diff --git a/PySDM/attributes/impl/mapper.py b/PySDM/attributes/impl/mapper.py index b6798f360..8ec7bd267 100644 --- a/PySDM/attributes/impl/mapper.py +++ b/PySDM/attributes/impl/mapper.py @@ -51,8 +51,7 @@ "volume": lambda _, __: Volume, "dry volume organic": lambda dynamics, formulae: ( make_dummy_attribute_factory("dry volume organic") - if "Condensation" in dynamics - and formulae.surface_tension.__name__ == Constant.__name__ + if formulae.surface_tension.__name__ == Constant.__name__ else DryVolumeOrganic ), "dry volume": lambda dynamics, formulae: ( @@ -60,8 +59,7 @@ ), "dry volume organic fraction": lambda dynamics, formulae: ( make_dummy_attribute_factory("dry volume organic fraction") - if "Condensation" in dynamics - and formulae.surface_tension.__name__ == Constant.__name__ + if formulae.surface_tension.__name__ == Constant.__name__ else OrganicFraction ), "kappa times dry volume": lambda _, __: KappaTimesDryVolume, @@ -124,6 +122,6 @@ def get_class(name, dynamics, formulae): if name not in attributes: raise ValueError( - f"Unknown attribute name: {name}; valid names: {', '.join(attributes)}" + f"Unknown attribute name: {name}; valid names: {', '.join(sorted(attributes))}" ) return attributes[name](dynamics, formulae) diff --git a/PySDM/formulae.py b/PySDM/formulae.py index 2f44bca58..acd58d94e 100644 --- a/PySDM/formulae.py +++ b/PySDM/formulae.py @@ -48,12 +48,16 @@ def __init__( # pylint: disable=too-many-locals isotope_equilibrium_fractionation_factors: str = "Null", isotope_meteoric_water_line_excess: str = "Null", isotope_ratio_evolution: str = "Null", + optical_albedo: str = "Null", + optical_depth: str = "Null", particle_shape_and_density: str = "LiquidSpheres", terminal_velocity: str = "GunnKinzer1949", handle_all_breakups: bool = False, ): # initialisation of the fields below is just to silence pylint and to enable code hints # in PyCharm and alike, all these fields are later overwritten within this ctor + self.optical_albedo = optical_albedo + self.optical_depth = optical_depth self.condensation_coordinate = condensation_coordinate self.saturation_vapour_pressure = saturation_vapour_pressure self.hygroscopicity = hygroscopicity diff --git a/PySDM/physics/__init__.py b/PySDM/physics/__init__.py index 76e7f455b..08c4b8775 100644 --- a/PySDM/physics/__init__.py +++ b/PySDM/physics/__init__.py @@ -32,6 +32,8 @@ isotope_meteoric_water_line_excess, isotope_ratio_evolution, latent_heat, + optical_albedo, + optical_depth, particle_advection, particle_shape_and_density, saturation_vapour_pressure, diff --git a/PySDM/physics/constants.py b/PySDM/physics/constants.py index da5da22ca..5a489643a 100644 --- a/PySDM/physics/constants.py +++ b/PySDM/physics/constants.py @@ -34,6 +34,7 @@ def in_unit(value, unit): LN_2 = np.log(2) ZERO_MASS = 0 * si.kg ZERO_VOLUME = 0 * si.m**3 +ONE = 1 TWO = 2 THREE = 3 FOUR = 4 diff --git a/PySDM/physics/constants_defaults.py b/PySDM/physics/constants_defaults.py index 53de9fb1d..6231420e3 100644 --- a/PySDM/physics/constants_defaults.py +++ b/PySDM/physics/constants_defaults.py @@ -20,6 +20,7 @@ PPM, T0, THREE, + ONE, TWO, TWO_THIRDS, M, @@ -317,6 +318,9 @@ CRAIG_1961_SLOPE_COEFF = 8 CRAIG_1961_INTERCEPT_COEFF = 10 * PER_MILLE +""" [Bohren 1987](https://doi.org/10.1119/1.15109) """ +asymmetry_g = 0.85 # forward scattering from cloud droplets + def compute_derived_values(c: dict): c["eps"] = c["Mv"] / c["Md"] @@ -325,6 +329,6 @@ def compute_derived_values(c: dict): c["Rd_over_c_pd"] = c["Rd"] / c["c_pd"] - c["nu_w"] = c["Mv"] / c["rho_w"] + c["water_molar_volume"] = c["Mv"] / c["rho_w"] c["rho_STP"] = c["p_STP"] / c["Rd"] / c["T_STP"] c["H_u"] = c["M"] / c["p_STP"] diff --git a/PySDM/physics/optical_albedo/__init__.py b/PySDM/physics/optical_albedo/__init__.py new file mode 100644 index 000000000..8423d9584 --- /dev/null +++ b/PySDM/physics/optical_albedo/__init__.py @@ -0,0 +1,6 @@ +""" +alternative formulations of cloud albedo +""" + +from .bohren1987 import Bohren1987 +from .null import Null diff --git a/PySDM/physics/optical_albedo/bohren1987.py b/PySDM/physics/optical_albedo/bohren1987.py new file mode 100644 index 000000000..6f9a5ceba --- /dev/null +++ b/PySDM/physics/optical_albedo/bohren1987.py @@ -0,0 +1,14 @@ +""" +[Bohren 1987](https://doi.org/10.1119/1.15109) Eq. 14 +""" + + +class Bohren1987: # pylint: disable=too-few-public-methods + def __init__(self, _): + pass + + @staticmethod + def albedo(const, tau): + return ((const.ONE - const.asymmetry_g) * tau) / ( + const.TWO + (const.ONE - const.asymmetry_g) * tau + ) diff --git a/PySDM/physics/optical_albedo/null.py b/PySDM/physics/optical_albedo/null.py new file mode 100644 index 000000000..9ae676929 --- /dev/null +++ b/PySDM/physics/optical_albedo/null.py @@ -0,0 +1,8 @@ +""" +null (default) class +""" + + +class Null: # pylint: disable=too-few-public-methods + def __init__(self, _): + pass diff --git a/PySDM/physics/optical_depth/__init__.py b/PySDM/physics/optical_depth/__init__.py new file mode 100644 index 000000000..e5052797f --- /dev/null +++ b/PySDM/physics/optical_depth/__init__.py @@ -0,0 +1,6 @@ +""" +alternative formulations of optical depth +""" + +from .stephens_1978 import Stephens1978 +from .null import Null diff --git a/PySDM/physics/optical_depth/null.py b/PySDM/physics/optical_depth/null.py new file mode 100644 index 000000000..9ae676929 --- /dev/null +++ b/PySDM/physics/optical_depth/null.py @@ -0,0 +1,8 @@ +""" +null (default) class +""" + + +class Null: # pylint: disable=too-few-public-methods + def __init__(self, _): + pass diff --git a/PySDM/physics/optical_depth/stephens_1978.py b/PySDM/physics/optical_depth/stephens_1978.py new file mode 100644 index 000000000..ee5c7d260 --- /dev/null +++ b/PySDM/physics/optical_depth/stephens_1978.py @@ -0,0 +1,13 @@ +""" +[Stephens 1978](https://doi.org/10.1175/1520-0469(1978)035%3C2123:RPIEWC%3E2.0.CO;2) +Eq. 7 for optical depth, where LWP is in g/m^2 and reff is in um. +""" + + +class Stephens1978: # pylint: disable=too-few-public-methods + def __init__(self, _): + pass + + @staticmethod + def tau(const, LWP, reff): + return (const.ONE_AND_A_HALF * LWP) / (const.rho_w * reff) diff --git a/PySDM/physics/surface_tension/compressed_film_ruehl.py b/PySDM/physics/surface_tension/compressed_film_ruehl.py index 1308a2499..43f4c4189 100644 --- a/PySDM/physics/surface_tension/compressed_film_ruehl.py +++ b/PySDM/physics/surface_tension/compressed_film_ruehl.py @@ -56,7 +56,9 @@ def sigma(const, T, v_wet, v_dry, f_org): # pylint: disable=too-many-locals else: # C_bulk is the concentration of the organic in the bulk phase # Cb_iso = C_bulk / (1-f_surf) - Cb_iso = (f_org * v_dry / const.RUEHL_nu_org) / (v_wet / const.nu_w) + Cb_iso = (f_org * v_dry / const.RUEHL_nu_org) / ( + v_wet / const.water_molar_volume + ) # A is the area one molecule of organic occupies at the droplet surface # A_iso = A*f_surf (m^2) diff --git a/PySDM/physics/surface_tension/szyszkowski_langmuir.py b/PySDM/physics/surface_tension/szyszkowski_langmuir.py index 45e2f5561..cc228ad80 100644 --- a/PySDM/physics/surface_tension/szyszkowski_langmuir.py +++ b/PySDM/physics/surface_tension/szyszkowski_langmuir.py @@ -34,7 +34,9 @@ def sigma(const, T, v_wet, v_dry, f_org): else: # C_bulk is the concentration of the organic in the bulk phase # Cb_iso = C_bulk / (1-f_surf) - Cb_iso = (f_org * v_dry / const.RUEHL_nu_org) / (v_wet / const.nu_w) + Cb_iso = (f_org * v_dry / const.RUEHL_nu_org) / ( + v_wet / const.water_molar_volume + ) # A is the area that one molecule of organic occupies at the droplet surface # A_iso = A*f_surf (m^2) diff --git a/PySDM/products/__init__.py b/PySDM/products/__init__.py index 5e42d28eb..696bd8247 100644 --- a/PySDM/products/__init__.py +++ b/PySDM/products/__init__.py @@ -1,7 +1,5 @@ """ -Simulation output products such as: -`PySDM.products.size_spectral.particle_size_spectrum.ParticleSizeSpectrum`, -... +Simulation output products """ from .ambient_thermodynamics import * @@ -12,3 +10,5 @@ from .freezing import * from .housekeeping import * from .size_spectral import * +from .optical import * +from .parcel import * diff --git a/PySDM/products/freezing/__init__.py b/PySDM/products/freezing/__init__.py index da05c9903..ccd0afdf9 100644 --- a/PySDM/products/freezing/__init__.py +++ b/PySDM/products/freezing/__init__.py @@ -12,5 +12,4 @@ IceNucleiConcentration, SpecificIceNucleiConcentration, ) -from .ice_water_content import IceWaterContent, SpecificIceWaterContent from .total_unfrozen_immersed_surface_area import TotalUnfrozenImmersedSurfaceArea diff --git a/PySDM/products/freezing/ice_water_content.py b/PySDM/products/freezing/ice_water_content.py deleted file mode 100644 index 963c22a65..000000000 --- a/PySDM/products/freezing/ice_water_content.py +++ /dev/null @@ -1,36 +0,0 @@ -""" -ice water content products (mixing ratio and density) -""" - -import numpy as np - -from PySDM.products.impl.moment_product import MomentProduct - - -class IceWaterContent(MomentProduct): - def __init__(self, unit="kg/m^3", name=None, specific=False): - super().__init__(unit=unit, name=name) - self.specific = specific - - def _impl(self, **kwargs): - self._download_moment_to_buffer( - attr="water mass", rank=1, filter_range=(-np.inf, 0) - ) - result = self.buffer.copy() - - self._download_moment_to_buffer( - attr="water mass", rank=0, filter_range=(-np.inf, 0) - ) - conc = self.buffer - - result[:] *= -1 * conc / self.particulator.mesh.dv - - if self.specific: - self._download_to_buffer(self.particulator.environment["rhod"]) - result[:] /= self.buffer - return result - - -class SpecificIceWaterContent(IceWaterContent): - def __init__(self, unit="kg/kg", name=None): - super().__init__(unit=unit, name=name, specific=True) diff --git a/PySDM/products/optical/__init__.py b/PySDM/products/optical/__init__.py new file mode 100644 index 000000000..8f1c37675 --- /dev/null +++ b/PySDM/products/optical/__init__.py @@ -0,0 +1,4 @@ +""" cloud optical properties """ + +from .cloud_optical_depth import CloudOpticalDepth +from .cloud_albedo import CloudAlbedo diff --git a/PySDM/products/optical/cloud_albedo.py b/PySDM/products/optical/cloud_albedo.py new file mode 100644 index 000000000..63cc2d192 --- /dev/null +++ b/PySDM/products/optical/cloud_albedo.py @@ -0,0 +1,13 @@ +""" +cloud albedo +""" + +from PySDM.products.impl.product import Product + + +class CloudAlbedo(Product): + def __init__(self, *, unit="dimensionless", name=None): + super().__init__(name=name, unit=unit) + + def _impl(self, **kwargs): + return self.formulae.optical_albedo.albedo(kwargs["optical_depth"]) diff --git a/PySDM/products/optical/cloud_optical_depth.py b/PySDM/products/optical/cloud_optical_depth.py new file mode 100644 index 000000000..dd570e8d2 --- /dev/null +++ b/PySDM/products/optical/cloud_optical_depth.py @@ -0,0 +1,16 @@ +""" +cloud optical depth +""" + +from PySDM.products.impl.product import Product + + +class CloudOpticalDepth(Product): + def __init__(self, *, unit="dimensionless", name=None): + super().__init__(name=name, unit=unit) + + def _impl(self, **kwargs): + return self.formulae.optical_depth.tau( + kwargs["liquid_water_path"], + kwargs["effective_radius"], + ) diff --git a/PySDM/products/parcel/__init__.py b/PySDM/products/parcel/__init__.py new file mode 100644 index 000000000..d95384235 --- /dev/null +++ b/PySDM/products/parcel/__init__.py @@ -0,0 +1,3 @@ +""" products specific to the parcel environment """ + +from .cloud_water_path import ParcelLiquidWaterPath diff --git a/PySDM/products/parcel/cloud_water_path.py b/PySDM/products/parcel/cloud_water_path.py new file mode 100644 index 000000000..8c6661c57 --- /dev/null +++ b/PySDM/products/parcel/cloud_water_path.py @@ -0,0 +1,55 @@ +""" +cloud water path integrated over parcel displacement taking into account changes +in parcel volume along the way +""" + +from PySDM.environments.parcel import Parcel + +from PySDM.products.impl.activation_filtered_product import _ActivationFilteredProduct +from PySDM.products.impl.moment_product import MomentProduct + + +class ParcelLiquidWaterPath(MomentProduct, _ActivationFilteredProduct): + def __init__( + self, + count_unactivated: bool, + count_activated: bool, + name=None, + unit="kg/m^2", + ): + MomentProduct.__init__(self, unit=unit, name=name) + _ActivationFilteredProduct.__init__( + self, count_activated=count_activated, count_unactivated=count_unactivated + ) + self.previous = {"z": 0.0, "cwc": 0.0} + self.cwp = 0.0 + + def register(self, builder): + if not isinstance(builder.particulator.environment, Parcel): + raise NotImplementedError() + _ActivationFilteredProduct.register(self, builder) + MomentProduct.register(self, builder) + self.particulator.observers.append(self) + + def notify(self): + _ActivationFilteredProduct.impl(self, attr="water mass", rank=1) + avg_mass = self.buffer.copy() + + _ActivationFilteredProduct.impl(self, attr="water mass", rank=0) + tot_numb = self.buffer.copy() + + self._download_to_buffer(self.particulator.environment["z"]) + current_z = self.buffer.copy() + + cwc = avg_mass * tot_numb / self.particulator.mesh.dv + dz = current_z - self.previous["z"] + cwc_mean = (cwc + self.previous["cwc"]) / 2 + + if self.previous["cwc"] > 0: + self.cwp += cwc_mean * dz + + self.previous["z"] = current_z + self.previous["cwc"] = cwc + + def _impl(self, **kwargs): + return self.cwp diff --git a/PySDM/products/size_spectral/__init__.py b/PySDM/products/size_spectral/__init__.py index 5aa4647e2..9be2ed131 100644 --- a/PySDM/products/size_spectral/__init__.py +++ b/PySDM/products/size_spectral/__init__.py @@ -7,6 +7,7 @@ ZerothMoment, ) from .effective_radius import EffectiveRadius +from .effective_radius_activated import ActivatedEffectiveRadius from .mean_radius import MeanRadius from .mean_radius_activated import ActivatedMeanRadius from .mean_volume_radius import MeanVolumeRadius @@ -34,3 +35,11 @@ from .total_particle_concentration import TotalParticleConcentration from .total_particle_specific_concentration import TotalParticleSpecificConcentration from .water_mixing_ratio import WaterMixingRatio +from .cloud_water_content import ( + CloudWaterContent, + SpecificCloudWaterContent, + LiquidWaterContent, + SpecificLiquidWaterContent, + IceWaterContent, + SpecificIceWaterContent, +) diff --git a/PySDM/products/size_spectral/cloud_water_content.py b/PySDM/products/size_spectral/cloud_water_content.py new file mode 100644 index 000000000..b425e9ba2 --- /dev/null +++ b/PySDM/products/size_spectral/cloud_water_content.py @@ -0,0 +1,78 @@ +""" +cloud water content products, Specific means per mass of dry air + +CloudWaterContent is both liquid and ice +LiquidWaterContent is just liquid +IceWaterContent is just ice + +""" + +import numpy as np + +from PySDM.products.impl.moment_product import MomentProduct + + +class CloudWaterContent(MomentProduct): + def __init__( + self, unit="kg/m^3", name=None, specific=False, liquid=True, ice=True + ): # pylint: disable=too-many-arguments + super().__init__(unit=unit, name=name) + self.specific = specific + self.liquid = liquid + self.ice = ice + + def _impl(self, **kwargs): + cwc = 0.0 + if self.liquid: + self._download_moment_to_buffer( + attr="water mass", rank=1, filter_range=(0, np.inf) + ) + mass = self.buffer.copy() + + self._download_moment_to_buffer( + attr="water mass", rank=0, filter_range=(0, np.inf) + ) + conc = self.buffer + cwc += mass * conc / self.particulator.mesh.dv + + if self.ice: + self._download_moment_to_buffer( + attr="water mass", rank=1, filter_range=(-np.inf, 0) + ) + mass = self.buffer.copy() + + self._download_moment_to_buffer( + attr="water mass", rank=0, filter_range=(-np.inf, 0) + ) + conc = self.buffer + cwc -= mass * conc / self.particulator.mesh.dv + + if self.specific: + self._download_to_buffer(self.particulator.environment["rhod"]) + cwc /= self.buffer + return cwc + + +class SpecificCloudWaterContent(CloudWaterContent): + def __init__(self, unit="kg/kg", name=None): + super().__init__(unit=unit, name=name, specific=True, liquid=True, ice=True) + + +class LiquidWaterContent(CloudWaterContent): + def __init__(self, unit="kg/m^3", name=None): + super().__init__(unit=unit, name=name, specific=False, liquid=True, ice=False) + + +class SpecificLiquidWaterContent(CloudWaterContent): + def __init__(self, unit="kg/kg", name=None): + super().__init__(unit=unit, name=name, specific=True, liquid=True, ice=False) + + +class IceWaterContent(CloudWaterContent): + def __init__(self, unit="kg/m^3", name=None): + super().__init__(unit=unit, name=name, specific=False, liquid=False, ice=True) + + +class SpecificIceWaterContent(CloudWaterContent): + def __init__(self, unit="kg/kg", name=None): + super().__init__(unit=unit, name=name, specific=True, liquid=False, ice=True) diff --git a/PySDM/products/size_spectral/effective_radius.py b/PySDM/products/size_spectral/effective_radius.py index 703bff9fd..605fa4c15 100644 --- a/PySDM/products/size_spectral/effective_radius.py +++ b/PySDM/products/size_spectral/effective_radius.py @@ -25,12 +25,15 @@ def register(self, builder): @staticmethod @numba.njit(**JIT_FLAGS) - def __get_impl(buffer, tmp): - buffer[:] = np.where( - tmp[:] > 0, - buffer[:] + def nan_aware_reff_impl(input_volume_output_reff, volume_2_3): + """computes the effective radius (/) based on and """ + input_volume_output_reff[:] = np.where( + volume_2_3[:] > 0, + input_volume_output_reff[:] * GEOM_FACTOR - / (tmp[:] + (tmp[:] == 0)), # (+ x==0) to avoid div-by-zero warnings + / ( + volume_2_3[:] + (volume_2_3[:] == 0) + ), # (+ x==0) to avoid div-by-zero warnings np.nan, ) @@ -49,5 +52,7 @@ def _impl(self, **kwargs): filter_range=self.volume_range, filter_attr="volume", ) - EffectiveRadius.__get_impl(self.buffer, tmp) + EffectiveRadius.nan_aware_reff_impl( + input_volume_output_reff=self.buffer, volume_2_3=tmp + ) return self.buffer diff --git a/PySDM/products/size_spectral/effective_radius_activated.py b/PySDM/products/size_spectral/effective_radius_activated.py new file mode 100644 index 000000000..3145653a8 --- /dev/null +++ b/PySDM/products/size_spectral/effective_radius_activated.py @@ -0,0 +1,41 @@ +""" +effective radius of particles within a grid cell, for activated, unactivated or both +""" + +import numpy as np + +from PySDM.products.impl.activation_filtered_product import _ActivationFilteredProduct +from PySDM.products.impl.moment_product import MomentProduct +from PySDM.products.size_spectral.effective_radius import EffectiveRadius + + +class ActivatedEffectiveRadius(MomentProduct, _ActivationFilteredProduct): + def __init__( + self, *, count_unactivated: bool, count_activated: bool, name=None, unit="m" + ): + MomentProduct.__init__(self, name=name, unit=unit) + _ActivationFilteredProduct.__init__( + self, count_activated=count_activated, count_unactivated=count_unactivated + ) + + def register(self, builder): + _ActivationFilteredProduct.register(self, builder) + MomentProduct.register(self, builder) + + def _impl(self, **kwargs): + _ActivationFilteredProduct.impl( + self, + attr="volume", + rank=2 / 3, + ) + tmp = np.empty_like(self.buffer) + tmp[:] = self.buffer[:] + _ActivationFilteredProduct.impl( + self, + attr="volume", + rank=1, + ) + EffectiveRadius.nan_aware_reff_impl( + input_volume_output_reff=self.buffer, volume_2_3=tmp + ) + return self.buffer diff --git a/examples/PySDM_examples/Lowe_et_al_2019/constants_def.py b/examples/PySDM_examples/Lowe_et_al_2019/constants_def.py new file mode 100644 index 000000000..aad63332f --- /dev/null +++ b/examples/PySDM_examples/Lowe_et_al_2019/constants_def.py @@ -0,0 +1,13 @@ +from PySDM.physics import constants_defaults, si + +LOWE_CONSTS = { + "sgm_org": 40 * si.mN / si.m, + "delta_min": 0.1 + * si.nm, # 0.2 in the paper, but 0.1 matches the paper plot fig 1c and 1d + "MAC": 1, + "HAC": 1, + "c_pd": 1006 * si.joule / si.kilogram / si.kelvin, + "g_std": 9.81 * si.metre / si.second**2, + "Md": constants_defaults.R_str / 287.058 * si.joule / si.kelvin / si.kg, + "Mv": constants_defaults.R_str / 461 * si.joule / si.kelvin / si.kg, +} diff --git a/examples/PySDM_examples/Lowe_et_al_2019/fig_1.ipynb b/examples/PySDM_examples/Lowe_et_al_2019/fig_1.ipynb index 1bbe2642f..c50bb66ec 100644 --- a/examples/PySDM_examples/Lowe_et_al_2019/fig_1.ipynb +++ b/examples/PySDM_examples/Lowe_et_al_2019/fig_1.ipynb @@ -44,7 +44,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": { "pycharm": { "name": "#%%\n" @@ -59,7 +59,8 @@ "from PySDM.physics import si\n", "from open_atmos_jupyter_utils import show_plot\n", "\n", - "from PySDM_examples.Lowe_et_al_2019.aerosol_code import AerosolMarine, AerosolBoreal, AerosolNascent" + "from PySDM_examples.Lowe_et_al_2019.aerosol_code import AerosolMarine, AerosolBoreal, AerosolNascent\n", + "from PySDM_examples.Lowe_et_al_2019.constants_def import LOWE_CONSTS" ] }, { @@ -73,21 +74,21 @@ }, "outputs": [], "source": [ - "FORMULAE = Formulae()\n", - "WATER_MOLAR_VOLUME = FORMULAE.constants.Mv / FORMULAE.constants.rho_w\n", + "FORMULAE = Formulae(constants=LOWE_CONSTS)\n", + "WATER_MOLAR_VOLUME = FORMULAE.constants.water_molar_volume\n", "cases = {\n", " 'Marine (MA)': AerosolMarine(water_molar_volume=WATER_MOLAR_VOLUME),\n", " 'Boreal (HYY)': AerosolBoreal(water_molar_volume=WATER_MOLAR_VOLUME),\n", " 'NUM event (NE)': AerosolNascent(water_molar_volume=WATER_MOLAR_VOLUME)\n", "}\n", "\n", - "formulae_bulk = Formulae(surface_tension='Constant')\n", + "formulae_bulk = Formulae(\n", + " surface_tension='Constant',\n", + " constants=LOWE_CONSTS, \n", + ")\n", "formulae_surf = Formulae(\n", " surface_tension='CompressedFilmOvadnevaite',\n", - " constants={\n", - " 'sgm_org': 40 * si.mN / si.m,\n", - " 'delta_min': 0.1 * si.nm # 0.2 in the paper, but 0.1 matches the paper plot fig 1c and 1d\n", - " }\n", + " constants=LOWE_CONSTS,\n", ")\n", "\n", "r_wet = np.logspace(np.log(150 * si.nm), np.log(3000 * si.nm), base=np.e, num=100)\n", @@ -117,18 +118,20 @@ "outputs": [ { "data": { - "image/svg+xml": "\n\n\n \n \n \n \n 2023-12-29T12:52:31.880167\n image/svg+xml\n \n \n Matplotlib v3.8.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/svg+xml": "\n\n\n \n \n \n \n 2024-01-27T17:49:09.593011\n image/svg+xml\n \n \n Matplotlib v3.5.1, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "text/plain": [ - "
" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "be2119339d794395afd39cf84f29ae91", + "model_id": "1bf7183749b7407abc174d1c93f5b383", "version_major": 2, "version_minor": 0 }, @@ -165,7 +168,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "metadata": { "ExecuteTime": { "end_time": "2023-12-29T11:52:34.847271Z", @@ -175,18 +178,20 @@ "outputs": [ { "data": { - "image/svg+xml": "\n\n\n \n \n \n \n 2023-12-29T12:52:34.747834\n image/svg+xml\n \n \n Matplotlib v3.8.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/svg+xml": "\n\n\n \n \n \n \n 2024-01-27T17:49:16.181163\n image/svg+xml\n \n \n Matplotlib v3.5.1, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "text/plain": [ - "
" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "94e04a53e2414310adaebb35f51b9c46", + "model_id": "0f04be1a13d4445e92d2f500c5ac9849", "version_major": 2, "version_minor": 0 }, @@ -208,7 +213,7 @@ " RH_eq = formulae.hygroscopicity.RH_eq(r_wet, T, v.modes[0]['kappa'][model], rd3, sigma)\n", " pyplot.plot(\n", " r_wet / si.nm, \n", - " (RH_eq - 1)*100, \n", + " (RH_eq - 1) * 100, \n", " label=f\"{k}\" if model == 'Constant' else \"\",\n", " color=v.color, \n", " linestyle='-' if model == 'Constant' else '--'\n", @@ -222,7 +227,7 @@ "pyplot.ylabel('Equilibrium supersaturation [%]')\n", "yticks = (-.1, 0, .1, .2, .3)\n", "pyplot.yticks(yticks, yticks)\n", - "pyplot.ylim(yticks[0], .35)\n", + "pyplot.ylim(yticks[0], 0.35)\n", "pyplot.legend()\n", "show_plot(\"fig_1c.pdf\")" ] @@ -246,18 +251,20 @@ "outputs": [ { "data": { - "image/svg+xml": "\n\n\n \n \n \n \n 2023-12-29T12:52:35.499251\n image/svg+xml\n \n \n Matplotlib v3.8.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/svg+xml": "\n\n\n \n \n \n \n 2024-01-27T17:49:11.823914\n image/svg+xml\n \n \n Matplotlib v3.5.1, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "text/plain": [ - "
" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e6caba768d2d4aa7bf8f04066b3aff6c", + "model_id": "828ab372642943abbecdea3b846fa682", "version_major": 2, "version_minor": 0 }, @@ -289,7 +296,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2023-12-29T11:52:35.607915Z", diff --git a/examples/PySDM_examples/Lowe_et_al_2019/fig_2.ipynb b/examples/PySDM_examples/Lowe_et_al_2019/fig_2.ipynb index 685a9080b..eb8dade7e 100644 --- a/examples/PySDM_examples/Lowe_et_al_2019/fig_2.ipynb +++ b/examples/PySDM_examples/Lowe_et_al_2019/fig_2.ipynb @@ -19,7 +19,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": { "ExecuteTime": { "end_time": "2023-12-29T11:52:36.478184Z", @@ -37,7 +37,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": { "ExecuteTime": { "end_time": "2023-12-29T14:06:33.850244Z", @@ -48,6 +48,7 @@ "source": [ "from PySDM_examples.Lowe_et_al_2019 import Settings, Simulation\n", "from PySDM_examples.Lowe_et_al_2019.aerosol_code import AerosolBoreal, AerosolMarine, AerosolNascent\n", + "from PySDM_examples.Lowe_et_al_2019.constants_def import LOWE_CONSTS\n", "from open_atmos_jupyter_utils import show_plot\n", "\n", "from PySDM import Formulae\n", @@ -62,7 +63,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": { "ExecuteTime": { "end_time": "2023-12-29T11:54:54.155673Z", @@ -71,18 +72,10 @@ }, "outputs": [], "source": [ - "consts = {\"delta_min\":0.1, \n", - " \"MAC\":1, \n", - " \"HAC\":1, \n", - " \"c_pd\":1006 * si.joule / si.kilogram / si.kelvin, \n", - " \"g_std\":9.81 * si.m / si.s ** 2,\n", - " \"scipy_ode_solver\":False\n", - " }\n", - "\n", "output = {}\n", "\n", - "FORMULAE = Formulae()\n", - "WATER_MOLAR_VOLUME = FORMULAE.constants.Mv / FORMULAE.constants.rho_w\n", + "FORMULAE = Formulae(constants=LOWE_CONSTS)\n", + "WATER_MOLAR_VOLUME = FORMULAE.constants.water_molar_volume\n", "for aerosol in (\n", " AerosolMarine(water_molar_volume=WATER_MOLAR_VOLUME), \n", " AerosolBoreal(water_molar_volume=WATER_MOLAR_VOLUME), \n", @@ -95,7 +88,6 @@ " model=model,\n", " aerosol=aerosol,\n", " spectral_sampling=spec_sampling.ConstantMultiplicity,\n", - " **consts\n", " )\n", " simulation = Simulation(settings)\n", " output[key] = simulation.run()\n", @@ -107,24 +99,47 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": { "ExecuteTime": { "end_time": "2023-12-29T11:54:55.991461Z", "start_time": "2023-12-29T11:54:54.153896Z" } }, - "outputs": [], + "outputs": [ + { + "data": { + "image/svg+xml": "\n\n\n \n \n \n \n 2024-01-29T17:03:54.107043\n image/svg+xml\n \n \n Matplotlib v3.5.1, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e1729c1f6a5146f7a4cc8edd03643252", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HTML(value=\"./fig_2ab.pdf
\")" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "figsize = (11, 4)\n", "pyplot.rc('font', size=14)\n", "fig, axs = pyplot.subplots(1, 2, figsize=figsize, sharey=True)\n", "\n", - "if consts[\"scipy_ode_solver\"]:\n", - " vlist = ('RH', 'n_c_cm3')\n", - "else:\n", - " vlist = ('S_max', 'n_c_cm3')\n", - "\n", + "vlist = ('S_max', 'CDNC_cm3')\n", "for idx, var in enumerate(vlist):\n", " for key, out_item in output.items():\n", " Y = np.asarray(out_item['z'])\n", @@ -137,7 +152,7 @@ " color=out_item['color'],\n", " linestyle='-' if key.endswith('-Constant') else '--'\n", " )\n", - " if var == 'n_c_cm3':\n", + " if var == 'CDNC_cm3':\n", " axs[idx].axvline(out_item[\"Activated Fraction\"]*out_item[\"Na_tot\"]*1e-6,\n", " color=out_item['color'],\n", " alpha=0.5,\n", @@ -149,8 +164,8 @@ " if var in ('RH', 'S_max'):\n", " axs[idx].set_xlabel('Supersaturation [%]')\n", " axs[idx].set_xlim(0, 0.5)\n", - " elif var == 'n_c_cm3':\n", - " axs[idx].set_xlabel('Cloud droplet concentration [cm$^{-3}$]')\n", + " elif var == 'CDNC_cm3':\n", + " axs[idx].set_xlabel('Cloud droplet number conc. [cm$^{-3}$]')\n", " else:\n", " assert False\n", " \n", @@ -162,14 +177,41 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": { "ExecuteTime": { "end_time": "2023-12-29T14:07:59.522989Z", "start_time": "2023-12-29T14:07:59.296920Z" } }, - "outputs": [], + "outputs": [ + { + "data": { + "image/svg+xml": "\n\n\n \n \n \n \n 2024-01-29T17:03:54.519575\n image/svg+xml\n \n \n Matplotlib v3.5.1, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "16e7f8cc7d94433aadb4b1a085f0118f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HTML(value=\"./fig_2c.pdf
\")" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "from scipy.ndimage import uniform_filter1d\n", "\n", @@ -200,6 +242,13 @@ "axs.get_xaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())\n", "show_plot(\"fig_2c.pdf\")" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/examples/PySDM_examples/Lowe_et_al_2019/fig_3.ipynb b/examples/PySDM_examples/Lowe_et_al_2019/fig_3.ipynb index 07b0b771c..1de894cc0 100644 --- a/examples/PySDM_examples/Lowe_et_al_2019/fig_3.ipynb +++ b/examples/PySDM_examples/Lowe_et_al_2019/fig_3.ipynb @@ -37,12 +37,13 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "from PySDM_examples.Lowe_et_al_2019 import Settings, Simulation\n", "from PySDM_examples.Lowe_et_al_2019.aerosol_code import AerosolMarine, AerosolBoreal\n", + "from PySDM_examples.Lowe_et_al_2019.constants_def import LOWE_CONSTS\n", "\n", "from PySDM import Formulae\n", "from PySDM.initialisation.sampling import spectral_sampling as spec_sampling\n", @@ -75,21 +76,13 @@ "\n", "Acc = {\"a\": 30, \"b\": 134, \"c\": 160, \"d\": 540}\n", "\n", - "consts = {\"delta_min\":0.1, \n", - " \"MAC\":1, \n", - " \"HAC\":1, \n", - " \"c_pd\":1006 * si.joule / si.kilogram / si.kelvin, \n", - " \"g_std\":9.81 * si.metre / si.second ** 2,\n", - " \"scipy_ode_solver\":False\n", - " }\n", - "\n", - "FORMULAE = Formulae()\n", - "WATER_MOLAR_VOLUME = FORMULAE.constants.Mv / FORMULAE.constants.rho_w" + "FORMULAE = Formulae(constants=LOWE_CONSTS)\n", + "WATER_MOLAR_VOLUME = FORMULAE.constants.water_molar_volume" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": { "ExecuteTime": { "end_time": "2023-12-29T12:00:05.967263Z", @@ -117,8 +110,8 @@ "\n", "print(f'tasks scheduled: {len(models) * len(subplot_list) * len(forg_list) * len(updraft_list)}')\n", "print(updraft_list)\n", - "with parallel_backend('loky', n_jobs=-1):\n", - " output = dict(Parallel(verbose=10)(\n", + "with parallel_backend('loky', n_jobs=-2):\n", + " output = dict(Parallel(verbose=0)(\n", " delayed(compute)(subplot+f\"_w{w:.2f}_f{Forg:.2f}_\"+model, Settings(\n", " dz = 10 * si.m if CI else 1 * si.m,\n", " n_sd_per_mode = 10 if CI else 50,\n", @@ -131,7 +124,6 @@ " }[subplot],\n", " w = w * si.m / si.s,\n", " spectral_sampling = spec_sampling.ConstantMultiplicity,\n", - " **consts\n", " ))\n", " for w in updraft_list\n", " for Forg in forg_list\n", @@ -142,7 +134,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": { "ExecuteTime": { "end_time": "2023-12-29T12:00:09.455374Z", @@ -152,22 +144,26 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIUAAANbCAYAAADc3y98AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXhTVf4/8Pe5SbrvtJQWSlt2ylp2FEVRQUdxlxF3x3EbHPdZnO+44zCj46ijHf3puKKOu6gzKqKCigKyyy6FQlug0I3uS3Lv+f0RWpo2bZJmuzd5v56nj5LeJqdtmvvJ+37OOUJKKUFERERERERERGFFCfYAiIiIiIiIiIgo8BgKERERERERERGFIYZCRERERERERERhiKEQEREREREREVEYYihERERERERERBSGGAoREREREREREYUhhkJERERERERERGGIoRARERERERERURhiKEREREREREREFIYYChERERERERERhSGGQkRERE785je/QVZWFhISEtC/f3/cfvvtaG1tDfawiIiIiHSJtZMxMRQiIiJy4pZbbsHOnTtRW1uLzZs3Y/PmzfjLX/4S7GERERER6RJrJ2NiKEREHsvJycEpp5wS7GEQ+VVeXh5iY2MBAFJKKIqC3bt3B3lURESkF6yHiByxdjImhkKEFStWQAgBIQRuueUWp8ccOXIEEREREEJ0e/Krrq5GdHQ0hBBYvHhxr8fjq/sh0oOOf18vvPCC02OEEDjnnHMCPDLndu3ahcsvvxwjR45EYmIiYmJiMGLECNx55504dOiQ06/RNA1PPPEERowYgaioKGRlZeGuu+5CQ0NDgEfve3/9618RFxeHvn37YvPmzbj99tuDPSQiXbvmmmvaX/NWrFgR7OF4hPUQkf8YrR4CgEWLFuGSSy7BoEGDIIRATk5Ot8d6Wj+1/Sw6f8TFxfnxOwoM1k7Gw1CI2kVFReHNN99ES0tLl88tXrwYUkqYzeZuv/6NN95AS0sLcnNz8dJLL/V6HL66HyK9eeCBB9DU1BTsYfSotLQUhw4dwgUXXIBFixbhySefxBlnnIHnn38eEydOxJEjR7p8zR133IE777wTeXl5ePrpp3HJJZfgn//8J+bOnQtN04LwXXTv0ksv7bYQc/Ym9o9//CPq6+uxfft23HTTTcjIyAjOwIkoYFgPEfmXEeohAPjTn/6Er7/+GoMHD0ZycnKPx/amfjrppJOwePFih48XX3zRX9+OVzypn1g7GZCksLd8+XIJQM6fP18CkG+//XaXY0aNGiXPPfdcGRsbK2fOnOn0fsaPHy9nzZoln3rqKSmEkHv27OnVeHx1P+Q/2dnZ3T4PyFHb39ekSZMkAPmXv/ylyzEA5Nlnnx2E0bnvnXfekQDk3/72N4fbt27dKoUQ8sILL3S4/Z///KcEIN94441ADtOl2tpaWV5e3u1Ha2trt1/7zjvvyFNOOSWAoyUynquvvloCkADk8uXLgz0cj7AeIk+xHnKfEeuhjn9zo0aNktnZ2R7fR3f1EwB59dVXeznCwOlt/cTayRjYKUTtJkyYgLFjx+Lll192uP3HH3/Etm3bcO2113b7tRs2bMCmTZtw9dVX47LLLoPZbO7VVS1P7qe1tRWPPvooxo8fj5iYGCQmJmLSpEl45plnPD7ugQcegBAC+/bt6/I4zuaLv/LKKxBC4KuvvsJDDz2E7OxsREdHY+rUqVi9ejUA4JtvvsGMGTMQGxuLjIwMPPzwwx7/PPzxmBUVFViwYAGysrIQERGBrKwsLFiwAJWVlV2OLSkpwbx585CYmIiEhATMnTsXe/bs6XaMLS0t+Mtf/oJRo0YhKioKSUlJmDt3LjZu3OjW9+ju79Td76HtZ/b111/j73//OwYPHozIyEgMGzYMr776qldj8NS8efMwceJE/O1vf3P6s9a77OxsAPbpDB395z//gZSyS2vw9ddfj5iYGLz++utu3b87P3df/A3Ex8cjNTW12w+LxdLtGK1WK37++We3vh8iMi7WQ6yHOmM9FJ710KBBg7y+j+7qpzatra2or6/v1X0HqnYCel8/sXYyiGCnUnr2zTffyIsvvlgOGTJEJiYmSovFIjMyMuQll1wiN2/eHOzh+Uxbcv/YY4/JJ598UiqKIktLS9s/f+ONN8q+fftKq9Xa7ZWx3/zmNzIuLk7W19dLKaW84IIL5IABA6Sqqh6Nxd37aWlpkaeccooEIGfPni0fe+wx+fTTT8sbbrhBnnrqqR4fd//990sAsqioqMuYnF0Fevnll9uvduTn58vHH39cLlq0SKampsr4+Hj54YcfypSUFPnHP/5R/utf/2ofw+LFiz36efj6MY8ePSqHDh0qhRDyuuuukwUFBfLXv/61FELIESNGyNra2vZjq6urZU5OjjSZTHLBggWyoKBAzps3T2ZlZcnU1NQuP5PW1lZ5yimnyIiICHndddfJf/3rX3LRokVy0KBBMjo6Wq5du7bH78/d35Un30Pbz2zq1Kly7Nix8m9/+5t88skn5fDhwyUAuXLlyl6NwRMd/76WLVsmAcg77rjD4Rj44MqYqqo9XsHp/OHqb7OpqUmWl5fLkpISuXTpUjl+/HgJQH777bcOx82ePVsqiiKbm5u73McJJ5wgU1NTXY7d3Z97IP/ujh49Kl9++WVZXV0tNU2TmzdvliNHjpTXXnutx/dFFE46dgotW7ZMPvDAA3LAgAEyKipKnnTSSXL9+vXBHmK3WA+xHmI95NkYPGHUeqiNu51C7tZPAGRsbKw0mUwSgExLS5O33HKLPHr0qFvjYe1EvsRQqAeLFi1qL2w6f8TExMjt27cHe4g+0fFFuqKiQkZERMhHHnlESillY2OjTExMlHfddZeUUjotgpqammRSUpJDC+SSJUskAPnpp5+6PQ5P7udvf/ubBCDvueeeLvfT8cXd3eN6WwTl5+fLlpaW9ts/+ugjCUCazWaHk35LS4vs16+fnDZtWrffvyu+eMw//elPEoAsKChwuO9nnnlGApB//vOf22+75557JAD50ksvORx72223SQBdfib/+Mc/JAD5+eefO9xeU1Mjs7KyXLZXu/u78uR7aPuZjR8/3uFnVlpaKiMiIuSll17aqzF4ouPfl5RSnnHGGTIyMlLu27ev/RhfFEFFRUXdvl45+3D2XO/o6aefdjg+JydHvv76612OGz16tOzbt6/T+7jkkkskAIefvTPu/twD+XdXU1MjTzvtNJmcnCxjY2Nlbm6uvOuuu9rfoBGRcx1DobFjx3Z57UlISJC7du0K9jCdYj3Eeoj1kGdj8IRR66E27oZC7tZPU6ZMkY899pj88MMP5auvvip/+ctfSgByzJgxsq6uzuXjsHYiX2Io1IOvvvpKPv300/Ljjz+Wy5cvl8uWLWv/AwQgr7/++mAP0Sc6v0hffPHFcujQoVJKKV9//XUJQG7btk1K6bwIeuONNyQA+fXXX7ff1traKtPS0uTFF1/s9jg8uZ+xY8fK5ORk2dTU1ON9untcb4ug559/3uH2qqoqCUCeeOKJXe7n3HPPlX369OlxHD3xxWOOHDlSpqWlSavV6nCc1WqVaWlpctSoUQ7HpqenS5vN5nDswYMHnRZBEyZMkCNGjHB6FeZXv/qVNJlMsrGxsdvvz93flSffQ3c/MyntYcbEiRN7NQZPdP772rBhgxRCyCuvvLL9GF8UQU1NTXLZsmVuf7j6HktKSuSyZcvkhx9+KO+77z45fvx4+eSTT3Y5btCgQTIrK8vpfVx55ZUSgKyuru7xsdz9uQfj746IPNMxFIqJiZFPPfWUXLJkSfs6IgC6rEGmF6yHWA+xHvJsDJ4waj3Uxt1QyN36yZlHHnlEApALFy50eSxrJ/Kl7rdOIEybNg3fffcdnn/+eezZsweNjY0On1+3bl2QRuZf1157Lc4++2ysXLkSL730EqZMmYK8vLxuj3/xxReRlpaGAQMGoLCwsP322bNn491330VFRQVSU1NdPq4n97N7926MHz8eUVFRPd6nu8f1Vue5xm07E+Tm5nY5Njk52Sdzp715zKKiIkyaNKnLrilmsxnDhg3Dhg0b2m/bu3cvJk+eDJPJ5HBsRkYGkpKSujzWjh070NTUhLS0tG7HXlFRgaysLKefc/d35cn30MbZnPA+ffpg//79vRqDN/Lz8zF//ny88cYbuPvuuzF27Ngux7S0tOCWW27BV199hfLycmRkZOC3v/0tfvvb33Z7v1FRUTj99NN9Ns4BAwZgwIABAIDzzz8fF110ESZPnozGxkbcc8897cfFxMQ43VEDAJqbm9uP6YmnP/dg/N0RkefuuOMO3HrrrQCAvLw8DBs2DADw6aefwmq19riGlx6wHnIf66HjWA+5xyj1kKfcrZ+c+d3vfocHH3wQ//vf//B///d/PR7L2ol8iaFQD+bPn4+PP/64288fPXo0cIMJoDlz5qB///548MEHsXz5cjz77LPdHltUVITly5dDStle7HX2+uuvd1mE1l/301tCiG4/Z7PZuv1c5wLB1e2+EIzHdIeUEmPGjME//vGPbo/pqUDyp+5+NlLKAI/EbuHChXjvvffwhz/8AZ999lmXz9tsNvTr1w9ffPEFBg0ahJ9++glz5sxBeno65s2b5/Q+VVVFeXm522NIS0vz6DkzduxY5Ofn41//+pdDUZOZmYnt27ejpaUFkZGRDl9z4MABpKamIiIiwu3HcYde/waIyNHUqVPb/3/o0KFITk5GdXU1mpubcfDgwfYFWPWK9ZAj1kPuYT3kPiPWQ57qrn5yxmKxIDMzExUVFT4fh17/XkgfGAp1o7i4uD0QiouLw6OPPtp+daht5wVN04I1PL8ymUy46qqrsGjRIkRHR2P+/PndHvvyyy9DSokXXnjB6dWSP//5z3jppZdcFi+e3s+wYcOwc+dOp29EO3L3uJSUFABAVVUVcnJy2m9vbm7GoUOHMGTIkB7HbxSDBg3Crl27YLPZHK4s2Ww2/Pzzzw5XEQYNGoTdu3dDVVWHE8ahQ4ecBqJDhw5FeXk5Zs2aBUXxfGNDd39XnnwP/hqDt3Jzc3HzzTfjqaeewooVK7p8PjY21mHnh/Hjx+Pcc8/FypUruy2CSkpKnF7t6U5RUZHDc90dTU1NqKqqcrht8uTJ+OKLL/Djjz/ipJNOar+9ubkZmzZtwsknn+zyfgP1cyei4OopcNAj1kM57bezHmI95A9GrYc85ax+cqa5uRmlpaWYNm2ay2NZO5EvcUv6bhw4cKD9/+fMmYObb74ZM2fODJs/uptuugn3338/nnvuOSQkJDg9RtM0vPLKKxgzZgx+/etf4+KLL+7yMX/+fGzZsgVr167t9rF6cz+XX345qqursXDhwi731/Fqh7vHtV2N+/LLLx2OeeKJJ/wW/lmtVuzcuRPFxcV+uX9nzj//fJSXl+Pf//63w+0vvPACysvLccEFF7Tfdt555+Hw4cN47bXXHI7929/+5vS+r7rqKpSVlXV7Zezw4cM9js3d35Un34On3B2DL353f/7zn5GQkIDf//73Lo+1Wq347rvvnLZWt+nXrx+WLVvm9ke/fv2c3k9ZWZnT25cvX46tW7d2KVR++ctfQgiBJ5980uH2F154AY2Njbj88stdfn/u/tyJyFh+/PHH9v8vLCxsf1MUFRWFzMzMYA3LI6yH7FgPsR5yNoZQroc85Un91N3UrHvvvRc2mw1z5851+XisnciX2CnUjY4tzV9//TX+85//wGQy4U9/+lMQRxU4AwcOxAMPPNDjMV988QVKSkpw3XXXdXvMRRddhAceeAAvvvgiJk+e7LP7ue222/DJJ59g4cKFWLt2LWbPno2oqChs27YNu3btai9m3D3u9NNPx/Dhw3HfffehsrISubm5WLlyJVavXu3W/P/eOHDgAEaOHImZM2c6vTriD7///e/x7rvvYsGCBdiwYQPy8/OxceNGvPjiixg+fLjDCfn3v/893nzzTVx//fVYv349Ro0ahRUrVmDVqlVOfya33XYbli1bht/97nf4+uuvMWvWLCQkJKC4uBhfffUVoqKisHz58m7H5u7vypPvwVPujsEXv7vU1FT87ne/w7333uvy2FtuuQXx8fG46qqruj3GV3Pob775Zhw6dAizZs1CdnY2mpubsX79erz11luIj4/H448/7nD8mDFjsGDBAjzzzDO48MIL8Ytf/AI7duzAP//5T8ycOROXXXaZy8d09+dORMbyxBNPID09HQMHDsQjjzzSfvtZZ52l+/WE2rAeYj3Eeig86yEAWLx4cft6S+Xl5WhtbW0PYbKzs3HllVe2H+tJ/bRw4UKsXr0ap556KgYOHIj6+np8+umnWL58OaZOndrjmkltWDuRTwVyVWujOfvss7tsW3jiiSe2/787K9AbQefdAHrScbeNiy++WAKQP/30U49fM2zYMJmYmNjtTgu9vZ+mpia5cOFCmZeXJyMjI2ViYqKcNGlSl6053T1u165dcs6cOTI6OlomJibKSy65RJaWlva428by5cu7jBOAwzaybdp2ZGnTtmWmq61JffmYUkp55MgRefPNN8v+/ftLs9ks+/fvL3/zm9/I8vLyLl+/f/9+edFFF8n4+HgZHx8vzznnHFlYWOj0ZyKlfceLp556Sk6aNEnGxMTImJgYOWTIEHnZZZfJpUuXuvwe3f1dufs99PQzmzlzptO/YXfG4Mnvrqe/r4aGBpmRkdHjbht33HGHHDNmjNPfjz+8/fbb8uyzz5YDBgyQkZGRMioqSg4fPlzecsstcv/+/U6/xmazyb///e9y2LBhMiIiQmZmZso77rjDrS1V27jzc/fV3wAR+U/H3ceGDh3apY6Ki4uTO3bsCPYwnWI9ZMd6iPWQu2MI5XpISvvPpvNrWNtH5+/Zk/ppyZIlcvbs2TIzM1NGRkbKmJgYOW7cOPnII494tOMbayfyFSEl+8u6U11djTvuuAP/+9//2lv5nnrqqfb51tnZ2di3b19wB0lEIev222/HV199ha+//jpoi1ISEXnimmuuwauvvgoAWLp0Kb7++mu89tprqKqqwuTJk/HEE09g0qRJQR4lERkJ6yEi/2IoRESkQ7feeiu+/vprLF++nAUQERERhSXWQ0T+x1CIiEhn9u/fj5ycHERGRjrsKHLSSSc53bKViIiIKNSwHiIKDIZCRERERERERERhiFvSExERERERERGFIUOFQt9++y3mzp2LzMxMCCGwZMkSh89LKXHfffchIyMD0dHROP3007F79+7gDJaIiIiIiIiISMcMFQo1NDRg3LhxKCgocPr5Rx99FP/85z/x3HPPYc2aNYiNjcWcOXPQ3Nwc4JESEREREREREembYdcUEkLgww8/xPnnnw/A3iWUmZmJu+66C3fffTcAoKamBunp6XjllVdw6aWXBnG0RERERERERET6YnZ9iDEUFRWhrKwMp59+evttiYmJmDp1KlatWtVtKNTS0oKWlpb2f2uahqqqKvTp0wdCCL+Pm4iIjEVKibq6OmRmZkJRgtdwa+k/A0sXP4RZs2YFbQwUvlg/ERGRJ/RQP1mtVkQPmIYtK17HyJEjgzIGPQqZUKisrAwAkJ6e7nB7enp6++ecWbRoER588EG/jo2IiEJPSUkJBgwYEJTH/u6772A7+D1OP+t8NNWWIzIyMijjoPDF+omIiHojmPVTzKDToR7ZgNFTz4Rauz8oY9CjkAmFeuuee+7BnXfe2f7vmpoaDBw4ECUlJUhISPD6/qsbVa/vg4iIvJccY/LJ/dTW1iIrKwvx8fE+uT9PSSkx88xLYO43GerRvYgbdBqsB1YGZSwUvlg/kZFV1re4Pgj219v9DUCkCciI7rkD7nCTxI3rtC635ycD94/2zfmHQltVXWuwh+DUlMFJPrmfYNdPtbW1sJWthTlrFmwHv8dXX32F0047LShj0ZuQCYX69esHADh8+DAyMjLabz98+DDGjx/f7ddFRkY6vcKakJDgk6JGNbOoISLSgwQfhUJtgjVF5t1334VsrYMpLR8iph+s+79AdXU1kpOTgzIeCk+sn8hoyuuOB0Fx8d13V0opsasO+L5c4rsKiYNNwHn9BRb07Xm6S1w8MKyvisL647cNiAbG9BWIizfU3j4UAJVOAqDY+KggjMQ1X7ymdxSs+ill2CyIyCSYUkYAahPOmHspbPWHg7oUgF6ETCiUm5uLfv364auvvmoPgWpra7FmzRrcfPPNwR0cEREFXMc3AACQHBMTpJH4TmtrKy698nqYM6ZCmCwwJQyEGtMXacNnwXZkY7CHR0SkK53PA65IKXHzOg17Gxxv/75c4uYhEoqLN7Mz0gQkJE5MFZiRJpAdE7w3wKQfzgIgCqwDBw5ALd+MiMHnQwgBU+pY2Mq3ICp3Dlr3Lwv28ILOUKFQfX09CgsL2/9dVFSETZs2ISUlBQMHDsTtt9+OhQsXYujQocjNzcW9996LzMzM9h3KiIjI2Dwt8ENN7KDTAMVsv8p1jDljOlp3f4B9+/YhJycneIMjItIBb84TQggMiRfY2+C4OXNFK7CrDhjpomHi0oECl2Wz6yCcMQDSp+yxp0NJyIESa19/WChmWDKmwXpoNZqamhAdHR3kEQaXoUKhdevW4dRTT23/d9tc9quvvhqvvPIKfv/736OhoQE33HADjh49ihkzZuDzzz9HVJQ+W/GIiMi3QU+rKrG6EqhslahsASpbgcoWidP7CQxLd/31enb06FHYytbCkn06hDj+pkOJSYOSNBiDJ8yGWvVzEEdIRBR4vr5YcGKqwBdlssvt35dLjEzouevHVScRhRYGQMawZcsWqNW7ETFivsPtSvIwiPLNSBh8GqwHfwjS6PTBUKHQKaecAim7vki3EULgoYcewkMPPRTAURERkTO+KNRVTaLaClS2AFYNGJ3Uc8GtAli4vetCn0PivB5K0KUOnwUlOhVKfHaXz1kypqJlx5tYt24dJk2aFITREREFjifnlwabxOpKie/LJaanCpzRr+dOnonJQLQJaOq0rNWaSolfD+7NaCkUMAAyrvEnngNT6mgokYkOtwshYM48Adaiz1BZWYk+ffoEaYTBZ6hQiIiIgitQ07f++bOGHyokqluBtksB/aOBl6f2vFh0tEkg1gQ0dCrmKw1ey+3fvx9q+RZEDL3Q6foUIiIeprSxmHrq+bDVlnANCyIKOZ6cf6SU+PyQxMoKiY3VgO3YiaRZkzijX89fG2ESmJIi8E25RJQCTO0jcGIaMCWFr6vhggFQ6Pjyyy+hNR5GZPYZTj9vih8ANS4D6SNmwVa+OcCj0w+GQscUFBSgoKAAqsrdLogo/Pgj7DncLLG5Wh6bwnV8Stcf8xRkutjat1kFqjrVZJUt9kLfVeCRGgk0NHb+2u67TI1gUP4cKEmDoMSkdXuMOX0CWra/jk8//RRnn312AEdH4Yz1E/lTb89NQgh8clBz2AkMADZVA/VWiThLz+eRC7MEZqULTEgGIk0Mg0IZA6DQpWkaZp87H+b0CRDm7peTMWdMR+vP72LPnj0YPDg82wEZCh2zYMECLFiwALW1tUhMTHT9BUREOufroKfRdjzgSY4AsmN7LpR31QJ/39U1jDncDGS6WM+vj5Pdgps1oFEFYl2cuVIigf2dQyED13wbN26EdnQPIkfO7/E4YYqEud9kzL34SrTWHYHZzFM8+R/rJ/IlX563TkoTKKx3PAfZJLC60r7OXE9crR1ExsPwJ/y8/vrrkLZmmFLH9nicEt0HpuRhGDZpDtTqwh6PDVWsGImIDCTQu2+pmsT1azVUtjqur3BBf4Gbh/ZcNDsLdoC2rh0XXxvR3de6DoX6RAi0TTqLUuydQ65CKL2SUmLSyefClDYGIsLFtjcATH1GQS3/CdGDzoC1eHkARkhE5B1Pp4UVNdjPA+lRPZ9HTkwVeLnIyYLRFRKnu5hCRsbGAIiamppw9a8XwJIxDUJxHXmYM6aiZcfrWLNmDaZOnRqAEeoLQyEiIh3wd9izrUaisM5xKpcigL+M7XmNHpMiUGvtuuCmO5033QU7naeFOf3ayOPBTufHHRjb89demSMwP1ugTwQQYzb21d7PP/8cWlM5InPOdOt4oZhgzpwGa+l3qK+vR1xcCKywTUQhx5NzniYldtUCKyvsi0UfbAYuyRK4fnDPr+8DYwUGxgDFHTpHs2KAIXHGPi+QIwZA5EzC4NMgzNFQkoe5dbywxMKUNh7TT7sAat2BsFubsefl94mIqNfK61rc/vCEKiUqWyR+rpNYVSFRa3W9Xs5nhyQKCiXeKpZYdlhiQzXw01H0uKNjG2cdP+6s0ZPSbaeQyy/FgGjgxFTg3EyBa3MF7h4u8JexCga7kXFkRAtkxQjDB0KqquLsC6+AOX0yhLmbH6YTSuJgiIgEJA89zePHrKurw+23347s7GxER0fjhBNOwNq1a9s/L6XEfffdh4yMDERHR+P000/H7t27PX4cIgpPnp7zpLR3q962UcO7JfZACLBvD+/O+WtGmsCQOOCaXIF/T1bw4hQTLs/h2x+jqqxr7fJB1FlFRQVsh9fDnHmCR+GOuW8+ZMtRfPTRRx4/ptHrJ3YKERF5INDTtzraVC3xtx0aqluBjpuuLxqrYGJKz1/rrGunVQPqbUC8xfXXFjU43uZOp1CEIpBgBmpt9sliyRFASoT9v67kxgncP7rnLqZQF5V7BqDZYEod7dHXCSFg6X8CWvd8grKyMvTr5/48iV//+tfYunUrFi9ejMzMTLz++us4/fTTsX37dvTv3x+PPvoo/vnPf+LVV19Fbm4u7r33XsyZMwfbt29HVFT3izgSEfXm/CmEwKBYgZJGxwDoYLP9vDTIxYWCK3MErsllCGREDHyot/qNPA1KXAZM8QM8+jphioC53xRceOm1aKk7GxaLiwK5A6PXT0K6E7OHkbaFEmtqapCQ4Hr9BleqG7kbB5FRBCrw+bJMa5/GVdEiUdUKTEwRuNLF1csdtRK3bdC63H73CIHZ/Xr+2o8PaHhmd9eX++cnK8hxsWD04zs1LC1z/FqLAP57suLyCkxRvUSc2R4EmZXgdu4MS4/xyf34+jzhTENDA+KS02HJPBGm5KG9uo/Wos8gzNGwVWx16/impibEx8fjo48+cti9bOLEiTjrrLPw8MMPIzMzE3fddRfuvvtuAEBNTQ3S09Pxyiuv4NJLL+3VOCk0sH4iV3p7jv3miIZHtnc9f12RLXAVA5+QwABI36YPSfLJ/QSifiosLMTQYSMQMewSKNF9PP56KVW07nwLprSxsJZ849bXhEL9xE4hIgpLvgqAmlSJqhZ750y9DTgh1XXw8fweiaNWx9tSIlzn86k9LL7sSkpEN2v0tAA5LtboGZ0I2KR9jZ4+kfaFnPtE2u/N1Xeby7UbeuW1116DMMdASRrS6/swZ05H647/oLi4GElJSQ6fi4yMRGSk45Q0m80GVVW7XLGKjo7GypUrUVRUhLKyMpx++untn0tMTMTUqVOxatUqXRQ1RKRPHc+5dVaJNZUSKyskTu0rMLNvz8HO5BQBi5DoPFN6TaXEVbn+GC35EwMg8qcR086HKXlorwIhABDCBHPGNFhLv0Vtba3D55zVTkBo1E8MhYgoLPi6C+iVIg0flUo0dLiYbT7WPaO46J7pE4kuoZA7iy8nR9hDmM7RjnsLNx///0jFPiUsJRKwuHGRdU6GgjkZro8j3zl69ChEXD+I+N4VNQCgxKUAQuDvf/87nn76aYfP3X///XjggQccbouPj8f06dPx8MMPY+TIkUhPT8d//vMfrFq1CkOGDEFZWRkAID093eHr0tPT2z9HRNRZ2/n3hwqJTw5o2HQUUI+dyAQkZvbt+etjzAITU4DVlUC0CZjaR2BGqsBkF9OmKfgYAFGgXXz6aLy/pgKI6/0LhFA0WA58hcTERIfbndVOQGjUTwyFjikoKEBBQQFUle3KREbnaQB0qEliQ7XEpmqgpFHipiEKxif3HOwogEMgBAA2CdRagSQXa+b0iQD2dLrNnW4fsyKQZAGqOwVK7iz6PCgWeGGygj4R9q18w21XhXB20003YeHChQ63ObvSBQCLFy/Gr371K/Tv3x8mkwkTJkzA/PnzsX79+kAMlQyI9RP1pO18/EGJhuf2dD1Xrauyd9xGm3o+J83LUvCLDGBCMhDh4lgKDgZAFEosFgsqKiocbuuudgKMXz8xFDpmwYIFWLBgQftcRyIyjt52AS0/rOHlIomyZsfby5pdT4zqdmetVjdCISfbrVe22rfdddVldEpfAau0L9jcNpUrM7rnxwOASJNAtotpYhSaIiMj3Z67P3jwYHzzzTdoaGhAbW0tMjIy8Mtf/hKDBg1qX7D68OHDyMg43jp2+PBhjB8/3h9DJwNg/USuqJrEl4edX7xo0YD1VcCMtJ7vY3QSgyC9YhhEocqTdY+MXj9xdTYiMhRvt3PvKNIkugRCgHtdO30inBeo7n3t8f9PtNi7ePKT7cWxKzcPVXDrMAVX5Cg4K0PBlD4CA2JYLJNvxcbGIiMjA9XV1Vi6dCnOO+885Obmol+/fvjqq6/aj6utrcWaNWswffr0II6WiPSo7fxsUgSenKBg/kDh9I3Hd+Xc88aoGAgROTJq/cROISLSrd4GPjZNosba1pHTvXFJ9mS8cxbjznbrfbrtFHLdZTS3v8CZGQLJEYAlyDtyEXW0dOlSSCkxfPhwFBYW4ne/+x1GjBiBa6+9FkII3H777Vi4cCGGDh3avqVqZmYmzj///GAPnYh0pPP5O0IRuHaQwIw0icd3atjbYL89OwYY7GJbedInBkJExxm9fmIoRES60dsQSEqJ/Y3AxmqJjdUSPx0FhsUDj4439fh1sWaBYfHAzjrH291Zo6dvJHBq3w47ch2byuXOFK3kbrqMiIKtpqYG99xzD0pLS5GSkoKLLroIjzzyCCwWCwDg97//PRoaGnDDDTfg6NGjmDFjBj7//PMuO24QETkzNF7gH/kK/r1X4oIBAlnsdDUkBkJEjoxePzEUIqKg8OVuYA9v07DScS04bKsBmlWJKBcLUuYnC+ysOx4C5cQC2bGui9SkCIF78ljMUmiZN28e5s2b1+3nhRB46KGH8NBDDwVwVERkJK7O7zFmgVuH8fxpVAyEiLoyev3EUIiI/M7X28F3NjReYGWFY3ePVdqDoYkudqSc1kegqtW+o8n4ZMEuHiIiol7y9/megouBEFFoYihERD7ni6KwVZXYVgskRwA5Ljp3xicLoKjrlK+N1RITU3r+2pGJAiMTGQQREREROcMwiCi0MRQiIq/46qqglBK764AN1RIbj0psqwFaNeC8/gILhvYc2gyLA2JNQIPqePvGau5oQkREFAjsEgpNDISIQh9DISJym78Lvj9v0XDU6nibO8GOSREYlwz8UGHfTWxovH2toAnJ7AAiIiLyt7b64PNDGmqtwEUDBEzcXdPwGAgRhQeGQscUFBSgoKAAqqq6PpgoTATyqp8QAvnJAsuPOIZAxY1ARYtEqovt5S8coOD0dPs28/EWFqJERIHA+onaHGmWeK5QolEFviuXuHO4gtw4no+NioEQUfhQgj0AvViwYAG2b9+OtWvXBnsoREFRXtfS5cNbjTaJ1RUSzxZqKGty3fGTn+z89k1udAuNTRKYkSYYCBERBRDrJyqva4GUEk/u0tB4LBvcVQcsWK/h9X0abBqnchsNAyGi8MJOIaIw5a8uoOpWiU8OSGyslthZB6jHasGsGOCc6J4DG/t0r67F409HgdP7+X6sRERE1HtttcSyMol11Y6fs0ngtX0SYxLtU7xJ/xgGEYUnhkJEYSDQiz++vr9rsLOpGjgns+ev6xslkBkNHGkG8hLsu4pNSBYYHu+ngRIREVGvtNUWTTaJ/7fHeTfQnH4C47i+nyEwECIKXwyFiEJMsHf/SI4QyI0Fihocb99ULaFJCUX0XBw+OFpB3ygg2sQikoiISO+izQIPjVHw+E4NpU3Hb0+JAG4YzHO5ETAQIgpvXFOIyOB8vQ5QZ7VWiW+PSDy1S8PN61S31gbId3JVsNYG7K13/XjZsYKBEBERkY51rjdGJQo8O0nBvCzR/ubitmEK1/kzAAZCRMROISIDCWQX0LoqiZf2athT77jKz646YFRiz1+bnyzwQaljeJRoAcpbgCGcCkZERGRY3dUikSaBXw8WOClNYlWlxPRUBkJ6x0CIiACGQkS6FexpYGYBFDrp7NlYLTEqsedCb0wiEGsCRibYA6IJyQK5cXA5dYyIiIiMbXiCwPAEnu/1jGEQEXXEUIhIJwIVAkkpUWcDEly0dOclAJEK0KI53r6hWuKKnJ4fI8Ys8N6JCkwKi0IiIqJQEewLVuQ9BkJE1BlDIaIgCHRRVdli3yJ+Q7W906dPJPDMRFOPXxNhEhidCKzvtMXsjlr7TiPR5p4DHwZCREREoYOBkPExECIiZxgKEQVAMAupp3/W8MlBx/V9qlrtC0i76hbKTxZYX338a1Mj7NvEN6pANF89iIiIiAyBgRARdYdv64h8TG9X0rJiut4mAfx0FJiR1vPXTkwR2F4rMSFZYHySQFYMILguEBERUVhpq2221UgkWYD+MawFjISBEBH1hKHQMQUFBSgoKICqqsEeChlIsAIgTUrsrQfMCpAT23NhNiFZwHH/MLsN1RIz0nr+2sFxAg+M7nmaGRERhS/WT6GvrdZpsEk8sk1DnQ24Jlfg/AECJl4o0j0GQkTkihLsAejFggULsH37dqxduzbYQyEDKK9rCXggdKhJ4tODGh7ZpmHe9xp+s17Du8Vdw57OsmKAPhFdb99Y7fpriYiIesL6KXw8v0eiotW+AcX/2yNx10YNxQ2sJfSqsq6VgRARuYWdQkQGcc9mDQebHW/bWC0hpexxSpcQAvnJAl8ethdumdFonw7m6muJiIgofLVdAFtfJfHZIccAaHstcPM6DU9PVDAojrWEnjAMIiJPMBQi8lCwpozlJwsc7FSQVbQCpU3O1w3q6KwMgbFJ9vtIj2LhRkRERD1rq3cabRJP7tKcHjMmCciNDeCgyCUGQkTkKU4fIwoSmyaxrUbi9X0aShpdt1/nJzsPc9yZBjYmSeDMDIWBEBEREbnU8QKYADC1T9f6IdoE3DFcYcexjjAQIqLeYKcQkQe87RJqsEl8USaxsVrip6NA47F1OSMVIGtgz0XVuCR7YdY5AtpULXFuf6+GRURERORUtFnglmECJ/eV+MfO41PZrxvE7mM9YSBERL3FUIgogATsCzWqnZKdjdUSlwzs+WsTIwQGxwGF9fZW7fxk+1pBYxL9NlwiIiIKM91dABubJPDcZAWvFkkU1kuck8lASA8YBhGRtxgKEbnJF2sJxZgFRsQD22odb99SA7RqEhFKzwXWXcMVJEcAKZEsxIiIiMi3XNU6USaBG4cIqJqEwmljQcdAiIh8gaEQkRu6K5JaVYlttTg2HUxi0TgF0aaei6T8ZIFttY6tQi0asLMWGJvU8zgGx7MAIwoXSkw8LP2HeHUfzXzTRkR+YHJxEYv8j4EQkXOmxFSv6ie1NgbY6cMBGQBDIaJe2FEj8co+DdtqgNYOG3JsPQpM7tPz1+YnC7y+3zEUilCAQ00SY5NYZBEREVHgBWt3VfIcAyEi8iWGQkQuOCuSTAqwsbrrsRurJSY72aGjoxEJQIzJvo38hGSB8ckCoxKACBcdRkRERET+wEDIOBgIEZGvMRQi6oXBcUC8GaizOd6+wY3t4S2KwFsnKIhiCEREREQ6Ut0qkWQBt5nXIYZBROQvSrAHQKRn3V05MwmBcUldb9/bABxtdR0MMRAiIiIiPWirdayaxB83a/jDZg2HmlzXMhQ4eg6EVA3YXSawtVSgSb/DJKIesFPomIKCAhQUFEBV1WAPhQxiQrLAyorjRVOMyb5QdIMNSIoI3riIiIgChfWTsXW8+PVWsURRg/3/b1ir4bpBAuf2F9xlLMj0HAg1tgCv/2BGcaW9z8BikjgtT8X0oRpMbD0gMgyGQscsWLAACxYsQG1tLRITE4M9HNIBV/Pr85MFxiRK5CcLTEgWGBYPmLkbBxERhRHWT6Fhb73Emx02wWjRgH8VSnxbLnHvKAXJEaxvgkHPgVCrDVj8vRklVcfTH6sq8PkWMzYVazh3goqBfdhxRmQEDIWIeql/jMDj+aZgD4OIiIjIY20Xv1RN4vGdGlQn798bbUAc3y0EhZ4DIVUD3lnjGAh1VFaj4PnlCiblqpgzRkU0O+iJdI0v80ROcBcOotDRXlinxwR3IEREOtGxzilrBqqtXY9RANw5QoGFXdABpecwCACkBD7ZaMLOQ67nh60rMmHHQQVnjVUxbqAGzkQk0ifO9iQiopBSWdfq8EFERMd1vvDVP0bghckKzs5wfMc+b6DAsHi+iw8kI5yzvt5uwroi9zvlG1oE3ltrxlur2YtApFf86yTqhF1CRMZihCKaiEjPYs0Ctw0XOLmvxD92aYhUgCuyGQgFkhHOZWv3Kli+o3dLJwxO13w8GiLyFYZCRD14dIeG1EjgogECiVxkkSjojFA0ExHplTubaDw/SUFVKxBhYt0TKEY4t+04KPDxBueBkMUkcfVJNhRXCCzfYYJVdXzuZKVomJTLUIhIrxgKEXXQsVjaUyfx5WH7qotLSiXO7S9wUZbgDhxEAWSEQpmIyAjc7YSONgv05zuEgDHCea64QuDt1WZIdK2BFSFx6TQbclIlclIlRmdp+O9GM34uU9o/f+4EFVyaiki/uKYQ0TGdi6U39h+/otGsAe+USFy1WsOPldxek8hfuB4QERGFCyOc547U2reet2nOU53zJqgYnnG8Nk6JBa480Yb506yIj5KYPkRDRhJrZyI943UAIieK6iVWVnS9XQAYkRDw4RCFLCMUxERERsf1EvXFSOe+tXtNaLI6D4ROG2XDRCfTwoQARg2QGJxudbtD6NudCob2kwyQiIKAoRARuhZLb+53fkI6r79AgoX9r0S9YaQimIgoVDAQ0hejnQvPGqdCSmD1Hsf1hKYMUnHKiJ7XCYqyuPcYReUCX2w148tt9s6iWaNURPJdKlHA8M+NyIlLBgq0ahKrKo/fFqkAF2YxECJyl9EKXyKiUCalxCPbJSalAHP6CQjBmibQjHheVARw9ngV8dESy7ba3zrm9ddwTr4KXzyFbBrw8Qb7/WpS4PvdJmwpVXDOeBvy+rNriCgQGApR2HN2BW1YvMCDY0zYUyfxxn4NKyuAuZlcZJqoJ0YsdomIQlnHGufzQxLflkt8Ww58c0TijuEK+kaxrgkUI58jhQBmjtCQEG3Dhn0KLpli89nC0St3KSivc7yz2iaBN1dZMCJDw9njbUiO9c1jEZFzDIWIejA4XuC+0SYU1UskRQR7NET6YuQCl4go1HUMhMqbJf7fnuNdF+urgevXarh+kMAvMgUUdg35VaicL/OzNYwbqPksEKqqB1bscL7NPQDsPKRgzxELTstTMX2oBhO3SCLyC/5pUVhzd559bhy7hCi8dd4VLFQKXCKiUNSxvpFS4qmfNTSqjsc0qfY1FJs63U6+E4rnS19uLR8fDcwYpsEkup8mZlUFPt9ixrNfmVFcyVqcyB/YKURERF2EWhFLRBSuttYAP1Y5/9xtwxXEmvlG2x+Mdh6VEj5ZI8gTFhNw+mgV4waq+GiDGfsquu9XKKtR8PxyBZNyVcwZoyKaHfxEPsNOIQpb3I2D6Dh2ARERhYbO9c2YJIEHRyvo0+lN9OnpAlP7MBDyB6OdR38uE3h1pRnN1uA8floCcN1MGy6abENMRM+LS68rMuHJpRZs2q9Ach1qIp9gKHRMQUEB8vLyMHny5GAPhYjI7xgCEZEvsH7Sl+4ueE1PFXhhsoI5/ewhULIFuGkIAyF/MNo5tbRK4K1VZhQeVvDvFWbUNnl+H/vqGto/eksI+5pFt8+xYmJuz3MaG1oE3ltrxsvfmlFe1+uHJKJjGAods2DBAmzfvh1r164N9lAoANglROGGIRAR+QPrJ+OIswjcNULBX8YquGuEggQLQyFfM9r5tbIeWPy9Ga2q/blgn6Jl8Sho6RwEeRMMAUBMJHDBRBXXn2JFeoLW47F7yxU8s8yCr7aZYOXaWES9xlCIwt7hZolnCzVUtrAHlUIDF4UmIgo/7l7wmpQiMIXTxnzKiOfa+mbgle8saGhxfC4cbRR4frkF1W5kO90FQN52DQFAdqrEb063Yc4YGyym7mt0VRNYvsOEZ5ZZUHiYz2ui3mAoRGGnc9H0drHEh6USV63WULBbQ3kzwyEyFgZAREThjR3QwWPE826LFXhtpRnVDc5DlJGZGpJivH8cb4MhkwKcNFzDrbOtGN6v566hynqBb3aauM4QUS9w9zEKa0eaJT4/ZD97WCXw0QGJTw9K/CJT4DdDBESgt2EgcoMRC1AiIqJQY8TzsU0D3lxlxsGjznsDhvfTcN4E1eVOZO4GPm3H5cTHejTOjpJjgStOtGHHQYH/bjKjtqnr4EyKxLkTbAHfQY0oFDAUorDS+UraO8UStk5XFKwSaFLBQIh0w4hFJxERBQa7hILDiOdmTQIfrjNhzxHngdCAFA2/nGaDycVckt50AO2ra/AqGBICyOsvMbivFV9tN2HVbgUSx2v1k4ZrSIvv9d0ThTVOH6Ow0bloqmiR+OxQ1x5TBcD8gQyEKDi4HhAFS05ODoQQXT4WLFiAqqoq/Pa3v8Xw4cMRHR2NgQMH4tZbb0VNTU2wh00U1jrXNp8c0FDFNRL9zqjn5i+2mLC52OT0c6lxEleeaEOEi5YBb6aE+WKtoUgL8ItxKm4+zYYByfYpZSmxEjNHcKVpCo5QqJ/YKURhS5PAjDSBFUckOpZPs9IF+scwFKLAMGphSaFn7dq1UNXjRfXWrVtxxhln4JJLLsHBgwdx8OBB/P3vf0deXh7279+Pm266CQcPHsR7770XxFETUZu1lRJP75Z4pUji5iECp6VzGrw/GPW8/cNuBSt/dh4IxUVJXHWSFbGRPd+Ht4FOx/vxpmsIADKTJW6YZcPavQpS4yQszr81Bw0tQEwEOMWMfCoU6ieGQhQWnLVW940SuCdP4PJsibeKJb4+bI+G5mfzTEH+Y9RikkJfWlqaw7//+te/YvDgwZg5cyaEEHj//ffbPzd48GA88sgjuOKKK2Cz2WA2s5wgCrSOtU2DTeLJn+1dE3U24NGdEt8ckbh1mIK0KNY1vmDk8/eWEgWfbnb+Oh1plrh6hg0p3mU0HvPFWkOKAKYO7nkB6jZWFXjuawvSEyTOHm9DcoC/XwpdoVA/6WMUREE0MFbg9yPt4dDGoxJZ7BIiHzJyEUmhoaWlBbW1tQ63RUZGIjKy+0vCra2teP3113HnnXd222lQU1ODhIQE3RQ0ROGk88Wuf++RKO90/WtNFXD7Rg2vTFVgUVjbeMPI5/I9RwTeW+u8jcYkJC6bbkNGkusph77qEnJ2v952DbljxQ4TqhsEqhsE9hyxYFaeihOGai7XT6Lw5WntBBi3ftLPSIj8xN0FGPvHcNoYecfIRSPpT2R0JPpk9PHqPuoE8Nxzz+Hpp592uP3+++/HAw880O3XLVmyBEePHsU111zj9PMVFRV4+OGHccMNN3g1PiLyXOe6ZlO1xP+crJEIAJdlCwZCXjLyuf3QUYE3fzBD1Zw/By6aomJwevACoY73789g6EgtsHLX8fTHqgos3WLGpv32ndYGpnIdrlASEx+DRC/qp9bIRpRbrUhMTHS43VXtBBi3fmIoRETUS0YuFCl83HTTTVi4cKHDba6udL344os466yzkJmZ2eVztbW1OPvss5GXl+eyOCIi/8uOBWamCXxT7vjGdnwS8IsMBkLeMPJ5vroBeG2lGS0258+Bs8baMDbL9dQrfwdCnR/H1+GQlMDHG8xQZdefw+FaBc+vUDApV8XsMSpiInz60GRgFosFFRUVDre5qp0A49ZPDIUopHGbVvIlIxeHFL4iIyORkJDg9vH79+/Hl19+iQ8++KDL5+rq6nDmmWciPj4eH374ISwWiy+HSkQuOKtrkiME/m+UwMxyiad/1lBtBSIV4I7hChea9oKRz/mNLcCrKy2oa3b++58xTMWJw/QTCHV+TF8GQ9UNQHldz38H64pM2HFQwZljVYwfqHEhagIAj2onwNj1E0MhIqJuGLkgJOqtl19+GX379sXZZ5/tcHttbS3mzJmDyMhIfPzxx4iKigrSCInCk6sLXTPSBMYmKXiuUGJYPJARzXe2vWH0c3+rDVj8vRkV3QQh4wbau2L0zJddQylxwG1zrPhiiwnrirrfoqyhReD9tWZs2Kfh3Ak2pMV7/dAUZoxcPzEUopDFLiHylNELQSJvaZqGl19+GVdffbXDAoi1tbWYPXs2Ghsb8frrr6O2trZ9Aca0tDSYTG7sBUxEfpdgsW+eISXXSOmNUKgDyo4KHDrqPBAa3FfDBZNUuLPMVDC6hJyNwRfBUEwEcP5EFfnZGj7eYMLh2u5Xly4qV/DMMgtOGq5h5gjVra3uiYxePzEUorCxqkIiNxboxytn5EQoFIJE3vryyy9RXFyMX/3qVw63b9iwAWvWrAEADBkyxOFzRUVFyMnJCdQQicKSpxe6OG3Mc6FSBwxMlfjVyTYs/sGMptbjz4OMJA2XTbfB7MZuW3oIhNr4smsoO1XiN6fb8MNuBV9vN8GqOv87UTWBFTtM2FKiYG6+DUPcWIybwpvR6yeGQhSSOhdP9VaJv+3Q0KIBZ6QLzM8WbKumdqFSCBJ5a/bs2U47DE455RR2HhAFCTuf/S/U6oCBqRLXn2LFqystqGkUSI6VuGqGDZFuLGOip0CoI191DZkU4KThGkYP0PDfTWbsOtR9SlZZL/DKdxaMzVJx1jgV8fqb9UM6YfT6yY2smMj4lhyQaFQBVQKfl0lcu0bDYzs0lDXp/4+U/CvUCkEiIiJyX6jWAX0TgBtPtWJQXw1Xz7C6FWjoNRBqs6+uwWdjTI4FrjjBhsumW5EQ3fP7gZ9KTHhqqQVr9ijQ+NaBQhBDIQo5na+oNdgkPih1fAXXACw7LHHUGsCBke6EaiFIREShoXNNU9zAd6S+UlnXGvJ1QEI08KuTbUh1Y9FkvQdCHflqrEIAef0lbpttxYlDVSii+7+vZqvAJxvNePlbMwzQ+EHkEYZCFFKctVh/fECi3tb12EkpwIgETiELR+FQCBIRkbF1rmkK6yRuWKvhkW0aqlv5rtQbrAGMz5chVqQFOGuciptPs2FAstbjsUPSuWU9hR6GQhTy6myAycmL9xXZfPqHIxaCRERkNDZN4vFdGjQA35Tbw6HlhzVDrFWhN6FSB/hyGpORuoQ68uV0MgDISJK4YZYNc/NtiLJ0/QH3TdBw4rCeQyMiI+K7YgoZ3S3EeMNgBS9NUXBWhoD5WDiUnwzkJTLmDzehUggSEVFo61zTvFMisaf++L9rrMCiHRILtzMY8kSo1AE1jcDTX1iwu8z7WtaogVBHvvweFAFMHazhtjlWjM1SHT43N191a/c2IqPh0/qYgoIC5OXlYfLkycEeCvlBRrTAHcMVvDxVwTmZAleySyjshEohSESkJ6yffK9zILSvQeKNfc6Dn4ExgtvPuylU6oCmVuC1lWaU1wks/t6Mjft7X9OGQiDUxtddQ/FRwLypKq45yYo+cRITclTkpjGApdDEd8bHLFiwANu3b8fatWuDPRTqBXe3a02PErh1mILRSSygwkmoFIJERHrD+sm3nNUzR5qBKFPXY7NjgPnZrGfcESp1gFUF3vjBjMO19rdwmhR4f60Z3+1SPF78OJQCoY58/X0NSZe45QwrfjFOdX0wgB92K9hfwb9LMhZzsAdAROQvoVIEEhFR+JrSR+CFyQqe2a1hZYX9NgXA3SMURCh889mTUKoDNAm896MZ+yq6XtNfusUMi8mGaUO43g1wPBjKiY/1yf1ZTPYPVw4dFfj8JxM0KTAxV8Wc0SpiIn0yBCK/YqcQGZ67XUIUXkKpECQiotDXUz2TEilw32gT/pynINECXJwlMJw7qPYolOoAKYFPN5mw7YDzt259EzSMG+h+IBSqXUKdBfL71CTw0Xp7IAQA64tMeHKpBRv3e97FRRRo7BQiopATSoUgERGFPncvcJ3cV2BckuJ0OhkdF2p1wLe7FKze4/yXnhAtcfUMG6Ij3LuvcAmE2vi6a6g7a/cqKK12DO0aW+3T+zbs03Buvg1pCX4dAlGvsVOIDI1dQtRZqBWCREREHSVGCESa2CXUnVCrAzbsU7Bsq/Pr+FEWeyCUGOPefYVbINSRP7/3+mZg2dbuk9qicgXPLLPgy60mWN1bmogooBgKUUhp1SRKGtmjGa5CrRAkIqLQxwtcvhNqdcDPhwSWrHceNpgViStOtCE90b26N5wDoTa+3qGsTXQEcMoIFRZT978LVQqs2GnC019YsLuMoS7pC0MhMixnRdTSQxK//lHDou0a9jcwHAoXlXWtIVcIEhFR6GMg5BuhWAeUVgn8Z7W5fY2ajgQk5k21ISeVtW5v+DoYMinAjOEabptjxYiMntd2qmoQeHWlBW+vNqGuyafDIOo1hkIUMqyaxFvFEhLA8iMSN6zV8Mg2DUX1PGGGslArAomIKHxpXJHWY6FYB1TUAa+tNMOqOu8omZuvIq+/+88Vdgl15Y+fSVIMcMWJNlx+ghWJ0T3/fraU2heiXl2oQOOfPQUZQyEyJGdX1paVSZR3uFkC+KZc4vFdGiSLrJAUioUgERGFh861zJFmievXalhVwZrFXaFYB9Q1A6+utKCx1XkgdMoIFVMGc6cxX/DXdLKRmRK3zrHixKEqFNH933OLTeC/m8z4f1+bcbCaU8ooeBgKUUiwaRL/KXb+ont5tgIh+EIbakKxECQiovDQORCSUuLJnzWUNAL3b7VPg69pZTjUk1CsA1qswOKVZlQ3OK9bJ+SoOG2U+ysVMxByjz9+TpFm4KxxKm4+zYYBKT2HeAeqFTz7lRn/22RCi9XnQyFyiaEQGY6zLqGf64AqJ9PyB8cB0/oEYFAUUKFYCBIRUfhaViaxrur4v5cfkfj1Wg3fHmEw5Ewo1gE2DXhzlRkHjzp/ezY8Q8N5E1S4e52TgZBn/NU1lJEkccOpNpybb0OUpfu/ZwmBVYUmPPWFBdtKBTjJgQKJoRAZSncLMuYlCrw6TcEF/QUiOjyr2SUUWkJxIUkiIgovnWuZyhaJ5/Z0fQdYYwV+rOI7w45CtQ7QJPDhOhP2HHH+1mxAioZfTrXBxHdufuePYEgRwJTBGm6fY8XYrJ47vWqb7LuU8S+fAokvLRQyUiMFbh6q4LWpCi4aIDAyATghNdijIl8JxSKQiIjCi7OLW58fkqi3dT02JQK4cTAvbLUJ5Trgiy0mbC52vvV8apzElSfaEGF2//7YJeQdf3UNxUUB86aquOYkK/rEOY99BCTOm6BC4Z8+BRBDITIMd7dtTYkUuHGIgifyFSjsEgoJoVwIEhFReOiujrksW+Du4QKxnTKB24YpiLewjgFCuw6wqkBxpfPfc1yUxNUnWREb6f79MRDyHX/9LIekS9xyhhWnjlRhUhzDoSmDNQxIYZ8QBRZDIQpZDIRCQygXgkREREIIzM5Q8O8pSvs6iKf2FZieyjoGCP06wGICrj3ZhpGZjosRR5olrp5hQ3Ks+/fFQMj3/NU1ZDEBp41SccsZVgxKs//u46Ikzhjt/kLiRL7iQSMiUfC42yVEoSXUC0EiIgoP7tQxfSIFHhytYMURiQnJDISA8KkDLCbg0mk2fLLRhHVFJpiExGUn2JCR5H7HCAMh/9pX14CceA8SOjelxdtDwc0lCiLNElEW11/T0ALERMDtRceJXGEoRES6Ey5FIBERhT5PLmwJIXBqOt/pAeFXC5gU4LwJKhKiJVLjgcF9OYVIb/wVDAkBjB/Y87b1bVQNePlbM6IswLkTbOib4PPhUBhiKES6xy6h8BJuRSAREREdF851gBDArDz3woGO2CUUOG0/a3+EQ+5YXaigrMa+AkzBMgtmDNdwykgVFufrlBO5hWsKkSE1q7x6EorCuRAkIqLQwwtbnmEd4DkGQsERjJ/70Ubgq23H0x9VCnyz04R/fmHB7jJ2GFLvsVOIdM1ZMaVJids3aOgXDVyRrWBIPF8EQwELQSJHMTEW9O/vXV/4fvD1kShYGAh5JtTrAKtqnyLmy63GGQgFV6C7hv63yYxWtesTqLpB4NWVFowZoOIX41TERwdkOLqVkBjlVf3UaInDUd8NxxDYKUSGs6oC2NsA/FAB/Ga9hvu2qNhVy84hIwv1QpCIiKjBJvH8Hg0NNtYsnYV6HaBqwFurzXh/rQk2z2eHOcVASD8C8btoaAEOVvecKG4pNeHJpRasLlSg8WWGPMBQiHTL2RU2KSXe2O94Nl1dCfx2g4YfK/nqZzSVda0hXwgSEVH4cVbDPL9H4r0SievXsmbpKNTrACmBjzeYsOuQgs3FJrz+vRkt1mCPinzNX1vXt4mNBG6dY8WMYSoU0f3rR4tN4L+bzPh/X5tdhkhEbRgKkaGsrgQK67ve3jcSyE8O/Hio90K9CCQiovDkLBDaUCXx2SH7G7mKFuDPWzQ8ukNDrTV8w6FwuTD09XYT1u87vg5M4WEFL35jRn1z7++TXUL65c/fTaQZOHOsiptPsyErpeeWswPVCp772oytpQyGyDWGQqRL3c3D313nvHi6NFvA4stJ2uRX4VAEEhERtXlzf9c3cF8elijYHZ6hULjUARv3K1i+o+u2UAePKnj9BzNkL379DIT0z99dQxlJEtefasN5E2yIsnT/JNKkwCcbzVB9NGWRQhcXmibd6WlhxqtyFQyKk3hyl4Zam/221Ehgdj8GQnoTLgUfERFRG2c1TKsmsbWm67FRCvCrQeFXv4RLfbCvQmDJeuf7hFtMEueMVyE8/PUzEKI2igAmD9IwMlPDZz+ZsLnY+XOtoUWgqRWIiwrwAMlQGAqR4cxIExiZoOCxnRo2VAPzBwpEsEsoYMKlmCMiIvKFg02Aswv1czIE0qPCq34Jlxqish548wczVK3r71cREvOn2TAgJTy7xMi34qKAS6aoyM/W8Mp3li6fj4mQiIkMwsDIUBgKka64u31rn0iBv4xVsOKIxMy08Cqo/CFcijQiIqJAizcD1w8SKGkESholihuBOhswIZn1SyhqagVe/96Cxlbnv99zJ6gYluF5IMQuIepJd11nef018No5ucJQiHTD3UCojSIEZqXzVa4nDHtc0yRQ2wRUNwhU1QsoCtAvUSIjiVfwiIjIe30iBS4ZeLxekVKixgpEOZ/tEbLCoSZRNeA/q8wor3Nen540TMWkXM8XeGEgRK5sK3W+VPDoAVxQiFxjKERkQOFQWPlaqw3Yc0S0hz9VDfaP6gY4be/OStFwwlANef01mLgkPxER+YgQAkkRwR4F+ZqUwCcbTdhb7rxoyMvUcMYYNcCjonCgasC2A12fdzERErlpvMhJrjEUIl3wtEsoFDHo6b223Tt6WrDRqgJv/NB1rnV3SqoUvL1GQUK0xNTBKibnapyTTURE3WItE96+361gXZHz9q/MJA0XT7H1ahoPu4TIlX0VAg0tXZ9cvLBJ7mIodExBQQEKCgqgqkzwA81ZEWXVJMzCfjXN6Bj2+IZNBaobgap6x26f6gagqkHgrrOsPe6sEBMBRJolWmyePadqmwSWbTVjxQ6J8dkapg9R0TfBy2+GiChEsH4id4R6LbT9gMDSn5wHQgnRElecaENEL951MRAyrpz42IA9FqeOkbcYCh2zYMECLFiwALW1tUhMTAz2cMLec4USh5sl7hqhIDlCn8FQqBc4gSalfXHGtmldVfXH/v9YCFTbBEh0/1yoahCIi+q+RVYIICVO4tDR3j2frKrA2r0mrN1rwpB0ezg0tJ/k4n1EFNZYP1G4O1gt8O6PZqc1SoRJ4soTbUiIDsLAKGxUNXR97nHqGHmCoRAFlbMuodUVEp8ctL+I3bBWw90jFEzto6933gyEvFPbBOw8pBzv+mmwdwB52sXTUVW9wMA+PZ/8kmOBQ0d7/RDtCg8rKDysYHy2iosn8+o4ERFROKptAhZ/b4ZV7Vq/CEjMm2rr9cYV7BIid11zkg0VdcDWUgXbDig4dFTh1DHySK9CoY8//tjjrznjjDMQHc2YnI5zFghVt0o8vut4q2ONFbh3i4a5mQLXDxaIMgU/HGIg1LNWG1y2SFfUCXy8wbeZdJUbtVNK7PHCLCZSQ3y0ioQYDfHRGuJj7P+uqjNj2/5I1DS63hYmL5NtuURERD0J1bqpxWYPhOqandemZ45VMSKTgRAFRmo8cMpIDaeM1FBR1/M6m0Sd9epd2fnnn+/R8UII7N69G4MGDerNw1GYkFLi8Z0aaqxdP/dFmcSFAwT6xwR+XB2FamHjic5buFcd6/SpPvb/QgD3zHXyS+wgJc737aydW2edFVT9+ym4KA2Ij9Zg7ibz6ZesYmRWC0orzNhzIBaFh51fZkmOlb0u9oiIiMi4NAm896MZh446rxEmD1JxwtDeXThiIETeSo0P9gjIaHp9qb6srAx9+/Z169j4eD4zyZGzLqHyFqCw3vnxvxki0D8muJF3OAVCrTY4TOuqbnC9hXtHLVYgsoeNvhKiAZMiXd6PKzERErHRKhKiNcTFWbHPxe8oPtq9Ak0IICvNhqy0GvxCxmJVoQmb9isO7eHTBqsu1xPSJKBp6DaAIiKi0PZhqQYBICtGYGAMkBoZGptouCtUa6c9hwV2HHQeCA3uq+Gc8So7NYjIMHoVCl199dUeTQW74oorkJDA7XrIrrstW/tGCTw3ScETuzSsqjx++wmpwJkZDIT85UCVwK6yjl0/AvXdtEK7q6pB9DiHXhFAcgxQ0U0IePw4iaQYIDrKhvgYDQnR6rH/aoiPUXu1k4enGkUDzpsQizNGqVhbpGDNHhOarcDEXNcB08+HBJasN2PKYBVTBmk97o5GRESh551iicpWALCfE6MU4Ix+Ar8dxsU+jGxoP4mLJtuwZL3J4QJXWrzEpdNsvV7LhV1CoSGQO48R+UKv3lK9/PLLHh3/7LPP9uZhKAwlRQg8MFrBp4ckniuUiDUDdwxTgnpVzaiBkE0Fmq1wGUSUVAl8vd336/tkJPV8TEqcREW9QJRFIiVWIjKya/ATG6VB0UHdvK+uATnxsZg5QsOMYRoO1whE9dAJ1eaH3SbUt9h/vt/slBibpeGEoVqvF50kIiJ9cnbBq8HWFggd16yBu1aGiPxsDcmxEm/+YEZjq0BMhMSVJ1oRHdG7+2MgRETB4rN3gmvWrMHUqVN9dXcUorrrEupICIGzMwXGJUnUWIFEnW5JH2xSAo2t9mlelfX2aV2dt3DPSZO4bqatx/tJjvV9QFFdL9B2VbSztqJnwjCBKSOBSIs0RIt1WzBkUoDMZNc/s7KjAnvLjydaqiawcb8JG/ebkJOq4YSh9gUo+eaAiCg0lTY6vz0ryOsjBopRL6p5IidV4sZZVry12oy541WkxAV7REREnvNZKHTJJZeguLjYV3dHhAExAgOCPIZgFzSqBhxtxPE1fTzcwt2tHbl8sOhzhEkiOU4iJda+w5cpqgn76noOo+Kijdct0xYMuWNVYfctTvsqFOyrUJAUIzF9iIqJuZpbnUdERGQcJY3Oz3NZQV4jkXyrTxxw82k2ry7ysEuIiILJo1Bo3rx5Tm+XUqKqqsonA6LQ5U6XkJ4EIxDaWipQeFhpD4FqGgFN9r7KqG20TyPraaHj5BhAQEKi58eJj7JP87KHP/YAqEVpRHy0hugIY3T7+II7wVBjC7C52PW8t6ONAp/9ZMZX2yUmZGuYNkTljhFERCGivJuyZ2CYdAqFEwZCFEiaBF7+1ozcNA1jBmhI49K95CWPQqEvv/wSixcvRlycY2+klBLffvutTwdGoSWcA6G2LdwVYd91qyd7jihYV+S7raokBI429rw1pdlkH1dDi0TysU6f48GPRJNo7HEL93DkKhiKjgCuPNGGVYUm7DokXAZurTaB1XtMWLNHwbAMe/fQ4L7hE7QREYWi+dkKzusvUdpk7xoqaQQONQEpvVxzxkiC3WlNFMr2lQsUlSsoKlfw9XYgPUHD6AEa8nM0JDF0pl7wKBQ65ZRTEB8fj5NPPrnL58aOHeuzQVHos2oSFp0uptKbQqbzFu72rdsdt3CfNljFOflqj/eT4of1farqBVLje77fudNqul3bhxtmOdd2Zc9ZOCQEMDhdYnC6DRV1wOo9JmzYp6DVxXQ/CYFdhwR2HVLQN0HD9CEaxmdrsDCQIyIypBizwLB4YFi8Pmse6tmaPQoG9dWQ5qcuXnYJhZ5A7Dy2tdSxG/1wrYLD2xUMSLEiKcZ4yzNQ8HkUCn3wwQfdfm7ZsmVeD4ZCU+cuoQONEr/frOHGwQpO7quvIsmdQOhoI7ClREFZzbHgp16gvsX191HV4PoYb0Ohti3ck2Ml+sRJ+387BELdFR9RYXDV0l9cdQ2lxgPnjFdx+igV64sUrN5jQrUbz4UjtQo+2qBg2VaJSbn2qWWuOs2IiIiCLVS6hH4qUfDJRjOiLRLzp9swqK9v32wzEKLe0CSw/UDXJQqiI6TPn6MUPrxaaLqsrAz9+vXz1VgoBHUOhGyaxF93aChvARZu13BGpcCCoQIxZn2FQ90prRJ45Tszmq2ej9etUMiNXSvatnBPjrUvEt02zSs5TiIxGihpcCwy6iRQV+fxcMkD7qwzFGUBThymYfpQDTsPCqwqNKGo3PW6Q42tAt/uMqG2Cbh4Ss+dZkREROS94kqBD9ba23SbrPba77wJ9o0hiIJpX7nzi9F5mRpMrstKIqe8CoVmz56Nn376yVdjoTDw+n6JXR0CimWHJbbWSPxhpIK8xOAGQ66ubDW2Av9Z3btACACqG+zpfk+z5pJjJQQkEmJwPOyJlegTZ/9cSpxEtMU+PanzFaZaDajlRSev7Cq37x88PM3zCdnu7kymCCCvv0RefxsOHRVYVahgc7ECVev5eTV9KAtRIiI9Mtq6idSzqgbgjR/MsHU4L2tS4MP1ZlQ1qDhjtPcXaNglRL21zUmXEACMHsA6kXrPq1BISraoUfc6F0lbj0q8tb/rc+ZQM/DlYRnUUMhVICQl8MFaM2oaez9GVROobUKPC8BFWYD7L7TCfOz1vmPRYANwpAUAa0+faQuBnN3uz2CoTUaSxIWTVMwereLHvQp+3GtCfXPX59jAPhr6J/P1loiI9M3oU8earcDr35vR0M2yAInR3p+LGQhRb2kS2FbKqWPke141mQlujUPdcHbVbFWlhLMMe0A0cMNg/QZCAPDDbgU7D3n25xIfJZHdR0N+topZeTZcPMWGKIvzY/fVNbR/lDYc/3/yrV3ljQ4fro7tjd783uKigFl5Gu4+y4qLJtuQmeT4l3LCUNdXJVttwJFajx+aqN0DDzwAIYTDx4gRI7ocJ6XEWWedBSEElixZEviBEhH5gaoBb60240it83rvhKEqpgxmNwYFD6eO6VMo1E9edQoReeL6wQoGxWl4+meJxmPvcU0C+GOegihTcEIhdwKh0iqBL7Y43/4pPkoiM8lxC/eUOPtizxGd/rr21TWgrBlAsw8GTm7pbbDT8esD0THUxmwC8rM1jB+oYX+lwKrdJhw8KjAy0/XVn4377QtiDu6r4YShKob2kz1OVSRyZtSoUfjyyy/b/202dy0TnnzySV4UIqKQIiXw6WYTCg87f2c9IkPDmWM5bYyCi1PH9Mvo9RNDIfK5nubWn5auYFSCxKM7NWytAa7JFUHbptWdQKip1X7VSJVdxxgbKfGb062I77Bn+766BjQCaGzy4UDJbd6GQN3dZyCDIcC+ZlROqkROqg1WFS6v/mgSWFVoDy73HFGw54iC1DiJaUNU5OdoiOQrPbnJbDb3uIHEpk2b8Pjjj2PdunXIyMgI4MiIjENKCVUC5jBL5o08dWx1oYI1e5xfAOyXqOGSqTavL7QwEAp9/tyOnlPH9M3o9ZNXbxVMJucvnhS+3FlssV+0wGPjFXxVJnFaP30XTN/sNOGo03WEJE4eU49Kqw2V1oAPi47xRwjU3eMEOhhqY3HjZbawTKCizvF5WlEv8N9NZny5TWJijn1L+2T/1SqkYy0tLaitdZxbGBkZicjIyC7H7t69G5mZmYiKisL06dOxaNEiDBw4EADQ2NiIyy67DAUFBdx5lKgH1a3AFas1ZEYDWTFAVoxAVgwwNkkgPUrfdU842nVI4NPN3XeEX3GijRdXKOj2V3DqWKC5WzsBxq+fvHqJ27hxo6/GQWHGJARmZ+h7HSEAOG2UimYrsK7IsVjIH9SM/n1s/hga9SBQIVB3jx2sYMiVti4hZ5qtAt/vNuGH3QpG9pc4YYiK7FQJnXavUgex0Rbk9Evw6j5WCeC5557D008/7XD7/fffjwceeMDhtqlTp+KVV17B8OHDcejQITz44IM46aSTsHXrVsTHx+OOO+7ACSecgPPOO8/jcXz88ccef80ZZ5yB6Ohoj7+OKNhKGgGbBIob7R+A/Sr+3cMR1NrHn4zaJVR2VODtNWZIdP29WEz2QKinDULcxS4h8tZWJ11CAKeOOZMSH+lV/VSjxWGr1YrExESH253VTkBo1E/MvclnjLIlqyeFi8UEnD9RRW6axEcbTGi1CfRLtiJ/CBcGCpRgBkGd6TEYamgB9lW4fpMhIbD9gMD2AwoykjScMFTDmAEazGz4DHk33XQTFi5c6HCbsytdZ511Vvv/jx07FlOnTkV2djbeeecdpKWl4euvv+71xaDzzz/fo+OFENi9ezcGDRrUq8cjCqaSRudTObJiQjMQMqq6JmDx92a02pz/Xi6eYvPJzp8MhMhbnDoWeBaLBRUVFQ63ddclFAr1k9ehUFNTE6SUiImxv1Hav38/PvzwQ+Tl5WH27Nne3j0ZRCgGQh2NG6ihf7KGd9cJnDy6gQv4+pGeQiBn9BYMxUYCvzvbivVFClYVmlDb5PrJeeiogvfXKlj6k8SUwSqmDNIQF+Xyy8igIiMjkZDg+RWzpKQkDBs2DIWFhdiyZQv27NmDpKQkh2MuuuginHTSSVixYoXL+ysrK0Pfvn3deuz4+HiPx0sUDM7qn5JuTmNZPug4Id9otQGv/2BGTTfnzNmjbRjVn2+2SR+6mzo2klPH/Ko3tRNgzPrJ61DovPPOw4UXXoibbroJR48exdSpU9uTtX/84x+4+eabvX0IMhibJmES0N3q6t62NqfGA2dNqvfRaKiN3kMgZ/QWDMVEACcNt3f/bD+gYFWhguJK11VCfYvA19vN+GanxNgsDdOHaMj0wVVRCg319fXYs2cPrrzySsybNw+//vWvHT4/ZswYPPHEE5g7d67L+7r66qs9amW+4oorel2MEQVbsZNOoZQIIM6ir7rIV4w2dUyTwPtrzThQ7fw8OSFHxUnDfTMlh11C5AvdTR0bw6ljumTE+snrUGjDhg144oknAADvvfce0tPTsXHjRrz//vu47777GAqFgc5XyZ7eLdFgA24dBiTopADyRcHCE7tvGDEEckZvwRBg36VsTJaGMVkaSqsEVhUq2FKiQHOye15Hqiawcb8JG/ebkJOq4eThKoZlMBwKN3fffTfmzp2L7OxsHDx4EPfffz9MJhPmz5+PtLQ0p4sjDhw4ELm5uS7v++WXX/ZoLM8++6xHxxPpyYmpAskR9mlkJY1Ao8ouIT35cqup2629c9M0nDtB9cm6e6wbw4u/ajtNOt+KnlPH9CMU6ievQ6HGxsb2NqUvvvgCF154IRRFwbRp07B//35v7550rnMgtLJc4rND9heo7TUSvx+pYHyyPoIhb/DE3nuhEgI5400wBPh369IBKRKXTFExZ4yKH/eY8ONeBY2trv8W91UoGNhHYliG6rexkT6VlpZi/vz5qKysRFpaGmbMmIHVq1cjLS3Nb49ZUVGBNWvWQFVVTJ48WZfbtBJ56pz+Cs7pb/9/KSWqWoEmvqTqwoZ9Cr7d5XwxvdQ4ifnTbTBzOg7pyP4KgfpmTh3Ts1Con7wOhYYMGYIlS5bgggsuwNKlS3HHHXcAAI4cOcLW7zBT2SLxxK7jbYwVrcAfNmu4JEvg6lwBS5AW4nGnS6jVZu+ycPbiykDIM6EcAjnT22AICMzOZAnRwOmjVcwcqWJzsX1q2eGa7qsIRUhMHcx3L+Horbfe8uh4Kb27Qvn+++/juuuuw7Bhw2C1WrFr1y4UFBTg2muv9ep+ifRECIE+ztcmDQlGmjpWVC7w0XrngVB0hMQVJ1oRE+Gbx2LtSL7CXcf0LxTqJ6/zxfvuuw933303cnJyMGXKFEyfPh2AvWsoPz/f27snHevYJaRJicd2aqjrtEu7BPDJQYmKIK1D7U6xIiXw4ToT/r3CjKPhlWf4xK7yRoePcOTN9x2owtFiAiblarjldBuuPdmKERkaBLqelEYN0JDIaQ7kB/X1jmuyPfjgg/jxxx/x448/YuPGjXj33Xfxf//3f0EaHRGFuj5xEn0Tu573TELisuk2pPpofXsGQuQr3U4ds0gM5tSxsBGI+snrUOjiiy9GcXEx1q1bh6VLl7bfftppp7WvNUShp/O0sUNNQGGd82MXDBXIiA58l5C7V6/WFinYUmpCSZWCgmUW7Dx4fKw8sXfFEMg5IwRDACAEMLivxBUn2nD7mVZMH6Iiwny8sDhhiOsrT7VNwNq9ClptLg8lajdx4kR89NFH7f82m804cuRI+78PHz6MiAgfXaYnIr8zUpcQYO+c/fUpNozIcDzPnTdRRW4a32CT/tQ2AVFO5vWM7M+pY+EkEPWT19PHAPu2a8XFxfj000+hacdfaMvKyjBixAhfPATpXP8Ygf83WcHfd2pYX3389pPTBM5I128gdOiowKebjrcSN1kFXv/BghOHqhiWU8sXXITfdLBgCcRUss76xAFnj1dx2igVG/YpKKkUyOrjujBeXWjCt7tM+GKrxORcDVMHq+wuIpeWLl2KBQsW4JVXXkFBQQGeeuop/PKXv4SqqrDZbFAUBa+88kqwh0nkNmfb0ZO+RZqBy06wYelPJny/24SZI1RMyPHdNBxeTCRfSooBbptjxeEagS2lCraVKqioF5w6FmYCUT95HQp9/vnnuPLKK1FZWdnlc0IIqCrXpgg13RVBfSIFHhmrYEmpxIt7JRIjgFuHiYBvTe9uINRiBd5abYZN6zq+DfsVDMwUiI0KzytH4RgEFR45/j0P6du7hMOb9YWA4ARDABBlAU4YqgFDXR/barN31wFAU6vAt7tMWPmzglEDNJwwRHMrVKLwlJOTg//973/4z3/+g5kzZ+LWW29FYWEhCgsLoaoqRowYgaioqGAPk4hCnCKAs8apGJKuYXC6785ZDITIH4QA+iVJ9EtScfooFYdrBFITWGuFk0DUT173Qfz2t7/FvHnzcOjQIWia5vDBQCj0uLoqpgiBC7MUPD1Rwf/lKbrZkr4zKYGPNphQWe98fCeNagirQCicp4QVHml0CITabustb39+ei8qNxcraOq0i5kmBbaUmPD/llvw3Ndm/FSiQOVFLOrG/PnzsXbtWmzevBmnnHIKNE3D+PHjGQgRGYjRpo45M7SfRJD2QKEQE6gLem0BEXfIC0/+rJ+87hQ6fPgw7rzzTqSnp3s9GAodg+L0u9MYAKzfp+CnEuc7UIzJacbAvlZfDkt3wi34ccZV8FN4pDHsOoZckRJYVdhzJVJapeCdNQoSou27mE3O1RATwjvvkGc+/fRT7NixA+PGjcO///1vfPPNN7j88stx1lln4aGHHkJ0dHSwh0hE5DG9X9AhImPzd/3kk4WmV6xY4e3dkAHofe68u4FQWY3Afzc6D4T6JtoweWiTL4elC+HcCdRRW1eQu51A7Bhy1NACmJ3/6XRR2ySwbKsZj31qwZL1Jhyu4eXYcHfXXXfh2muvxdq1a3HjjTfi4YcfxsyZM7FhwwZERUUhPz8fn332WbCHSdRr+xok/ntAw+ZqiepW6fW2w9Q79c32ixiBosfzNRGFjkDUT153Cj3zzDO45JJL8N1332HMmDGwWCwOn7/11lu9fQjSgVAJhFps3a8jFG2ROHVcA5QQaMkM5+DHGW/CHXYMHRcXBdw8y4biSoEfdpuw/YCARM9hj1UVWFdkwroiEwb31XDCUJUt+2HqlVdewRdffIGJEyeiqqoK06ZNw7333ouIiAg8/PDDmD9/Pm688UacddZZwR4qUa+sq5J4fo8EYE8k4sxAVgxw7ygFqZGh86Kn56ljRxuB5762IC9Tw9njVW4YQkSGF4j6yetQ6D//+Q+++OILREVFYcWKFQ6LCgshGAqFIFWTMOnoHZ27xYmUwCcbTKiocz72GaMbEB9tzIVQGAI5500Y1Pl+GAzZCQFkp0pkp9pQ3QCs2WPCuiIFzVbXrwl7jijYc0RBnziJ6UNU5OdoiPTJHphkBLGxsSgqKsLEiRNRUlLSZQ58Xl4evvvuuyCNjsh7JZ1OOfU2YGctkMDXuYBosQKvf29GfbPAj3tNqGoQuHSaDVEW11/bW+wSIiJ/C0T95HV+/n//93948MEHUVNTg3379qGoqKj9Y+/evd7ePelAxy6h4gaJa37UsKZSHy3Rnlyt2rBfwaZi53NfRmc3I9tA6whxOljPPJki5sl99lYoTiUDgORY4MyxKn5/thVz821IjXfvdaGyXuC/m8x47H8WfP8zL+OGi0WLFuGqq65CZmYmZs6ciYcffjjYQyLyqZLGrq+B/aKACJN+LqR5S69dQpoE3lljRlnN8XNK4WEFzy83o8pPp1C9npuJKLQEon7y+tpFa2srfvnLX0IJhTk31EXHQMiqSfx1h4bDzcC9WzTMzRS4frBAlAGKncM9rCOUlmjD5GH6XkeIwY9rvg6BfC3UOoY6ijADUwdrmDxIQ2GZwKpCE3Yfdn1OaLYKt9coIuO7/PLLceaZZ2Lv3r0YOnQokpKSgj0kol5zNq2+c6cQYJ8+Rv73+WYTdpV1Pe8cqVXw1TYTLpnCHZHJP3xdm+0rF/j8JxNGD9AwaoCGZH2WfhRAgaifvA6Frr76arz99tv405/+5IvxkI69WiRRWH/8358clNh8VOKekQoGxwc+GHL3alWrDXh7jQlWtesYoywSs8Y26G7OOUMg9wUyDPJmGhkQ2sEQACgCGJYhMSzDhiO1wOpCEzbuV5z+7QH2v7/x2cacskm906dPH/Tp0yfYwyDyuVqrRI2ThuOsGP1fODO6NXsU/FDo/ApDeoKGufm+D4TYJUT+srVUQWm1/ePzLcCAZA2jB2iYMlhDBKeihi1/109eP7VUVcWjjz6KpUuXYuzYsV0Wmv7HP/7h7UNQkHS8CrapWuLdkq5t0cWNwBdlEjcHOBTypH35k40mHKl1nvrMGNWA+Bh9vCllEOSZYHUGMRhyT98E4NwJKk4frWJ9kYJVhSbUNjm+TkzK5ZpC4eKnn37C6NGj3e4q3rZtG4YPHw6zmU8QMoYEi8D7JyoobbRPIytpBIobJUYmhE4opMepY7vLBP63yXkgFBspccWJvl9TiIEQ+YsmgW0HHM+TpdUKKuoFpg3Vx/sVCqxA1U9eV1tbtmxBfn4+AGDr1q0On+u46DQZS+e26G/LJZytFpIdA/xqkH4DoY37FWzc77xYyBvYjJz04K0jxBCod/QwTUwPwRDg+5Zlf4iJAE4aruGEoRq2H1CwqlBBcaUCAYmpg11fvT1YLbCqUMH0IRoyk/Wxlhl5Lj8/H2VlZUhLS3Pr+OnTp2PTpk0YNGiQn0dG5DvxFoGRicDIRNa/gXC4RuCt1WZosuvP26xIXHGCjVNvyFCKKwTqmrs+n/P6azDrbFYDBUag6ievQ6Hly5d7exdkAL8dKjAkDni2UKLlWFBtEcA9eQoiA7imkCeB0JFa4OMNzgOhzGQNU4cHdh0hhkC9p4cgqLNgB0OAcbqGAMCkAGOyNIzJ0lBaJVBSKdwq1n/YbV8gfuN+E3JS7Vvaj8jklvZGI6XEvffei5gY957zra3660ggIv2obwYWf29Gi835yeCiySqy+vj+QgK7hMifth5wnvyM7s8uoXAVqPqJfdnUhbPFE4UQ+EWmwNgkiUXbNeyut3cIDYrTZyDUagPeXm12upZJpFlixug6v68jxBDIe3oMgzpiMNQ7A1IkBqS4LtbrmoAtJcf/UPdVKNhXoSApxr6l/YQcDdER/hwp+crJJ5+MXbt2uX389OnTER0d7ccREZEn9DR1zKoCb/xgxtFG5zXoaaNsGJPl+zfRDITInzQJbCvt+uYkyiIxKJ2d0uEqUPVTr0Ihrg0QupwFQh0NiBF4coKCL8sk5mTo91J9XTNg05yPb8aoBiT4YR0hhkC+o/cwqCMGQ/7z414TVCfTAo42Cnz2kxlfbZOYkKNh2hAVqfFBGCC5bcWKFcEeAhGFACmBD9aZUFLl/D3I+IEqThnBrgoKDF/WXt1NHRuZyalj4SxQ9VOvnmL5+fmorKx0+/jp06ejuLi4Nw9FOmRRBM7KVKAEcM0oT69Q9YkDbj7NijFZjmuWjMxqRm4/36wjtKu80eGDvFd4pNFQgZCv+OL5E2pXMK0q8OPenk9RrarA6j0mPLk0AotXmlF4WEDyYhoRkU/pqUvo6+0mbClxvjRAdh8N509U4Y/yNNTOsaQ/3U0dGzOAISf5X69ad7g2QGhy1SUULL0tRqIswLwpKgalSfxvkwlpCdJn6wgxBPItowdB3nYLAewY6symAmOzNKzfp6C1mzUjOtpVpmBXmYK+CRqmD9EwPluDxfn7BiIir+i1Xgp1m4oVLN/h/IU9OVbishNsMPvhdZ+BEPkbp45RsPUqFOLaAKFHrwWOt1enhAAmD9IwIEXiSHOjT4oFBkK+YfQgqDMGQ74VHQGcPV7FaaNUbNhn39K+usF1OHSkVsFHGxQs2yoxKVfD1MEqEr37kRIRUZDtqxD4cJ3zIi7KInHViVbERvrhcRkIUQAUV3LqGAVXr0Ihrg0QulRNwqSTbX182a7cYqpHovHfJ4eEUAuDOmIw5HtRFuCEoRqmDdGw65DAD7tNKCp3XSE1tgp8u8uElT8rGDVAwwlDNEwfEoABExGFED1MHausB978wQzVyVqRipCYP82GtIQgDIzIR7Y66RICgNGcOkYBEnLZ47fffou5c+ciMzMTQggsWbIk2EPSvY5dQv/YJfHYDg0NtuC2KuqhCHGGXUK9Fy7rBfnie+QaQ10pAhiZKXHdTBsWnG7FhBwVZsX165QmBbaUmPD/llvwzDJ9vq6Eq8WLF+O1114L9jCIvPb4Tg03rlXxyDYNrxVpWH5Yw956TvnwhaZW4PXvLWhsdX7Bcm6+isF+ml4TaudR0qeepo7567ntiT7x3OZVb/xRP4XcdmANDQ0YN24cfvWrX+HCCy8M9nB0r2Mg9M0RDcsO2198ttRI/HGkgrzEwHcN+ToQ4kk9uIwUBO0rqwUA5PTz7pIjO4b8KyNJ4sJJKuaMUfHjXgVr9phQ76TturMJOSF3HcTQHn/8cSxfvrzL7W+88QZsNhuuvvrqIIyKyHN76iWKGoCihuNv4HJiJZ6fzIXNvLWrTEF5XTe7yQ5TMXmQfzopWDtSoHDqGHnKH/VTyD3VzjrrLCxcuBAXXHBBsIdiKEeaJZ76+XgxU9YM3LnRfsVL1YKfUnenbYei7oboy5M6u4Tc19YVZMRAqPP/9xY7hvwvNhI4daSGu39hxcWTbeif3P2bg5RYiamD+QZNTxRFQXJycpfbzz33XDzxxBNBGBGR5zQpUeLkpXpgjD6m4ntDD13b4wdquGSKrUtn6MhMDbPHqN18FZH/+eqim7MuIYBTx6h7/qifQq5TyFMtLS1oaTneLVNb6/2bQaNo6xJSpcSjOzTU2xw/rwH4oFTizAyBvlGBGZOnBcjnP5mwZo8J20rtRUNch3EyEAo8I4VAbboLgPaV1XrdMeQL7BhyzawA47M1jBuoobhSYFWhgm2lCiSOvymbNkTVzXppZKcoCqqrq7sUNvHx8ZBSvxcjyC6c66eOKlqAFifv3bK4wL3PjBuoITlG4o1VZjS0CGQk2Ws+f72kh/LFFNIXTTpfT4hTx6gn/qifvA6FiouLkZWVBSEcX5mllCgpKcHAgQO9fQi/WrRoER588MFgDyPgOk4bK2kECuudH3frMIG+UYF5I+VpILSlxD5tBAD2HFHwzJcWzJtiw6C+wX8RDTdGDIMA33QE9cQX08gABkPuEgLITpXITlVxtFHFmkIT1hYpkBKYkGO8K24JUSavnz9CxznYLbfcggsuuABvv/020tPT22+vqqoK4qjIXeFaP3VW3M3pz+ihkB66hDoamCpx4ywrPlpvxkWTbYjw02VtBkIUSJw65h994iK8qp8qmgPUDdFL/qifvH5Jzc3NxaFDh9C3b1+H26uqqpCbmwtV1Xdr5z333IM777yz/d+1tbXIysoK4ogCLydW4P9NVvC3HRq21hy/fVZfgVnpgXlF8rT4qKwHlqx3nApS3yzw8rdmnDtBRVpanc/Gxi6h7oV6GOSLbiEGQ8GRFAPMGavi1DwVh44KRFmCPSLq7JprrkFLSwvGjBmDWbNmYfz48dA0DW+++abDeZn0KVzrp44X1QAg1gyc2legpNE+jaytaygrBKaP6U1KLHDtyTbXBxIZBKeOUW/4o37yOhSSUnbpEgKA+vp6REXpO2UDgMjISERGRgZ7GAHVuaABgPQogcfGK3inWOK1fRKpEcBvh+mzQ8imAm+vNqPF1nV8FhNgieZVHn8yahDUxtPuIAZDxhZhtncPkT7deOONmDdvHpYsWYKtW7ciNjYWL7zwAqZPnx7soZEL4Vg/OTMyQWBknr0e0aREeYu9Azvb4J1C4YhdQhRIep86Rvrm6/qp16FQWwolhMC9996LmJjjZz9VVbFmzRqMHz++t3dPfuIsEGpjEgLzswUmJEtoEog1+z8U6k178udbTDh41HmyPneCiqQ436Xr7BI6LtzCoM5fG2rBEOC7RRKJvJGcnIxrr7022MMg8poiBNKjgHT9XxPtkd6mjgUCAyEKtBKdTx3jekL658v6qdeh0MaNGwHYO4W2bNmCiIjjT5yIiAiMGzcOd999t/cj9FB9fT0KCwvb/11UVIRNmzYhJSVF9+sb6cXwBP22PG8rFVhd6HwHoQk5KpJTOG3M14weBgH+XzvIXXoKhoDw6xoifUlPT8ewYcMwZswYjB49uv2/znbUIKLQpUngs80mTBmkIi34+zsQueSL2qmhBUiMlqhpcnzfxalj5Io/6qdehUI//fQTvvzyS5hMJlx77bX45z//ifj4+F4PwpfWrVuHU089tf3fbR1NV199NV555ZUgjUofeuoSCgZPr0RV1QMfrnf+lO2boGHMYH288Q8VDIO63pcvdiPzVTDkKwyGKFgOHjyIXbt2YevWrdi6dSuWLVuG7du3o6mpCaNGjcJnn30W7CESUQB8scWEVYUmbNyvYP40W8CnzrBLiIIhr7/EyEwrSqsEtpYq2HpAQYsVnDpGLvmjfupVKJSfn4+ysjKkpaXhm2++QWurftpMTznlFG5l64TRAyGbBry9xoxmq7N1hCROGlMHiw93ogjnLiGGQT3frx62qQd81y0EMBii4DCZTMjLy0NeXh7mzZuHVatW4bPPPsOHH36IysrKYA+PKCwFeurYuiIFK3+2d4A3WwVeXWnG3HwVkwcFpluCgRAFkxBAVh+JrD4qzhyroroRnDpGLvmjfurV2+ikpCTs3bsXaWlp2LdvHzSNbW5GoUoJU5D3KO5NwfHFTyYcqO5mHaF8Fck+XEcoHIVCENTG31PFQm19oTYMhijQKioqsHTpUvzvf//Dxo0bMXHiRJx55pn4+uuvkZaWFuzhEZGf7Tks8PEGxyUBNCnw0QYz6pttODWPtR2FDyHsO+wRueKP+qlXodBFF12EmTNnIiMjA0IITJo0CSaT83Ve9u7d26uBBVpBQQEKCgqgqmqwh+JzbV1CRfUSD27TcPswBeOTgxMM9SYQ2nFQ4Idu1hEan60ipY/v1hECwqtLiGFQ8DAYonCXnp7evv7g4sWLu60jSN9CuX7qTG9d174WyC6h8lrgP6vN0GTXetSkSOT29X/XP7uEiMiI/FE/9SoUev7553HhhReisLAQt956K66//nrdrCnUWwsWLMCCBQtQW1uLxMTEYA/HZ9oKmFZV4m87NBxsAv6wWcPFWQJX5wpEKIELh3pTbFQ3AO+vdf40TYuXGDfEWEGAXoRSGAQEPhDS2/pCDIbIiB577DFs27YNTz31FO644w5kZWVh9OjR7R9nnnlmsIdIbgjV+on8p6EFWPy9xemSAABwwUQVOan+DYUYCBGRUfmjfur1KixtD7Z+/Xrcdttthg+FQt1LRRJ7j53/JIB3SyQ2VEvcM1LBwFh97jbW0zpCZkXipDG1Pl1HCAj9LiGGQb59bAZDRL3XthEEANhsNpSUlLQvmvj6668zFCLd+/aIRJ9IICsGSLDos5bSG5sKvPmDGVUNzn9ep4xUMT6b08aIgoXrCemfP+onr99Sv/zyywCA7du3o7i4uMui0+eee663D0G91NYltL5K4oPSrldc9tQDX5RJ/Hqw/wuZ3nQJLdtiQmmV83WEzslXkRLv26IhVAOhUAuC2hhtulhPGAxRODp69Ch+85vf4NNPP0VDQwOys7Nx8cUX449//COSkpKCPTyiHtk0iUU7NKjHyqtEiz0cOrOfwOwMHawU66FATB2TEliy3oT9lc5/PmOyVJyW5/9piOwSIm+wNqJg80f95HUoVFRUhPPPPx9btmyBEKJ95y9xbDHjcJhjrndfH3begjsoFrgqV5+B0M6DAt/vdj4/ctxAFX18vI5QKGIY5H++3I2MwRCFmz/84Q8YOHAgSkpKEBkZiX379uGll17C9OnTsWLFCqSnpwd7iETdOtiE9kAIAGqsQE0NMLVP8Makdyt2KthU7Ly2y0rRcOEkFf7eC4WBEAWTlPD7c5xCnz/qJ68vZdx6663Izc3FkSNHEBMTg23btuHbb7/FpEmTsGLFCm/vnnqp42KId40QuHmIQMfO5ggF+GOe4vc1hXoTCB1tBN5f5zyvTI2TGDe01ucvqKHUJVR4pJGBUADpcUy+fD6zgCZ/WbNmDf76178iPj4eERERGDZsGP7617/ivvvuw/333x/s4RH1qKSbl9msGL7jc2bXIYGvtjmv7ZJiJC4/wQYL15qnEPf5Tyb8e4UZqwsV1DUHezRdceqYMfijfvI6FFq1ahUeeughpKamQlEUKIqCGTNmYNGiRbj11lu9vXvqhc67YyhC4IIBCp6ZqCDn2EX/6wcJ5Ph5LaHeBEJSAu/9aEZTq/N1hH45zYYIH68jFCpCPQzSY/jSxldj8+Xvj8EQ6Z2iOC9B5s+fj3Xr1gV4NESeKWl03oWd5ZtGzYAKxNSxZVudJz6RZokrT7QhLsrvQ+C5jIJKk8CWUgX7KhT8d5MZj/7Xgn+vMGPDPuNNN6Xg8kf95PWzUFXV9kWmU1NTcfDgQQBAdnY2du3a5e3dkw/lxgk8M0HBrcMEzu2vv0AIsLdUnjFaRUJ012LrF+NVtJjqvR1aF0buEmoLgkI1DAL02YnjTwyGKFwcOXIE7733Hnbs2NFlqrlgfz3pnLNOIZMAMgIQbhhNbRNQVtP1LYciJC6dZkN6Irefp9BXWilQ23T83CYhsK9Cwd5ynu/IM/6on7zuuRg9ejQ2b96M3NxcTJ06FY8++igiIiLw/PPPY9CgQd7ePXmoc5dQZxEmgXMy9f3ik50qccvpVry/1oxdZfYiYkyWirRU368jZNRAKJRDoDZGC4P0uL4QwDWGSL/uuusufPbZZ3jsscewe/duZGZmYtSoUcjLy8ORI0eCPTwiB53rqxsGC5yZIVDSKFHSaO8csknA7Odp+b4WiC6h0irnP5PTRqkY2s//gRCRHmwtdd6LMbo/d9sjz/ijfvI6FPrzn/+MhgZ7+v7QQw/hnHPOwUknnYQ+ffrg7bff9vbuA6agoAAFBQWGXhjbVSAUKL4oMGIigctPtOGHnxWs32dC/jDfryNkROEQBgHGC4TahEswBHD3DfLeHXfc4fDvoqKi9i1VZ8yYEaRRkadCoX7qjcQIgTERwJgkFieudLeTbF5mYN4Ms0uIfKW3tY8mga0Huv4dRJolhqTrIxjlekLG4Y/6yetQaM6cOe3/P2TIEOzcuRNVVVVITk42VPv3ggULsGDBAtTW1iIxMTHYwzEsX15xUgQwY7iGaUM1lPrhfG6kLiGGQcYRDsEQwK4h8t7ixYshpcRVV10FAMjNzUVubi7mzp0b5JGRJ1g/kSvOOoWiLBJ94v3/2AyESA86Tx1rM7K/BjMXWCcP+aN+8mpNIavVitNOOw27d+92uD0lJcVQgVAoKK9rgSqDmzT7qwW5tCE8T+jhsF5QR6EQCPmDXtcYAlhsk3cef/xxpwXMG2+8gVdffTUIIyIKL4GYOqZJ4EB11/cE/ZMlDDbTjqjXOHWMfMkf9ZNXoZDFYsFPP/3kzV2QD7RNG3t0h8TTP2toVgMfDvmrsPDXm049dwmFUxAE6H9nsd7Q8/fDYIj0QlEUJCcnd7n93HPPxRNPPBGEERGRr5XXCrTYuqY/A1K4uDSFB04dI1/zR/3k9e5jV1xxBV588UVv74a89NVhDcuPSHxyUOKW9Rr21AXuRaa3gVCwGpv0GgiFWxgE6Ds88ZYvvzdfPy8YDJEeKIqC6urqLrfHx8dDBrnzlYh8o9RJlxAADEjxb4cEz0ukF91OHcvk1DHqHX/UT16vKWSz2fDSSy/hyy+/xMSJExEb67jGxD/+8Q9vH4J6UF7XgrImiad/Pv4EKG4EfrtBw7W5AhdlCSg6nMqnasBrK80YnqFh+hDN6SLS4XJCD7cgCAjtMKgjva4vBHCNIQq+W265BRdccAHefvttpKent99eVVUVxFERhYdATB2zP47zGjQrAJ1CRHrQ7dSxAZw6Rr3jj/rJ61Bo69atmDBhAgDg559/dvgc1xXyr/K6FqiaxN92aGjstOmHTQJvFUvMShfoE+m/MfS2qFi+3YQ9RxTsOaKgqFzDhZNsiO7QuRgO08bCMQwC9B0IHThgH1v//r4JcnyNwRCFkmuuuQYtLS0YM2YMZs2ahfHjx0PTNLz55pu48847gz08IvKB2WNUnDhMRWmVQGmVgtIqgfoWIC7Kf48ZLhcVKbB6U98YYeoYGY8/6ievQ6Hly5d7exfkhaIGoLDe+eduG6agT6T/grneBkKFhwW+2Xn8BXLHQQUFX1pw6TQbBqTIkD6Zh2sQBOg7DAKOB0Jt/++rYMiX3UIAgyEKLTfeeCPmzZuHJUuWYOvWrdi3bx9eeOEFTJ8+PdhDI2rXtnZjqAhUl1Cb2EhgeIbE8AzV9cFeCuUakoyntEr/U8e4npAx+bp+8npNIQqOtgJlSLzAs5MUDI1z/PzsfgIn99VfIFTXBLz7oxkSjmM72ijw3o9mqH7spAxml1A4rhfUkZECIX/w9ffPNYYolJjNZlitVnz33XdYsmQJAyHStT31EgvWqfjrdg1v7NPwXbnEvgYJq8ar/kTkiFPHyJ98WT/1qlPIk7Ykrinke52vWA2IEXhygoLF+yTeLpboFwX8Zoj+AiFNAu/8aEZDS9exmYTExVNsKPHT9vPBCoTCOQgC9B8GAd0HQr7sFgLYMUTU2bfffosXX3wR77//PmJiYnDSSSdh/fr1wR4WUY/2NUjsrgd217eFQPb/LhqrYGJK8MZFvCBB+qJJ56EQp46Rt/xRP/UqFNq4caPDvzds2ACbzYbhw4cDsK8tZDKZMHHiRK8GF0gFBQUoKCiAqvq/tdUfLIrArwYJTEqRiFCAGLN/QiFvWo6XbzehqNx5Yj57jAqbpZt5cAYU7mEQoP9AyN/dQUbEYIj8raysDK+88gpefPFFHDp0COeddx7eeecdzJ49Gzt37sSSJUuCPUTykNHrJ0+VdHN6z/LdS6dfBXrqWKAwECK94dQx8iV/10+9mj62fPny9o+5c+di5syZKC0txYYNG7BhwwaUlJTg1FNPxdlnn+3V4AJpwYIF2L59O9auXRvsofTI1bz2sUkCIxL0t8D3niMCK3Y4f7qNyNBwwlD/tVEGqkuobYpYuAdC+8pqQyYQ8nVwpPdpZACnkoWzZ599FmPHjkVCQgISEhIwffp0fPbZZw7HrFq1CrNmzUJsbCwSEhJw8skno6mpya37nzt3LgYNGoTvvvsODzzwAA4fPow33ngDv/jFL2A2m7k5hUEZpX7ylZLGrlf4oxQgzY+behCR8XDqWPgIhfrJ6zWFHn/8cSxatAjJycnttyUnJ2PhwoV4/PHHvb176iDYCx329upSfbPzdYQAIDFG4sLJNuyvN+4bRwZBx+k9DAI8D3oYDHmPwZAxDBgwAH/961+xfv16rFu3DrNmzcJ5552Hbdu2AbAXNGeeeSZmz56NH3/8EWvXrsUtt9wCRXGvlPjf//6HCy+8EA8++CAuv/xyxMayi4yMp9jJy1lWDHfcDSaeY0hvNAls49SxsBEK9ZPXu4/V1taivLy8y+3l5eWoq6vz9u5JJ7xZR+jdH82ob+5aLClC4tKpNhxp8d/J3J9dQgyCjjNCGASE7pQxX68vBHAqWTiaO3euw78feeQRPPvss1i9ejVGjRqFO+64A7feeiv++Mc/th/TNm3cHT/88ANefPFFzJo1CxkZGbj88stx+eWXY/DgwT77Hoj8bVCcACBxsAmwHntvlxVjjEAoFKeOMRCiQPC0fjlQJVDjZOrYCB1NHSPfCYX6yetOoQsuuADXXnstPvjgA5SWlqK0tBTvv/8+rrvuOlx44YW+GCPB3iWkyuAky94UEd/sULDnSDfrCI1WoUb4bx0hBkL+Z4SpYoA9DPImENJ7txDAjiHqXktLC2prax0+Wlp67jxVVRVvvfUWGhoaMH36dBw5cgRr1qxB3759ccIJJyA9PR0zZ87EypUr3R7HtGnT8MILL+DQoUP4wx/+gC+++ALDhg3DtGnT8PTTT+Pw4cPefqtEfndPnoIXppjw8UkKXp6i4MHRCs7tb4xQKJCKygUKDws0W4M9EqLA22KAqWNcT8g1T2snwLj1k9edQs899xzuvvtuXHbZZWhttYcHFosF1113HR577DGvB0j2QGhPncRfdmi4a7iCvMTAFR/eBEJF5QJfb3cehw/vp+GEYRqKQ2dt6bBjhDAI8F2go/fdyADjdAwBnl91C0cJkWavf/YCAs899xyefvpph9vvv/9+PPDAA12O37JlC6ZPn47m5mbExcXhww8/RF5eHlavXg0AeOCBB/D3v/8d48ePx2uvvYbTTjsNW7duxdChQ90eU2xsLH71q1/hV7/6FXbt2oUXX3wRf/nLX3D48GFOwSHd6W7qvkkR6B8D9OcC006t2GFqvyiYFi8xIEVDbprEhBzfvSnmhQbSqyiLRGykdNhxmVPHAict1uJV/RRXHw2r1YrExESH27urnQDj109eh0IxMTH417/+hcceewx79uwBAAwePJhrBfhQiyqxaIeGkkbgzo0aLssWuDxbwKT4t3j2poCobwbeWeN8HaGEaImLJttQ7Md1hNgl5D9GCYMA/U8XM0ow5A+cThY4N910ExYuXOhwW2Sk81Vxhw8fjk2bNqGmpgbvvfcerr76anzzzTfQNPsbuRtvvBHXXnstACA/Px9fffUVXnrpJSxatKhXYxs+fDgeffRRLFq0CJ988gleeumlXt0PEemHJoED1cfrv/I6gfI6E2oaNZ+FQgyESM9m5Wk4ZaSGfeUCW0sVbDugYEi6BgunjhmGxWJBRUWFw23d1U6A8esnr0MhAHjxxRfxxBNPYPfu3QCAoUOH4vbbb8evf/1rX9x9WCuva8G/90oUH8shNACv75fYUC3xh5EKMqL1t/W8JoH31ppR19M6Qq08mRtRuAdCvu4WMgpfdwu1YTAUGJGRkUhIcO95GxERgSFDhgAAJk6ciLVr1+Kpp55qnwefl5fncPzIkSNRXFzs9RhNJhPOP/98nH/++V7fFxEFV2Ud0GztWgMOSGGXBIUPRQCD+koM6qvinHxVV1MpOXXMPe7WToDx6yev1xS67777cNttt2Hu3Ll499138e6772Lu3Lm44447cN9993l792GtvK4FP1ZKfHSg60l0ey2wtEyfJ9fvdikoPOz8qXX6KBVapH/njLFLyPeMsnYQ4P36QYEWrusLteHVXn3TNA0tLS3IyclBZmYmdu3a5fD5n3/+GdnZ2UEaHRG5I9BTx0qqnNeAA1LYJUThSRFADHOYsGK0+snrTqFnn30WL7zwAubPn99+27nnnouxY8fit7/9LR566CFvHyKsLS1zfgIdEgdcnq2/LqF95QJfbnXeGzmsn4YZw/27jpA/A6FwZZQwCAjMdDF/dAsZZRoZO4ZC2z333IOzzjoLAwcORF1dHd58802sWLECS5cuhRACv/vd73D//fdj3LhxGD9+PF599VXs3LkT7733XrCHTkQ60nHqWEdZPugUYiBEgcb6hFwJhfrJ61DIarVi0qRJXW6fOHEibDabt3cfttoWNvxTnoJ3iiVe2yehHjuXRir23S8sflhTyJtAqKEFeOdH5+sIxUf5fx0hfwu3LiEjhUFAYNcPYjDEYCgUHTlyBFdddRUOHTqExMREjB07FkuXLsUZZ5wBALj99tvR3NyMO+64A1VVVRg3bhyWLVvGLeWJyEFJVdc6MDFaIj46CIMhIvKzUKifvA6FrrzySjz77LP4xz/+4XD7888/j8svv9zbuw9LHXe6MAmB+dkCE5Il/rpDw4Em4KYhAlkx+gqEAGB3mYK6pq63C0j8cqoN5X5eR4hdQr7DQCh0MBgid7344osuj/njH//YPj+eiPQv0FPHrCpQdtQ/6wmxS4jIe1xPyPdCoX7y2ULTX3zxBaZNmwYAWLNmDYqLi3HVVVfhzjvvbD+uc3CkJwUFBSgoKICqqsEeilPDEwT+NVHBssMSv8jQXyAEAOOzNcRGSry31uywBeNpo1TkpEnsq/P6IcjPGAZ59thG6BYCGAwRkf/ovX7yRseLdAcaJepsQFYMEGv27+6vRnaoWkCTzkIh79YTYiBEROQ/XodCW7duxYQJEwCgfUv61NRUpKamYuvWre3HCaHvE+iCBQuwYMEC1NbWIjExMWjj6FiAdBZtFji3vz4DoTZD+0ksON2Kd380o6jcvv3iySM0v5/M/d0lFA5TxxgI6YO/giF/YDBERHqpn/ztk4MSH5Tau136RNjDoawYgZuHCJj9MJ3fFwLdJQQApd2sJ+RNpxADITICVQNMXm/hRBQcXodCy5cv98U4CD0HQkaSEA1ce7IN3+1SMDFHM/Q6QuHAaGEQoJ9AyF9b1BtlfSGAwRARhYeSxuOhRmWr/aOoQeK3w/gusCNn6wkJSGQm63PHXCJfkBL45xcW9ImTGDVAQ16mhmgdztLi1DHqjk+mj5Fx+esqkiKAmQHoEALYJeQNowVCegmDOvJXMOQPDIaIiHqnxEkpkOX7lz3DK3WyHX16okRkL99xsEuIjKC0SqCy3v7xc5mCj4TE4L4SJ49QkZvGQJT0r9eXN5KTk5GSktLlIzc3F3PmzMGyZct8Oc6Qd7i2OeCPGYy2Yl/j4tK9s6+sloGQzvnr9+OvkNNff4t8Q0BEwdaiShx2Uqb5Y9MPXwlGjdfQAlQ3+G6Rab7+U7C5e2Fqa6njW2pNCuw+rKDJ+G+1KEz0ulPoySefdHr70aNHsX79epxzzjl47733MHfu3N4+RNg4UtuMRdsl0iIlrhkkEBGAuemBKBZC4WQeil1CRguDAP0HQkaaRgawY4iIyBMHmgBnsQY7hRyVOpk6Bvhm5zEivZIS2Hqga59FhFliaD8+98kYeh0KXX311T1+fvz48Vi0aBFDITcsK5P4ptz+orGhWuKePAXZsf4LhrwNhBpbgfpmoG8P71VDYdpYqDFiGAToPxDyNwZDdgyGiChYMqKBv41TUNIoUdIIFB/770AddwoFQ4mTqWNA70KhULiwSOGhtEqgprHra8GIDA0WUxAG1A2uJ0Q98duaQueccw4WLlzor7sPGZsON6Og8PjJcm8DsGC9hhsGC8zNFD7ftc3bQEhK4IO1Zuw5IjA3X8WEHO+2GNWzUOoSMmIgZLQwyEhrC7UxYjAEuN/OTUTkC9EmgfxkID/ZGCFQsJYHcNYpFGGS6JvgWSjEQIiMpPPUsTajB4TueyQKPX7bMqGlpQUREUwke3Kophl/26GhSXW8vVUDXiuSqLEGZ1w9WVWoYOchBVZV4IN1Zry31oQWm+Mx7BLSDyOuHQQYLxBq469xG/F36M+/Ub5hICJ/C5UdYQNFSuehUGayRABWRSAKCimBbZw6RiHAb6HQiy++iPHjx/vr7kPC7jpgT73zz90xXEFShL66hEqrBJb+5NgHuWm/Cc99ZUF5nf3foRIIhUKXkBGDBMC4gZC/GW3haYDBEBFRoAWrS6iyHmi2dq1bszycOsbXdjKSA9UCRzl1jEJAr6eP3XnnnU5vr6mpwYYNG/Dzzz/j22+/7fXAQl15XQtGJgo8M1HBX3doKOpwDvxFhsCJafoKhJpagbdWm6HKruNqbAWizDyR64VRwyAgNAIhf04jM9r6QoD/ppIBXGeIiEgvul1PqI/7U2hYRxqbP8/3weBOfbGlhFPHKDT0OhTauHGj09sTEhJwxhln4IMPPkBubm6vBxbKOrYk58YJPD1BwYtFEh+WSgyIBm4coq9ASErgw3Vmp0m4gMQlU2yIjwYq67x6GLdw2ljPjBoIhUIY1BHXF3LEYIiIKLR1u/NYMqfQhINwrM85dYxCSa9DoeXLl/tyHGEtwiRw8xCBySkSCRb7goa+4os24tV7FGw/6DwJnzlCw5B0GVJXd4w4dcyoYRAQeoGQv/mrWwhgMEREZGTBmjoGABEmIC5Kor75eA0bHyWR6ObLfijVkRQejDJ1jMgdftt9zGgKCgpQUFAAVVVdH+yFnhYunJSirw4hwP6C9/lPzl/ZclI1nJqnBuxEHo5XIdzBQEifjDiNDGAwRESeCVT9RPo2Z6yK2WNU1DTZu4ZKqxSY3Vy5lIEQGZFRdh3jekLkDr8tNG00CxYswPbt27F27Vq/PYbRdrJoth5bR0jrGlbFREjMm2qDKUDPoEAFQkbqEjLqzmJtQjkQMjouPk1E7gpE/UTGIASQFAOMHiBx5lgVp49mUEihSUrnoRCnjpFRsVMoRPlqHaHqBufdS5dMsSEhmm/CgoVhkDEYtVvI39gxRERG8czPGlo0ICsGyIoRyIoBMqIAk872WQ/m1DFvsI40vnDs5OfUMQo1DIUC5HBtMxQRmALCF4XBj3sVp4unAcDJw1UM7Re4dYTYJXSckcMgILwCoTZGDYb8OY0MYDBERPrVsbP7u3KJamvbv+wdAJNTgEfG8p2ftxgIkV65qiE4dYxCDaePBcCPh5px8zoNu+v8307oi0CoqgH4dLPzYie7j4bTRgVuHSGyM/pUMSA8A6FA8Ofzwt9BKaeSEZGe1Vk7BkLHDYhmlxBRuOLUMQpFDIUC4PNDEkUNwG0bNLxTrEGT/nnB8FVRsG6vSRfrCAHsEgKM3x0EMBAy8vfPYIiIwtWhJue3x7LP3mt8fSajqqgHp45RyGEoFADlLfYQyCaBf++V+MNmDdtq9JskH6h2fgXsosk2JMbwRB4oodIdZORAxCiM/jwhItKjyG7e4JU1B3YcRmTvphBQ9TWbhnys84WdcFhfyNmFcwCIjwrwQIh8iKFQANg65T+bjwL3bdHvWbKyvuuLXU6qhuEZ+g2yQk0ovMlnGEREREbWPxpI6NAVlBIBnN9f4Pz++po+prd1QzQJ/G+TCW+ttuCTjSb4qUGeyG96ugCeFi8RZen6pC48rK/XBSJPsAE2AKxO8p8kfZ2/21lVoMZJyN83IfBn9HCcOhYKYRDAQIiIiIwrLT4S5XUtMCsCZ2UK1LQCp6YLjE0CTAHaNMSoWm3AO2vM2HnIft15XZEJybESM0c4FsM58bHsPCdDMinAkHQNW0uPtxIqQiI6wv4+Sk9TyCrrWnUXGpM+MRQKAGehkEWnNUVlvYBE18H1ieNlHn9iGEThyl87kBER+cJ1g4zRVN8nPiLoC07XNwOLvzfjQLXjz2zZVjOSYmwYN1C/XfLkO/7cXVQvhqZLlFZJDO2nYWi6hkF9JaIswR4VUe8xFPKz8roWRJuAOLM9HLJqgAbAotMao7LO+e2p8QyF/IWBEBERERldbZPAkVrnVz0/WGdCQrREbtrxepLdQsYWDusHdSc/R8OEHA1sHKRQwVAoAB4e69hHqGoSqk4zlgon6wkB7BTyh1AJgwAGQqRPOfGxwR6CV2ItZq+/B9arRL3TNoXMSILdLZSZLPHLqTa88YO5S9e5qgm88YMZN5xqRd+EIA2QyAP76hq6PQcrBjq5huMUspTICO/qp9ho3w3GIHTarxLaTIpAhMm3rya+KgISooFBfTUkRh8PgRQhkXzs7ypQV3RCeT2hUNhVrCMGQkRERPoQ7Dd/IzIlzslXnX6u2Srw2koL6rh7W8gL5y4iIiNipxA5yM/WkJ9tn/PdarOvMVTbZF9UjbzHMEj/Kg9Vok9Gn2APg4iIyJCmDtZQ3aBi5c9dV9w92vj/2bvv6DaqtA3gz0i25V7i3h0nTu+kQiCVhNB7XfrCBwSWsvRlgWXpfYFAFpZelrILARYI6YRAGqQnpMclTtx7t6T7/WHsRNHIluQZzYz0/M7xOcnMaOZalmbeeee990p4/6cg/HGKFSFB7EJGRKQHvNUnl0KCgNRYwanoFcDqIGOoPFyp2r799T0jIvJXiVEWrZvgFa2rhQBg1nAbhmXIVwwdqjbh07VBnKrewAKlEshfEpZaD0JP+sekEAUsX3Qd87dkEOC/yQ01E0Lke3Y7MG9JED5da8aPu0zYUyKhskFA8C6EiBRU3abPc4rWiSGTBJw3zobsePkZx3YeNmHbQd6G+LNASRwR+QOejUl3/OUi4o/JICaEyChqGk04XGPCliIzvt8ahHdXBePCV5rx2Tqr1k0jIoOrbhNYcNCOWzfYcMnPdt0mhrQWbAYuO96KBBeTlazf33EbYvRJAYiIjI5Jod/NmzcPQ4YMwbhx47RuChkcq4OMhQkh7QxMDFdt3yar/E1GVjwve0RK8vf46eguZPsbBO7Z3JEIenWvwG91gB3AyjJ9JoW0rhYCgHALcMXkdkRYnN+jA+USavzjOWBA8eThrb886HVHqxXYeUjC1xvNWLTVeTwtrbELGXWH0fHv5s6dix07dmD9+vVaN0W3/KVfLaBO1zF/TAYB/p0Qop71T1IvcaOm0hr5GR5zkww0jyyRAQRS/BQRBGys7kgEHW25TpNCetEnEjhpoPP4QgISNheyWoj0raf7nw35Jry1MgiPfxWMD34Oxtp9Zvyab4KdpwUyECaFiBTgj8kgwP8TQq6qhFg9ZHwltc7Jn6hQIDGKSSEi8k5yqIQh0c7Ld9QBpS36vAPUQ7UQAIzIskOC83u0qcDMAafJ0IqrJewvM8FmPxJfNLZKKHHxcEpLrBYiVzglvcqabQJ/WG1HsAkdPxIQYgJOT5NwejpzcscyWpkpk0HGxcSPfzsskxTKTTJBkvQXpBGRviVGWVBe3woAmJYkYUedcxZjRZnARVn6PL/ER4VofjMYFQrkpQjsLnF8j8rrJRRXS8jow8yQv9pV3qRqd3Gt5SXbsXafc3ex3SUS0uL4uSZjYFZCZe12oN4KVLUBpS3AwWZgfyNQ0651yxzZBfDNJjNW7+mYpaeqEX5b9qhE1zF/7SoGMCFExtfcKqGhRSYplMhLHhH1zklJkkPwPCwGuDlPwuwUfSaE9GRUtvxMZJsK2IXMKIz28FYp3XUh65skYDY53zTtKWXMQcbBSiGVtctf/xCis/NEXTOweq9jlttsEjhluA2T8lz8EuR3mBAifxBsk7+x6JeksxMvERlOXIiEM9IlJFqAqUkSkkKNkQzSQ7XQ4DQ7LEECrVbH92xLkQmnjLQhiKdoMiBLEJCdILC/zPFzXVQpoaUdCA3WqGEuVNa36aZbKekHT78qc5UUClbwnVfiIl9Z7xzU2OwSwiwyG5NfCoSEEAUGufGEAKBfMi95ROSdo2chm5tnwoVZJsMkhPQi2AwMy3AOjJvaJOz5vVsZq4X8k79XGA1Idv5c24XklCgi0itGyCprd9EFK1hn54iKBvkGJUR2/AK+mHnMFxcMNWYdM7ri4rqASQixSigwyA3uKEEgO15nJ14iIh/SQ3WAXBeykCCBumaen/XO3xM7PenuXigvRf6Gb3cJb7XJGNh9TGWhJmBGsgSrHWizC7SLjuqhRJ09XZKrFAKA+Eg/HVioF/xpLKFASQYBTAjpjZqDTspVCiVEARa9ZeOJiHxM625k2QkCseECtU1A/2SBUdl2DE6zI4R3JGRgSdEC0WHOyc09pSYIYYPe5rhgFzI6Fk/BKksMlXDPYJ2dCWTIVQpFWATCeL7wW0wIkT+y2YHyOufzWUosx0Yjot45ehYy8o5JAi4Yb0VchEB0mPw2OVERPqlQJ9/y51nIJAnon2zHhnzH8VlrmySU1wNJ0Ro1jMhNrGkjAECFTKVQQhSrhPxRIHUXA7xPCDGRZEw1jWbYhExSKIbnMyIiQPtuZNkJrhNCREY1IEX+4dMediEjA+CnlGC1A9UyD2QSfNh1zCjjCRm961ggJYMoMJnb5Z9CMilERGQcHHBaXwJ9PKFO3VWw9UsSkGCcqem1no2Q9EWfn1LyqeoGQICVQv4uEBNCeqv2CcS/ga+5mnksNZbnMyLqvaNnIZNjswsUNur/fKN1tRAFJn9OLoWFAJnxzt/9/HIJbVYNGkTkASaFyOXMY/E+nHmM1BWIyQi9JYTINw7LzDwWFiIQFapBY4goINiFwPZagVd223HJajvu2GiH1c7EEFGgyZOZmt5ql5Bfrv/xZSmwMSlELmce86dKoUDtOhZo4wd1YkIocJXKVAqlxAjdzfxBRP5hVbnAFWvsuH2jHV8dEqhpB+qswIZqrVtmfOxCRnrkzdT07EJGeqfPTyj5lFylkASBPrwWG1ogJoMAJoQCWVOrhIZW5/NZKscTIiIFHd2FLCoIKJOZkGxFmTHOO3qsFrJxskhdUbrLlz93IUuLEwgPMc64QkSd+Akl2ZnHYiOAILPMxirw54uDVgI1IUSBLdgqn8lO4XhCRKSSYbFAvExe5acKgVYbzz3ustmB3SUSPl1rxtPfBHMMFjIk0+9T0x+rol5ClU5H42C1EAFAkNYN8HdVrQIVbUCwBISYgODff6KDAbMC/RmU+CJXylQK+XLmMbUp0XXMKAI9GcQqIWMYmCg/Q1hvyXUdAzjzGBGpxyxJmJIk4fODjueZZhuwvgqYnKhRwzwQHxWi2Y1hdSOwZq8Zm4tMaGg5cg7/7ZAJI7PsyImK4NiWZCh5KQJbipyX7y0xYXw/lsGRPjEppLKlpQJv7He+IflwogmJOhj4tKUdqG/hzGM9McJ4QkwIMSEU6LITBE4aaENJrYSSWgl1zRJMkkBiNM9nRKSsxCgLyus7+o1NPSopFBkETE6QMC1ZwogYLVvoGa0SQ01tEn7a41yavqmgIylE2lKrmn9XeZNqD4h8Ib++0eWYV3KVQkBHFzImhUivmBRSWbuLe5FgnXTck6sSAjjzmNEwIaROQqjycCXiU+NV2bcR9E8yVsCWGS+QGW/r+n9Ta8c5LthHXWGJKDANjALOSpcwJk7CcX2AEBNHtndXWqxAUrQdZXWOgfHeUgl1zUB0GFgtRIYSFQqkxtpxuMbxM72/TILNDph1cg94tMr6Nl2OL0a+w6SQytpdJIT1khSSG08I8F2lkNrjCQVC1zEmhFghRPLCLUC4hVVCRKQuSZIwN8/4iSAtqoUkCRiVZceibY6BsYCELYUmTB7IygoynrxkgcM1QHiIQP9kO/onC+Ql23WZECICmBRSnVXnSaHKBvnl8X40plBv6bXrWKAng4iIiLR0dBcy8t7ILDsWbxMQcEysbSww4YQBdigwBCfpkD93IRuba8OQdDvS4gRYOEhGoJPUhPbmzZuHIUOGYNy4cYrut81V9zGdnCDkKoWCTAIxxj1HBwQmhDqwSog6uQrMyDMrV67EGWecgbS0NEiShAULFjisb2howM0334yMjAyEhYVhyJAhmD9/vjaNJV1QK34ibWjRhSQmHMhNcg6YS+tMKPl9AgGe432PswN7r08EkNHHWAkhzkLWO0aPn1gp9Lu5c+di7ty5qKurQ0yMciMDzkyWkBfZ0Y2sXQBtdsAuOkqN9UBuTKH4KGOdxFzx165jTAh1YEKISHmNjY0YOXIkrrnmGpx77rlO6++44w4sW7YMH3zwAXJycrBo0SLcdNNNSEtLw5lnnqlBi0lrasVPpB0tupGNyrZjX5nzs+qNBSakxtpkXkFEpB9Gj5+YFFJZXpSEvCj9ZlgiLUCkRaCh9UgbEyJ9c2wjPIHQU9cxJoOOYEKISB1z5szBnDlzXK7/+eefceWVV2Lq1KkAgOuvvx7//Oc/sW7dOl0ENURkTEPS7fh6g0CbzTFm3lxowuzhNphNHHDaHxm9CxlRJ6PHT+w+FuAun2zFvWe04y9ntuGG6e04f7wV43I7nsjwwqsfTAiRv2Dw53utra2oq6tz+Glt9W4clOOPPx5fffUViouLIYTA8uXLsXv3bsyaNUvhVhMZQ2KUResmqMLX3cgsQcCQDOeBOBtbJewt1e/DVX9lhAe3euBv90rsQuZIqdgJ0H/8xEohAgCEhXT0fc3owwGm9YYJIUdGrxIqLq5Denq01s0gA7AEm3p/YyYB8+fPx8svv+yw+KGHHsLDDz/s8e5efvllXH/99cjIyEBQUBBMJhPeeOMNnHTSSb1rJ5Efq24TqGiFrivH9WB0lh2bCsxOyzcVmDAwlV3IiMg94RZzr+KnmohgtLe3O3WJ9jZ2AvQfPzEpRH7JX8YTYkLIkRYJocrDlYhPjff5ccl91qZIzFtrRkqMOPITKxDhnw/wPXbDDTfg0UcfdVhmsXj35rz88stYs2YNvvrqK2RnZ2PlypWYO3cu0tLSMHPmTCWaS+QXGtoFVlUILC8T2FwN5EYCr451Tnjoma/HFuqbJBAdJlDX7Jg8++2QCc1tNoSFsAuZP2IXMtKj4OBgVFRUOCzzNnYC9B8/MSlkYEYu8TNCWaqW4wkxGeTM6BVCpJ5D1RIO15hwuMZx+c0z25ESy+pHi8WC6OjeV6c1Nzfj/vvvxxdffIHTTjsNADBixAhs2rQJzz77rC6CGiItHDs1/fv5dnxcINB+1OlnbwNQ1CSQGW6saiFfJoZMEjAqy46VuxyTZ1a7hO3FJozt69y9jEhr3U1NfyybHSiqlGATQD+ZGff0oLK+TZNZCPVIidgJMEb8xKQQkc4wIeSMCSHqTueUxUczSQIJUfoMuIyqvb0d7e3tMJkchyM0m82w23mzRtQpwQKHhFCn5aUCV/Q1VlLI10Zl25ySQkDHLGSdSSFWC6nLCA9ujaS6EdhbasKeEhP2lUlotUrI7GNHv+lWrZtGPmKE+IlJIfI7Ru46xoQQkefkkkKJUQJBxuqpoQsNDQ3Yu3dv1/8PHDiATZs2oU+fPsjKysKUKVNw1113ISwsDNnZ2fjhhx/w3nvv4fnnn9ew1UT6MjlBwsu7BazHJIZWlAlcniMgScZKDPmyWigpGkiPs6O42vHmqaDChKoGoI+PZsgl3/LnLmRfbQjCnlLHz/PBKglNbUC4TgtyWC3kOaPHT5x9jGQF+hMYX3cdKy6uY0LIBVYJUXesNqCi3vkGKzmGVULe+OWXXzB69GiMHj0aAHDHHXdg9OjRePDBBwEAH3/8McaNG4fLLrsMQ4YMwZNPPonHHnsMN9xwg5bNJtLc0bOQRQVLGNfHeZuDzR0/1L1R2fJPzjcV8raF9Km7+6a8FOfPs4CEfaX8PPsTo8dPrBRS2VfFdjRagWATEGICgiUgOVTCmD7GekqkJJalOmIyyDUmhKgnNY1m2IXz+TSVYwl5ZerUqRDC9XuXkpKCt99+24ctIjKmqUkSVld2fJf6RQLTkiRMSZKQHGrM+M+X1UIjMu34brNwOrdvKjBj2mA7JIldyMg48pLlk5x7SiUMz/RxY0g1Ro+fmBRS2edFAodaHJdN6CMwpo+2/RrK6oD8ChMSIjvG3YgKBQxWzSzLaF3HmBByjQkhcoepXb7cPIWVQkSkoYkJEv6Q3ZEcyorwgwALvksMRViAASkCOw87vm9VjRKKKiVkJfD8rhYtH9z6axeyhCggNlygpsnx87ynxAQhbLq9/2IXssDCpJDK2mSuW8E6qBbcW2rCt5uP/PlDzALxUQKXHW9FrP+djz3iq65jTAi5xoSQf1Ij2CupkY+mOOsYEfna0bOQhZklDirdC6Ozbdh52Dlg3lhoQlaCDQCrhcgYJKmjC9n6/Y4FAfUtEkprJcYrpAs6SE/4N6tMxWCwSfsgobLBsQ1tto4pnfU64Jk/4fhBRMo5LDPIdIRFINIiszEREfWKryoHBqYKhAYfuVk2SwJD0u0YnKaPmXpIHUYeYqLbcYW66UJGpAesFFJZu8w5IEgH3/9ymYFZo8MEQgz8iTBC1zEmg3qmxyqhysOViE+N17oZPtU/Sf8lg0IApTJJoZQYodtybCIio/NFN7Igc8fYQodqJIzOtmN4hh3hTParysgJGb3LTRIwSc7jZO0uMeHEgfpNdLILWeAwcArAGNp12n2sUiYplBDV0Vg1S3H1fsFRs+sYE0I902NCiPSrqVVCU5t8UoiISAtHdyGj3jltlA3mHmJmdiEjIwgNBrLiBfIrHGOWwgoJrVbAwjty0hg/gir7eJIJ7aKjYqjdDrTZgQiN3/U2K1DbLJMUiuSNlBqYDHIPE0LkqSBrhOxy9s8nIlKXL6qFekoIkX8y8oDT+fWNyImSj03yUuzIr3D8UNuEhANlEgalMW4hbfF0q7LIYAlxIRKSQiWkh0voG9nx797qzYW4qkH++J2VQqQcJoTcw4QQeaNEpusYwEohIiIi0pe8ZPnYZE+pvm/HfTHjIGlP359CUkVFg/zyeANXCulxPCEmhIjUJZcUMkkCidHGPZcRkfElRnU/+I1dCGyvFdhbb+xzlV7GGnFVmUHu0/vwDv4gJVYg0uL8nd9dYoIw9qmA/ACTQgGoQmY8IUD9SiG9X3CUHE+ICSH3BWKVED8fyiipcb6EJUYLBPHKRkQ6I4TAvnqBf+2z44o1dty+0Y5/F+p3gFl36SUxRP5F7/cM3jBJQP8U5+98daOEShcP7Il8hWMKBaBjp6MHOqb6jDVm911d4c2+ZwIxIRSolB4fwGoDKuqdl7PrGBHp0QNb7Vhf5bhsbSXQaBWI0MO0tAbHAadJL7odVyhZYFOB8/I9pSYkRBk/SUzGxeepAUiuUqhPZMeAfka8oOql6xgTQp5hQoh6o6bBDAHnc1kqk0JEpAPHdiHrH+l8vmqzA6srjH/O0qJayGoDdhRLsBv/7dOcP1bl6FX/ZDskOH9o95Twlpy0xU9gAKqQqRQy8nhCSuht1zEmhDxjxISQEdvsz6R2+cqjZCaFiEiHpibJVwMtL+M5y11CAEWVEr7aYMZT/wvGR6uDsb+MVVb+yh+TVREWIC3O+Tt/oFxCu02DBhH9jkmhANPUCjS3yUxHH+DjCXmruLiOCSEiDbiaeSyV09ETkQ71jZSQLZPL3l0PtNqMf95Su1qoqhF48ftg/HN5MNbtN6O5veMasLHgyK0MB5wmveiu50VeivP3vd0moaCCCU7SDpNCAUauSggwbqWQll3HmAzyDituSAlySaFIi0BkqAaNISKScWwXsmnJHectiwmYkijh4WEmfDjJBIvZP24G1UwMxYQBrVbn5TuKTWhtV+2wRIobkCw/dhC7kJGWONC0irZX23DXBhuCTej4kYBgk4QLMiUMjNYmANBq5jE986brGBNC3mFCiJQysb8N6XECJbUSSmokNLRK7DpGRLo2M1lCSigwKV5CGAeX9ojZBIzMtOOnPWaH5e02CduLTRiT03GjzQGnPaP3Sv5d5U2KT1ShtfQ+AqHBAi3tjueAPaUS5mjUJiImhVRU3Sqwwyl3IDAzWbtAQG7mMQBIMGilEBkHE0KkpKHpAkPTj3TAb2gBWvi0mIh0LClUwvRQ/04GxUeFoLK+TZV9j852TgoBwKaCI0khIr0zmzoGnN52sOOzHGwW6JsokJdih110TF1P5GtMCqmozcX1KVjD6kC5SiFLUEeXC7WerKj1FEIvs45Rz5gQIiXJjRsRGYpuu45pMTsOEVFilAXl9a1aN8MvpMQKpMTYUVLrGEgfKJdQ0wTE+ldBCRlcd1PTj8i0IyYMyEuxIztBINg510nkU+y8qKI2F/Nk9jYp1JsnMJUNzsviowQkZqWJSCX+VvpNRESuqZmEH53t/MRVQMLmQg447a/03sXNG0PSBeaMtKF/MhNCpA9MCqnIZaWQRgkYu5DvPhbIXcd6OxU99YxVQkRERIFFrcTQiCw7JDjHrZsKzBCBG856xR+TLUTkHSaFVBQdLGFgFJAbAWSEAcmhQJ8QIFSjjHBdc8eAfMeKj9SgMb3EWceMgQkhIiIKdMfOQkbeiwqVn9K7vF5CcfWRGJfVQqQHHPScjIJjCv1u3rx5mDdvHmw2W88bu2lqahDSTPqpCWxokWRHu1dz5jE+hQhc/pgQqjxcifjUeK2bQUSkG2rET+Qf1Bp0elS2Hbtlpu/eVGBCRh9+Dv2RP85CRqQnTAr9bu7cuZg7dy7q6uoQExOjdXNUkdFH4C9ntqOprWPA6YoGCZX1EtLjAnPGBnYdU48/JoQCSf8kBl5E5J5AiJ98oaFd4KcKgaExEjLCOdBjdwan2WEJEmi1Or5PW4pMOGWkDUHsB9EjPrQloqPxtBlgJAmIsADZCQLH5dgxa7gNCVEsbyTyNXZD9A67BBCREcl1IWuxCawos+OhrTZc9LMdz+0S+P6wfw2Mo8bYQsFmYFiG8wPNpjYJe0rYhYz0hfdYZASsFCLD4XhC+sYqIVLT91vN2F8m/T418ZGfMM44T0QGYrULXL7Gjtp2x+UrygSuyRWQ/GhaWDW6kY3KtuPXfOchGjYWmDE4zarosUgfAqULmRBAqxUIDda6JRRImBSigMSuY+pgQojUVlQpobjahOLqI8uiQgXuOb3d5WvUnB6ZiMgbQSYJo2Il/FDuWBlU2grsqAOGsidet7ITBGLDBWqaHJNnuw5JaGoDwnnaJwNpagX2lpmwp0TCnlIT+iXZccF4jo9FvsOkEKmG/ZUDCxNCpDYhgJJa56fnKTH+1d2iU2iQudezFvlPrQGR/5ma5JwUAjqqhYbG+Ne3V+lqIZPUUS204jfHaiGbkLC1yIQJ/Tq6l+VERbD7zjEYn+vLJ2vM2HbQBHHUFXtvqQl2YYPJv04DPhNhCepV/FQdEXhZZY4pRIaiZdcxco0JIXJFyVLvxhbJafZEwH+TQkTkX469SRkXD0TITFJb3MRzmjtGZclXUmwq4O2NvzJqQqu7xGS4BQ4JIQBobJVQUsOMEPkOz5oUcNh1jMiYgqzyg4amxPIGioiMJ8QkYXJix41fehjwh2wJ/xpnwuMjZTJFfkDprrwJUUBmH+cBp4uqTKioP/J/DjhNepaXLD8L9O4SJoXId5gUUlGzVaDZJmCzK3fDovRAfQBHxXcXB5mWF2hVQoH2++qJXNcxgJVCRGRcF2RKeOU4E94ab8IVfU3IiuCNoCdGZ8vfUG8q8M/EWm8ZtdLGn/VNEjCbnOOYPaW8TSff4adNRff90oKzfrRjzko7TllhwxkrbbhqrTaDhhVUSCiokNDY2jEuh9rUuOiw65j+MEFCviSXFDKbBBKimBQiImM4tgtZVoSEAVGSX8021h2lq4WGZdplb6i3F/MWx18ZNbHl6iG8Jahj4PRjFVVKaHE9hwaRojjQtIrajsr/2AG02h2X+dKibWYUVHRcIMOCBeKjBHISBE4ZwZHtyTtMCJGvldQ6B/lJ0QJmxv5ERAEpPAQYlCqwvViCBIG+iQKjsu0Ymu5YQcQBp0nPBiTbsb/MMZixCwn7yiQMTeeDL1Ifk0IqapPpNhas0c1LZf2RJ1DN7RIOVkkIC5YvufVnHE+IyJisNqCy3nk5u44REQW2Cf1sSIuzY2SWHbHKzW1A5DN5KQILtzov31NiwtB0PsAn9fH5qopaZXIuQRq84y3tQEOrc1mykbpcaN11jOMJOWKVEPlaVb3ZaXYOoOekkNJdFYiIeqs3UyWTs9wkgSmDek4IBfqA00btdiXHn34XoKPqOTpMflwhXwz7QcSkkIrkuooFa9Bl/OgqoaOplRTytxM1OWJCiLRgsspH+5x5jIjIWJisp0DlqgujJMnPQlbbJKFcpkqaSGnsPqai83KCkRtmR7sA2u0dPwkaPByqaJBPCsVHBtbNFLuO9R4TQuSJgYnK1fGX1Mifx1LZfYyIiIgMLi/Fjl/znWfN21NiQlJ04A35Qb7FpJCKLswNxqgI7YeNr+imUsgIg+5p3XWMOjAhRFo6LDPzWHSYQDh7YRCRASVGWVBe3+pyvRAC+xuAFWUCF2RJiNai1NwPBeqA0/5Yxb+rvEnRh09a65ckIEE4dZXfU2rCCQOYFCJ1MSkUACobnJcFmQSiw4AamXVERHoiBFAqkxTiINNE5G+KmwSWl3X8FP1+H58aBpyaxqQQkT/Ir2+UHd8qLATIjBcorHT8rueXS2izAiG8aycVcUyhACDXfSw+SsCkQnyh1ycRvek6xkGmWSV0LKXeD3623NPQYkJLO5NCROTfSlsErl5nx3v5RxJCALC8zP/OdVqOKxToA077E73ed3hLblwhq11CfjmTwqQuJoUMpLK+zePXCCHffSwhUokWUSBgQoi0FsRBponIDx07C1lyqIQ8mfhsSw1Q2crznafsAthXKuG/68047GJcOiI9yUuR/57vKeUtO6mLhWh+rqEFaLMadzp6jiekLSaEAk//JP31zy+R6ToGACkx7GNPRP5lWrKEPQ2OMZoA8EOZwLmZTGy4o6wO2FRgxqZCE+qaO96zsBAgNVZmWuAA4G/VNP4sLU4gPESgqc15XCEgMD+/5BtMO/o5zjxG3mJCiPSipMb5UhVkEojvoeKR0x4TkdFMSZRwbORmMQENVk2aYzjtNmD+0mCs3GXuSggBwOZCE2xHPUdgFzL/YcSkl6vBzk0S0F+mC1lFvYSqwBsfnXyISSE/58uZx/R6UuZ4QkTGJlcplBQjYOYVjIgM7tguZImhEobFAEESMCEeuHewhE+PN+GKvjzhuSPYDAzJcL6pbmyVsLeUlVakf666kO0t4TmA1MPuY36u0kWlUEKkQJnnQxT5FLuOaYdVQqQX7VagSmaWRA4yTUT+6tYBJsSGwO+noY+PCvFqvMyejM6yY1OB2Wn5pgITBqYe6YITqNPTk77JDTYNdHQhG9+P3eZJHUwKqcRmF/j2oBXldQIhJiDYBARLQFIokBTqu4u8XKVQeIhAuAWAzpNCpA0mhEgJAxOVG5vo7LE2lNRIKKnt+Gluk5gUIiK/lRXh38kgtfVNEogOEw7dxwDgt0MmNLfZEBZAPYv1WsWvtF3lTYrGHb7gamr6yFAgLdaOQ0d1nTdJAjZ7xwRCEk8PpAImhVTSYgNuWd3itPzSbAlX9fXdt1muUiiQxhPqTdexQMSEEOlNXlwEEHfkyZgQQF1zRxcBIiJ/kBhlQXl9q9bN8BsmCRiVZcfKXY4XCqtdwvZiE8b2ZbUF6VteikBDq0Beih0Dku3ITRIBlcwk32NSSCVtLq43vqwEttnlu10YYeYxdh3zPSaEPFN5uBLxqfFaNyPgSBIQY6yHgURE5GOjsm1OSSEA2FjgmBRiFzLSo6mDbZg51MaqIPIZjlilkja7fOIl2IfveE0TYBO+qRTyx/JUDjJNREREpB61ZolMigbS45yf0BZUmGQfmPojf4zNu2PE39dVQjLYzG5i5FtMCqmkzSa/3JdJIV/OPKZH7DrmPlYJERERaefYWcio90Zly5ftbyrk7Q8R0dF4VlRJq6tKIR9mfV3PPOa7NniDXcd8iwkh8kdqPX0mIiJjGJFph0lyjsc3FZghjlosN9gvEVEg4ZhCKskIN+HzGeHYX9mCNjvQ/vtP/yjv9ufNlJ1VLpJC8VECxcy7EJgQIn1joE5EdESLTWBtpcC6SuCOQRLM7F/SrQgLMCBFYOdhx/epqlFCUaWErAT9j7FJnjHiLGREesCkkEpCgySMSTAj0qbdBfu0UTacNMiGinoJFQ0SKuslNLUpP2uPEfvwEhNCREREeiI3C1m7XeDXKmB5mcDqCoGW33tEzUyRMDpOg0aqID4qxKuHn+4YnW3DzsPOHSM2FpqQlXBkrAd/G3CasblxuJqansiXmBTyY5IERIcB0WECuUnGeBqiVNex3o4nxEGmyVeKi+uQnh6tdTMUxad0RETK2FwDPLjNeWyc5aUCo+NYKdSTgakCocECLe2O79XWIhNOHWlT/EEpEZERcUwhogDEKiEygnlLgvDPZUH4aoMZ6/aZUFgpodWqdauIiHxnVCwQE+y8fFWFcDnTLR0RZO4YW+hYLe0Sdh1mUs0f+WuVVJsV2H1YwjebOmIiIiXxExWA/Kk8ljzHhBAZQbsVKKmRUFRlwrr9Zny1MQivLw/GN5v4WFdt8+bNQ05ODkJDQzFhwgSsW7dO6yYRBYxjZyELMkk4MdE5edFgBX6t8lWrjM3lLGQFjtcTf+nC469JEX/W3b3Z2n0mvPNjEB7/Khjv/RSM1XvN2FjAW3g9MnL8xE8U9YoeLzycit41JoSUxfdTPVUNZgg43wilxvDJuJo++eQT3HHHHXjooYewYcMGjBw5ErNnz0ZZWZnWTSMKWNOSnM+F6WGAladDt2T2EYiPdH6zdpdIaGjRoEFEHth5yIS9pSZY7UfOAwerOsaJJf0wevzEpBDphl6movfX8YSYwCAjkdrlxyVKieVdkJqef/55XHfddbj66qsxZMgQzJ8/H+Hh4Xjrrbe0bhpRwBoaAyRYgIQQ4PwMCa8cZ8Jb402yFURGFR8Votq+JQkYlWVzWm4XErYWOd4K+Uu1UKDT40Nrb+WlOFe6CUjYV8rbeD0xevzETxMREQEA+ifpZ4Dokhr5m50UNyqF1Ly58KWW1t49wm5ra4PNZkNrayvq6uocflpbW2W3//XXXzFz5syuZSaTCTNnzsTq1at71RYict+xXchMkoQXRpvwwSQTru9vwoAoCRKno/fISBddyDYW8laI9E0uKQQAe0p5DpBjE0BrL+On1paO17sTOwH+ET/xTEh+hV3H5LFKiIympNY52IkJEwjzj3xPj+bMmYPFC79F2aEihIWYvfp5/63XMXDQIHz88ceIiYlx+HniiSecjllRUQGbzYbk5GSH5cnJySgpKfHVr05EMpJDJZiYCPJanwggJ8Hx5tokCUSFdgzg6y/8qUIm0LgaVyghEogNd34gtqfEBMHiaSdnnXE63n/nTcDW5nX89NbrryInp69bsRPgH/ETp6RXycoSK74ubEdzqx3BEhBiAoJNwDkZEqKC1b2oCwEcqpYQHyUQKjNjhVKUvPDopeuYP2JCiIxGCKBUJikUSF3HRo0ahXPPuwAPP/gA3n7vA49fX1NTgycf/zvee+89zJgxA3feeafDeovF4uKVRET+aVS2HfkVJqTF2jEq244RmXZEhjpvlxMVwUlZ/MCu8iYMTNRPBbS3JAkYkGLHuv2OA6PXt0gorZUCKjZyx6WXXornnnser857GX++826PX79t61Z88vFH2LBhA9LT0x3W+XPsxKSQSnbW2PHZAedHD3NSJUSpmKgBgKY24LVlHQeJsAgkRAkkRAqMzLLDFNag7sFJV5gQIl9TIgCrbzah1SqTFAqwQaafePxRDBw4EBt+/RVjjjvOo9c++/STGD5iJObMmQNJktwKZBISEmA2m1FaWuqwvLS0FCkpKR4dn4jIU/FRIaisV2/03OEZdmT2aUdygF1LyPj6JzsnhYCOLmRMCjkymUx49tlncN555+Gqq69FfHy8R6//y31344/X34DBgwe7/Rp/iJ/YfUwlbXb5L2iwF++4pxfIyvojN1ONrRIKKkz4Nd+Mqkb/LjtWouuYPw0yzYQQGVWQ1cUg0wEWyGdmZmLuLbfi/nvvgvCgRrywsBCvvvISnnv2GY/GHQkJCcFxxx2HpUuXdi2z2+1YunQpJk2a5FHbiah3jh1XiHrPEgy3E0IccJq04KpCLTdJwCTJdyEjZzNmzMDEScfjicf+7tHrli1dgnVr1+DhBx/w6HX+ED/xk6SSNudJDgB4lxTyVEWD/E2A3HScesCuY0R0NLnxhAAgJVZ+sEV/9sD992Lb1i1Y+N23br/mbw8+gLPPOQ9jxozx+Hh33HEH3njjDbz77rv47bffcOONN6KxsRFXX321x/siIiLf4XhCzvzlPQkNBrLine/jCioktPrRmFhKevaZp/HmG//E/n373Nrebrfj/nvuwl333u9xdRFg/PiJ3cdU0uri3sUnSaF6+RuqhCiBynZljuEvJ1l/xSoh36k8XIn4VM8vHuRaSY3ziTLYLBAfqUFjNBYTE4MHH3wQf7nvbpw8azaCgrq/bG/auBFffP4f/Pbbb14d76KLLkJ5eTkefPBBlJSUYNSoUVi4cKHT4IlERETkO3kpHWNiHc0mJBwokzAoTZ8P/rU0bNgwXHzJZfjrA/fhw39/2uP2H3/0IaprqnHHrbd4dTyjx0+sFFJJkAREBgHHjimt8hjTAOQrhSxBApGsRA4ITAiR0R2WqRRKihYw+XcPWJduuOEGtLW14f133+l2OyEE7r/3Ltxw083Izs72+ng333wzCgoK0NrairVr12LChAle74uIvOdOF7LiJoEP8u14+jf/qKSMj9LPFJPsQkZ6MiBFPvGzp5S386489ugj+P67b7Fu7dput2tubsZDD/4Fjz/2GEJDZUafd5OR4ydWCqnkrhEW3DXCgt2lTRBCoF0A7XZ4NL6DtyrrnZfFRwnocSZTpbqOcTyhDkwIkdG1WYFqmfHPAnkgxZCQEDz5xBO45U9/woUXX4KICPkblcWLvsfmTRvx+X//4+MWEpEvVbYKLC8TWFEmsPuomO/yHIHUMB0Ge6Q6VvC7ZrRZyPLrG2UTkikxApGhAg0tjt/x3SUmCGHT5X2e1tLS0vCn2+7AfffciSXLV7q8D5/3yktITEjEJZdc4uMW6gdTiz4gSRJCTBIigtT/ttoFUClTKZQQKTi9pp9jQsi4/CEhqZTqeufZNQAg1c3BQfX0lFlJ5513HrKzc/CPF56TXW+z2XD/PXfh3vv/itjYWN82joh86qcKgdf3OSaEAGBFWeAmz5Vgs3c8mDgaq4VILyQJyEt2rgisbpRQycmlXbrvnruwd89ufP3Vl7LrKyoq8OxTT+DZZ5+ByRS4qZHA/c39VG0TYLXLJIWiGCgQkQG0c+YxOZIk4blnn8ELzz2DkpISp/UfvPcumpqbcOstN2nQOiJSi1wXspMSJdkA/gcmhTwmBFBcLeGbTWY8/U0wVu/lrRHpV/9k+e/4XnYhcykqKgoPP/wwHrj/HrS3Ow+u++Tjj2LS8Sdg+vTpGrROP/gJ8jNyVUIAFB2gVW8lqkp0HTM6VgmRvyh1MfOYu9MI+7MTTjgB02eejMceedhheWNjI/728F/xxOOPIyTEPyuliOiI2BAJY+Kcl+9vBAoaea5010+7TXh5cRBeWxqM1XvNaGyVsKnADMG30O/o7d6lJ656d/RPtkMCp6b31B//+EdIkoS3/vWGw/L9+/bhzTf+iWefeVqjlukHP0F+pruZx/SGU9Ergwkh0gsl+uwfrnE+h8WGC4Qx1wEAeOapJ/HB++9i51Gzi738jxeQnp6BCy+8UMOWEZEvTU12PFcGScCEeMCqv3DPY77qBryvzISyOsdbofJ6CcXVju+t3ruQGS3hQd6LsADpcc5f8v3lEtptGjTIIIKDg/H0U0/hsb8/jLq6I8UEf33gPlxy6R8wdOhQDVunD7pPCs2bNw85OTkIDQ3FhAkTsG7dOpfbbt++Heeddx5ycnIgSRJefPFF3zVUJ1xXCvlBlKAio47pwoQQ+RMh5CuFAr3r2NEGDBiAK6++Fn/9y70AgLKyMjz/7NN4/rlnfTKRARH5nlwXshMSJFhMwMhY4LYBEj4+3oS/DzejXyTPA+4alS0/Y9umAt3fHpEX/CV5liczC1m7TUJBBb/73TnzzDMxYOAgvPDcMwCAdWvX4vvvvsVjjz6iccv0QddnvU8++QR33HEHHnroIWzYsAEjR47E7NmzUVZWJrt9U1MTcnNz8eSTTyIlJcXHrdUHuUqhyFCB0GANGuMDgdx1jAkh8jf1zSa02ZgU6snf//YQflixHKt+XInH//43TJk2HSeeeKLWzSIiH4oI6kgEPTPKjFPTTIgO5g2hpwan2WEJcr6+bCkywSqfLyLyGVddyPJS5D+c7ELWPUmS8Pxzz+KlF59HcXEx7rvnTtx6+5+RmpqqddN0Qdefnueffx7XXXcdrr76agwZMgTz589HeHg43nrrLdntx40bh2eeeQYXX3wxLBbnpypGVFnf5tH2FSrPPKZUlp1dx8ifMEGnDLPVxSDTsYzOj5aYmIg7774Xc2+8Hu++8xaeeepJrZtERBrwxay2/izYDAzLcL6+NLcBB6uM0YXMX6pfyH3pcQJhwTLjCpXyfNCT8ePHY85pp+Os007B3j27ce/dd2rdJN0I0roBrrS1teHXX3/Ffffd17XMZDJh5syZWL16tWLHaW1tRWtra9f/a2trAcChv2FvNNT37mTd6GFSaGKWCZUNEqoaOqYnrGqUEGm2o6mhvucXu6G1sVmR/bQ3K3MRs7Yok+yytxrrolpVWqV1E+gYvf0MWVvkp2J3V3tz73P8rY29S740hfWuQ3tcsA2zB5pQWiehtFZCaZ2ENquEaHMbGt08hVngeiyKujCry3We6Lw+CA1HI73zjtvwxuvzccWVV2PQoEGatYMCl9rxU10TB8g4mgVAZUNrj9v5CwuAKg9jYG8MSJCwdmdHOX1ilB3DM+0YlmFHjAVO152mBv3FikrF5YGit3GKrzVCvr0Z0Wb8VmyGJVggN8mOfkkC/ZLsbsdKnqqrU6aORA/x09NPPoGhQ4fihRdeQFRUlGbt0BvdJoUqKipgs9mQnJzssDw5ORk7d+5U7DhPPPEE/va3vzktz8zMVOwYWluudQOIAkBDL19f2MvXr+3l6/VspfMpWhcqKysRExOjybHDw8NRVNjbTw2R9wIhfqLA81+tG0AUALSMn3Jzc9HczGTqsXSbFPKV++67D3fccUfX/2tqapCdnY3CwkLNPqxGVVdXh8zMTBQVFSE6Olrr5hgK3zvv8b3zHt8779TW1iIrKwt9+vTRuilEmmH8pByei73H9847fN+8x/fOe4yf9Eu3SaGEhASYzWaUlpY6LC8tLVV0EGmLxSI7/lBMTAy/6F6Kjo7me+clvnfe43vnPb533jGZdD0sH5GqGD8pj+di7/G98w7fN+/xvfMe4yf90e1fJCQkBMcddxyWLl3atcxut2Pp0qWYNGmShi0jIiIiIiIiIjI+3VYKAcAdd9yBK6+8EmPHjsX48ePx4osvorGxEVdffTUA4IorrkB6ejqeeOIJAB2DU+/YsaPr38XFxdi0aRMiIyPRv39/zX4PIiIiIiIiIiK90XVS6KKLLkJ5eTkefPBBlJSUYNSoUVi4cGHX4NOFhYUO5WeHDh3C6NGju/7/7LPP4tlnn8WUKVOwYsUKt45psVjw0EMP+c2U9r7E9857fO+8x/fOe3zvvMP3jcgZvxfe43vnPb533uH75j2+d97je6dfktByTjgiIiIiIiIiItKEbscUIiIiIiIiIiIi9TApREREREREREQUgJgUIiIiIiIiIiIKQEwKEREREREREREFICaFiIiIiIiIiIgCEJNCREREREREREQBiEkhIiIiIiIiIqIAxKQQEREREREREVEAYlKIiIiIiIiIiCgAMSlERERERERERBSAmBQiIiIiIiIiIgpATAoREREREREREQUgJoWIiIiIiIiIiAIQk0JERERERERERAGISSEiIiIiIiIiogDEpBARERERERERUQBiUoiIiIiIiIiIKAAxKUREREREREREFICYFCIiIiIiIiIiCkBMChERERERERERBSAmhYiIiIiIiIiIAhCTQkREREREREREAYhJISIiIiIiIiKiAMSkEBERERERERFRAGJSiIiIiIiIiIgoADEpREREREREREQUgJgUIiIiIiIiIiIKQEwKEREREREREREFICaFiIiIiIiIiIgCEJNCREREREREREQBiEkhIiIiIiIiIqIAxKQQEREREREREVEAYlKIiIiIiIiIiCgAMSlERERERERERBSAmBQiIiIiIiIiIgpATAoREREREREREQUgJoWIiIiIiIiIiAIQk0JERERERERERAGISSEiIiIZN910EzIzMxEdHY309HTcdtttaGtr07pZRERERLrF+Ml4mBQiIiKScfPNN2Pnzp2oq6vD5s2bsXnzZjz++ONaN4uIiIhItxg/GQ+TQkQEAMjJycHUqVO1bgaRbgwZMgQREREAACEETCYT9uzZo3GriIhITxg/ETli/GQ8TAoZ1IoVKyBJEp599lmX20iShNNPPx0AcP7558NsNmPVqlWy265atQpmsxnnn3++R9u6q7q6GmFhYZAkCe+//77bryPSo87vnyRJeOONN2S3Ofr7pwdPPPEELrjgAuTm5kKSJOTk5HS7fVVVFe688070798foaGhSExMxLRp0/Djjz86bWu32/HCCy9g0KBBCA0NRWZmJv785z+jsbFRpd/Gd5588klERkYiKSkJmzdvxm233aZ1k4gM6Z133uk6bz788MOatYPxE5F2jBg/dbb32J/IyMhuX9fU1NQVc918882y2zB+Ir1gUihAvPbaa0hISMBVV13ldKJpamrCVVddhYSEBMyfP9+jbd314YcforW1FX379sVbb72lyO9EpAcPP/wwmpubtW5Gj+6//34sW7YM/fr1Q1xcXLfbFhQU4LjjjsO7776L888/H6+++iruv/9+5OTkoLi42Gn722+/HXfccQeGDBmCl19+GRdccAFeeuklnHHGGbDb7Wr9Sl67+OKLXQZ5kiRhxYoVXdvee++9aGhowI4dO3DDDTcgNTVVu4YTkc8xfiJSh1HiJwA48cQT8f777zv8vPnmm92+5sEHH0R5eXm32zB+It0QZEjLly8XAMQzzzzjchsA4rTTTuv6/xdffCEAiJtuuslhu5tvvlkAEAsWLPBqW3eMGjVKTJ8+XfzjH/8QkiSJffv2efR6Ul92draYMmWK1s0whM7v39ixYwUA8fjjjzttc+z3T2tHf+eGDh0qsrOzXW47efJkkZGRIQ4dOtTjfrdt2yYkSRLnnnuuw/KXXnpJABAffvih121WS11dnSgvL3f509bWJvu6Tz/9VEydOtXHrSXyD2+//bYAIACIhx56SLN2MH4ipTF+cp8R4ycA4sorr/ToNb/++qswm83iueeeEwDE3LlznbZh/ER6wkqhAHL22Wfj8ssvx2uvvYalS5cC6CjjnDdvHq644gqcddZZXm3bkw0bNmDTpk248sorcemllyIoKMjl0662tjY8/fTTGDVqFMLDwxETE4OxY8filVde8Xi7hx9+GJIkIT8/3+k4x/b/7ixrX7p0KR555BFkZ2cjLCwMEyZMwJo1awAAP/zwAyZPnoyIiAikpqbi73//u9vvgRwlj1lRUYG5c+ciMzMTISEhyMzMxNy5c1FZWem0bVFRES688ELExMQgOjoaZ5xxBvbt2ye739bWVjz++OMYOnQoQkNDERsbizPOOAMbN250+/d092/q7u/Q+b4tW7YMzz77LPr16weLxYIBAwbg3Xff9fr43rjwwgtx3HHH