...) # S3 method for survfit tidyme(x, ...)"},{"path":"https://openpharma.github.io/visR/reference/tidyme.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extended tidy cleaning of selected objects using S3 method — tidyme","text":"x S3 object ... arguments passed method","code":""},{"path":"https://openpharma.github.io/visR/reference/tidyme.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extended tidy cleaning of selected objects using S3 method — tidyme","text":"Data frame containing list elements S3 object columns. column 'strata' factor ensure strata sorted agreement order survfit object","code":""},{"path":[]},{"path":"https://openpharma.github.io/visR/reference/tidyme.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Extended tidy cleaning of selected objects using S3 method — tidyme","text":"","code":"## Extended tidying for a survfit object surv_object <- visR::estimate_KM(data = adtte, strata = \"TRTA\") tidied <- visR::tidyme(surv_object) ## Tidyme for non-included classes data <- cars lm_object <- stats::lm(data = cars, speed ~ dist) lm_tidied <- visR::tidyme(lm_object) #> tidyme S3 default method (broom::tidy) used. lm_tidied #> term estimate std.error statistic p.value #> 1 (Intercept) 8.2839056 0.87438449 9.473985 1.440974e-12 #> 2 dist 0.1655676 0.01749448 9.463990 1.489836e-12"},{"path":"https://openpharma.github.io/visR/reference/visR-Global.html","id":null,"dir":"Reference","previous_headings":"","what":"visR package — visR Global","title":"visR package — visR Global","text":"Set global variables","code":""},{"path":"https://openpharma.github.io/visR/reference/visR-package.html","id":null,"dir":"Reference","previous_headings":"","what":"visR: Clinical Graphs and Tables Adhering to Graphical Principles — visR-package","title":"visR: Clinical Graphs and Tables Adhering to Graphical Principles — visR-package","text":"enable fit--purpose, reusable clinical medical research focused visualizations tables sensible defaults based graphical principles described : \"Vandemeulebroecke et al. (2018)\" doi:10.1002/pst.1912 , \"Vandemeulebroecke et al. (2019)\" doi:10.1002/psp4.12455 , \"Morris et al. (2019)\" doi:10.1136/bmjopen-2019-030215 .","code":""},{"path":[]},{"path":"https://openpharma.github.io/visR/reference/visR-package.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"visR: Clinical Graphs and Tables Adhering to Graphical Principles — visR-package","text":"Maintainer: Mark Baillie bailliem@gmail.com [copyright holder] Authors: Diego Saldana diego.saldana@roche.com Charlotta Fruechtenicht charlotta.fruechtenicht@roche.com Marc Vandemeulebroecke marc.vandemeulebroecke@novartis.com Thanos Siadimas thanos.siadimas@roche.com Pawel Kawski pawel.kawski@contractors.roche.com Steven Haesendonckx shaesen2@.jnj.com James Black james.black.jb2@roche.com Pelagia Alexandra Papadopoulou PPapadop@.jnj.com Tim Treis tim.treis@outlook.de Rebecca Albrecht rebecca.albrecht.dietsch@gmail.com Daniel D. Sjoberg danield.sjoberg@gmail.com (ORCID) contributors: Ardalan Mirshani ardeeshany@gmail.com [contributor]","code":""},{"path":"https://openpharma.github.io/visR/reference/visr.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot a supported S3 object — visr","title":"Plot a supported S3 object — visr","text":"S3 method creating plots directly objects using ggplot2, similar base R plot() function. Methods visr.survfit() visr.tidycuminc() deprecated favor ggsurvfit::ggsurvfit() ggsurvfit::ggcuminc(), respectively. visr.attrition() function draw Consort flow diagram chart currently questioned.","code":""},{"path":"https://openpharma.github.io/visR/reference/visr.