From 709431fa82b575ceb3397dc15db5091bc3f4053d Mon Sep 17 00:00:00 2001 From: Tao191 <52604483+Tao191@users.noreply.github.com> Date: Sun, 18 Feb 2024 17:00:41 +0800 Subject: [PATCH] Update model_inference.md (#473) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit 卷积计算公式错误,本次修改进行修正 --- chapter_model_deployment/model_inference.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/chapter_model_deployment/model_inference.md b/chapter_model_deployment/model_inference.md index eb120d8..53edaa0 100644 --- a/chapter_model_deployment/model_inference.md +++ b/chapter_model_deployment/model_inference.md @@ -130,12 +130,12 @@ $$F(2, 3)=\left[ \begin{matrix} d_0 & d_1 & d_2 \\ d_1 & d_2 & d_3 \end{matrix} 可以观察到,卷积运算转换为矩阵乘法时输入矩阵中存在着重复元素$d_1$和$d_2$,因此,卷积转换的矩阵乘法相对一般的矩阵乘有了优化空间。可以通过计算中间变量$m_0-m_3$得到矩阵乘的结果,见式 :eqref:`ch08-equ-conv-2-winograd`: -$$F(2, 3)=\left[ \begin{matrix} d_0 & d_1 & d_2 \\ d_1 & d_2 & d_3 \end{matrix} \right] \left[ \begin{matrix} g_0 \\ g_1 \\ g_2 \end{matrix} \right]=\left[ \begin{matrix} m_0+m_1+m_2 \\ m_1-m_2+m_3 \end{matrix} \right]$$ +$$F(2, 3)=\left[ \begin{matrix} d_0 & d_1 & d_2 \\ d_1 & d_2 & d_3 \end{matrix} \right] \left[ \begin{matrix} g_0 \\ g_1 \\ g_2 \end{matrix} \right]=\left[ \begin{matrix} m_0+m_1+m_2 \\ m_1-m_2-m_3 \end{matrix} \right]$$ :eqlabel:`ch08-equ-conv-2-winograd` 其中,$m_0-m_3$的分别见公式 :eqref:`ch08-equ-winograd-param`: -$$\begin{aligned}m_0=(d_0-d_2)*g_0 \\m_1=(d_1+d_2)*(\frac{g_0+g_1+g_2}{2}) \\m_2=(d_0-d_2)*(\frac{g_0-g_1+g_2}{2}) \\m_2=(d_1-d_3)*g_2\end{aligned}$$ +$$\begin{aligned}m_0=(d_0-d_2)*g_0 \\m_1=(d_1+d_2)*(\frac{g_0+g_1+g_2}{2}) \\m_2=(d_2-d_1)*(\frac{g_0-g_1+g_2}{2}) \\m_3=(d_1-d_3)*g_2\end{aligned}$$ :eqlabel:`ch08-equ-winograd-param` 通过$m_0-m_3$间接计算r1,r2,需要的运算次数包括:输入$d$的4次加法;输出$m$的4次乘法和4次加法。在推理阶段,权重的数值是常量,因此卷积核上的运算可以在图编译阶段计算,不计入在线的run时间。所以总的运算次数为4次乘法和8次加法,与直接运算的6次乘法和4次加法相比,乘法次数减少,加法次数增加。在计算机中,乘法一般比加法慢,通过减少乘法次数,增加少量加法,可以实现加速。