4amnnpJ9r/UkNzfXre1WrlyJVatW4e6770Zqaira29vR1NTkcvt///vfEEI4lQVfd911CA8PxwcffODWcd35Oyn1nYmKikJCQoLLn+DgYNk2tre3Y/fu3W79PkTkPxg/HcH4ifFToMVPndra2tDQ0NDjdjabDddddx1OOeUUnHvuuS63Y/xEuqJ1VkrvKisrxb333isGDx4swsLCRFRUlBg9erR4+eWXNW1XZ6b9b3/7m8tsLWQy7dXV1SIjI0NkZWWJ4uJi0bdvX5GRkSFqamqcjuHJtt256aabRGRkpGhoaBBCCHHOOeeIjIwMYbPZHLZrbW0VU6dOFQDErFmzxDPPPCNefvllcf3114tp06Z5vN1DDz0kAIgDBw44tenYpzqdTzDHjh0rRo8eLZ577jnxxBNPiISEBBEVFSW++OIL0adPH3HvvfeKV199tev477//vkfvxdGUOmZNTY3Iy8sTkiSJa6+9VsybN0/88Y9/FJIkiUGDBom6urqubaurq0VOTo4wm81i7ty5Yt68eeLCCy8UmZmZIiEhweE9aWtrE1OnThUhISHi2muvFa+++qp44oknRG5urggLCxPr16/v8Xd092/lye/Q+b5NmDBBjBgxQjz11FPixRdfFAMHDhQAxKpVqzw+vqeOftK8ePFiAUDcfvvtDtvIff88YbPZun0ac+zPsd+n7nRXKXTPPfd0Pc0+/fTThdlsFgBEXl6e7Od91qxZwmQyiZaWFqd1xx9/vEhISOixPe7+nXz5Pa2pqRFvv/22qK6uFna7XWzevFkMHjxYXH311R7viyjQLF26VIwdO1ZYLBaRm5srXnnlFd1VCjF+YvzE+InxkzvxEwARERHRFQ8lJiaKm2++2eX3+ZlnnhHh4eHiwIED4sCBAy4rhRg/kZ4wKdSNwsJCkZWV1RXEHP2jdZlo50m1px+5k+r3338vAIiEhAQhSZJYtGiRy+N4sq2c5uZmERsb61B2uWDBAgFAfPvttw7bPvXUUwKAuO+++5z2c/QJ293tvAlqRo8eLVpbW7uWf/nllwKACAoKcriIt7a2ipSUFDFx4sRuf//uKHXM+++/XwAQ8+bNc1j+yiuvCADigQce6Fp23333CQDirbfectj21ltvdfpcP//88wKAWLhwocO2tbW1IjMz063vgLt/K09+h873bdSoUQ7v28GDB0VISIi4+OKLPT6+p47tfnDyyScLi8Ui8vPzu7bpbVDTGUi4+yP3OXelu6TQ2Wef3RX0HH/88eKDDz4Qb731lhg6dKjsZ2fYsGEiKSlJdl8XXHCBAODwd5Lj7t/Jl9/T2tpaMWPGDBEXFyciIiJE3759xZ///OeumzMikvfTTz+JkJAQp3PUiBEjdJUUYvzkejvGT4yfGD8dMX78ePHMM8+IL774Qrz77rvioosuEgDE8OHDRX19vcO2+/fvF+Hh4eLJJ590aItcUojxE+kJk0LdOP3007tOGFlZWeL1118XCxcuFE8//bT4wx/+oGnbOk+q119/vVi8eLHsT3cn1euvv77r9T3xZNtjffjhhwKAWLZsWdeytrY2kZiYKM4//3yHbUeMGCHi4uJEc3Nzt/t0dztvgprXX3/dYbuqqioBQJxwwglO+zjzzDNFfHx8t23ojlLHHDx4sEhMTBTt7e0Oy9vb20ViYqIYOnSow7bJycnCarU6bHvo0CGnoGbMmDFi0KBBsk9VrrnmGmE2m0VTU1O3v6O7fytPfgdX75sQHRfY4447zuPje+rYoGbDhg1CkiRx+eWXd23T26CmubnZ5Xdb7seT37G7pNCMGTMEAJGbm+sQOFRVVYnY2FiRkpLiEGjk5uaKzMxM2X1dfvnlAoCorq7utj3u/p20+J4SkWcmTpzYFTvNnDlTfP311+Lvf/9711N2vSSFGD+5xviJ8RPjp+499thjAoB49NFHHZbPmjVLDBs2rGtsne6SQoyfSE+CQLKqqqrw7bffAgDMZjMWLlyIwYMHAwBmz56tZdMc5OXlYebMmR6/btKkSXj99dcxadIkRbc91ptvvonExERkZGRg7969XctnzZqFzz77DBUVFUhISAAA7NmzB6NGjUJoaGi3+3R3O28cO+5K5yxNffv2ddo2Li5OkX7QvT3mgQMHMHbsWAQFOX6dg4KCMGDAAGzYsKFr2f79+zFu3DiYzWaHbVNTUxEbG+uw7LfffkNzczMSExNdtr2iogKZmZku17v7t/Lkd+gkN0ZOfHw8CgoKPD5+b40ePRqXXHIJPvzwQ9x5550YMWKEw/rW1lbcfPPNWLp0KcrLy5GamopbbrkFt9xyi8t9hoaGevXd7q2wsDAAwCWXXIKQkJCu5XFxcTjzzDPx3nvvYdeuXV3nw/DwcJSVlcnuq6WlpWub7nj6d9Lie0pEPSsrK+san8JiseCTTz5Bnz59cPrpp2Pnzp348MMPNW7hEYyflMX46QjGT+4zavx011134W9/+xu++eYb/OUvfwEAfPDBB1i8eDFWrlzpcmydozF+Ij1hUsiFvXv3dk0FmJub23UDRO47cOAAli9fDiEEBgwYILvNBx984DTAmlIkSXK5zmq1yi4/9mLf03IlaHFMdwghMHz4cDz//PMut+ku4FGbq/dHCOHjlnR49NFH8Z///Af33HMPvvvuO4d1VqsVKSkpWLRoEXJzc7FlyxbMnj0bycnJuPDCC2X3Z7PZepzK9GiJiYmKfGYyMjIAACkpKU7rOqcTra6u7lqWlpaGHTt2oLW1FRaLxWH74uJiJCQkOCSXlKDX7wxRoNu/f3/Xv/v164c+ffp0/X/8+PG6SgrpGeMn9+j1WsD4yTNGjJ+Cg4ORlpaGiooKAB3JqzvuuAOnnnoqUlJSuhK5xcXFAIDa2lrs3bsXCQkJXUlExk+kJ0wKkWrefvttCCHwxhtvOD1FAYAHHngAb731VldQM2DAAOzcuVP25Hg0d7frDEarqqqQk5PTtbylpQWHDx9G//79vfq99CY3Nxe7du2C1Wp1eFJktVqxe/duh6cCubm52LNnD2w2m8MF4PDhw6ipqXHYb15eHsrLyzF9+nSYTN5NVOju38qT30GN4yuhb9++uPHGG/GPf/wDK1ascFgXERHhMIvDqFGjcOaZZ2LVqlUug5qioiLZJzeuHDhwwOFz7q3x48dj/vz5OHjwoNO6zmVJSUldy8aNG4dFixZh3bp1OPHEE7uWt7S0YNOmTTjppJN6PKYv/05EpI3uEg3kiPGTbzB+6v3xlWDE+KmlpQUHDx7ExIkTAQDNzc0oLy/HN998g2+++cZp+w8++AAffPABnnnmGdx5550AGD+RvnBKehf69+/fdSLfv38/du7cqXGLjMVut+Odd97B8OHD8cc//hHnn3++088ll1yCrVu3Yv369QCAyy67DNXV1Xj00Ued9nf00wt3t+t8urZkyRKHbV544YWuKjCltbe3Y+fOnSgsLFRl/3LOPvtslJeX41//+pfD8jfeeAPl5eU455xzupadddZZKC0txXvvveew7VNPPeW03yuuuAIlJSUun3SVlpb22DZ3/1ae/A6ecPf4Sv3dHnjgAURHR+Puu+/udrv29nb8+OOPTmXSR0tJScHixYvd/pGr7PHG2WefjaioKHzwwQcOU68ePnwYCxYswIABAxxuCC666CJIkoQXX3zRYT9vvPEGmpqacNlll/V4THf/TkSkb0ffiO3fv9+hqnDt2rVaNMlwGD8xfgIYP7ni6/jJVfepv/71r7BarTjjjDMAdCSvPvvsM6efV199FQBwyimn4LPPPsOZZ57ZtQ/GT6QnrBRyoU+fPpgzZw6++eYb2Gw2zJkzBw888AAyMzOxfft2bNiwAe+//77WzdStRYsWoaioCNdee63Lbc477zw8/PDDePPNNzFu3Djceuut+Prrr/Hoo49i/fr1mDVrFkJDQ7F9+3bs2rWrKzhxd7uZM2di4MCBePDBB1FZWYm+ffti1apVWLNmTVc/fKUVFxdj8ODBmDJlitPTDrXcfffd+OyzzzB37lxs2LABo0ePxsaNG/Hmm29i4MCBDhfYu+++Gx999BGuu+46/Prrrxg6dChWrFiB1atXO70nt956KxYvXoy77roLy5Ytw/Tp0xEdHY3CwkIsXboUoaGhWL58ebdtc/dv5cnv4Al3j6/U3y0hIQF33XUX/vrXv3a73c0334yoqChcccUVLrdRuk/8+++/3zVeQHl5Odra2rqCiOzsbFx++eUAOvqQP/vss/i///s/TJw4Eddccw3a2trw2muvoa2tDS+//LLDfocPH465c+filVdewbnnnotTTz0Vv/32G1566SVMmTIFl156aY9tc/fvRET6lpycjAkTJmDt2rVoaWnBxRdfjD/96U/YvHkzPv74Y62bZwiMnxg/de6D8ZMzX8dPjz76KNasWYNp06YhKysLDQ0N+Pbbb7F8+XJMmDCha2yj4OBgnH/++U6vz8/PB9DRnfbY9YyfSFd8PbK1kRQUFIiMjAzZ6Qv1MiV95+j9ctDN6P2do9C//fbbPR7Lk207nX/++QKA2LJlS7fbDRgwQMTExHTNwtDc3CweffRRMWTIEGGxWERMTIwYO3as01Sb7m63a9cuMXv2bBEWFiZiYmLEBRdcIA4ePOhy9ozly5c7tRGAw5Swna688kpx7Feoc5YBdz4fSh1TCCHKysrEjTfeKNLT00VQUJBIT08XN910kygvL3fatqCgQJx33nkiKipKREVFidNPP13s3bvX6T0RomP2in/84x9i7NixIjw8XISHh4v+/fuLSy+9VHz//fc9/o5CuP+3cvd36O59mzJlitOsWu4c35O/mxDdf/8aGxtFamqqy+/f7bffLoYPHy77t1HTlClTXE7HKvd7//e//xUTJkwQ4eHhIjIyUpx88sli1apVsvu2Wq3i2WefFQMGDBAhISEiLS1N3H777U5TtXbHnb+Tkt8ZIlLHypUrRXBwsNN5Ji8vT1ezjzF+YvwkBOOnToyf5C1YsEDMmjVLpKWlCYvFIsLDw8XIkSPFY4895tasZd3NPiYE4yfSD0kI1pZ1p6KiAs888wy++uor5OfnIygoCP3798e1116Lm2++WevmEZGB3HbbbVi6dCmWLVum6SCTRERqWrJkCe655x5s27YNqampuOmmm5CYmIhrrrkGAPDQQw/h4Ycf1raRRGQYjJ+I1MWkEBGRD/zpT3/CsmXLsHz5cgY0RERERG5g/ESkPiaFiIhUVlBQgJycHFgsFofZQU488USn6VeJiIiIiPETka8wKUREREREREREFIA4JT0RERERERERUQAyVFJo5cqVOOOMM5CWlgZJkrBgwQKH9UIIPPjgg0hNTUVYWBhmzpyJPXv2aNNYIiIiIiIiIiIdM1RSqLGxESNHjsS8efNk1z/99NN46aWXMH/+fKxduxYRERGYPXs2WlpafNxSIiIiIiIiIiJ9M+yYQpIk4YsvvsDZZ58NoKNKKC0tDX/+859x5513AgBqa2uRnJyMd955BxdffLGGrSUiIiIiIiIi0pegnjcxhgMHDqCkpAQzZ87sWhYTE4MJEyZg9erVLpNCra2taG1t7fq/3W5HVVUV4uPjIUmS6u0mIiJjEUKgvr4eaWlpMJm0K7iVBsRi6fzPMX36dM3aQIGL8RMREXlCD/FTe3s7Qgb0wY5v12Hw4MGatEGP/CYpVFJSAgBITk52WJ6cnNy1Ts4TTzyBv/3tb6q2jYiI/E9RUREyMjI0OfaPP/4I7KnFjNNmoaWmERaLRZN2UOBi/ERERN7QMn4KGZ4I5DdgyImjISo4xEwnv0kKeeu+++7DHXfc0fX/2tpaZGVloaioCNHR0b3ef21bVa/3EShq2qo1OW6ttQkXH5iPEmud07rBllR82Pd6v3nqWdZ8WOsmECkiKSzV49dkR/ZT5Nh1dXXIzMxEVFSUIvvzlBACJ50+A8iNAsqaETo8CWJ3rSZtocDF+MlYtIqxAODWoo+wsmG37LrnMi7C9Cj/f1rP+Mt3vIkP1HLHwU+wvP63rv9LkDA2PBtPpV+AuKCIXu8/NiSu1/twR0xIH0X2o3X8VFdXB+yvB4bEArtrsXTpUsyYMUOTtuiN3ySFUlJSAAClpaVITT1yMigtLcWoUaNcvs5iscg+YY2OjlYkqBFt1l7vIxBUt1UiKjRSk2O/V7YOpZZmSJZgh+VmmPBI7vmIDtfmxKWUkqZDXf+OiOr9BYhIDxrhnMRNCU/r9jXRkb0/px9Nq2TxZ599BrTYgOxIICYE2FqF6upqxMX5JjgkAhg/GY2trV2zY782+BrMK1+K18tXwgZ71/KRYZlIiYlHVKQ28Z8vdMZgjL98pxF1PcYDvnJBxkSsKNyLfpYknBM7GmfGjEJqSKxi+48OUTau8dVxtIqfYkZmABFBQGo40GbHzHPmwFbToulQAHrhN0mhvn37IiUlBUuXLu1KAtXV1WHt2rW48cYbtW0cdau6rVLT49+YOBVBkhkvli6C9ahg5dakmRgdnq1hy3rn6GQQ9aywvkh2eVZUpo9bQt6S+8zrJTBUSltbGy666lKgXzRgNgHxoUB0CPqMzoLIr9e6eUSkQ1rHWRZTEO5Ino1Z0cNwz8HPsLu1FFfHn4D7U0/XtF1qYxxGUyIH4ot+N2NoaJrf9DowquLiYqCwATguAZAkIDMSONgI84gEiG2sTDVUUqihoQF79+7t+v+BAwewadMm9OnTB1lZWbjtttvw6KOPIi8vD3379sVf//pXpKWldc1QRiTHJJnwf4lTMD6iL+4o+hgH26txfEQ/XJ84ReumeYwBiHdcJYTk1jFJZCxHfydyIvM0bIkyLMOTAJMEpIUfWZgXDayvQH5+PnJycjRrGxFRd4aFpePzfjfj85pfcVHcOK2boxrGYtoraTqki4dCFlMQhoWlq7b/6rZKxIXEq7Z/f5IxbgCQGNpRYQ0AZqnjAdveOjQ3NyMsLEzbBmrMUEmhX375BdOmTev6f2df9iuvvBLvvPMO7r77bjQ2NuL6669HTU0NJk+ejIULFyI0NFSrJlMPtH56dbTR4Vn4sv8teLpkIf6UNANmyRilhAw+vHd0wkcIgV2HD6G6sRFJMdHom5AkW07KJBFppaamBjhQBwzt0/GUq1NUCJAcir6ThkAcbtKsfUSkP3qKs4COm+RL+kzQuhmqYDxGpE9bt24FSpuAiY4TUiElDChsQPiIFIg9gT02oySEEFo3Qk/q6uoQExOD2tpaDpToA3oLVoyEwYf3jk3s1Dc3462Vy7Cn5MhAkFGhYRiRlY1RWTkYkJoGs5v9jZkk0q+JScpU/yl9nXCXlBMF1LUDY+Idk0IA0GIFfi7D+rXrMHbsWJ+1iagT4yd9YpylPsZj+qWHaiFfULtaSMmBpjWJnxJCgfAgYGCs88qqVmBLJSpKyhEfH7hVV4aqFCL/wkDFcww8eu/YhNDBqkr8c9liVDc2OCyvb2nGT7t34qfdOxEWEoLhmdmYM2IUEqNjPNo/k0SkhIKCAqCoERib4JwQAoDQICArAuNmnQB7ZQvHLiAixlk+wLiMSN+WLFkC1LYBQ11MxtHHAsSEIGF0NkRhg/w2AcAY/WN8YN68eRgyZAjGjfPfPs5kXCVNhxh49FJhfZFTwmZjwQE8/93XTgmhYzW3tWHdvj0wm8xeH1fu+ETuypk4GEjqGFTa9UZRQIMV3377re8aRgGP8RMFIsZlxhAofyMmgOXZ7XacfM6pHfFRSDcxfF4MUNyIffv2+a5xOsPuY8dg+bNvaHHyEkIY6ul5oFzI1CaXiLELgYWbN+LbzRvc3k9WfALuPv1sBVv2+35ZSeQzRu0+tnHjRowZexwwKQkI66HAt7ABKG5Ee00zgoJYDEy+w/hJX7SIs35pzMeGpgJckzAZQZLnD1GMgLGZ8bALWe8ZtfvYe++9hyv/7xpgUnLHwNLd2VENWAVEaWCOzchKIfI5rbLZz5V+j0cOfYVWe7smx3cXnz4pRy4h1Nrejrd+WOpRQggARmbn9LhNSW0NVvy2vcfKo6Oxkoi6I4TAmJmTgMyInhNCAJARAdgFgkckqt84ItIlLeKsZnsb7i3+D54pXYiL9s/HnpZSn7dBTYzNjEuPfzchBH5pzMcDxV/gjfKViuyT1UKOmpubceX113TMMNZTQgjo2K6yBWvXrlW/cTrEx4gUEH6s341/VvwAAPilKR8vZl6CXIt+bpr0eMEyMlfJlaqGevxz2WIUV7t+At0/OQVJ0THYUlSAhpaWruWjsnJ6PO4v+/di4ZZN+M+61chOSMSorByMzM5BUg/jELlqO6uIaOHChUB9GzDczad0JgnoHwPsqkFDQwMiIyPVbSAREYAXSheh4Peb0i3NB3HWvpdxa9JMXJtwouGrhhijkVIKWiuwoGYjFtRsxMH2agBARnAcrk2YDJNBZj02ivARKUCIqWOGMXdYzEBWJCaechLsVYE3NiM/feRTWmSxK6z1uLv4s67//9ZyGOfsewWfV/8KLXtPdj51YrChnO6qbfaVluDpb77sNiF04sDBuGXWqbj0+BPx+AWX4rbZp2Hq4KEYlJaO5JjYHo+/qSC/698FFeX4csN6PPLFZ3jsy//im02/oriq0qPPHKuIApvNZsOpF5wJ9I0Ggj24XCeFAmFBiBrpWcl8Tk4OJEly+pk7dy4AYOrUqU7rbrjhBo+OQUTq0iLO+rUxH+9U/uywrF3Y8Gzp91hQs9Hn7VEKYzT/oZe/49OlC/FK+bKuhBAAHGyvxi9NBYrsn9VCHSoqKoAD9R1jBXmS3MmOBJqs+PLLLz06nj/ET6wUIr9mF3bcdfAzVFgdu/M02dvwwKEvMD4iFxkhLkajV4leLkz+prukyc+7d+KTtT/DZrfLrjdJEi4YPwknDhpyZJnJhP4pqeifkurW8Utqa1BSWyO77nBNNQ7XVOO7zRuREBWNUVnZGJndF9kJiTB5cLHizGaBJWh4AmAXHV3CPCFJQF40sLESJSUlSElJcetl69evh81m6/r/tm3bcPLJJ+OCCy7oWnbdddfhkUce6fp/eHi4Z20jIr9iE3bcf+hzCDg/8BgVlolzYsdo0KreYZzmuc74hHFJ986OHY1Fddudln9ZsxHjI/pq0CL/lDgmB4gN6ZhZzBNBJiA3CudcdgHaapoQHBzs1sv8IX5iUoh8Rovs9e7WUvzSmC+77t6UU32WEGKAoZ7ukkE2ux2fr1+DH3bucLlNhMWCa6fMwIDU3g1EuLkw363tKurrsGT7VizZvhUxYeEY+XsXs/7JKTCbPCveZJLIfzU2NgL764ABMR1dwjwVawH6WJA6th/EwUa3XpKY6Nil9sknn0S/fv0wZcqRAbrDw8PdTjIRkW9pEWeZJROeSD8P9x78Dw60VXQtD5GC8ET6+TAbqEsMYzXvGKWSuaTpkOaDTk+JHIhYcxhqbM0Oy7+r3Yq/pp6BUJN7SYjuVLdVqjrotN7t3bsXKG4Exid5t4O0CKCwESHDEyF21rj1En+In4xzpibywqDQVHzeby4GWhy/hDOiBuPyPpNUPz5Lj9XjTpeq1vZ2bC8+6HJ9amwc7jrtrF4nhACgsr7e49fUNjdh5a4deHnRt7j/0w/xwU8rsbWoEO02q1dtYHcz//Hee+91TJ+a5GZfeDl5McChJhQWFqKurs7hp7W1tduXtrW14YMPPsA111zj0K/+ww8/REJCAoYNG4b77rsPTU2BOUsHER0xJjwbX/X/E65NOBEmdJwvbk2aif6hXt6UaYCxmneOjTUYe3QvxBSE02JGOiyLMYfhjNiRaLK3adQq/5I3dSSQHA5EeplgM0kdg04fqPc4dgKMGz+xUoh8Qss+rnmhyfhPv5vwZMm3+LBqDZKDovFE+nmqDSDGwEJdngQc4RYL/m/ayXjuu6/Q0u4469yIzGxcceIUhAaHKNKuS48/EaeOGoOthQXYVJiPPSWHYfdg/KDG1las2bsba/buRmhwMIamZ2LOyNFIifW+mo2VRMZVU1MDxIV0VPx4KyYEkIBnn30WL7/8ssOqhx56CA8//LDLly5YsAA1NTW46qqrupZdeumlyM7ORlpaGrZs2YJ77rkHu3btwueff+59G4lIEVqPJRJqCsa9KadidvRQfFi5BtckTNa0Pe5izOY9IyaA9FAtdFbsaHxavR5Towbh7NjRmBI5EBYTb8mVctHkM/DJ9kUdMZC3JCB4Zz1iYhwniukpdgKMGz/xE/i7efPmYd68eQ79AUkZWgcqQEew8nDaWTg+sj9izeGIC/JwjA43MLBQnzcBSGpcHK48cSpeX7a4a8SD2cNH4bTRx3k0no87YsMjcOKgIThx0BA0trZga1EhNhfm47fiYljt7p9bWtrb8Wv+fpw66jhF28ckUWC64YYb8Oijjzoss1i6Tza9+eabmDNnDtLSjgTP119/fde/hw8fjtTUVMyYMQP79u1Dv379lG00GQbjJzra6PBsjA7P1roZPWLM1jvdxWOF9UWML7oxKiwTPw+8H7FB6o0pE+hdyJQQHBzcMWD1UXqKnQDjxk9MCv1u7ty5mDt3Lurq6pyyguQ/ZkUPVXR/DCp8o7dPo4ZnZuOMMePw3eYN+MMJJ+G4vuqfgCMsoZjYfwAm9h+AlvY27Cg+iM0F+dh2sAit1vYeX58aG4dklc9FTBIFBovFgujoaLe3LygowJIlS3p8gjVhwgQAHf339RLUkO8xftKeHh6+GQXjNt/Qc2JI62ohSZJUTQiRcjyJnQBjx09MCpGq/DVQYVDhG0qWJp88bARGZ/dFoocneCWEBodgTE4uxuTkot1mxa7Dh7C5IB9bigrQ6KJ/8sisnB73W15Xh82F+RiVnYOEqN7/XkwSEQC8/fbbSEpKwmmnndbtdps2bQIApKa6N0MfEZGWGLspw4jdxgIRq4V8z8jxE5NCRKRL7gYd9S3NiLCE9tgVTJKkHhNC+2oKHf7fLzbLrTZ4ItgchGEZWRiWkYWL7XbsLS3B5oJ8bC7MR23zkUHnRmXn9LivDfn78fXGX7Dg13XI6BOPkVk5GJWVg5TYWEXGzDr6b8AEUWCw2+14++23ceWVVyIo6EiIsG/fPnz00Uc49dRTER8fjy1btuD222/HSSedhBEjRmjYYqLA5q8P35TEZJByPEkIsVqIAonR4ycmhUg1vg5UWu1WnwzUxuBCXZ4EHPnlZXh9+RJMHjAIp44a06vjHpsQ6lymRmKok9lkwsDUNAxMTcP5EyahoKIcmwsOoKiqEulxfXp8/abC/K5/H6yqxMGqSnyz6VckRcd0JIiyc5AVn6B4gghgkshfLVmyBIWFhbjmmmscloeEhGDJkiV48cUX0djYiMzMTJx33nl44IEHNGopEfnazpbDCJWCkWNJ0LopbmG8pixWCBkPq4V8x+jxE5NC5BcW1W3H0yXf4YXMizE8LEO14zDAUI+nwca6fXvw0c+rYLXb8O3mDUiNi8Po7L5eHVsuIXTsOjWTQwBgkiT0TUxC30T3pvCtaqhHUWWF7Lqyulos3rYZi7dtRlxERFcFUW5SMkwmkyLtZZLIP82aNQtCZta8zMxM/PDDDxq0iIhc8eXDt1Z7O24v+hgH26pxR/IsXBF/PMySMtcTpTFWU563CSFWC1GgMHr8xKQQqcKXgcqhthrcX/xf1NqacdH++fhz8mxcHX8CTDoNVsiZJ8GG3W7HVxvWY8n2rQ7L31/1AxKjopHRx7MnIt0lhOS2Uzs55K7NhQVubVfd2IgVv23Hit+2IzI0FCMyszEqOwcDUtIQZDYr1h4miYiI/NcrZcuwt7UMAPB4yTf4vm4bnkg/D30tiRq3zBETQsrrKUara27Cyp2/obmtFcf17YfcpGQftcx/2YRdsaQrq4XIHUwKkaFZhQ1/PvgJam3NAIB2YcOTJd/i54a9eDrjAsQHRSp2LAYayvP0yVNzWxveWbkc24udX9dmteKfyxbj7tPOQlRYmFv7czchJPcarZNDVQ0NkCRJ9qmEKw0tLfh5zy78vGcXwoJDMCwzEyOzcjA4LQOW4GBF28ckERGRenz58G1LUxFer3B80v1rUwHO2PsSPuh7HUaFa/+whDGaOnqK04qrKvHyou/Q0NoCAFi5cwf+OG2mw2QZrBZyT72tBd/VbsWCmo3oa0nAY+nnat0kCiBMCpHifBmozCtbhl+a8p2Wr2zYjR/rd+PsuN6NM9OJwYayvClDLqurxT+XLUJpba3LbVJiYmE2u/dkxZuEkNzrtUoOnTd+ImaNGImtRYXYXJCPnYeLYbPb3X59c3sb1u/fh/X79yHYbMaQ9AzMGTnG40ordzFJRESkDN92G7Pi3uL/wg7nBxD9LUkYGpbus7bIYXymnp5iterGBry29PuuhBAACACfrPkJg9MyEBLE20x3/NSwF59WrcPS+t/QKqwAgN9aDuGvqWcg1KTMAztWC1FP+G0lRfkyULEKG9Y2HpBdd3rMSJwVO9pnbSH3eZMQ2nmoGG/9sAxNbfLTtwPA9CHDcPZx490aM6e3CSG5fWmRHIoKDcPxeQNxfN5ANLe1YfvBImwuzMf24iK0Wa1u76fdZsPmwgLMGalMEtUdTBIREemfHXZMjMjFntZSh+XBkhlPZVyAYEm5bsieYDJIXT3Fak1trXh1yfeoaWpyWlfX3Iyfdu/EtCHDHPan1+u81tVCS+q249s6xyERGuytWFr/G06L0c/sVOTfmBT63bx58zBv3jzYbDatm0JuCpLMeK/vtXilbBleLV8O8ftTrMzgPngk7WxFZlwCGHgoxZtkkBACP+zcjs/Xr4XdRTepIJMJF0+ajIn9B7i1TyUTQnL71apyKCwkBGNz+2Fsbj+0Wa3YeagYmwrzsbWoAM1tbT2+PiEyyq0Zz9TCJBGRMTF+8i1fz+waZgrBg2lnYnbMMNx38L8oaq8CAMxNnI6BoSk+bUsnxmXq6ilea7fZ8MbyJThcUy27fvqQ4Rib20+Npvmls2PH4IOqNU7LF9RsYFKIfIZJod/NnTsXc+fORV1dHWJiYrRujiH5OlABOhJDtyWfjIkRubjz4KeotDbghcyLEWUOVWT/DDx6z9sZK9ptNny69ies3rPb5TZRoWG4btpMtwc1VCshJHcMLcccCgkKwoisbIzIyobNbsfukkPYXJCPzYUFqG9pln3NyOycHhOpVQ0NWL9/L0Zl5yA5JlaFlh/BJBGRMTB+CgwTInLxv7xb8Vzp99jQWIDrE6f4vA2MydTXU8xmFwIfrPoBe0oOy65Pj+uDM8eMlZ3IgtVC8kaEZaBvSAIOtDnOKPtj/R5UWhsUGx+VXcioO0wKkV+YGNkPX/X/E35pysfIcH1ecAKRtwmh+uZmvLFiCfaXlbrcJrNPPK6fPgtxERFu7dMXCSG542k9ILXZZMLgtAwMTsvAhROOx4GKMmwuyMemgnxUNTZ0bXf0oJCubCo4gK83/oKvN/6ClJhYjMrOwcisHGT0iVesMs+Voz9Leg0qiYjUpMXDt6OFm0Lw19Qz0Gq3+rTbGJNBvuFOzPbVhvX4NX+/7Lq0uDjcdsrp3c5squfEkFYkScJZsaPxYtnirmXDQtNxVuxohEi8VSff4CeNFKF1oAIAfYIiMCt6qGL7YxDiPW+TQQBwsKoS/1y2GNVHJSyONSYnF3844SS3BzH0dUJI7thaJ4cAwGQyoV9SCvolpeCcsRNwsKoSmwvzsb+sFDmJST2+fnNhfte/S2prsHDLJizcsgnxkZEYmZWDkdk56JuYDJMPE0QAk0RERL5kMfnm9oFxmO+4E7f98Nt2LNm2RXZdbHgEbpxxCsJCQpRums9oWS10VuxofFq9Hmf8PiZqXqh7FfCeYrUQucKkEJEMBiLe6U0yCAA2FhzA+6t+6HaQ5DNGj8Ws4SPdrkzRMiF0ND0lh4COJ1OZ8QnIjE9wa/u65iaXlVuVDQ1YtmMblu3YhuiwMIzIzMbI7BwMSEmD2Y2Bv3uLSSIi8nd6ePjmS4zDfMed2G1zQT7+s2617Lqw4BDcNHO225XbrBZylhEShxUD7la96prIFSaFqNcCLVAheb1JCNmFwHebN+C7zRtdbmMJCsaVJ07FiKxst/erl4TQ0fSWHHLXlsICmQmJndU1N2PV7p1YtXsnwkMsGJ6ZhZFZORiUlu6z6WmZJCIiMiYmg3zLndhtf1kp3vlxuWwMYDaZcN20mUjTcKIKJWlZLeSrhBCrhUgOk0LUK75KCFVZG9EnyL0nEL3FgMQzva0OEkLgnZXLscFFH3UAiI+MwvXTT/Zodiw9JoSOZrTkUHVjI0yS5HIWODlNba1Yu28P1u7bg5CgIAxNz8TI7BwMTc/0aYl552d0Ys895IiIdMdXsValtQFx5nCYJPUrPI/F2Mv33InfSmtrMH/ZIrS7mF3wDyechAGpnidRWC1EpC9MCpHu5bdW4Jx9r+APfSbhT8kzVR3ckEGJ+3qbDOokSRJyk5JdJoXyUlJx7ZQZiAx1f0Y5vSeEjmaU5NAZY8ZixtDh2HawEJsK8vHboYMug0Q5bVYrNhYcwMaCAwgymTAwLR1zRox2aywjIiJSV5vdiqvy30ScOQKPpZ+LzBDfVH4w7tKGOzFcXXMTXl3yPZpaW2XXn3XcOIzL7e/W8ex2O0w+6E6uBC2rhXyF1UJ0LGN8O0mXfPHkqtVuxW1F/0aDvRXzK1bg0v3/xMG2atWPS91TKiHUacqgITg+b6DT8hMHDsbNJ8/x24TQ0fbVFOq+7eEWC8b3y8P100/Gkxf9AddOnYGxffshNDjYo/1Y7XZsP1jkVnc0IqJA5qsqofnlK7CzpQSrG/fh9L3/wIeVq2EXdlWPyYSQNtyJ4Vrb2/Ha0kWobKiXXX/SwCGYOXREj/upb2nGl7+uw+Nffe70IEnpWJKIvMdKIdK150oXYnvLkaBhU3MRztz7Eh5LPxdzYoYreiwGJz1T6wIuSRIunHA8SmtrsK+sFCZJwgXjJ+HEQUM82o/ekyruMErlkCU4GKOz+2J0dl+022zYffgQNhfmY0thARpaW3p8fUxYOLITEn3QUiIi6s6O5kN4rXx51/+b7G14+PBX+K5uG/6ReQnigyIVPR7jLe24E8fZ7Ha89cMyFFVWyK4fkZmN88dP7HYMnPqWZizdvhUrd+7omjxk7d7dmDxwsHcN9zFWC1GgYVKIvOKLJ1fL63fi7cqfnJbX21vwU8MeRZNCDFC654unOUFmM/44dSZeXfo9zhk7HgNSPLsY+0NC6GhGSQ4BQLDZjKEZmRiakYmLJp6A/WWl2FyYj00F+ahpapR9zcisnB6nrq9rbsKPu37DqKwcpMX14awcRBRQfBFrtQsb7in+D6xwrgqqsTYhyuR+pa47GG9px51YTgiBT9b8hO3F8tvmJCbhqpOmddsVrKSmGk9/86XTTLLfb92Mif0HIMh8ZBgIji3kHpuwo8bWpHiClqgTk0KkW+Xt9QiWzGgXjuWm/S1J+Evq6Rq1KvD4srw3KiwMd592lsc3//6WEDqakZJDQMdMJHkpqchLScV54yaisLICmwrysanwAMrr6rq2G5md0+O+NhcW4LvNG/Hd5o1IiIrGqKxsjMzui+yExB4TSkRERuarbmPFbdWotTU5LTfDhKcyzkeISblbBSaEtONuLCdJEtL7xEMCnLp4J0ZH44bps3qcSTQ5JhZJ0TE4WOX4Ga5ubMDafXtwwoBBHrRcO3qoFtrZchgLajbifzWbMSg0Ff/KuUrR/bNaiDoxKfS7efPmYd68ebB5MHBqoPJVoHJhn3EYGpaG24r+jfzfj2mRgvCPzEsQZlJu5iIGKfKUTAYdrq5Gm83qVnchJoTkGS05BHT8LbMTEpGdkIgzx4xFSU0NNhXmY9fhYvRPTunx9ZsL8rv+XVFfhyXbt2LJ9q2ICQvHyKwcjMzOQf/kFJgNMnglkT9i/GRsOZYEfNP/NjxV8h0+qV7Xtfz/EqdgaFi6hi0jpXgaz00ZNASxYeF458flXeMARYWGYu7MU9wa41GSJMwZORpvLF/itO77LZswoV8eq4V68GXNRvyr4kfsbDnctayioQEV1nokBEVp2DLyV4ykfzd37lzs2LED69ev17opdJShYen4ot8tODt2NADg/tTTMSC055tJdzEh5KywvkjRhNDWokI8991X+OeyxahplO9K5K1ASQgdzQgDUsuRJAmpcXGYM3I0bjvl9B4TOY2tLdhdIv/9rG1uwspdO/Dyom9x/6cf4sOfVmLbwUKPZkMjImUwflKerx6+dYoyh+LR9HPwds41SAuOxQBLMm5KnK7oMRhvacPbeG5kdg5umXUqIiwWhAQF4YYZs5EQFe3260dkZiM9znkGu6rGBqzbt0exdqpNq8/tobYah4QQANhgx9c1mzVpD/k/JoXII74OVAAg0mzBMxkX4v2cP+KSuPE+P36gUDoZJITA4q2b8fqyRWhpb0ddcxPeWL7EqY+5t4yYGFGSv//+2w4WwS56np+ssbUVq/fuxvyli3DfJx/g7R+WYUP+frS2t/uglURE/mNyZB6+6X8bXs36AywKdhsjbfQ2pstNSsYdc87EdVNnejwxRGe1kJzvt26Cza7uzHZGd2bsKNnlX9ZsVPxYWtzbkf4wKURu0/qkMTGyn6IDzfKp1RFKP6Fps1rx7o8r8OWG9Q590gsqy/Hv1T9CuHGz3x21EiK7qw53/RiBUauG3FHT2Iggk7nnDY/S0t6OX/P3460fluGejz/AP5ctwpq9u9HoxmxoRER6oHWsFWm2INuSoOg+GW/5nlJxXXJMDAanZ3j12hFZOUiLi3NaXtnAaqGepIfEYXx4X6fl21sOYU9Lqc/bQ/6PjwEoIDFA6aDGBbimsRGvL1+MQhdTma7fvw8DU9Mxsf8Aj/etZgLk2ETQ7qrDGNAnVbXjKcmI4w31ZPaIUZgyeAh2FB/EpoJ8bD9YhFar+9U/VrsNW4sKsbWoECZJQl5KKrLmjMDEnBEqtpqIiEhbekmumCQJc0aOwZsrljqt+37LJozvl8cxAbtxdtwYrGs6AAAIlYJxcvQQnB07Gn0VTtoCHHCamBQiN2n95IqUpVbAkF9ehteXL0Fds/NMJp0m9MvDcX37ebxvXyaEjl5ulMQQ4H/JodDgEIzJycWYnFy026zYeegQNhfmY0tRAZpaW93ej10I7Dp8CFY7xxwiIv3yx1iLD+F8y934rt1mRUNLC+Ii1J3ifGRWDlJj43C4ptpheUVDPdbv3+v0gFCvg05rMRPZKdHD8F3tFpwWMxKzoociytzzIN9E3mJSiDR3sK0a8UERis4o1p1AD1DUSgit27cHH/28yuWNtyRJOHfsBEwdPNRQM4x1JoyYHNJWsDkIwzOzMDwzCza7HXtLD2NTQT42FxZ0m4TsFGGxYGL2cB+0lIhIn4QQinbDJ31xN76zC4H3V/2AvaUluHHGbGTGK1950sn0+9hCb/2wzGndwi2bMC63P6uFbv0VDgAA0cFJREFUXIgyh+KtnGt8djxWCwU2fgupR2o+uWq2t+GPBe/g3H3zsLulRLXjkPIDSXey2+1Y8MtavLfqB5cJobDgENw4YzamDRmmu4SQu+MHGWWcoaP565hDZpMJA1PTcdHEE/DoBZfgjjlnYMbQ4UiIdD1N64jMbASZ+RyEiPRJ7Sohq7Dhqvw38Vn1L70e189dgf4Qzpc8ie8W/LIWG/IPoK65GS8u/AY7ig+q2DJgVHZfpMY6jy1UUV+H9fv3Oi3XS/e3Y/HzTP6METJp6rHD/8O+1jIAwLn75uH+1NNxSdx41Z5kBeIJXc2La3NbG95ZuRzbi10fIzk6BtdPn4XkmBiP96+XhNDR2xupYqiTP1YOdTJJEnKTkpGblIyzjxuP4uoqbC7Mx6aCfIdy9ZHZOdo10kumiBAE58T2ah+trAogIgD/qvgRPzfuw8+N+/Bd7RY8lnYuUkNitW4WKcCTOG/5jm1YtmNb1/9bre2Yv/R7XDLpREzK83ysR3eYJAmnjBiFt1cud1r3PauFdMVfqoXMfcIQ1Iv4yV7ZAqC6x+38Cb+B1C01n1x9W7sFn1Sv7/p/q7DioUMLcEvRR6i3KT9bEBNCyiqrq8Wz337ZbUJoSHoG/nzamX6REOrt6/TAXyuHOkmShIw+8Tht1HH4y1nn4a9nX4CzxoxDXkoqBqb6diwAIiJ3qV0ltKelFC+VLen6/48NezBn74v4tGq9alVDgRhzacGTOG9j/gF8vn6N03K7EPjil7VoaFFvps7R2X2REhPrtLy8vg6/HtjntJzVQkS+xaQQuaRmkFLUVoW/FH8uu+5gWxVCJBax9YZaXcU6/XboIJ755kuU1ta63Gb6kOG4YfoshIdYPN6/XhNCSr1ea/6eHOqUHBODk4ePxK2zT0Mwu44RUQCyChvuLf4P2oVj9+5GeyverPwRbcKqUcuotzyJ8/aVluDdH1dALgUYZDLh+mkzERmq3kDGJpMJp4wYLbtu4ZZNsNvtTsv1mhjyd/444D31jEkh0oQAkC1TnhhhCsGLmZfAYlL2Bi5QMvtqJ4OEEFjx2za8tuR7NLe1yW4TZDLhDyechHPHTYDJi3JgvSeEjt4Pk0NERNQbat+A/VC/G1uanceMMUHCk+nnw2IKVvX4pA5PYr2S2hr8c9lil+M+XnHiVPRPUb9r/JicvrKV42V1tfg1f7/qx1dKoNxTUGBhUohkqR2kZIX0wSe5N+Lq+BMclv8t7WzkWJSdBSFQTt5qP1Fpt9nw0eof8Z91a2B3UW4eHRaGW0853WmKUXcZJSGk9j59jckhIiL/NCN6MOZnXYGkIMeB+K9OmIzR4eqMMxcocZdWPIn36pqb8OrihWhqa5Vdf87YCRiTk6tU07rVbbXQ5o2sFvJQlbURO5r5XSNlMCn0u3nz5mHIkCEYN26c1k0JGBZTEO5PPR2vZ1+JOHMEzokdjbNi5S8W5Jra1UGd/rfxF6zes9vl+sz4BNx12tnom5jk1f6NmBDyxb59ickhIvIU4yfv+aqbxozowfg273acEzsGANA3JAG3JZ3sk2OTsjyJ91ra2/Daku9R1dggu37q4KGYPmSYUk1zy3E5uUiKdq4WKmW1kFta7e34rnYr/q/gPZyw83HcW/wfVY7DLmSBh4Ms/G7u3LmYO3cu6urqEOPFoLj+xNcngmlRg/B1/z8h0uT52DM98eenVb5+ejJr+EhsKSxAeX2d07rjcnJx2QknISTIu1OKPyQijDozmRx/nq2MiJTF+Mk7vo61YsxheDrjAsyJGY5YczhCVeo25s9xl9Y8iftsdjve+mEZiqrkP2ejsnNw7tgJqs3260pHtdAovLfqB4flkaGhLqvQC+uLkBWV6Yvm6do7FT/hpbIlqLcfGRD8t5bD2N1SggGhKRq2jPwBK4VIF5KDoxFhVjYp5M+BiRbltBGWUPzf9JMRGnwkkJQAnDFmLK46aZquE0K+quTxh3GGjsbKISIi/zItapBq3cZIPZ7EfUIIfLx6FXYUO48lBQC5Scm4YvJUr8Z9VMJxffshMToaABAVGopzxo7H3869CBP65WnSHm/5+j4j0mxxSAh1WlCzUZXjsVoosDApRA54AtA3X3UVcyUlNg5XnTQNEgBLUDCum3YyZg8f5fWTJn9KCGl9TDUxOUREpBx/jbX8+WGcljyN+77bvBGr98p390+OjsH10072+kGeEswmE84aMw7njJ2Av513MWYMHQFLcPeVaxxbCJgdPQwWmdmZv6rZBJtwHo+JyBPsPkZ+yd8CEz1dDIdlZOHiSZPRNzEJaXF9vN6PvyaEjj62v3Qn68RuZURERL7jafy3es8ufLt5g+y6qNAw3DjzFFWnnnfXqOy+WjdBESVNh5ASnuaTY0WZQzEzegi+qd3isLzUWoetzQcxSoUKwOq2SsTJzBZN/oeVQtRFjSdX9bYWbGzybYUBE0LqO2HAICaEDNIGNbByiIjIO6wSInd5Gv/tKC7Cv1evkl0XEhSEG2fORkJUlOx6I9BjPOxrZx81IU92SDz+lDQTSwfcpUpCiAILk0IEQJ0gRQiBBw8twCX7/4lXy5aztNFDvu4qtre0BP9evcrlQH9KCZSEUCc9tUVpTA4REemDTdjxXMn3KGt3ngyCjMfT+K+osgL/WrFUNoYzSRKunTIDWfEJSjWPjuLLhOjkyDxcEz8Zn+beiMV5f8YtSTOQFeL9Q1p3+GsimxwxKUSq+W/Nr/hf7WbYYMcLZYtwdf5