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot a supported S3 object — visr","text":"","code":"visr(x, ...) # S3 method for default visr(x, ...) # S3 method for survfit visr( x = NULL, x_label = NULL, y_label = NULL, x_units = NULL, x_ticks = NULL, y_ticks = NULL, fun = \"surv\", legend_position = \"right\", ... ) # S3 method for attrition visr( x, description_column_name = \"Criteria\", value_column_name = \"Remaining N\", complement_column_name = \"\", box_width = 50, font_size = 12, fill = \"white\", border = \"black\", ... ) # S3 method for tidycuminc visr( x = NULL, x_label = \"Time\", y_label = \"Cumulative Incidence\", x_units = NULL, x_ticks = pretty(x$tidy$time, 10), y_ticks = pretty(c(0, 1), 5), legend_position = \"right\", ... )"},{"path":"https://openpharma.github.io/visR/reference/visr.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot a supported S3 object — visr","text":"x Object class attritiontable ... arguments passed method x_label character Label x-axis. specified, function look \"PARAM\" \"PARAMCD\" information original data set (CDISC standards). \"PARAM\"/\"PARAMCD\" information available, default x-axis label \"Time\". y_label character Label y-axis. specified, default proposal, depending fun argument. x_units Unit added x_label (x_label (x_unit)). Default NULL. x_ticks Ticks x-axis. specified, default proposal. y_ticks Ticks y-axis. specified, default proposal based fun argument. fun Function represents scale estimate. current options : legend_position Specifies legend position plot. Character values allowed \"top\" \"left\" \"bottom\" \"right\". Numeric coordinates also allowed. Default \"right\". description_column_name character Name column containing inclusion descriptions value_column_name character Name column containing remaining sample counts complement_column_name character Optional: Name column containing exclusion descriptions box_width character box width box flow chart font_size character fontsize pt fill color (string hexcode) use fill boxes flowchart border color (string hexcode) use borders boxes flowchart","code":""},{"path":"https://openpharma.github.io/visR/reference/visr.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot a supported S3 object — visr","text":"Object class ggplot ggsurvplot survfit objects.","code":""},{"path":[]},{"path":"https://openpharma.github.io/visR/reference/visr.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Plot a supported S3 object — visr","text":"","code":"# fit KM km_fit <- survival::survfit(survival::Surv(AVAL, 1 - CNSR) ~ TRTP, data = adtte) # plot curves using survival plot function plot(km_fit) # plot same curves using visR::visr plotting function visR::visr(km_fit) # estimate KM using visR wrapper survfit_object <- visR::estimate_KM(data = adtte, strata = \"TRTP\") # Plot survival probability visR::visr(survfit_object, fun = \"surv\") # Plot survival percentage visR::visr(survfit_object, fun = \"pct\") # Plot cumulative hazard visR::visr(survfit_object, fun = \"cloglog\") #> Warning: NAs introduced by y-axis transformation. ## Create attrition attrition <- visR::get_attrition(adtte, criteria_descriptions = c( \"1. Not in Placebo Group\", \"2. Be 75 years of age or older.\", \"3. White\", \"4. Female\" ), criteria_conditions = c( \"TRTP != 'Placebo'\", \"AGE >= 75\", \"RACE=='WHITE'\", \"SEX=='F'\" ), subject_column_name = \"USUBJID\" ) ## Draw a CONSORT attrition chart without specifying extra text for the complement attrition %>% visr(\"Criteria\", \"Remaining N\") ## Add detailed complement descriptions to the \"exclusion\" part of the CONSORT diagram # Step 1. Add new column to attrition dataframe attrition$Complement <- c( \"NA\", \"Placebo Group\", \"Younger than 75 years\", \"Non-White\", \"Male\" ) # Step 2. Define the name of the column in the call to the plotting function attrition %>% visr(\"Criteria\", \"Remaining N\", \"Complement\") ## Styling the CONSORT flowchart # Change the fill and outline of the boxes in the flowchart attrition %>% visr(\"Criteria\", \"Remaining N\", \"Complement\", fill = \"lightblue\", border = \"grey\") ## Adjust the font size in the boxes attrition %>% visr(\"Criteria\", \"Remaining N\", font_size = 10)"},{"path":"https://openpharma.github.io/visR/news/index.html","id":"visr-040","dir":"Changelog","previous_headings":"","what":"visR 