-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMarchingCubes_kernel.cu
437 lines (313 loc) · 14.4 KB
/
MarchingCubes_kernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
/*
Reference - https://paulbourke.net/geometry/polygonise/
Reference - https://github.com/NVIDIA/cuda-samples/tree/master/Samples/5_Domain_Specific/marchingCubes
*/
#include <stdio.h>
#include <string.h>
#include <helper_cuda.h>
#include <helper_math.h>
#include <cuda_runtime_api.h>
#include <thrust/device_vector.h>
#include <thrust/scan.h>
#include "tables.h"
#include "MarchingCubes_kernel.h"
cudaTextureObject_t triTex_s;
cudaTextureObject_t triTex_t;
cudaTextureObject_t numVertsTex_s;
void MarchingCubeCuda::allocateTextures_s(uint **d_triTable, uint **d_numVertsTable)
{
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(32, 0, 0, 0, cudaChannelFormatKindUnsigned);
checkCudaErrors(cudaMalloc((void **) d_triTable, 256*16*sizeof(uint)));
checkCudaErrors(cudaMemcpy((void *)*d_triTable, (void *)triTable, 256*16*sizeof(uint), cudaMemcpyHostToDevice));
cudaResourceDesc texRes;
memset(&texRes,0,sizeof(cudaResourceDesc));
texRes.resType = cudaResourceTypeLinear;
texRes.res.linear.devPtr = *d_triTable;
texRes.res.linear.sizeInBytes = 256*16*sizeof(uint);
texRes.res.linear.desc = channelDesc;
cudaTextureDesc texDescr;
memset(&texDescr,0,sizeof(cudaTextureDesc));
texDescr.normalizedCoords = false;
texDescr.filterMode = cudaFilterModePoint;
texDescr.addressMode[0] = cudaAddressModeClamp;
texDescr.readMode = cudaReadModeElementType;
checkCudaErrors(cudaCreateTextureObject(&triTex_s, &texRes, &texDescr, NULL));
checkCudaErrors(cudaMalloc((void **) d_numVertsTable, 256*sizeof(uint)));
checkCudaErrors(cudaMemcpy((void *)*d_numVertsTable, (void *)numVertsTable, 256*sizeof(uint), cudaMemcpyHostToDevice));
memset(&texRes,0,sizeof(cudaResourceDesc));
texRes.resType = cudaResourceTypeLinear;
texRes.res.linear.devPtr = *d_numVertsTable;
texRes.res.linear.sizeInBytes = 256*sizeof(uint);
texRes.res.linear.desc = channelDesc;
memset(&texDescr,0,sizeof(cudaTextureDesc));
texDescr.normalizedCoords = false;
texDescr.filterMode = cudaFilterModePoint;
texDescr.addressMode[0] = cudaAddressModeClamp;
texDescr.readMode = cudaReadModeElementType;
checkCudaErrors(cudaCreateTextureObject(&numVertsTex_s, &texRes, &texDescr, NULL));
}
void MarchingCubeCuda::destroyAllTextureObjects()
{
checkCudaErrors(cudaDestroyTextureObject(triTex_s));
checkCudaErrors(cudaDestroyTextureObject(triTex_t));
checkCudaErrors(cudaDestroyTextureObject(numVertsTex_s));
}
__device__
float sampleVolume(float *data, uint3 p, uint3 gridSize)
{
p.x = min(p.x, gridSize.x);
p.y = min(p.y, gridSize.y);
p.z = min(p.z, gridSize.z);
uint i = (p.z*gridSize.x*gridSize.y) + (p.y*gridSize.x) + p.x;
return (float) data[i];
}
__device__
uint3 calcGridPos(uint i, uint3 gridSizeShift, uint3 gridSizeMask)
{
uint3 gridPos;
uint z_quo = i / gridSizeShift.z;
uint z_rem = i % gridSizeShift.z;
uint y_quo = (z_rem)/gridSizeShift.y;
uint x_rem = (z_rem) % gridSizeShift.y;
gridPos.x = x_rem;
