-
Notifications
You must be signed in to change notification settings - Fork 1.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Add gitlab CI back * clean isort * Update gitlab CI version * Update mmcv install * fix unit test bug * waymo * Use new flake8 * Update mmdet3d/core/evaluation/waymo_utils/prediction_kitti_to_waymo.py, tools/data_converter/waymo_converter.py files * Add baseline configs for waymo * fix linting * yapf reformat * update waymo results * Update waymo model zoo and docs * Bump v0.6.0 * Fix a minor bug when converting waymo data * Fix cmds in the waymo doc * Fix setup.cfg to pass isort test * Fix waymo configs * Update model zoo link & doc * update version date * clean ci Co-authored-by: wangtai <wangtai@sensetime.com> Co-authored-by: Tai-Wang <tab_wang@outlook.com>
- Loading branch information
1 parent
62ce67c
commit 579b079
Showing
38 changed files
with
2,470 additions
and
119 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,127 @@ | ||
# dataset settings | ||
# D5 in the config name means the whole dataset is divided into 5 folds | ||
# We only use one fold for efficient experiments | ||
dataset_type = 'WaymoDataset' | ||
data_root = 'data/waymo/kitti_format/' | ||
file_client_args = dict(backend='disk') | ||
# Uncomment the following if use ceph or other file clients. | ||
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient | ||
# for more details. | ||
# file_client_args = dict( | ||
# backend='petrel', path_mapping=dict(data='s3://waymo_data/')) | ||
|
||
class_names = ['Car', 'Pedestrian', 'Cyclist'] | ||
point_cloud_range = [-74.88, -74.88, -2, 74.88, 74.88, 4] | ||
input_modality = dict(use_lidar=True, use_camera=False) | ||
db_sampler = dict( | ||
data_root=data_root, | ||
info_path=data_root + 'waymo_dbinfos_train.pkl', | ||
rate=1.0, | ||
prepare=dict( | ||
filter_by_difficulty=[-1], | ||
filter_by_min_points=dict(Car=5, Pedestrian=10, Cyclist=10)), | ||
classes=class_names, | ||
sample_groups=dict(Car=15, Pedestrian=10, Cyclist=10), | ||
points_loader=dict( | ||
type='LoadPointsFromFile', | ||
load_dim=5, | ||
use_dim=[0, 1, 2, 3, 4], | ||
file_client_args=file_client_args)) | ||
|
||
train_pipeline = [ | ||
dict( | ||
type='LoadPointsFromFile', | ||
load_dim=6, | ||
use_dim=5, | ||
file_client_args=file_client_args), | ||
dict( | ||
type='LoadAnnotations3D', | ||
with_bbox_3d=True, | ||
with_label_3d=True, | ||
file_client_args=file_client_args), | ||
dict(type='ObjectSample', db_sampler=db_sampler), | ||
dict( | ||
type='RandomFlip3D', | ||
sync_2d=False, | ||
flip_ratio_bev_horizontal=0.5, | ||
flip_ratio_bev_vertical=0.5), | ||
dict( | ||
type='GlobalRotScaleTrans', | ||
rot_range=[-0.78539816, 0.78539816], | ||
scale_ratio_range=[0.95, 1.05]), | ||
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), | ||
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), | ||
dict(type='PointShuffle'), | ||
dict(type='DefaultFormatBundle3D', class_names=class_names), | ||
dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) | ||
] | ||
test_pipeline = [ | ||
dict( | ||
type='LoadPointsFromFile', | ||
load_dim=6, | ||
use_dim=5, | ||
file_client_args=file_client_args), | ||
dict( | ||
type='MultiScaleFlipAug3D', | ||
img_scale=(1333, 800), | ||
pts_scale_ratio=1, | ||
flip=False, | ||
transforms=[ | ||
dict( | ||
type='GlobalRotScaleTrans', | ||
rot_range=[0, 0], | ||
scale_ratio_range=[1., 1.], | ||
translation_std=[0, 0, 0]), | ||
dict(type='RandomFlip3D'), | ||
dict( | ||
type='PointsRangeFilter', point_cloud_range=point_cloud_range), | ||
dict( | ||
type='DefaultFormatBundle3D', | ||
class_names=class_names, | ||
with_label=False), | ||
dict(type='Collect3D', keys=['points']) | ||
]) | ||
] | ||
|
||
data = dict( | ||
samples_per_gpu=2, | ||
workers_per_gpu=4, | ||
train=dict( | ||
type='RepeatDataset', | ||
times=2, | ||
dataset=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
ann_file=data_root + 'waymo_infos_train.pkl', | ||
split='training', | ||
pipeline=train_pipeline, | ||
modality=input_modality, | ||
classes=class_names, | ||
test_mode=False, | ||
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset | ||
# and box_type_3d='Depth' in sunrgbd and scannet dataset. | ||
box_type_3d='LiDAR', | ||
# load one frame every five frames | ||
load_interval=5)), | ||
val=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