0.4.0","title":"visR 0.4.0","text":"CRAN release: 2023-11-20 Functions estimate_KM() visr.survfit() deprecated favor ggsurvfit::ggsurvfit().","code":""},{"path":"https://openpharma.github.io/visR/news/index.html","id":"visr-031","dir":"Changelog","previous_headings":"","what":"visR 0.3.1","title":"visR 0.3.1","text":"CRAN release: 2022-08-17 now zoom figure (e.g. Kaplan-Meier figure) ggplot2::coord_cartesian() instead using scale_x_continuous(limits=) scale_y_continuous(limits=). latter first removes data outside limits, constructs line. Zooming constructs full line, zooms limits. useful risktable often reports estimates near end KM figure, line cutoff shown last time point. (#402) README update contributor listing. (#435)","code":""},{"path":"https://openpharma.github.io/visR/news/index.html","id":"visr-030","dir":"Changelog","previous_headings":"","what":"visR 0.3.0","title":"visR 0.3.0","text":"CRAN release: 2022-06-24","code":""},{"path":"https://openpharma.github.io/visR/news/index.html","id":"new-functions-0-3-0","dir":"Changelog","previous_headings":"","what":"New functions","title":"visR 0.3.0","text":"Highlight specific strata survival plots using add_highlight(). Indicate quantiles survival plots using add_quantiles(). Estimation cumulative incidence presence competing risks now possible estimate_cuminc(). risk estimates can plotted similarly estimates estimate_KM() using visr() function. Function Surv_CNSR() used CDISC ADTTE conventions default values time status indicators time--event analyses. note, status variable must coded 0/1 1 indicating observation censored. (#391)","code":""},{"path":"https://openpharma.github.io/visR/news/index.html","id":"breaking-changes-0-3-0","dir":"Changelog","previous_headings":"","what":"Breaking Changes","title":"visR 0.3.0","text":"AlignPlots() renamed align_plots().","code":""},{"path":"https://openpharma.github.io/visR/news/index.html","id":"bug-fixes-0-3-0","dir":"Changelog","previous_headings":"","what":"Bug Fixes","title":"visR 0.3.0","text":"Fix get_pvalue() estimate_KM() objects data piped modifications (e.g. dplyr::filter(), dplyr::mutate()). Fix add_risktable() estimates assigned incorrect label. Review unit testing estimate_KM(formula=) argument. (#399) Fixed bug define_theme(strata=). (#388) Fix discrepancy issue saving survfit() call estimate_KM(). (#365) Added check class(x)==. (#358) Fix documentation S3 method visr(). (#301)","code":""},{"path":"https://openpharma.github.io/visR/news/index.html","id":"other-updates-0-3-0","dir":"Changelog","previous_headings":"","what":"Other Updates","title":"visR 0.3.0","text":"Stratifying variable names removed legend visr.survfit() figures, legend title now describes stratifying variable(s). (#343) estimate_KM() function gains experimental formula= argument. argument used, AVAL, CNSR, strata arguments typically used construct formula ignored. (#379) add_risktable rowgutter argument allow spacing plot risktables strata variable now removed body tableone() results. (#254) visr.survfit() function longer warns x-axis label PARAM column found original data set. (#378) call saved estimate_KM() object updated quosure–ensuring original function call can always recalled. define_theme()updated ensure strata present theme displayed. (#388) Removed external dependency easyalluvial package. (#383) Reduced number exported functions. (#381) Improved documentation visr() generic functions. (#301) (#357) Unit testing updated relevant 100% code coverage function requirements tested. README page updated additional examples. (#425) lifecycle badges added function level indicate functions still experimental questioning phases. (#398)","code":""},{"path":"https://openpharma.github.io/visR/news/index.html","id":"visr-020","dir":"Changelog","previous_headings":"","what":"visR 0.2.0","title":"visR 0.2.0","text":"CRAN release: 2021-06-14 Initial CRAN release.","code":""}]