gridPos.y = y_quo;
gridPos.z = z_quo;
return gridPos;
}
__global__ void
classifyVoxel(uint *voxelVerts, uint *voxelOccupied, float *volume,
uint3 gridSize, uint3 gridSizeShift, uint3 gridSizeMask, uint numVoxels,
float3 voxelSize, float isoValue, cudaTextureObject_t numVertsTex)
{
uint blockId = __mul24(blockIdx.y, gridDim.x) + blockIdx.x;
uint i = __mul24(blockId, blockDim.x) + threadIdx.x;
if (i < numVoxels)
{
uint3 gridPos = calcGridPos(i, gridSizeShift, gridSizeMask);
float field[8];
field[0] = sampleVolume(volume, gridPos, gridSize);
field[1] = sampleVolume(volume, gridPos + make_uint3(1, 0, 0), gridSize);
field[2] = sampleVolume(volume, gridPos + make_uint3(1, 1, 0), gridSize);
field[3] = sampleVolume(volume, gridPos + make_uint3(0, 1, 0), gridSize);
field[4] = sampleVolume(volume, gridPos + make_uint3(0, 0, 1), gridSize);
field[5] = sampleVolume(volume, gridPos + make_uint3(1, 0, 1), gridSize);
field[6] = sampleVolume(volume, gridPos + make_uint3(1, 1, 1), gridSize);
field[7] = sampleVolume(volume, gridPos + make_uint3(0, 1, 1), gridSize);
float isoVal = isoValue;
uint cubeindex;
cubeindex = uint(field[0] < (isoVal));
cubeindex += uint(field[1] < (isoVal))*2;
cubeindex += uint(field[2] < (isoVal))*4;
cubeindex += uint(field[3] < (isoVal))*8;
cubeindex += uint(field[4] < (isoVal))*16;
cubeindex += uint(field[5] < (isoVal))*32;
cubeindex += uint(field[6] < (isoVal))*64;
cubeindex += uint(field[7] < (isoVal))*128;
uint numVerts = tex1Dfetch<uint>(numVertsTex, cubeindex);
voxelVerts[i] = numVerts;
voxelOccupied[i] = (numVerts > 0);
}
}
void MarchingCubeCuda::classifyVoxel_lattice(dim3 grid, dim3 threads, uint *voxelVerts, uint *voxelOccupied, float *volume,
uint3 gridSize, uint3 gridSizeShift, uint3 gridSizeMask, uint numVoxels,
float3 voxelSize, float isoValue)
{
classifyVoxel<<<grid, threads>>>(voxelVerts, voxelOccupied, volume,
gridSize, gridSizeShift, gridSizeMask,
numVoxels, voxelSize, isoValue, numVertsTex_s);
cudaDeviceSynchronize();
getLastCudaError("classifyVoxel failed");
}
__global__ void
compactVoxels(uint *compactedVoxelArray, uint *voxelOccupied, uint *voxelOccupiedScan, uint numVoxels)
{
uint blockId = __mul24(blockIdx.y, gridDim.x) + blockIdx.x;
uint i = __mul24(blockId, blockDim.x) + threadIdx.x;
if(i < numVoxels)
{
if (voxelOccupied[i])
{
compactedVoxelArray[ voxelOccupiedScan[i] ] = i;
}
}
}
void MarchingCubeCuda::compactVoxels_lattice(dim3 grid, dim3 threads, uint *compactedVoxelArray, uint *voxelOccupied, uint *voxelOccupiedScan, uint numVoxels)
{
compactVoxels<<<grid, threads>>>(compactedVoxelArray, voxelOccupied,
voxelOccupiedScan, numVoxels);
getLastCudaError("compactVoxels failed");
}
__device__
float3 vertexInterp3(float isolevel, float3 p0, float3 p1, float f0, float f1)
{
if (f1 < f0)
{
float3 temp;
temp = p1;
p1 = p0;
p0 = temp;
float tm;
tm = f1;
f1 = f0;
f0 = tm;
}
float a = isolevel - 0.1;
float c = isolevel + 0.1;
float t;
if((f1 > a) && (f0 < a))
{
if (fabs(a-f0) < 0.0005)
{
return(p0);
}
if (fabs(a-f1) < 0.0005)
{
return(p1);
}
if (fabs(f1-f0) < 0.0005)
{
return(p0);