ann_file=data_root + 'waymo_infos_val.pkl', | ||
split='training', | ||
pipeline=test_pipeline, | ||
modality=input_modality, | ||
classes=class_names, | ||
test_mode=True, | ||
box_type_3d='LiDAR'), | ||
test=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
ann_file=data_root + 'waymo_infos_val.pkl', | ||
split='training', | ||
pipeline=test_pipeline, | ||
modality=input_modality, | ||
classes=class_names, | ||
test_mode=True, | ||
box_type_3d='LiDAR')) | ||
|
||
evaluation = dict(interval=24) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,125 @@ | ||
# dataset settings | ||
# D5 in the config name means the whole dataset is divided into 5 folds | ||
# We only use one fold for efficient experiments | ||
dataset_type = 'WaymoDataset' | ||
data_root = 'data/waymo/kitti_format/' | ||
file_client_args = dict(backend='disk') | ||
# Uncomment the following if use ceph or other file clients. | ||
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient | ||
# for more details. | ||
# file_client_args = dict( | ||
# backend='petrel', path_mapping=dict(data='s3://waymo_data/')) | ||
|
||
class_names = ['Car'] | ||
point_cloud_range = [-74.88, -74.88, -2, 74.88, 74.88, 4] | ||
input_modality = dict(use_lidar=True, use_camera=False) | ||
db_sampler = dict( | ||
data_root=data_root, | ||
info_path=data_root + 'waymo_dbinfos_train.pkl', | ||
rate=1.0, | ||
prepare=dict(filter_by_difficulty=[-1], filter_by_min_points=dict(Car=5)), | ||
classes=class_names, | ||
sample_groups=dict(Car=15), | ||
points_loader=dict( | ||
type='LoadPointsFromFile', | ||
load_dim=5, | ||
use_dim=[0, 1, 2, 3, 4], | ||
file_client_args=file_client_args)) | ||
|
||
train_pipeline = [ | ||
dict( | ||
type='LoadPointsFromFile', | ||
load_dim=6, | ||
use_dim=5, | ||
file_client_args=file_client_args), | ||
dict( | ||
type='LoadAnnotations3D', | ||
with_bbox_3d=True, | ||
with_label_3d=True, | ||
file_client_args=file_client_args), | ||
dict(type='ObjectSample', db_sampler=db_sampler), | ||
dict( | ||
type='RandomFlip3D', | ||
sync_2d=False, | ||
flip_ratio_bev_horizontal=0.5, | ||
flip_ratio_bev_vertical=0.5), | ||
dict( | ||
type='GlobalRotScaleTrans', | ||
rot_range=[-0.78539816, 0.78539816], | ||
scale_ratio_range=[0.95, 1.05]), | ||
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), | ||
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), | ||
dict(type='PointShuffle'), | ||
dict(type='DefaultFormatBundle3D', class_names=class_names), | ||
dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) | ||
] | ||
test_pipeline = [ | ||
dict( | ||
type='LoadPointsFromFile', | ||
load_dim=6, | ||
use_dim=5, | ||
file_client_args=file_client_args), | ||
dict( | ||
type='MultiScaleFlipAug3D', | ||
img_scale=(1333, 800), | ||
pts_scale_ratio=1, | ||
flip=False, | ||
transforms=[ | ||
dict( | ||
type='GlobalRotScaleTrans', | ||
rot_range=[0, 0], | ||
scale_ratio_range=[1., 1.], | ||
translation_std=[0, 0, 0]), | ||
dict(type='RandomFlip3D'), | ||
dict( | ||
type='PointsRangeFilter', point_cloud_range=point_cloud_range), | ||
dict( | ||
type='DefaultFormatBundle3D', | ||
class_names=class_names, | ||
with_label=False), | ||
dict(type='Collect3D', keys=['points']) | ||
]) | ||
] | ||
|
||
data = dict( | ||
samples_per_gpu=2, | ||
workers_per_gpu=4, | ||
train=dict( | ||
type='RepeatDataset', | ||
times=2, | ||
dataset=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
ann_file=data_root + 'waymo_infos_train.pkl', | ||
split='training', | ||
pipeline=train_pipeline, | ||
modality=input_modality, | ||
classes=class_names, | ||
test_mode=False, | ||
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset | ||
# and box_type_3d='Depth' in sunrgbd and scannet dataset. | ||
box_type_3d='LiDAR', | ||
# load one frame every five frames | ||
load_interval=5)), | ||
val=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
ann_file=data_root + 'waymo_infos_val.pkl', | ||
split='training', | ||
pipeline=test_pipeline, | ||
modality=input_modality, | ||
classes=class_names, | ||
test_mode=True, | ||
box_type_3d='LiDAR'), | ||
test=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
ann_file=data_root + 'waymo_infos_val.pkl', | ||
split='training', | ||
pipeline=test_pipeline, | ||
modality=input_modality, | ||
classes=class_names, | ||
test_mode=True, | ||
box_type_3d='LiDAR')) | ||
|
||
evaluation = dict(interval=24) |
Oops, something went wrong.