}
t = (a - f0) / (f1 - f0);
}
else if((f1 > c) && (f0 < c))
{
if (fabs(c-f0) < 0.0005)
{
return(p0);
}
if (fabs(c-f1) < 0.0005)
{
return(p1);
}
if (fabs(f1-f0) < 0.0005)
{
return(p0);
}
t = (c - f0) / (f1 - f0);
}
else if(((f1 >a ) && (f0 > a)) && ((f1 < c) && (f0 <c )))
{
t = 0.5;
}
return lerp(p0, p1, t);
}
__device__
float3 calcNormal(float3 *v0, float3 *v1, float3 *v2)
{
float3 edge0 = *v1 - *v0;
float3 edge1 = *v2 - *v0;
return cross(edge0, edge1);
}
__global__ void
generateTriangles_lattice_kernel(float4 *pos, float4 *norm, uint *compactedVoxelArray, uint *numVertsScanned, float *volume,
uint3 gridSize, uint3 gridSizeShift, uint3 gridSizeMask,
float3 voxelSize, float3 gridcenter, float isoValue, uint activeVoxels, uint maxVerts,
cudaTextureObject_t triTex, cudaTextureObject_t numVertsTex,uint totalverts, float *volume_one)
{
uint blockId = __mul24(blockIdx.y, gridDim.x) + blockIdx.x;
uint i = __mul24(blockId, blockDim.x) + threadIdx.x;
if (i < activeVoxels)
{
uint voxel = compactedVoxelArray[i];
uint3 gridPos = calcGridPos(voxel, gridSizeShift, gridSizeMask);
float3 p;
p.x = (gridPos.x - gridcenter.x) *voxelSize.x ;
p.y = (gridPos.y - gridcenter.y) *voxelSize.y ;
p.z = (gridPos.z - gridcenter.z) *voxelSize.z ;
float3 v[8];
v[0] = p;
v[1] = p + make_float3(voxelSize.x, 0, 0);
v[2] = p + make_float3(voxelSize.x, voxelSize.y, 0);
v[3] = p + make_float3(0, voxelSize.y, 0);
v[4] = p + make_float3(0, 0, voxelSize.z);
v[5] = p + make_float3(voxelSize.x, 0, voxelSize.z);
v[6] = p + make_float3(voxelSize.x, voxelSize.y, voxelSize.z);
v[7] = p + make_float3(0, voxelSize.y, voxelSize.z);
float field[8];
field[0] = sampleVolume(volume, gridPos, gridSize);
field[1] = sampleVolume(volume, gridPos + make_uint3(1, 0, 0), gridSize);
field[2] = sampleVolume(volume, gridPos + make_uint3(1, 1, 0), gridSize);
field[3] = sampleVolume(volume, gridPos + make_uint3(0, 1, 0), gridSize);
field[4] = sampleVolume(volume, gridPos + make_uint3(0, 0, 1), gridSize);
field[5] = sampleVolume(volume, gridPos + make_uint3(1, 0, 1), gridSize);
field[6] = sampleVolume(volume, gridPos + make_uint3(1, 1, 1), gridSize);
field[7] = sampleVolume(volume, gridPos + make_uint3(0, 1, 1), gridSize);
float isoVal = isoValue;
uint cubeindex;
cubeindex = uint(field[0] < isoVal);
cubeindex += uint(field[1] < isoVal)*2;
cubeindex += uint(field[2] < isoVal)*4;
cubeindex += uint(field[3] < isoVal)*8;
cubeindex += uint(field[4] < isoVal)*16;
cubeindex += uint(field[5] < isoVal)*32;
cubeindex += uint(field[6] < isoVal)*64;
cubeindex += uint(field[7] < isoVal)*128;
field[0] = sampleVolume(volume_one, gridPos, gridSize);
field[1] = sampleVolume(volume_one, gridPos + make_uint3(1, 0, 0), gridSize);
field[2] = sampleVolume(volume_one, gridPos + make_uint3(1, 1, 0), gridSize);
field[3] = sampleVolume(volume_one, gridPos + make_uint3(0, 1, 0), gridSize);
field[4] = sampleVolume(volume_one, gridPos + make_uint3(0, 0, 1), gridSize);
field[5] = sampleVolume(volume_one, gridPos + make_uint3(1, 0, 1), gridSize);
field[6] = sampleVolume(volume_one, gridPos + make_uint3(1, 1, 1), gridSize);
field[7] = sampleVolume(volume_one, gridPos + make_uint3(0, 1, 1), gridSize);
__shared__ float3 vertlist[12*NTHREADS];
vertlist[threadIdx.x] = vertexInterp3(isoValue, v[0], v[1], field[0], field[1]);
vertlist[NTHREADS+threadIdx.x] = vertexInterp3(isoValue, v[1], v[2], field[1], field[2]);
vertlist[(NTHREADS*2)+threadIdx.x] = vertexInterp3(isoValue, v[2], v[3], field[2], field[3]);
vertlist[(NTHREADS*3)+threadIdx.x] = vertexInterp3(isoValue, v[3], v[0], field[3], field[0]);
vertlist[(NTHREADS*4)+threadIdx.x] = vertexInterp3(isoValue, v[4], v[5], field[4], field[5]);
vertlist[(NTHREADS*5)+threadIdx.x] = vertexInterp3(isoValue, v[5], v[6], field[5], field[6]);
vertlist[(NTHREADS*6)+threadIdx.x] = vertexInterp3(isoValue, v[6], v[7], field[6], field[7]);
vertlist[(NTHREADS*7)+threadIdx.x] = vertexInterp3(isoValue, v[7], v[4], field[7], field[4]);
vertlist[(NTHREADS*8)+threadIdx.x] = vertexInterp3(isoValue, v[0], v[4], field[0], field[4]);
vertlist[(NTHREADS*9)+threadIdx.x] = vertexInterp3(isoValue, v[1], v[5], field[1], field[5]);
vertlist[(NTHREADS*10)+threadIdx.x] = vertexInterp3(isoValue, v[2], v[6], field[2], field[6]);
vertlist[(NTHREADS*11)+threadIdx.x] = vertexInterp3(isoValue, v[3], v[7], field[3], field[7]);
uint numVerts = tex1Dfetch<uint>(numVertsTex, cubeindex);
for (int j =0; j<numVerts; j += 3)
{
uint index;
index = numVertsScanned[voxel] + j;
float3 *v[3];
uint edge;
edge = tex1Dfetch<uint>(triTex, (cubeindex*16) + j);
v[0] = &vertlist[(edge*NTHREADS)+threadIdx.x];
edge = tex1Dfetch<uint>(triTex, (cubeindex*16) + j + 1);
v[1] = &vertlist[(edge*NTHREADS)+threadIdx.x];
edge = tex1Dfetch<uint>(triTex, (cubeindex*16) + j + 2);
v[2] = &vertlist[(edge*NTHREADS)+threadIdx.x];
float3 n = calcNormal(v[0], v[1], v[2]);
if (index < (maxVerts - 3))
{
pos[index] = make_float4(*v[0], 1.0f);
norm[index] = make_float4(n, 0.0f);
pos[index+1] = make_float4(*v[1], 1.0f);
norm[index+1] = make_float4(n, 0.0f);
pos[index+2] = make_float4(*v[2], 1.0f);
norm[index+2] = make_float4(n, 0.0f);
}
}
}
}
void MarchingCubeCuda::generateTriangles_lattice(dim3 grid, dim3 threads,
float4 *pos, float4 *norm, uint *compactedVoxelArray, uint *numVertsScanned, float *volume,
uint3 gridSize, uint3 gridSizeShift, uint3 gridSizeMask,
float3 voxelSize, float3 gridcenter, float isoValue, uint activeVoxels, uint maxVerts, uint totalverts,float *volume_one)
{
generateTriangles_lattice_kernel<<<grid, threads>>>(pos, norm,
compactedVoxelArray,
numVertsScanned, volume,
gridSize, gridSizeShift, gridSizeMask,
voxelSize,gridcenter, isoValue, activeVoxels,
maxVerts, triTex_s, numVertsTex_s, totalverts, volume_one);
cudaDeviceSynchronize();
getLastCudaError("generateTriangles failed");
cudaError_t err = cudaGetLastError();
}
void MarchingCubeCuda::ThrustScanWrapper_lattice(unsigned int *output, unsigned int *input, unsigned int numElements)
{
thrust::exclusive_scan(thrust::device_ptr<unsigned int>(input),
thrust::device_ptr<unsigned int>(input + numElements),
thrust::device_ptr<unsigned int>(output));
}