bKFU5WPGHJ1VajBv00+6deOn7b/DT7p1YuFmdAeuAwEsIdfK3AaiPxeQQEVHP1Ly5erfyJ8yvWIFT976IL2s2Qqj8gOdo/hB7GVlFfT1eXfI92qxW2fUXT5qMoRnqz97lizgg0KuFgiQz7ks9DaPDs3w+cxz5NyaFSJUgZV9rGR459JXDstWN+3DG3pfwS2O+4scD/CMo8fXFzma349O1PztUCH27eQM2FhxQ/FhMGugzYaUk/o2JiHzvQGs5ni9dBACotTXjzoOf4obC91V/EEfq8CYWDAsJkV0+Z+RoHJ83sLdN6pEvr/96TAz5wz0IBTYmhUhxrfZ23Fb0MZpFu9M6O+xID471faN0TovqoIaWFsxbvBArd+5wWvf+qh9wsEq5ZKGvggUjJF2M0MbeYNUQEZEztaqEbMKO+4r/i1bhWCWyrP433FT4vuoVQ7wZVpY3sWBCVBTumHMGchOTHJZP7D8Ap44co1TTXFLjml9RX4dvNv2q+pAGRNSBSaEAp0aQEiSZMSd6OMwyH68n0s9Dakis4sc0alCi1RTzh6ur8ey3X2F3ifz71ma14qfdOxU5FhNCzozUVm8xOUREpL6Pqtbg16YCp+USJNybciq7mBhIb+LByNBQ3DzrVIzMygYADE7LwCWTJqv+9z/2Ot/b635FfR0+/GklHvniM3y3eSO2Fjp/tgFWCxEpjVPSk+LMkgk3JU3DhIi+uOPgJzjUXgMAuKzPRJwcPVTx4xn1JKzVBW1rUQHe/XEFWtqdK7k6nTJiFE4ddVyvj8WEkGudbfa3aeuPxWnsiSjQqTmW0KkxI/BrU4HTNNWXx0/CuAh1p/02avylR0rEhCFBQbh2ygws27ENkwcOgtlknGf/Ta2t+O/6NVi/f69DddB3WzZiRFY2k5tEKjPO2YIUp/Zo8sdF5OCr/n/CrOihGGhJwb0pp6p6PKPQqjpICIFFWzfj9WWLXSaEgs1mXH3SNJw+eixMvbwAMyHkHqO3312sHCIiUl58UCRezLwEL2dehnhzJAAgM7gP/pw8W+OWkbuUjAlNJhNmDhuB0GD5MYaU5Oqa7s21PiQoCLtLDjt1FztYVYmtRfL7Y7UQkXJYKRSgfDW9YIw5DK9kXoZaWzNCTcGK799IJ18tL15tVis++vlH/HJgn8ttYsMj8H/TT0amAlOWMiHkmd1Vh/2+YqgTK4eIKJD4Kt46JWYYxkf0xd8Pf42L+4xHuEndpICR4i8902Niwx1Kx3lBZjNmDx+Jj9f85LTu280bMDyTs231RAiBzc1FKLfWq9Izg/wbk0KkOkmSEBsUrvh+jRKQaH3Br2lsxOvLF6OwssLlNn0Tk3DdtJmIDuv934kJIe8EUmIIYHKIiPyfrxJCnfoEReCFzIt9ekzynqfxYV1zkyJxml5N7D8A32/dhOrGRoflB6sqse1gIYZnZju9prC+CFlRmb5qoltKmg4hJTzNZ8c72FaNL2s24suajTjQVoHkoGhMjxoMs8QOQeQ+floCkK+DlECmdUIov7wMT3+zoNuE0IR+efjT7NMMlRDyV/6W6HIHu5URERmLUR7K6Zmn8eHhmmr8fcF/8NWG9arPKNcTd67Z3lzXg8xmzBo2Unbdt5s2aP5769ErZUsxbffTeLFsMQ60dcT6pdY6rG503TOASA6TQmRIeg9ItBo36Gjr9u3Biwu/QV1zs+x6SZJw7tgJ+MMJJyHYbO718Xx5Y+/PyZPdVYf9+vdzhckhIvInfABHrngaH9Y0NeLVJd+jua0Ni7ZuxnurfoDVZlOpdd1T+zo9MW8gYsMjnJYXVVVi20H5903reFuOr+5TRoRlyC7/smajT45P/oNJod/NmzcPQ4YMwbhx47RuiqqUDFKEEPisaj3a7FbF9ukOPSeE9JAMstvtWPDL2o6gwS4fNIQFh+DGGbMxfehwRfpoMyGkvED5PY/F5BCRsQRK/EQd9ByDGYGnMWJzWxteW/I9qhsbupat378Xry3tSBLpmTfX8mCzGbOGy1cLfbeZ1ULHOj6yPxKCIp2WL6rbjia7vj8fpC9MCv1u7ty52LFjB9avX691Uwzj/arVuP/Q57ho/3wUtLrunhQotE4GAR3Bw/xli7Bk+1aX2yRHx+DO087CkHT5pwueYkJIPYH2+x6NySEiY2D85EyNKiG7sOOnhr2K75d8x9M40Wa3480VS1FcXeW0btfhQ1i0dZNCLXOPr67Jk/IGIjbceUiDwsoK7Cg+KPsaPcTgx/JFAjVIMuPMmFFOy02QsKslcGNI8hyTQgFEySBle/MhPFnyLQBgW0sxztr3sk9KFfX4hEoP1UGdiqsqsfNQscv1Q9Iz8OfTzkRyTIwix2NCSH2B+nt3YnKIiAj4qGotrsp/E38q/AiV1oaeX6ACPcZgRuFpnCiEwEc//4idh+Vjun5JKTh11BglmuYWX16Hg81mnOxqbKFuqoX0Eov72lmxowEAZpgwNWogXsy8BKsH/QWjw50H5iZyhUkh8lijrRW3F/0b7eJI16RGexvuPPgpnjz8rWrH1VswoqdkUKf+Kak4b9xE2XXThwzHDdNnITzEosixmBDynUAdZ+hoTA4RkRGoUSVU2FaFZ0oXAgC+q9uKOXtexLe1WxQ/DqnDm1jxm00bsHbfHtl1KTGxuH76TASb9T+JtLfX7eMHDESMzAQoBRXl+O2QfLWQHvni3mVwaCqeTD8fPw26D29kX4XTYkYg1BSs+nHJvzApFCCUDFKeKPm2a4T7Y50Q2V+x4+iZ3pJBRztp0BAcnzew6/9BJhP+cMJJOHfcBJhMynzl/TUhtKesoutHjwI9MQQwOUREgcUu7Li/+L8O44NU2xpxa9G/8ejhr33WDr09mDMKb+LFVbt3YuEW+er76LAw3DRzNiIsob1tmtu0uOYGm4Nw8vARsuu+3byR1UJHkSQJ58Udh3iZsYWI3MWkUABQ+qnV5fGT0M+S5LT8+oQpODFqgKLH6sRgxH2SJOHCCcejX1IyokLDcOspp2Nif+X+LoFyQ87EkL4xOUREeqNGldC/q9ZhbeN+2XXTowYrfjxSjjcJiq1FhfhkzU+y6yxBwbhxxmz0iYzqbdPcpuV19vi8QYiWqRbKLy/rdqgEveE9DBkBk0LksYGhKfii31xcFHdkppGRYZm4LflkVY6nt5OpEZ5CBJnN+OPUmbj79LPRN9E5gectXwcHvq4ScmeZHjAxdASTQ8oqLi7GH/7wB8THxyMsLAzDhw/HL7/80rVeCIEHH3wQqampCAsLw8yZM7Fnj3wXByLqvbigcMSaw5yWXxw3Hsf7qDpbb3GYEXgTKxZUlOPtlctkq2BMkoQ/Tp2BzPgEJZrnU95eo0OCgnDyMFfVQhxbiPTF6PETk0J+To2nVgAQZgrBo+nn4h+ZlyAtOBYvZF6MYMmsyrHIUUu7e1NMRoWFIS4iQrHjBlpCyJ11WmJiyBGTQ71XXV2NE044AcHBwfjuu++wY8cOPPfcc4iLi+va5umnn8ZLL72E+fPnY+3atYiIiMDs2bPR0tKiYcuJtKdWvHVqzAh82/92nBw1pGtZWnAs7k6Zo8rxqPe8SUqU19XhtaXfo81qlV1/6fEnYrBCs8a6Sw/X1BMGDEJ0mHNS9EB5mctBuPWIiVX/5g/xk/5HKCNdOzVmBGZGDUGISZ2PEk+ijjbmH8C/16zCTTNmI0fBCqCe+HNCyMg636cBfVI1bol+dH5W+8VmadwS43nqqaeQmZmJt99+u2tZ3759u/4thMCLL76IBx54AGeddRYA4L333kNycjIWLFiAiy++2OdtJgoEicFRmJf1B3xTuwWPHP4Kj6Wfiyizb8aUYRzmGW8SQg0tLXh16UI0uLg5PG3UcYoOA+AOpeO+fTWFXl2XQ4KCMHPoCHz+y1qndd9t3ohBqemQJMlpXWF9EbKiMr1qK5Gn/CF+YqWQH1PrqdWxAikhpFVJql0IfLPpV7z5w1I0tbbi9eWLUdPY6JNj+3tCyJ1KIL1WC3ViEs0ZK4eOaG1tRV1dncNPa2ur03ZfffUVxo4diwsuuABJSUkYPXo03njjja71Bw4cQElJCWbOnNm1LCYmBhMmTMDq1at98rsQ6ZEv4i1JknB67EgsH3A3JkfmqX488pw3MWKb1Yr5yxahvK5Odv3xeQNxyohRvWyZsU0eOBhRoc7VQvvLSrG7RH/3Cq7o8b6GuudO7AT4R/zEpBCRzrW2t+PNFUvx3eYjM1HUNTfj9eWLXZYZK4UJIe+21QITQ/KMnBwKD7MgPTm+Vz8AMH/+fMTExDj8PPHEE07H279/P1577TXk5eXh+++/x4033og//elPePfddwEAJSUlAIDk5GSH1yUnJ3etIyJ1RZgtPjsWb2Ld501CyG63452Vy5FfXia7fmh6Ji6aeIJsJYya9HbNDAkKwsxhw2XX/bxnt8vXcWwhoNHWigXVG/BG+Uqtm+JTMZHhvYqdkhNi0d7e7lbsBPhH/MTuY37KV1VCatFjIKLFxaWyoR6vL1uM4uoq5/ZUVuCjn3/ElSdOVSVg8PeEkDf2lFUgL0m/gzzurjrMrmQu6C3I9aUbbrgBjz76qMMyi8X5xtJut2Ps2LF4/PHHAQCjR4/Gtm3bMH/+fFx55ZU+aSuR0Rg93qLe8yY+FELgP+vWYEtRgez6zPgEXDNlOswm3z6/V/Na6W0XMgCYPGAwFm/b0tXFLiEqGqeMGIVxud0Ptq63bmQlTYeQEp6m6jFswo6fG/biy5qNWFS3Hc2iHWFSMC7tM8GnSWWjCw4ORkWF4wNhudgJ8I/4iZVCfkipAOXTqvXY3qy/5Eyg2FtyGM/870vZhFCn8BAL7C5mX+iNQLiB9rbyhxVDZDQWiwXR0dEOP3KBTWpqKoYMGeKwbPDgwSgs7DgfpKSkAABKS0sdtiktLe1aRxRI/DkhpMeHc3rk7QPDJdu3YOWuHbLr4iOjcOOMWbAEB/emaX7FEhyMmUNHIDE6GpdPnoK/nn0+JvYf4POkmRG8XLYU1xS8jS9rN6FZtAMAmkU7FtVt17hlxuNO7AT4R/zEbxLJ2tBUgAcPLcAF+1/FOxU/uZz2UQ16DER8XSX00+6deGnRt2holR900CRJuHjiCbhw4vGKXxC1SAjpuduYGq9X2+6qw0wOkcdOOOEE7Nq1y2HZ7t27kZ2dDaBj0MSUlBQsXbq0a31dXR3Wrl2LSZMm+bStRP5GCIF6mz5moSH39CY2bHQxNkm4xYKbZs5GdFi41/v2li/iv94cY8rgoXjgrPMxoV+eR7Gv3rqRqX2fMzt6mOzyBTUbZZdT7/lD/MSkkJ9R4qlVna0ZdxR9DBvsaBc2PFbyP9xQ+D6qrOoPbKzHhJAv2ex2fLr2Z/x79SqXFUARFgtumXUqJg8crPjxmRDy/X7UxMQQeeL222/HmjVr8Pjjj2Pv3r346KOP8Prrr2Pu3LkAOga6ve222/Doo4/iq6++wtatW3HFFVcgLS0NZ599traNJ/IxpauEPqv+BbP3PI+ldfLVI74U6LGYO3qbaDj7uPE4f/wkHN35P9hsxg3TZyE5JrZX+/aGESrEg81mVga5YXBYKgZanKtPVjfuw+H2Wg1a5P/8IX7iN4scCCHwl+LPUdxe47B8Wf1vOGffK2i2t2nTMA356glDQ0sL5i1eiJU7XQeEaXFxuOu0s5GXovy4MYGQEFIaE0PkT8aNG4cvvvgC//73vzFs2DD8/e9/x4svvojLLrusa5u7774bt9xyC66//nqMGzcODQ0NWLhwIUJDfTM9NpE/OtRWg8dLvkG5tR43FL6PPxd9ghprk9bNIheUigunDh6KP06diWCzGRKAK0+cityk5B5fpzQjJIR6K9Cqhc6KHe20LM+ShFImhVThD/ETB5r2I0o8tVpYtw0L67bJrrsgbizCTCG9PoYrgfxk6nB1Nf65fDEq6uWnJAWAkVnZuGLyVFX6mAdKQkiNJI7eB58GOAA1ue/000/H6aef7nK9JEl45JFH8Mgjj/iwVUT6omSVkBACDxz6HI32I92JvqrdhJ8b9+Kp9PNxUtRAxY7ljkCOxdyhdHJhZHYObgk7FYdqqjEqu6+i+9ar3gw4Te45I3YknildiISgSJwRMxJnxY7G4NBUn89kF0iMHj8xKUQOZkYPwf8lTMHrFSshcKT70oSIXNyYOE214wZyELK1qADv/rgCLe3tLrc5ZcRonDpqDEx+MMsY4D8JoaP3bYTEEAAmh4iIdOQ/Nb/ix4Y9TssrrA3w3WiO5A61qk1yk5I1qRACAqNKqFMgzUSWEhyDz3JvxNCwNARJZlWOQf6F3cf8hFJPrYIlM+5MOQVv5VyNhKBIAECcORzPZlwIsxR4Hxc1y02FEFi0dTNeX7bYZUIo2GzGNVOm4/TRxzEhpHNG6EoG+O/7T0TkC0qPJfSTTEIIAM6LPQ5TWCWkG3rrfqQEf0wIldWxe1SnkeGZTAiR2wLvLt8PqTEl6uTIPHzd/084KXIAnsq4ACnBMYofo1MgBiFtVive+XEFvtqw3uWTwLiICNwx5wyMyclVpQ3+GAy44quEDRNDRETkiRcyLsaT6ecjynRkXInkoGjcn3qahq2io3mbEBJCoKU98MbidIfSMWhRZQX+uWwRHvniM+wvK3W5nd6Se4F4D0T6xKQQuZQQFIV/ZV+FaVGDVDuGnk+Gal04Glpa8OLC/+HXA/tcbpObmIS7TjsLmfHqdEnSKiHkb93G9HA8bzExRETkGTUewkmShPPijsO3ebdhSmRHZdDf089BtDlM8WN1R8/xmJZ6Ewt+vfEXPPvNV6hqqFewRcrwlweDBRXlmL/0ezz1vwXYWtTxO327eYPGrSIyHiaFDE6NAOVoHJBMeWEhIQgLcT1g98T+A3DL7NMQHRau+LH31RQGVEJIK0wMERGRJ1KCY/BG9pX4qO/1qj6MI/f1JiH0484dWLR1M0pqa/Dst1/jYJW68bon9JIQ6m072qxWzFu8ENsOOv6ddh4qZrUQkYeYFPrdvHnzMGTIEIwbN07rpgQMPZ8E1bxgmE0mXDNlOhKjoh2WS5KE88ZNxGXHn4hgs/J9gLUMArRKPmiZnDFSYojJISLyVqDET2o/hAM64oBxEb6fgUrP8ZhWehMHbikswKfrVnf9v665CS989z/8VnxQiabR70KCgjBtyDDZdd9t3tjta/WWGCLSGpNCv5s7dy527NiB9evXa90Ut/kiQFFLoAcgEZZQ/N/0kxH6+/TyYSEhuGnGbEwbMkyV6iwmhLShhza4i4khIvKGEeMnou70JmGQX16Gt1cugxCOI0a2WtvxxoolqG9u7m3zekUvVUJKmTp4qGz1/W+HDiK/vEyDFnkn0O+LSHtMCgWo1Q378GLpYliFTeumBKyU2DhcfdJ0pMTE4s5Tz8Lg9AxVjhOICSE9YWKIiMjYjPwQrie8GXXUm4RQeV0t5i9dhHabfGx98cQTEBXm27GijqbHhFBv2xQWEoJpg+WrhXoaWyhQq4X2t5bj+dJFuPvgZ1o3hXQkSOsGkHd6E6BUWhvw54OfoNxaj7WN+/FcxkVIC4lVrnE90HsA4suLxNCMTAxKS4fZpE5+NlATQnpLxOwpq0BekjqDhittd9VhDOiTqnUziIh0wZ8TQuSoN/FffUsz5i35Hg2tLbLrzxgzFuP75Xm9f3Jt6pChWL5jG5qPmeltR3FHtVBOYpJGLfNMSdMhpISnqbLvSmsDvqndgi9rNmJLc0c3RgkSbk+ehVQVZ5gm42ClUICxCzvuOfgZyq0dMyH80pSPM/e9hEV1231yfL0nhJSyt+QwWtvb3dqWCSFl6S0h1Emv7ZLDcYaIiJT1RfUG3F/8X9Tb5JMGWgiUmMwdvUkItVmtmL90ESrq62TXTx4wCLOGjfR6/0rQY5VQp962LTzEgqlDhsqu+24LxxYCgAU1G/H3w193JYQAQEDgq5pN2jWKdIVJIQPqzVOrdyp/wg8Nux2W1dqaMbfwA6xucD1FeqDo7cVBCIHlO7bhH4u+xXurVsB+TJ9yX9HzxT+QGSkxBLA7GREFNqWqhErb6/Do4a/xWfUvOHXPi1hZv0uR/ZIyehP72ex2vPXDMhRUlMuuH5aRhQsmHK/pbL6BEBNOGzysa5zOo20/WOTyb6NHaiVqz4gZCROcP4Nf1mx0Gv+KAhOTQgbTmwCl2tqIf5QtkV03NWogJkbker1vd/j7E6l2mw0f/fwj/rt+DYQQ2FxYgO966M+sBq0v/qwS6p4R2ng0JoaIiLwnhMBfD32BOntHhVCJtRbXFryD+w7+F3U27QYd9veYzF29SQgJIfCfdaux7aB83JWdkIirT5qmWkU4HRFusWDqYBfVQpyJDEnB0Tg+sr/T8j2tpdjRwjiPmBQKKHFBEXgv54/IDO7jsDwpKApPpp+v6lMMIwQfvbko1DU34eXvv8HqvY5VWN9t3ogN+ft72zS3MSFkDEZqK8DEEBEFHqWqhL6q3YTl9Tudlv+n5hesbzygyDHIO71NBizetgU/7vpNdl1CVDRumD4LFpnqFV/SOi50lxLtnDZEvlpo28FCFFUaJ+5S657p7NjRDv8PlsyYHT0MZg2r2Eg/mBQyECUClJHhmfiy/y04Paajb7MECc9lXIT4oMhe7ztQFVVW4JlvvsR+F1Nfvr/qB5f9zJWk9YWfiQPPMDFEROTf2oUNz5cukl13esxIzIge4uMWdTDCgzq9W7dvD77asF52XaQlFHNnztZ0pjFA+7jQ1yIsoZgyiNVCrpwcPRQRphCMDc/B39POwepBf8ErWZdhUCgnFyHOPhaQosyheD7jIpwQ2R9l7fWYGNlP1eMZIfjw9mKwIX8/3l/1g8vpRyUAc0aOQXxkVC9a1zOtL/xaJwyMlmDpZKRZyYAjf2fOTkZE/kypKqFgyYwP+16PvxT/Fz83Hhm3Md4cib+mnqHIMcg7vUkC7DpcjA9//lF2XbDZjBtmzEJiNGd00sK0IcOw4rftaLU6TvaypagARZUVyIw3Rsylxkxk4aYQrBhwD2KDwhXdL/kHVgoZhNJTokqShPPjxuKmpGmK7vdYRkgIecMuBP638Ve89cMylwkhS1Awrp9+MmYNH6lq1zwmhIyZEOpkxPZr/TcnIjKKjJA4vJNzLf6edg4iTCEAgL+lnYU+QRGatMdf4zJP9CYhdLCqEm8sXwKb3e60TpIkXH3SdF1Mga51bOgNJdocGRqKKYPlK/BYLQQmhMglJoWIPNTa3o43VyzBwm6muUyIjMKdp56J4ZnZqrZF64u+1skBIyZU5Bjx99D6b09EpAalH8IBHcmCi/uMxzf9b8NdyadgdswwxY9B7unNjX91YwNeW/I9WtrbZddfOH4SRmSpG/e5Q+vYUGvThwxHSJBzZ5gtRQU4WNX991tPiSEmcMmXmBQyADUCFF8wysnMkwtAm9WKFxb+D5sLC1xuMyAlFXeedhZS4+KUaJ5LgX7R9zdMDBER+bf0kDhcnzhFs+MbJS5TS29u+JvaWvHqku9R29wku/7kYSNx4iBtxog6mtFjQ8WqhVz8LXqqFiIKVEwK6RwTQvryv42/dPuU4aRBQzD35DmIDA1VtR16uOhrnRAwYhKlJ0b8nXZXHdb8s0BEpASjxlzUs95WgFQ3NqK+pVl23bjcfjhjzNhe7Z+UNX2ofLXQ5sJ8FLNaiMgJk0J+6HB7LS4/8Ab2tsjPhkVHeHLib7dZsXrPbtl1JknCxZMm48IJx8NsUvdrxYSQMZMn7jLq76b1Z4KIiFwL5JtLJW7y0+P64M9zzkRidLTD8gEpabjs+JNg0sG03nqID/UiKjQMJw0cLLtu4ZZNvm0MkQEwKaRj3jyxsgk77iz6BGsa9+Pcfa/gs6r1EEKo0DrX/DXw2HHwIJrb25yWR1pC8adZp2LygEGqt0EPF3ze/KuPiSEiIt9ilZB/UrLqIzE6Gn+ec2bXQNJpcXG4btpMBJnNih3DW3qID5Wi1O8yY+gIp2qhrPgETOif1+NrA7VayCacB1CnwMCkkJ95tXw51jUdAAA0i3bcf+hz3H7wY9TbWnxyfCMlhDw94f9yYJ/s8uumzUT/FPWn6NbDBV8PN/1GTZh4yqi/px4+I0REvras7jesbdivdTNkGSk2U5IaN/aRoR0PAk8YMAg3zjgFYSEhih+DlBEVFobJAzqqhbITEnHjjNm467SzMCwjS+OW6Uub3YqldTtwS+GHOG/fPJ8XE5A+OHe2JF3w5onVusYDeKVsqdPyb2q3ID4oEn9NPUOJpgWk5rY2bDvonJSJj4xCblKy6sdnQqiDURMl3tpTVoG8pAStm+Gx3VWHMaCP+olSIiIl9LZKqNLagHuL/4NqWxP+0Gci7kw+BRFmi0KtI2+oWekREhSESyZNVm3/ntJDjKi0fTWF6Bfb++TNzGHDMSgtDYPTMiB52MWvsL4IWVGZvW6DEkqaDiElPE3Rfe5pKcVHVWvwTe0WVNuODKC+veUQhoWlK3os0j9WCvmRf1WshB3O2d2M4DjclnSy6sf35ydRW4oK0G6zOS0/rm+uxxcZT+nhYq+HhFCgMmoijANQE5ERKNFt7OFDX3bdVH1QtQan7/0HVjfIVxf7mj/HZq7oqeuP2vQQI+pZdFg4hqRnqh6rG9FvLYfxQdUah4QQACyo2aBRi0hLTArpkLcBysuZl+LyPpMclgXBhOczL0aUWd3ZsIwWdHgaMPzqouvY2L79lGiOS7zYH2HU5EigY2KIiPzZd7VbsbBum8Oyg+3VuCL/X9jafFCjVgWu3iaE5B4AUuDSU4JR6Xutk6OHIMLk3P3xfzVb0C74PQg07D7mRyymYDyYdiaOj+yP+4r/gxpbM25LnoXR4ew72xv1Lc3YeajYaXlqbBzS4vqodly9JIT0cFMf6Akho3Yj68TuZN4JC7MgNa13f/cDfDpK5FJvq4SqrY146NCXsutmRQ/FsFBtu2AY7YFdb/X2Br6uuQkvLPwfZgwZjskuZq7SE73EiWpRqgtZb+mpG5mSwkwhmB09HJ/X/OqwvNLWgFUNezAtSv0JdNQSFR3Rq/ipCSGoUrA9RsBKIZ1Roox5ZvQQfNX/VlyfMAXXJZyoQKu6Z7Sgw9OgQQiB6UOHIy4i0mH52Fz1qoT0cqHXQ0KIOhg9McbPEhH5mxhzGOYmTUOoFOywPM4cjr+lncUuKz7U24RQa3s75i9dhPK6Ony85id8veEXXQ+4q5c4kXxL6Xuus2NHO/w/LTgWNyZORZ5F/fFSSV9YKaQjSk6Hmhocg7tSTlFsf64YLSHkjeiwcJx93HicOWYcDpSV4pcD+7Cx4ACOy1EnKaSXC71ebuKNngxRkj9UDAFg1RARaU6JmMskmXBl/AmYGjkQ9xV/jvW/z/76YOqZSAiK6vX+eyMQ4rNOvU0I2ex2vLVyGQorj8Qb32/dhOqmRlw6abIuppwnbflrtdCEiL7IsyRjVHgmzoodjXHhOTBJrBkJREwKUUDpTeBgkiT0S05Bv+QUXDB+Ekwm5U+aTAg5YkLImdETQwC7kxGRf8m2JOCDvn/Eh1VrsLmpCKfFjNC6SQFDiTFfvvhlLbYfdN7Pun17EGkJxbnjJvT6GErSS6zoC2p2IRNCYOfhYny/ZRMumTQZyTGxqhxHaUrORGaSTPim/62saiQmhfRCySohXwmkp1DHYkKItMTEEBGR99SIuUySCZfHH4/L4xXftccCJT5TIiFUXleHH3bukF2XGBWNk4frK8Gnl1jRyMrqalFRX4/vNm/AgfIyAMBPu3f1mPzz12ohJoQIYFKISBd4kXfGKqHuMTFERETUO5UN9S7HDjp33EREhYb5uEWkptLaGvx9wX+clpfV1WrQGu8pWS1EBHCgaQogeppWUq9YJUS+xIQQEZHyeLPovow+8QgJkn9G/t/1a9DY2uLjFnVPD7NxGdmyHdtkl+ckJPq4Jb3D7zgpjUkhg6q2NqLS2gCbsGty/EApTfYFVgk5Y5UQERGpJS5E3T5eldYG1Nu0TSYEwk2jEl15IkNDcdaYcbLrKurr8NYPy2CzaxNruxJIiSElf9f65mas3bvHaXmQyYTjBwzs8fX+2HWMqBO7jxnUy2VL8X7VagBAtCkUsUHh6GOOwKe5N7JvqIHoKSHEKiEiIgoUcSHxqowtVNxWjavy30RCUBTeyrkaYaYQxY/hrpTwND7Ec8NJg4bgYHUlVu/Z7bRu1+FDWPDLOpw3fqIGLXOtX2yWrmJII/hh5w5Y7Tan5eP75SE6LFyDFhHpByuFDKrG1tT17zp7CwrbqnCgrYIJIRc87TrW2NqC+uZmlVpD3dGySujwoQocPsQqJV9g1zEi0prSFUP7Wstw8f5/Ir+tEr805eOWwg/RZrcqegxP+XvFkBLVG5Ik4cIJJyA3MUl2/fLftmHNXueEkdb8vWJIyd+vtb0dK3fJDyg+fehwxY5DZFRMChnU0UmhTrFmZrmV8vP/s3ff8VGVWR/AfzOTmUkmyaSTRnqDFCAECEHpKCICAgp2xb6Lqyu79oId177ri7pid62IYqMjRXoJLbSQHkjvPZly3z8wkTCTZMrtc7774bNy72TuYQiZZ8495zy5p/H4yi/xn/VrsOP0STR3sJ8gojs8hBBCiDzktJ/D9QXvo8L458DabS25ePjcSsFa/buF6MJknRxiIzGkVqlw5+Rp8NV5Wj3/9e4dPTtViYlcE0Ns/7l25+WirbPT4viwiCiE2LAVvSu1jjEMgzZzF8521aPJRDfIXQUlhf6wfPlyJCcnY/Ro633FYkNJIW5lFxWAYRjkVpTh6z078fi3X+KdTetgZqmvXGwJIbG0jgldJWTtvwkhhPRNauuni7FRLWRmzHj47ErUm1otzv3aeBTvVP/m9DXYQImh/uk9dLhr8jSoVSqLc0azGSu2bERDq+XfsdDifCNlmxxig8lsxpYTx6yem5pKVUIAUNJVhzl5b2PC6ZeRduJpDD+xFJNzX8G6RuuDuYn8UFLoD4sXL8aJEyewf/9+oUOxSb2RkkJcqW5qQmld7zkDDMPAbGagVNI/GUIIIaSb1NZP1jibGFIqlHg78gb4qSyrTJLdw3CDv3jm0cg5McSGqMAg3DBuvNVzTe3tWLFlEwwmYVsC+yKXxBDbf47DxYWobWmxOB4TNAhxg0JYvZZUaRQqnOgoQ7mhEZ3Mn9/f1hLdRJ7oE65E/TVoMu4fNA23BIzDbJ8RmOCViOG6wUKHJUr2zhM6VFxo9fjI6Bg2wqEqoT6IpUqIcI/mCRFCxMbZxFCcdhA+il4ET6W259goXTT+F3MXAty8nA2PVXJNDLHV4jM6Nh7TUodZPVdcW42vdu0AwzCsXIttUk8MsR0/wzDYlHPU6rlpKdb/ji/mCq1j1hLaAFBnpKSQq3Bo97GffvrJ7q+57LLL4OHh4cjliBXX+gtXpi33nSwOFRVYHFMqFBgWGe30c4stIUSIq5D6QpkQIn6pHuF4P+pW3F70EcZ6xuLtyBsF3X2sP92JIbmt6SK9I+y+GWjN7PRRKKuvw4lzZy3O7SvIQ7h/AKaKdEAx7Uz2p9yKcovqfwAYpPdBWgStC7pplW7wVGrRau49d4kqhVyHQ0mhq6++2q7HKxQKnDlzBrGxsY5cjhDeWGsdA4DE0DB4ubsLEJFrEGOVUHlZDULDAnmOhhBCiFDY2KZ+jGcMvoq9B0naEGiUDi2zeSXHbevZSAwplUrcNmEyXvv1J1Q1NVqcX31wH+KDQxAVGOTUdbgixcQQFzdvNh+3XiU0JSWNRkJcxE+ls0gK1VkZV0LkyeF3q4qKCgwaZH3rxot5e3s7ehlCnMJa61iU861jYnxzFkvrGHEd1DpGCBEzNhJDaR7SauenxJB1Oo0W90y5DK/++iM6DIZe56anjUBEgLhvHEkpMcRFQuhcXa3VSi9vd3dkxsXb9BxibB3jqv1znFc86oyt8HPTwU/lCX83T8RqxZn0JOxzKCl066232tUKdtNNN0Gv1ztyKUJ4lc1R65hU3pSFIMYqISIv1DpGCLEHG4khqZFjYogNwT6+WDRhCt7bvB4MAI2bG26+ZCLSWZozybXu9z9XXIduPm59x7GJQ1KgVom/io9vL4bPEzoEIiCH6uY+/vhju6p/3n33XQQGijubTkh1UyPOulDrGFUJEUIIIcI53n4Ox9vFk4gJ0YXJagg1W1UeKYMjMHvkaPh7emHJjFmSSQhdSMw3R7iIrb61BQcK8y2Oa9zcMH7IUJueQ4xVQoRwhbVmyr1797L1VIQIIrvPXcecm4XlindnbCX2KiGqJJI+MS+ECSHi5exuZAPZ11qImwpX4Paij1DQWc3ptexFiSFL01KH4bHZ8zDYn9vvCy6J8f2Qq5i2nDgOs5Ud4sYlJMFTK78bvYQ4i7Wk0LXXXsvWUxERk1Jpsd3zhIosk0JKhQLDIqLYCkk0qEqICIHmCRFCpISrxNDW5lO4vegjtJg7UWdqxW1FH6K8q4GTazmKEkO9KRQKeGjEuZOcPcSYGGJbe1cXdp05ZXFcqVBgcnKqABERIn52NVQuWLDA6nGGYVBXV8dKQK7I1frWxaiv1rGk0HCnWseoSqhvYq8SItLnCotfQgi32J4v9EvDETx09lsYYe45Vm5oxG1FH+HL2LsR4ObF2rWcRXOG5EksA6i5eo8+WFRgMRgcANKjYxHgZdv4E2odI67GrqTQpk2b8Pnnn8PLq/cbFsMw2L59O6uBkb5taz6NCkMjfFU6+Lrp4Kc6PyU+SE27vDmqr9YxZ/rGxfCGSwghhBBxYBgGqxuyeyWEuhV0VeP96m14LHSmAJH1rbtiSOrJITZ2I7NFW2cnTIwZ3u62b8gjBKEHUHN50+aShCT46Tyx+fhR5Fb8WRk/LSWNs2sSInV2JYUmTZoEb29vTJgwweLcsGHDWAuK9O+b+v3Y2HS817FgNz12DHlMoIjEh1rH+iaG1jEpVQmVl9UgNIwG5TtLiNYxhmFQ19pi851BQgixhq1qIYVCgf9E3ohFRR8hu62417mZPsPwj+DpTl+DK3KoGuI6MVTRUI//btkIvbsOf7t8BtxUKs6uxRaxVA2xSaFQIGVwBFIGR6C4phqbjx9De1cXIgJoLUdIX+yaKfT9999bTQgBwMaNG1kJiAyswdhmcczPTSdAJPJQxUHrmNzeYAmRmjjfSJTW1WLpqm/w1rpfsC//DNoNnUKHRQiRKLbmC+mUGrwfdSuGuIf0HFvoNwavD14IjVLc22TLYc4QV21Bx0pL8Nqan1Dd1IT8qgp8t283J9fhAt+t1nxeLyowCLdPnIJ7p15u89dQ6xhxRU69+1RUVCAkJGTgBxJWNZgsk0K+KkoKOcpalRAAjHSwdUzMCSGqEqJZQq5kV+75QZN5lRXIq6zA6gMHMH/YZXho8m0I9PQVNjhCiOSwVTHko/LAx9G347qC/2K6PhX/DJ4OhULBQoTck0PFEJsYhsGGnCP4JfsALtzrakfuKYT7B2B8km3bnwuNr4ohoWb9qZSs7a0kWwzDoNzQiHpTK+qMragztaLe2IZE92BEeyUIHR7hmFNJocsvvxxHjx5lKxZiI6GSQlJZBNjdOmZlnpBSocCwSPm1jhHHUAuZtMT5RqLLaMSBwvxex5s6WrHyyAY8ffk9AkVGCCHnBbp544e4++Ctkt722FKfM8RmG1mHwYBduadgufk5sHLvLoT6+CI+RBo7b8qxlYzYjgGDybmvwHzRd/ON/mNxQ8gMgaIifHEqbcow1n4EEi4xDGM1KeRDlUIO6at1bEhYODy19i/U6M1UvKhKSDhCzBM6VFxodfeReWlT4akR9wBQQoh4sblNvRQTQheScjsZWy1CHhoN7pp8GTRulvfZzQyDD7ZtRl1LMyvX4gOXlTxS2BFU7K1jXP6bUyqUVosM6oytnF2TiIdTSSGplLrKzebEh/BT3P34LPpO/CfiBjwbdjVm+QwXOixJ6qt1LD3K/tYxsSeEXL11jLiG7kXnrtzTVs/flCGunX3E7OWXX4ZCocDf//73nmOTJk2CQqHo9evee+8VLkhCBMBmYkjqKDEEDPYPwM2XTrR6rqWjA+9v2YROKzcpxCrON5L1BI4UEkIE8HfztDhWb6KkkL2kuH4S90Q7YkGhUCBU7YNQtY/QochCYmgYxrUk4UhJEVo7zw+hpdYx+aEqIddS2diA/KoKi+PJwXEYHpYkQETSs3//fvz3v/+1urPoXXfdheeee67n9zodVaoS18PWfCFb/Np4FK2mTizwH83L9exFc4bO30y8Ylg61h09ZHHubF0tvti1HYsmTJHUDXWptJMZTSZWdnoTe5UQH/xUlkkhqhSyj1TXT5QUIrJib494TNAgxAQNwsKxlyC3ogyHigphMBntbh0T+5smVQk5j+YKOUaI1rHdZ/quEpLSglwoLS0tuPHGG7FixQq88MILFud1Oh1tMkEIT76q24ulZT8CALxUWlzpY/lBQwykOmeIzflCV44YibL6OhwtLbY4l11UiHC/I5g+bAQr1+ILG4khrquEVu3fg7N1tZiWMgxpkVFQ0vu8w6xXClmOLSHWSXn95FT7mIqFrCwhYqBSKjE0bDBuGDcet46fLHQ4hEVUJeQ64nwjYTKbsTf/jMU5N6UK84dNEyAq4XV2dqKpqanXr84/KiOtWbx4MWbOnIlp06y/Xl988QUCAwORmpqKxx57DG1ttGAkronrNrL/Vm/F02Wrwfzxv3+e/Rbbm60nvcVCiu1kbFWIKBUK3DJ+IkJ9/aye/+XQARyzkjASO2eSOlwnhJo72rEnLxeF1VVYsXUTXlj9HXbknoLBZOT0unK10G80Xg6/Bv+NvAXfxv4FmxL+gXUJDwodlmDsWTsB0l4/OVUpdOiQZYkkkSep3fnhE1UJDUzqVUJEOnJKS9Dc0WFxfHhUNPx0egEicpy3uzsSBjlXnbZbAbz33nt4++23ex1funQpnnnmGYvHf/3118jOzsb+/futPt8NN9yAqKgohIWF4ejRo3jkkUdw+vRpfP/99/3G8dNPP9kd+2WXXQYPDxoKTsSNqzayVyvW4f2abb2OGRgTFpd8gY+jb8coz2jWr8kWKbaTsVUx5K7W4O7Jl+HVNT+i7aIPkAyAT3/fin9cObvPxJFYibWVbPupEzCYTD2/r2pqxNe7d6C8vg7XZo6z+Xmodey88d6JQofAiiAvT6fWTw0dKuQYDPDx6T2upa+1EyD99RO1jxHZYKv81x5ifIMkf6IqIdfRM2C6j9axcQmuO0vo3nvvtShj1mq1Fo8rLS3FAw88gI0bN8Ld3XoL7d13393z32lpaQgNDcXUqVORn5+PuLi4PmO4+uqr7YpZoVDgzJkziI2NtevrCBECF4khT6Xlv1EA6GAM2NlyRtRJIUCaiSG2BOn1uGPiFCzfuA7mi3Zq7jAY8P5vG/HQzDnQWfk5LGb2Joa4rhLqMhqx/dQJq+fGJw3l9NpE/tRqNWpqen+OsLZ2AuSxfnKqfQwA2tvbe5U+FRcX46233sKGDRucfWpCiAzIqUqIkkz24XueUH1rK06UnbU4HujljakJ4hzQygetVgu9Xt/rl7WFzcGDB1FVVYWRI0fCzc0Nbm5u2LZtG/7zn//Azc0NpgvuxnbLzMwEAOTl5Q0YR0VFBcxms02/xDR8kRAh/CVoEu4IGG9x/B/B03H/IGm0wobowiTVTsZmtUhSaDjmjsq0eq66uQkfbf8NJrOZtevxxdadyfjYbWx3Xm7PJjEXSh0ciRCJVWIRcbJl7QTIY/3kdFJozpw5+OyzzwAADQ0NyMzMxOuvv445c+bg3XffdfbpCREtKVQJiaF1TCiUwHEd3YvPvXm5YC66KwsAYxMSoVQ4/XYne1OnTsWxY8dw+PDhnl+jRo3CjTfeiMOHD1udI3j48GEAQGho/wnAW2+91a5S5ptuugl6vbTa/YhrY3u+kEKhwCMhM3Ct36jzv4cCz4TOwb1BkyQ3MN9VE0OThqZgbLz1dpxTZefw40HrbSZSIPQW8yazGVuOH7N6blqqfcPYqXWMOEsO6yen28eys7Px5ptvAgC+++47BAcH49ChQ1i1ahWefvpp/OUvf3H2EoSIjhQSQmIgVJUQJYRcj5lhsDvPsnVMoVBgbJw8euS55u3tjdTU1F7HPD09ERAQgNTUVOTn5+PLL7/ElVdeiYCAABw9ehQPPvggJkyYYHXr1Qt9/PHHdsVCN5WIFLHdRqZQKPB82Fx0mA2Y7D0Es3xHsPbcfJNSOxlb84UUCgUWjr0EFY0NKKqusjj/24ljCPf3R2ZcgtPXEkJf7WR8JIyOlBShpqXZ4nh00CDEDQrm/PqEXEgO6yenk0JtbW3w9vYGAGzYsAHz5s2DUqnE2LFjUVwsvQn7YvdS+S8o7KqBn0oHX5UOvipPRGr8cZXvcKFDE5Q9b95l9XXw9fSETiOtXm57uXKVEBEe361jueVlqG1psTieHD4Yw0KG8BqLXGk0GmzatAlvvfUWWltbERERgfnz5+PJJ590+Dlramqwd+9emEwmjB49esA7ZoSIHduJIZVCiTcirmPt+YQkpcQQW9QqFe6aNA2v/LIaje2WOw19tWsHgvU+iA4aJEB0zrs4McRHQohhGGzKOWr13LSUNMlV0tlKShV3pDcprJ+cTgrFx8dj9erVmDt3LtavX48HHzy/bV1VVRWVfnPgQFsRjrWf63VshEcEp0khub2Bf/r7VlQ2NmBIWDjSo2ORFhEp+wSREORaJVReVoPQMOd2hCLs6V6AKhRAVEAQimure5135QHTbNi6dWvPf0dERGDbtm19P9hOq1atwh133IHExEQYDAacPn0ay5cvx6JFi1i7BiFEXKSSGGKrWggAfHQ63D3lMry59hcYzb1nixjNJnyzdxcenjlHsskMvncmO1NZjpJay7VekLcewyKi7Houah0jXJHa+snpIQtPP/00/vnPfyI6OhpjxoxBVlYWgPNVQ+np6c4+PblIvdHyLoOvGw3ktFVlYyPO1dfBaDYj52wpPt+xDY9/8wXWHskWOjRCiBOSQsPx0FVz8OisuZg4JBk6jRbe7h6YMcT2LWkJt1ouquR69tlnsW/fPuzbtw+HDh3CypUr8cQTTwgUHSHsYXu+kD1MjPiHF0ul4oHNhEFUYBBuGHep5TUCAnH35MskmxDqZusAajZszrE+S2hKShqUSpofSOSHj/WT05VC11xzDS699FKUl5dj+PA/q1WmTp2KuXPnOvv05CINJsukkJ/KtZNC9tzJOVRcYHHMaDbDV+dl83NIYZ6Q0K1jcq0SIuJibQE62D8A12aOw9WjxqCysRFuVob7EWFkZGTglVdewZw5cwAAbm5uqKqqQmLi+ZlPlZWV0Gg0QoZICGu42Ka+PwzD4PXK9ThrqMfrgxdCRcP1WcFmxdCYuAScravDbyfOJzVGx8bj+qxLoXFz+uOYyyirr8Pxc5Z/H17u7pKdzSQ2P9Rno7irFvWmVtQb21BnakWGVxL+HXOH0KG5LD7WT6z8FPL19UVJSQnWrFkD8wXbK1ZUVGDIEJrlwBYDY0KL2XLrRV8XTwrZ41BRocUxlVKJ4ZH2lZsSQvrG9zwha9QqNwz2F+5uPbG0fv16LF68GJ988gmWL1+Of//731i4cCFMJhOMRiOUSiU++eQTocMkhDV8JYZMjBnPlv+Er+r2AgD0Kg88GyrudiSptJGx7eqM0ahsbEBCSCimynj+DVc297Hj2MQhKXYn16h1zLrPanchp6P3qBIoKHEpJD7WT07/Da9btw4333wzamst3/QUCgVMJpOVryKOaDd3Ic0jHPXGNjSY2noSRL4qT4Ejk4bKxgacq6+zOJ4UGgadVj4zhahKyDnnKmsRHtx/MoHmCgnPljJ1WvCJS3R0NH799Vd89dVXmDhxIu6//37k5eUhLy8PJpMJQ4YMgbu7u9BhEiIpBsaEh85+i18b/xy8+1XdXvgoPfCPkOkCRiYfbFYLKZVK3DP1cigpGWS3htZWHCjMtziucXPD+KShAkQkT/5ulp8ra41NAkRCuvGxfnK6tvRvf/sbFixYgPLycpjN5l6/KCHELr3KA9/H3YctSQ/jUPIzOJHyAnYPeRw3BowVOjRJsFYlBAAjo2N5joSI1blK/kr9CXFV119/Pfbv348jR45g0qRJMJvNGDFiBCWEiCxxPV/o4oRQt/dqtmJF9XZOr+0sqcwWAti9yUAJIcdsPZkDk9lyZtbY+ER42fn+QTeN+mZtLEm1gZJCYsDl+snpSqHKykosWbIEwcHBTgdD7KNWqBDo5i10GIKyb56Q9dYxe3YqkMI8ISFJvUqIOE8MrWNEvNasWYOTJ09i+PDh+OCDD7Bt2zbceOONmDFjBp577jl4eHgIHSIhrOOyjex6v0xsbDqBLsbY67gKSgSrxb8LsJTayNisGCL2ae/qwo7cUxbHFQoFpiSnCRCRfPlZqRRqNLXBYDZCraQ2MqFwvX5yulLommuu6bXlGpEXqbxRD6Sv1rEhoeHUOkYcQoko4VDrmDT94x//wKJFi7B//37cc889eP755zFx4kRkZ2fD3d0d6enpWLt2rdBhEsIJriqGMr1i8Z+IG6C6YEmvVbjhncibMNt3BCfXJNxjGAbHSktgZhihQxGFnbmn0GEwWBxPj4pBoLdr3yBnm98fY0lUUCLQzQsJ2mBM8E5Gq5W5toQffKyfnE73/d///R+uvfZa/P7770hLS4Nare51/v7773f2EoQ4ra/WsfToGJ4jkS+pVwld2Dpmy1whIryzdbUI9/OnQZ0S8cknn2DDhg3IyMhAXV0dxo4di6eeegoajQbPP/88rr/+etxzzz2YMWOG0KESIilT9UPxr8HX4KGzK6FTavDfqFuQ6Smd1niqFurNaDLh2727sOvMaVwxLB1XpWdwej2xM5pM2Hoyx+q5aanD7H4+umnUv5sDsnBjwFh4K7VQ/rGLYbQX7ewmJD7WT04nhb766its2LAB7u7u2Lp1a6/FuUKhoKQQ4Yw9b8rZVrail1vrGFUJEVfQXSVU0VCPl3/+AcE+PhiXkIQxsQnwptYjUfP09ERhYSEyMjJQWlpq0QOfnJyM33//XaDoCOEel21kc3zT0WU2YqhHGFI9wjm5BjmPy8RQU3sbPti6GQVVlQCAdUcPIczPz6XnXx4ozEdDW5vF8cSQUEQGuMamH3zO3/JW0Xw/seFj/eR0UuiJJ57As88+i0cffRRKpdPdaISwrqKxAWX19RbH5dY6JiQ5VQkRx/E5T2h3Xi4AoLKxET8c2Iefsg8gLSISc0dlIj00mbc4iO2WLVuGW265Bffffz/a2trw6aefCh0SIbzjMjF0rf9oTp6XD1KqFgK4SQyV1tbgv79tRENba6/j/9u5HYP0Phjs75oVzKW11td6jlQJESJFfKyfnM7idHV1YeHChZQQIqLlCq1jVCUkDJorxK/uKiGjyYS9+Wd6nTOZzTh+thQeao0QoREb3HjjjSgtLcWPP/6IoqIizJkzR+iQCBEE1zuSSZWUdiPjQqfRiKZ2y4qYLqMR7/+2Ec0d7QJEJbxrM8fhsVlzMSY2vmfntjA/PwwNG2z3c1HrGJEiPtZPTmdybr31VnzzzTdsxEIIJw711ToWaXvrGBEfSsi4rpyzJWjp6LA4PiIqGkMC4wWIiNgqICAAo0ePhq+vr9ChEOKyDIwJNcZmocOQPLYTDPHBIViQOc7qubrWFny4dbPVLdldQbh/AG4ZPwnPzl+IKclpuGJYOs0TJC6F6/WT0+1jJpMJr7zyCtavX49hw4ZZDJp+4403nL0E+UOjqR06pQZqhYqX64m5jNfWkt0+W8fCwqHT2N46JvZ5QkISqnWMLX21jtGwafHadea01eNZCUk8R0JsdfToUaSmptpcVXz8+HEkJSXBzY22vyXyxGUbWX86zAb8rfQLlHTW4cvYuxHg5sV7DP1x9TayS5OG4lx9HX4/fdLiXF5lBb7btxsLx17C2vWkxs/TC/NGZwodBiG84Wv95PRq69ixY0hPTwcA5OT0ngxPGVx2XVfwHvI6q+Cl1MJXpYOfmw5ZnvF4KOQKoUMTrT5bx6KodUzKqEpIfLieJ9TdOlbf2oKT585anA/y1iMhmL+ZRsQ+6enpqKioQFBQkE2Pz8rKwuHDhxEb67rDVYn88Z0YajZ14J7iz7C/7fza6I6ij/F5zF00WNZJbCeG5o8ei/KGeuRVVlic+/30SYT7B+DSxCGsXc9VUOsYkSK+1k9OJ4W2bNni7FMQGzWazvcSt5g70WLuxFlDPcLVfgJHJW7ZRdQ6xiW5VgnZo7ysBqFhrrH7hRjsyTsDxsrxsQmJiNJH8h4PsQ3DMHjqqaeg0+lsenxXVxfHERHiWmqNLbij6GMc7/izCud4RxnuKf4MH0UvgrtS3c9X80tq1UJsc1OpcMekqXjllx9R39picX7l3l0I9fFFXHCIANERQvjE1/qJ6rIFZusdIoZh0GCyHD7nq7LtG0RObG4da6hHeYPzrWNiRlVCxBV0VwmZGQa7rbSOKRUKZMYl8B0WscOECRNw+rT1tj9rsrKy4OHhwWFEhIgDX9VCz5b91Csh1G1/WyEePfcd3oq4nvMY7CG1xBDb1ULe7h64Z8pleGPtz+gyGnudM5nNWLF1Ex6eeTX8vcTV/kfkh2EYNBnb0GRqx2AtjVXgG1/rJ4eSQjQbgH+t5i4YGJPFcT8310sK2epQsfXWsZHR9pXT0Twh66ReJSQHZ6pqkDBI+ColvraiP11+DnVW7pqmDI6Ar86TlxiIY7Zu3Sp0CISIFh+JoadCZ+FERxmKL7qOn0qHOwLHc3ptV8F2YmiwfwBuumQCPtr2m8W5lo4OvL9lI5bMmAUNfb4aELWO2efflRuxqfkE6oytqDe1wcCYEKb2R3HG+0KH5nL4Wj85tPtYeno6amttf/PKyspCSQl9sHaGtSohwDUrhWyVbWWekEqpRFoEtZhIFZtVQra0jrHRXkac010lBAC7z+RafUxWfBIt+Aghksb1NvVBam98En0Hgt30PceC3fT4IuZupHnYv7U3H6S4RT3b70Ujo2MxPW2E1XNn62rxxc7tYBhrTdXSVd5Q77K7rIlFtbEZpzoqUGVs7ilKqDE2ye57jfzJodQyzQbgn06pwd8HXYYGUxsaTG2oN57//8Eaf06uJ9aSXVvvwDAMg9kjRyG7qBDHSovRYTAAAIZS6xgrqEqoN5orxL2Wjg4cLSmyOK730CFlMCWECCFkIIM1fvgk+g7cUPhfeKvc8Wn0nRisodmUYjczPQPn6uuQc9byBvvBogKE+wfg8rThAkTGvi6jEf9e9yu0ajdMTk5DVnwitGrn5l1J/aaREMlRfzfL6usuxogWcwe8VdTaLUcOJYVoNgD//N08sXjQFKHDkAyFQoG0iCikRUTBYDLi5LlzOFRcgLQIGjAtVTRLyLXtL8iD0cqdw7HxCYjxoX/XhBDp46ONLN59ED6JvgNBbt4IUntzei02SG22EMB+G5lSocCt4yfh9TU/oaKxweL8z9n7Eebnh9TB0q+E35uXi5bODrR0At/t2401R7IxIWkoJg5Ngbc7fZbki5/Kekt+taGJkkIy5VBSiGYDEClRq9wwLDLKoR3HxDpPiKqEnENtYezhcp5Qd+sYwzDYZWXANABkxSdydn1CCOEbH4mhZA9ptWVRYgjw0Ghwz5TL8MqvP6L9og4MBsAn27fgn1fORoivdCu/zGYzNp/I6XWsrbMT644expDQcHiHUDKCL359jCepMTYhFsE8R0P44NBMITHbvn07Zs2ahbCwMCgUCqxevVrokAghTqIqIddWXFNtdSfBhJBQBOl9bHoOKc6mkLvPP/8cn332mdBhECI6XM8XIvxgu20pSO+D2ydMgUKhsDjXYTDgv1s2oq2rk9Vr8ulISTFqmpssjkcFBiEuOMSh55R665hQBmv8MVoXg8v1KbjObwweC5+P16JuQzhHY0uIfbhYP8luXH1rayuGDx+O22+/HfPmzRM6HMIiNu+4EMe4YpXQucpahAcPvECnuULsunDAdH9VQrTgk67XX38dW7ZssTj+xRdfwGg04tZbbxUgKkJIt1pjC/I7qzHGM0boUCRZLcSFoeGDMTdjDL4/sNfiXHVTE46fLcXo2HgBInMOwzDYdPyo1XPTUoZZTYQR7ozyjMaXsXf3/D7aK0HAaMjFuFg/ya5SaMaMGXjhhRcwd+5coUMhEketY+JAVULixcdW9J0GAw4WFlgc91BrMCJK+A8qxHFKpRJ+fpatDrNnz8abb74pQESEiIfQ1ULlhkbcUPg+7ij6GAdbiwSNRcq4uHExOTkVY+J6f0jXuLnhjolTJZkQAoD8ygoU11RbHA/01mO4A+MfCJEzLtZPsksK2auzsxNNTU29frk6uhNDrJFDlRCRhgurhLKLCtBpNFg8ZnRsPDRusit2dSlKpRL19ZZtgd7e3rTtrQTQ+ol7QiWGijprcH3BeyjorEYHY8BdxZ/iRLvwa0OptgGznRhSKBS4PusSRAUGAQACvLywZMYspEdL90bJxj6qhKYmp0KpdOzjKlUSE7niYv3k9Iq6pKQEERERFmV9DMOgtLQUkZHinoS/bNkyPPvss0KHQQZArWPnUZWQc7geME0tZOzrs3UswfbWMal+kNBrPJyuxlJAvCX39913H+bOnYtvvvkGwcF/Dq6sq6sTMCpiK1o/8YOPwdMXOtVRjkVFH6HG2NJzrNncgduLPsZXsXcjRhvEWyzWSLWNjO3B02qVG+6aPA0/7N+LazPHwcvdnbXn5lt5Qz2On7V8bby07sikzSSIAwJ1eqfWT1VN4r7pyMX6yek/cUxMDMrLyzFo0KBex+vq6hATEwOTyeTsJTj12GOPYcmSJT2/b2pqQkQEZZal6vjZUiSEhFIFAcuoSogIoa6lBUXVVRbHI/wDEBFAyTepu+2229DZ2Ym0tDRMmTIFI0aMgNlsxpdfftnrfZmIE62f5Om7+gO9EkLdak0tWFr2Iz6LuVOAqIg1vjpPLJo4RegwnLb5+DGrxycMSab1PCFWcLF+cvpfGsMwVod/tbS0wF0CWWutVgutVit0GAP6qeEw1AoV/FQ6+Lrp4KvSwU+lg1apFjo00Sivr8e7m9dD4+aG1MERSI+KRcrgCIfeUMQ4T4iqhJzjTJWQrcOmXQlX84QubB3z9/LCs/Ovw568XOzOy0V96/kPKuMSkji5NuHfPffcgwULFmD16tXIycmBp6cnVqxYgaysLKFDIwOQyvpJDvisFnosZCYqDE1Y39R7a/AkbQheG7yAlxgGQtVC8tHQ1or9BXkWx9UqFSYMSXb4eal1jMgd2+snh5NC3VkohUKBp556CjqdruecyWTC3r17MWLECEefnlzk6bLVaDX33mZyrm86XhHJG7QYZBefH0bbZTQiu6gQ2UWF0Li54S9TpyMhhPuBuHJFVUJESP5eXrhyxEhcMWwETpWXYW9eLjJi42TfOuZK/Pz8sGjRIqHDIETU+EoMqRRKvD54IVpLOrGj5QwAYIRHBFZE3QZfN90AX00GQomh3raePA6T2WxxPCs+SdItcWyhNQzpD5vrJ4eTQocOHQJwvlLo2LFj0Gg0Pec0Gg2GDx+Of/7zn85HaKeWlhbk5f2ZcS4sLMThw4fh7+8v+vlGfTEwJouEEAD4qlzjzdnWN89DRYUWx8xmMwb7U4WH1Eh5xzGaK+S4C6uELqZUKpEcPhjJ4YN5jIhwKTg4GImJiUhLS0NqamrP/1vbUYMQwl9iSKt0w/LIm3Bb4YfQKTV4J+pm6JSagb+QR1KtFgL4TwxVNNSjuLYGmXHi2la8vasLO06ftDiuUCgwJSVVgIgIkQYu1k8OJYWOHj2KTZs2QaVSYdGiRfjPf/4Db29vh4Ng04EDBzB58uSe33dXNN1666345JNPBIrKOY2mNqvHfVWePEciXuX19ahobLA4PiRsMDw04lrIOEKo1jEhqoS4SAhxPWDa1fCxFX1/qCxcHsrKynD69Gnk5OQgJycHGzduxIkTJ9De3o6UlBSsXbtW6BAJcVk6pQYfRi+CRuEGrVKcc12knBjiy7HSEnz6+xZ0GY3w1emQFBoudEg9dp05hQ6D5e6iIyKjEeitd/h5aY1A5I6L9ZNDP+XT09NRUVGBoKAgbNu2DV1dXY48DScmTZoku61s6419JIU4KOOV6ptrd+vYxUY6sD2nGOcJESJ3/VUJOYrKrsVNpVIhOTkZycnJWLBgAXbv3o21a9fihx9+QG0tJXIJsYbP+ULeKmrf4QrX1UIMw2BDzhH8kn0A3Z+KPtz2Gx6eOcephAtbjCYTtpw4bvXctNRhPEdDiLRwsX5SOvJFvr6+KCg4/yG8qKgIZiu9oIQ9DX1UCvm5QPuYM61jbkol0iKi2A6Jd640YFrMVUJUbUQIu2pqavDFF1/ghhtuwNChQ7F8+XIkJibit99+w759+4QOjxDR8tNQW3w3KSf/uapoYRgGn/6+FT9fkBACgLbOTvz3t43oMAh/M/9gUQEa2lotjieEhCIqMMjh56UqIeIKuFg/OVQpNH/+fEycOBGhoaFQKBQYNWoUVCqV1cd2J4/Ebvny5Vi+fDlMJpPQoVhI8xiMX+MfQL2pDQ3GNjSYzv8a6k7DkwH5t44JhQZMO47mCnGHFnzyERwc3DN/8PPPP+9zHUHETczrJznjs2JoIKc6yrGtORf3BE0UOhTJ4aJiSKFQIMTX1+q58oZ6fPb7Ntw5eRqUVnaP5gPDMNh8/KjVc9NSqEqIkIFwsX5yKCn0/vvvY968ecjLy8P999+Pu+66SzQzhRy1ePFiLF68GE1NTfDx8RE6nF7clWokuocIHYZoUeuYPEh5uLQr4WKeELWOuaZXX30Vx48fx7///W88+OCDiIiIQGpqas+vK664QugQiQ3EvH4i3DvUVow7iz5Bk7kDKoUCdwZO4D0Gmi1kaXraCJyrq8OhYstK+qOlxVh7JBszR2QIEBlwsuwsyurrLY6H+vrRZhKE2ICL9ZPDk+O6L3bw4EE88MADkk8KEemi1jH2yaVKiFq+pOfbPbvgrlEjKz4RQXr6gCln3RtBAIDRaERpaWnP0MT//e9/lBQiZABCVwvtaDmDvxZ/jnbm/LDgf1WshV7pgQX+o3mPRcqJIa6qhW66ZAKqmhpxrr7O4vzaI4cQ5ueP9Cj7b6A6a1POMavHp6akQeFE9RJVEhNXwcX6yentBD7++GMAwIkTJ1BSUmIxdHr27NnOXoK4KFveIPtqHRsaTq1jUkJVQq7rwiqh5o527DxzCiazGRuOHUFCSCjGJSRheGQ0NG5utOCTmYaGBvz1r3/FmjVr0NraiqioKFxzzTV49NFH4dtH6wMhpDehEkPrGnOw5OzXMDC92wafLPsB3ip3zPBJ4z0mKeMiMaRVq3HPlMvwyi8/oqWzw+L85zu2YZC3HuH+/M2oMpnNCPT2RkGVEsYLZtL6eOgwKiaOtzgIkTIu1k8ODZq+UGFhIYYPH47U1FTMnDkTV199Na6++mrMnTsXc+fOdfbpCY+keIelr9YxIe58sI2qhJzDRZWQPc8px0QX11vR78vPg+mCReKZinJ8+vtWbMw5wul1iTAeeeQRREZGorS0FK2trVizZg0AICsrC5WVlQJHR4h0CDF4upMxWCSEAIABg1X1BwXZCVjqbcNc3Pjw9/LGHZOmWp0f1GU04v0tG9HSYZkw4opKqcQN48bj2fnX4fK04T03cCcnp8KN5soRYhMu1k9OJ4Xuv/9+xMTEoKqqCjqdDsePH8f27dsxatQobN261dmnJ6RPDMP00Tqmcqh1jOYJCUOOyRNimwurhBiGwe4zp60+LjMuwa7FstQ/GLiKvXv34uWXX4a3tzc0Gg0SExPx8ssv4+mnn8bSpUuFDo8Q0o85vulYGmrZDXC5PgXLI29yqg2IsCshJBTXjsmyeq62pQUfbdvc64YMH3x0OsweORrPX3Md5o8ei0sShzj1fHKsJKa1DOkLF+snp5NCu3fvxnPPPYfAwEAolUoolUpceumlWLZsGe6//35nn564KJtaxxr6ah0Ll3zrGFUJEVdTWF1l9d9zYkgYAr31/AdEOKdUWl+CXH/99Thw4ADP0RAibUJUC90UkIW/D7qs5/fzfDPw74jroVU6PZ3CYVL/IM1VcmP8kOQ+Ey+5FeVYtX8PJ9cdiLtag8nJqZJftxPCJy7WT04nhUwmU8+Q6cDAQJSVnW9BioqKwunT1u/6EsIGazsqAMDI6FieIyGO4qpKSCwDpqkKynZ9VQmNS0jiORLCl6qqKnz33Xc4efKkxXbmVGVAiP2ESAz9NWgybg+4FLcFXIJl4fPgpqAWIGdxlRi6dkwW4gZZ3814+6kT2JV7ipPrEkLYxcX6yelUfmpqKo4cOYKYmBhkZmbilVdegUajwfvvv4/YWPpwTrjBMAyyiyznCbkpVUgdzP721q6AqoRIf9ieJ3Rh61h7VxcOWvn3rNNoMTwqyuHWMYZh0MEY4KGkO5Bi9I9//ANr167Fq6++ijNnziAsLAwpKSlITk5GVVWV0OERIkl8D55WKBR4NOTKnv8WAynvRNaNi8HTbioV7pw0Fa/8uhr1ra0W57/ZuwvBvr59Jo7ESo6tY4T0h4v1k9NJoSeffBKtf/xgee6553DVVVdh/PjxCAgIwDfffOPs0/Nm+fLlWL58uUW2TWgMw+Ceks+gV7rD100HX5UOfiodhukikOYxWOjwBFPeUI/KxkaL48kO7jompnlCQrWO8U2qVULnKmsRHsz/3Vg5yy4qQJfRaHF8dGwc1CrH36byO6sxO/8/GO4RgbGesbja1IlM70S4U5JIFB588MFevy8sLOzZUvXSSy8VKCpiL7Gunwh/xJIMupAcEkNc8PbwwN2TL8Mba3+G4aJ/syazGR9s2YyHr5oDP08vgSIkhAyEi/WT00mh6dOn9/x3fHw8Tp06hbq6Ovj5+YnyTaIvixcvxuLFi9HU1AQfHx+hw+nRYu7ElmbLcs6/BE1iNSkkpjdOW+6M9NU6lh4t/V3HhEBVQoRPF1YJAdy1ju1tzYeBMeFAWxEOtBXh/6p/g1ahxtqhT2G8Ptmp5ybO+/zzz8EwDG655RYAQExMDGJiYjBr1iyBIyP2EOv6yZUJtU29LRiGkdTnAyFxUS0EABEBgbjpkgn4ePsWi3PNHe14f8smPHjFVdC4CTcbihDSNy7WT07NFDIYDJg6dSrOnDnT67i/vz/9wGdJo6nd6nFflY7nSMRDzq1jVCUkP3L4s3K5FX1ZfR2KaqotjkcFBCHcP8CpXcf2tFr+nOhijEj2oFJzMXj99detLmC++OILfPrppwJERIh8CDFfaCDrG3Nwe/HH6DAbeLme1IdOA9y1RmXExOHytOFWz5XW1uDLXb+DYRinr2M2m/H76ZNo7+py+rmsodYx4oq4WD85lRRSq9U4evSoM09BBtBgarN63JWTQmy3jrk6OVUJiWXANOmbZZVQrtXHZSUkOnUdM2PG3lbLisI0XRQC1N5OPTdhh1KphJ+fn8Xx2bNn48033xQgIkLkRUyJoe/qD+D+0i+xo+UM7i/9EgaG2g1txVXi46r0UUgdbP25q5oa0WFwPnl3tLQY3+zZiae++wqrD+5DQ5vlLCNCiH24WD85vfvYTTfdhA8//NDZpyF9qDda/+Ep16SQLWWyAV7eWDRhMoZHRkOt+nOXC0dbx8Q0T8gVyKFyhpJP7DCYTNhbcMbiuMbNDRkxcU49d4WhCV2M5ZyiSfoUp56XsEepVKK+vt7iuLe3Nyt3qAkh4vBxzQ48dm4VzDj/73pL8yk8fm4VL//O5VAtxBWlQoFbx09G8EVtn6Nj4/D3K65y+kYrwzDYlHO+eKDDYMCmnKNYuuobfL5jG9q6Op16boCqhIjr4mL95HSzqNFoxEcffYRNmzYhIyMDnp6evc6/8cYbzl5Ctmzt947U+KPB2IYmc0fPMT83eSaFbKFVq5ERE4eMmDh0Ggw4drYER4qLqHXMAVQlRIR0tKQIbZ2WC8P0qBh4aDROLfjCNL44MPQpHG8vw57WAuxrLcDBthJM0qc6EzJh0X333Ye5c+fim2++QXBwcM/xuro6AaMiRF6Eni/0Yc3veLlijcXx1Q2HcJk+BZfzkKiXw9BpruYLeWg0uGfK5Xj11x/RYTBgzsjRmJqSxsoYkPyqSov2cJPZjPzKCmjd1E4/PyGuiov1k9NJoZycHIwcORIAkJvbuw2A5go5b7x3IjZ7PwQAMDImNJra0WBqQ5jaV9jAREKrVmNUTBxGOVlVQPghhyohR5SX1SA0LFDoMBzC5jwhW1vHHBkwbe1usJtCheG6CAzXReCeoIkI19EgejG57bbb0NnZibS0NEyZMgUjRoyA2WzGl19+iSVLlggdHiGyIWRiaIJXIv6r2op6K+MQPq7ZwUtSSC64SgwN0vvg9glTwIBBcjh71TfdVUIXm5ySBpXS6WYVWaMKN9IfLtZPTieFtmyxnFxPuOGmUCHAzQsBbuxuEymWuydcvNENRCytY1QlRFxNTXMzTpWfszgerPdB7KBgTsrC1UraSUVs7rnnHixYsACrV69GTk4OioqKsGLFCmRlZQkdGiGyIlRiKME9GB9E3YYbCt9H5wUtvZEaf0zxHgozY4ZSwX2CQA7VQgB3iaGh4eztaAwAFQ31yDlrucb21GqRFe/czECAWscIYXv9RCtkQggvuKwSotYx8bu4SmhPXl8DppOoytTFuLm5wWAw4Pfff8fBgwexatUqoUMihLBomC4C9w+ahtcr12OK91Dc4J+JS7zieUkGEWFsPnHM6vEJQ5Jpq3tCWMLm+smhf5X2lCXRTCFCxIeqhJx3rrIW4cHi2dmFC1xtRW82m60mhZQKBTLjEux+Piqzlqbt27fjww8/xKpVq6DT6TB+/HgcPHhQ6LAIkS0h28hu8B+LWT7DEarxFeT6AFUL8aWxrQ378/MsjqtVKkwYkixARITICxfrJ4eSQocOHer1++zsbBiNRiQlnZ8DkZubC5VKhYyMDKeC49Py5cuxfPlymEy0RSbhlxCtY3yjKiFpzxVy1sVVQifLzlndljYtIgreHh5UFi5jFRUV+OSTT/Dhhx+ivLwcc+bMwbfffovLL78cp06dwurVq4UOkdiJ1k/SIlRiyEulhZdKy/t1L0aJIccZTSZ8v38vMuMTEBUY1Ofjtp48DqPZbHF8bHwivN09nI6D1gjEFXG9fnKobnPLli09v2bNmoWJEyfi7NmzyM7ORnZ2NkpLSzF58mTMnDnTqeD4tHjxYpw4cQL79+8XOhSX5MrzhAhxNbvOnLZ63JEB04Q97777LoYNGwa9Xg+9Xo+srCysXbu253xHRwcWL16MgIAAeHl5Yf78+aisrLT5+WfNmoXY2Fj8/vvveOaZZ1BZWYkvvvgCV155Jdzc3KhtUKJo/SQ9fhp5V7m6Cj6TI03tbfjPhjXYfvoEVmzZhKZ2y8HhANBh6MKO0yctjisATEmm3T+JPMlh/eR0M+/rr7+OZcuWwc/Pr+eYn58fXnjhBbz++uvOPj0hAM4PpT1+thRGmd2JdIUB06664xjp29CwcIT7+fc65qvTYWhYuN3PRa1j7Bk8eDBefvllHDx4EAcOHMCUKVMwZ84cHD9+HADw4IMP4ueff8bKlSuxbds2lJWVYd68eTY//6+//op58+bh2WefxY033ghPT0+u/iiEENInet+wT0ltDV755UcUVJ3/ENvQ1ooPtmyCwcqafFfuabQbuiyOD4+KRpDeh/NYCRGCHNZPTieFmpqaUF1dbXG8uroazc3Nzj494ZhUSmj35J3Gu5vX47Fvv8DnO7bJMkFE7CeV1jEpYmue0MWtYwBwadJQPDprLh6+6mpcmjgE7mo1xsYnQalUOn3nM7+zClWGJqeew1XNmjULV155JRISEpCYmIgXX3wRXl5e2LNnDxobG/Hhhx/ijTfewJQpU5CRkYGPP/4Yu3btwp49e2x6/l27dsHDwwNTpkxBUlISnnvuOeTn53P8pyKEWEPVQvLAdbVQcU013lz7s0XLd0F1Fb7duxMMw/QcM5nN2HIyx+rzTEsZxko81DpGxEgO6yenk0Jz587FokWL8P333+Ps2bM4e/YsVq1ahTvuuMOuDBixxDAMOs3GgR8ocQO1jjEMg+yiQgBAe1cX9uafwbub1+PpVd/AZKVnWSqoSkj67E1Kyf31sIdCoUBkQCCuy7oULy24EVNS2CkrX1b+Ky45vQzTc9/A02WrsabxKGqNLaw8t1R1dnaiqamp16/Ozs5+v8ZkMuHrr79Ga2srsrKycPDgQRgMBkybNq3nMUOGDEFkZCR2795tUxxjx47FihUrUF5ejkceeQQbNmxAYmIixo4di7ffftuuUmpCiPNcOTEkp2ohLhMlg/0DEDso2Oq53Wdysf3UiZ7fHyzMR32r5bzA+OAQRAcN4ixGQrhi79oJkO76yek9Ad977z3885//xA033ICurvPlgmq1GnfccQdeffVVpwN0ZTXGFow7/RJ0Sg18VbqeXzcGjMXl+hShw+NNWX0dqpoaLY7HBAVBpXQsr0nzhAjhnrUqIWs0bm7QwM3pha2RMeFAWxEAoKCrGgV11fiqbi/SPSLxbdxfnHpuIXhrPG1+DfuigALvvfce3n777V7Hly5dimeeecbi8ceOHUNWVhY6Ojrg5eWFH374AcnJyTh8+DA0Gg18fX17PT44OBgVFRV2xeTp6Ynbb78dt99+O06fPo0PP/wQL730EiorK2muECE8E3JHsguZGTMqDE0I43F3MrkMnQa4GzytUiqxaMIUvPbrj6hpsewAWbV/D0J9/ZAQEorNx61vQz+VpSohQmwV4OHr1PrJ3fv8Vu8+Pr1bHvtaOwHSXz85nRTS6XR455138Oqrr/aUMcXFxdGsABY0mM4PcWszd6HN3IUyQwMAYLqPaw1q664Sulh6dCzPkUib3KqEqHWMO1xtRc+2i+/05rSfQ6vZcpbBWC/X/llx77334oUXXuh1TKu1vgtQUlISDh8+jMbGRnz33Xe49dZbsW3bNs5iS0pKwiuvvIJly5bh559/xkcffcTZtQgh4lNrbMGq+oP4um4flAoFNiQsgVLhdCMDYZGXuzvumXI5XlvzEzqNhl7nzAyDD7dtxqz0UThXX2fxtSE+vkgZzE4lE7WOET6p1WrU1PT+LNPX2gmQ/vrJ6aQQAHz44Yd48803cebMGQBAQkIC/v73v+POO+9k4+ldVr3J+mR/P5WO50iEwzAMDhVbJoXUKhXSBjt3B11IrrANPbHOVbamd7bCxRF7WwusHs/0jOM5EnHRarXQ6/U2PVaj0SA+Ph4AkJGRgf379+Pf//43Fi5ciK6uLjQ0NPS621VZWYmQkBCnY1SpVLj66qtx9dVXO/1chBD7CFEtdLK9HB/UbMfapmMwMH/OiNzVmo9LvRJ4i4OqhWwT6ueHW8dPwvtbNlqca+3sxNd7dlr9uqkpw6CkClC7yKm1UepsXTsB0l8/OZ2Kf/rpp/HAAw9g1qxZWLlyJVauXIlZs2bhwQcfxNNPP+3s07u0xj6SQr4ySgoN9ObVV+tYcngEtGq1Q9d0xdYxqhIiYsfGHcA9VpJCaoUKI3XSTSALzWw2o7OzExkZGVCr1di8eXPPudOnT6OkpARZWVkCRkgIYQPf84WKumrwU+PhXgkhAPiybi+vccgNl9U0wyKjMHNEhs2P13voMCqWnZsyVCVEpEZq6yenK4XeffddrFixAtdff33PsdmzZ2PYsGH429/+hueee87ZS7isBqP8k0ID6bt1LIbnSNhDVULycq6yFuHBrjusUyjW7qQ9F3Y19rTkY09rAfa2FqDS2IThHhHwUGoEiFB6HnvsMcyYMQORkZFobm7Gl19+ia1bt2L9+vXw8fHBHXfcgSVLlsDf3x96vR5/+9vfkJWVhbFjxwodOiGEBXxWDE3TJ2OQmzeqjL3n1PzWdBIVhkaEqPnbvlxO1UIAtxVD04eNwLn6WhwuLhrwsZOHpkCtUnESByFiIof1k9NJIYPBgFGjRlkcz8jIgNEo/52zuBTvHozbAy5FvakNDaY2NBjP/7+/GzvzmsT+BijX1jG+ya1KiHCLjXlCF7eO1TQ3o6WjHVGBQZwOEo7Q+CPC3x/X+o8GwzAo7qpFs7kDgGvvsmOrqqoq3HLLLSgvL4ePjw+GDRuG9evX47LLLgMAvPnmm1AqlZg/fz46Ozsxffp0vPPOOwJHTQiRIrVChWv9RmN59W+9jptgxo8Nh3BP0CRe45FbYogrSoUCN18yEdVNTVZnCHXTuqlxSdIQHiMjRDhyWD85nRS6+eab8e677+KNN97odfz999/HjTfe6OzTu7R0XSTSZdz2MNBdjHMctI4RbvGREJJD65irzBXqtuXEMWw7dQJhfn7Iik/C6Nh4eLm795znoixcoVAgWus6rzEbPvzww37Pu7u7Y/ny5Vi+fDlPERFC+MZntdBCv9F4t3oLzGAAAJd4xuOGgLGY4k3JBGdxWS2kVatx1+TL8Oqvq9HaxxbdlyQOgU7T91Bee1DrGBE7OayfWBs0vWHDhp4SqL1796KkpAS33HILlixZ0vO4ixNHYtL9F2UymQZ+MOHFoT5ax0Y60Tom9DwhvlvH+K4SIuTiKiGDyYj9Bed3piyrr8eq/Xvw48F9GB0XjxvHTXDoGjSEkRDxoPWT/PCVGArV+GKebwZ8VB64zn+M4Il8uVULcZkYCvT2xh2TpuL/NqyFmWEQGRCI1MGR2FeQh7qWZkxOTuHkuoQQbjidFMrJycHIkSMBoGdL+sDAQAQGBiInJ6fncVy2DLBh8eLFWLx4MZqamuDjw18fM7GOYRhkF1sZGqtSIZVax0SJqoSkj4ut6I8UF6Otq/edRKPZDIZh/VKEEAHQ+ok4Y9ng+UKHIGtcJoYSQ8Iwf0wWyurrcO2YLLipVLhi2AiU1NbAz9OLk2sSQrjhdFJoy5YtbMRBSC/n6utQ3dRkcVzKrWNUJSQNnUUN0Eb72vU1NGz6PGvb0O86c9rqY8clJAHgpyyc5gkRQoh9hNimXgzkVi3EtQlJQ3vd+FcqlYgOGsTa81PrGCH8cHpLekIcMdBdi+wiyyohwLnWMcIduQyX7ixq4O1acnnN+lPd1ITcCsvFdbCPD2JYXDQSQghhn6sm1OXWosxlYkXsnSCEENs4nBTy8/ODv7+/xa+YmBhMnz4dGzduZDNOwjIx3wXpb9cxZ1rHhJwnRFVCzqPWMXGzViW0Jy/X6mPHJSRBoVA4tFCV22KdEELEzFUTQ3JDFTeEkP443D721ltvWT3e0NCAgwcP4qqrrsJ3332HWbNmOXoJ4qL6ah1LGSzd1jE5c4WKF1fA9jwhk9lsNSmkUioxJjaBteuYGTMAQKmgwldCCCHskGMbGZfzhbjgioksuvFFhOJwUujWW2/t9/yIESOwbNkySgoRC462jqVHUeuYLahKiIjBiXNn0djeZnE8LSIS3h4erF1nX2sh7i/9CpmeMRjrGYtMzzjEaYN6StrpLjchhDjHVecLyZHUEkOEEH5wdmv1qquuwqlTp7h6etlrNnVgTeNR7GrJw4n2MpR3NaDd3CV0WJzjqnVMSHy3jvFJTlVCF84TcmS2kCOJK7m8ftZax3ZzMGDa2h20Pa0FqDe1Yl1TDp4p/wkz8t7EJaeXoahTHq8tIYSIgRAJ9mZTBz6v3YXcjgrerw1Q1YaQXLFKiBAhOb37WF86Ozuh0Wi4enrZK+qqwQOlX1kcfyX8Wsz1GylARPzgqnVMyHlCfJJjlRDhHtutY03tbcg5a/lvzs/TE0NCw1m91t5Wy8rCVnMnwjV+rF6HEEJcHV8VQ8fby/BV3R783HgEbeYuLPQbjRfC53F+XWuojYwQ4go4Swp9+OGHGDFiBFdPL3sNRsu2CwDwUbHXdiEEx3cdi+UiHM5RlZDzqHVM3KxVCe3NOwMzw1gcHxufCKWSvQLVdnMXjrRb/kzJ0EVBrVCxdh1CCCHcYxgGi4o+ws7WvF7Hf2o4jEdCroS3yl2gyOSHEkOEkAs5nBRasmSJ1eONjY3Izs5Gbm4utm/f7nBgrq7eZD0p5Oemc/q5xXzHY2pKGoK8fXCouACnys7BzDBQq1RICacyUkKkgGEY7MqzbB1T4HxSCGCvdexgWzEMjMnieKZnnN3PTwghZGBcVgspFApEaQMskkLtjAGrG7Jxc8A4Tq47EDlWCwHiTQxR6xgh/HM4KXTo0CGrx/V6PS677DJ8//33iImhwcCOaugjKeSrcj4pJGaeWndkJSQiKyERrZ0dOFpSgqaONmodswGfrWNyqxJyZIYQW8rLahAaFijY9Z1hrUoov7LCagtoUlg4Ary8Wb1+sJsetwVcgj2tBTjV8WdV3ljP85WFNGSaEELYx2Vi6Ab/sfiybq/F8a/q9uEm/6yeTQQIIYSwx+Gk0JYtW9iMg1ykr/YxuSeFLtSdIJIqObeOEevOVdYiPFhaiQi25wntsrINPeDcgOm+JLgH44nQqwAA9cZW7G8rwoHWQqR40HBQQgjhEleJoST3EGToonCwrbjXcb3KHQ2mNvi5ebJ+TVtQtRAhRM44mykkNcuXL8fy5cthMlm2IgjhOv8xyPKKQ4OpDQ3GNtSb2tBgaoNewjOF6E2HO3KsEiLS09bViUNW5oJ5arVIi4ji9Np+bp64XJ+Cy/UpnF6HENKb2NZPRPqu98/EwbZieCo1mOObjuv9MzHEnd0bGI6gxBD3qHWMEGFQUugPixcvxuLFi9HU1AQfHx+hw8EgtR6D1HqhwyAOoioh57nSgGkptpBZax07WJAPg5UPhmPiEqBWOT74mbYFJkS8xLZ+IvzhqlroCn0a2sMMuMpnOLxUWtafn1gSU2KIEMI/9raBIUSEXGGeEFUJOaeveUJCzhniC2+tY/Hst44NhOYJEUII97j4WatVuuE6/zGiTAjRTQrCFfreIkKipJBAuBrQNxChyl7p7gOxhytVCUmRtSqh0toalNZaJg2jgwYh1M+Pj7AIIYQIgJLw8iB065bQ1yfElVFSiIiSwWQUOgSH8dk6RlVC4uOqCa28ygqrx7sHTDuK7pwRQojrOdtVD4ZhhA7DKjm/L1FihhDXREkhIiomsxlbTx7HU999jcrGBqHDIYQ3Ukm6WasSAoDJyal4Zt4CTE8bAR+P87skatzcMDI6BgAtNAkhRM7YqBYyMWZsbjqJO4o+xpTcV7GvtZCFyLhBiSFCiJzQoGkiGgVVlfh27y6crTtfafHt3l2477IZUCgUAkdGiPywPU8IAAK99Zg1chSuHDESJ8vOor6lBe5qDevXIYQQIh9t5i58WrMTX9fvQ5mhoef4l3V7kOkVK1xgfZDjDmQXEmrkQ/d1XTUpdeH3lZyTjkScKCkkEK52bBiIGLfTZBgGX+/ZiZ25p3odP11ehkPFhRgZLb4FQX8S/UN5ayFLGBTIWwtZaFggb9Us4cEBvLVhaaN9rQ6V1kb7OvR84cGO3S2V2u5j/VEplUgdbL2iiG1t5i7sacnHtpbTaDN34dXBC3i5LiGEkD85s6ZVQYlPaneiztTa6/iGpuOoMjSJZjdesa2f2SaW+Z+unhwCKEFE+EftYxLBMAxOtJdhR8sZoUNxSH8/2BUKBbRu1vOT3+/fg06DweHr9tXqwjUuqjD6kjCIv2RCaFggb8mL8OAAhxMs9tJG+/ZKAkklIeTo3z2f359c2dB0HLcXfYTRJ5/HPSWf4cu6vfil4QiaTR1Ch0YIIS7F2ZucWqUbrvUbZXHcCDNW1h9w6rnZUNFWJuuEUElzqWgSQhfqjkuMsfGp+/tPzt+DRHiUFBIxhmFwpK0Ur1SsxdTc1zAn/208V/aTaAfvOWPG8JHQ/zGH5EINbW1YeyTbqeemxBD7+KxqETI5ZA+pJIScIcS/pb4WQYWdNfi95Qy6mD+H0hthxq6WPADC7fBICCGuhK2ftdf5Z0IBy3EBq+oPCrbudYUP4lJJuFBy6DxKEBGuUFJIQAMN5Xuq7AdcU/AOVtRsR6mhDgBQ2FWDM52VTl1XqDLE/qqFPDQazBuVafXcbydyUN5Q79S1XSUxJNeqIcDxpAsfxBzbxeRQJQQAk72t72q2tfk0z5EQQghx1mCNHyZd8HM9XO2LfwRPx7dx9/I+W9IVPnSzlWRhGAaHigrxfxvW4rU1P+H7/XudXrP3h6qH/kQJIsImmikkYpmesfimfr/F8fVNOUh0DxEgIm5lxMRi15lTyK3oPY/HzDD4du8u3H/5lZIcOs3njCGA3zlDAP+zhgBxbfvuTEJISlVCYpOgDUao2gflhsZex7e1nAbDMJL8WXExT7XO6ZkKcngdCCHixHZF5k3+Y2FmzLjBfywmeidBpeDv3rWrfLBmM5lS1dSIb/fswqnycz3Hiqqr8NuJY4gODEJWQhJGRsfCQ8PNhhM0e+hPNIOoN1+tr1PfF2ZPM4vRSANVConYJO8h0Cgs83brGnMEiIYdA80WujZzHJRWPsScqSjHwcICp64tVLUQwH91hhDtZHJtKeOKEAkhZ74Phfz3Y41CocBEr97VQoFuXpjglYhWcxcAaiEjhBCu2Prz9YOa7XitYh3MzMAfsiZ4J+GD6EWYoh/KW0LIVSot2KyuMZiMWHM4Gy/9+H2vhNCFimqq8dXuHXhi5Zf4fMc25FVWcNYGSNVDvVEFEXEEVQqJmLfKHZd6JeC35pO9jhd31Tq9G4MYdyEDgFBfP0xJScOmnKMW574/sBcpgyOcuuMQ5xuJ/IYSZ0J0mBAVQwBkWzUECF85RDuNCWuy9xCc6ijHRO8kTPIegmT3UCh5vLNMCCGuyNaE0C8NR/CvirUAgHJDI5aFz4dGKY6PHmJcA3OFzWTJqbJz+GbvTlQ3Ndn0+C6jEXvzz2Bv/hkE6fWYP3osp7uTXvhnpQoiqiAithPHT2YXNtDW9FfoU/Fb80nolBpM8krCFT5pmOCVCE+Vlsco2RXpHdHvG9SMYek4UJCHhra2Xseb2tuw5kg25o8e69T1XSkxBAjTTgaA9+QQ34khIRJCQlUJDWT5xnXw0Gjgq/OEn6cnfD09Ee7nj0F6H1aev6KtzOpiZop+KKboh7JyDUIIIQOzNSG0t7UAD59b2fP7nxoPo9rYjOWRN8Fb5c5VeAOiZJBjmtrbsGr/XhwszHf4OaqbmuCu5qaVzBpqL+uNEkSkP5QUErmp+qF4R3UTxnslwl2pZvW5xVotpFWrMW/0WHy07TeLc9tOHsfY+ESE+/kLEBk7XCExBMi7akiI1jWxzhHqNBhwsuysxfEpyWmYN9r68Hg+1XfVDjjUnxBCyMBsTQid6ajEX4s/h4Ex9Tq+uzUfNxS+j1Wxf+W9YkiM612usJkMMpvN+D33FH7O3o8Og8Gp5wrS6xE3KJilyGxH1UOWKEFELkZ19iKnV3ngMn0K6wkhoQ30Qzk9KgZDQsMtjpsZBt/u2eV0X7LQ81GE2AFKiKQC37OGAO7nDQkxWNpZzn6/9ffvpaGt1epxP09Pp65JCCFEPOyZ0ZbXWYW2P2a7Xexav1G8JoRcabYK23N1zGYz3lz3C1bu3dVvQkihUGDikGQ8N/86LBx7CaICgqw+Lis+acDND7qMRrR3Wf/eYQPNHrJEM4gIQEmhHsuXL0dycjJGjx7N+7XpLral80Ons6BSWn6L5ldVYH9BntPXcNXEkFDJIb5xkRgSKiEk1iohAKhvtZ4U8qWkECEuQcj1E+GHvUP7Z/ik4YPoRfBU9h51cEfAeNwSMI7N0KxyxQ+5XCQ6lEol4oP73+04MiAQD82cg2szx8Hfywvjk4bioavm4LHZ8zB5aCo8tee/B5QKBTLjEga85v6CPBpOLSBX/LdDzqOk0B8WL16MEydOYP9+yy3g5UzIksGBqoWCfXwxNSXN6rkfDuxFW1en0zG4YmIIoKohR5/LUUIOlub6e6zPSiGdeJJCtAsZIdxx1fUT6d8lXvH4OvYeBLud3xTlSn0aHg65gtNruuKHWa4TG1cMS4e/p5fFcXe1GtdmjsM/r5yNyADLNU64nz/mjxmLF669AXdMnIoZw9Pho9MNeL3debk9w6nfWvcLnlu9EhuOHUHjRXNG2UTJIesoQeRaKClERG162gj4WXkzau7owK+HDrJyDUoM8UuoqiFnkjpCzBDqJvRw6YH+ffBVKUSLEkII4Z8zSfUh7qFYGfdXLPQbjVcGX8vZ7pCu+MGVr0SGVq3GtZlZvY5lxMThqauvxcQhyVBaqei/kFqlQnp0DGYMHzngtcob6lFUXdXrWHVTE37K3o+nvvsK721ejyMlRTCZzfb/QWxA1UPElVFSSCSEbCETc7WQVq3GNX3sNrb99EmcrZNHBYCQiSFXqRoCuJ83ZI1c28a6WasUUioU0Lt7CBANIYQQtrBRZRmq9sEL4fOg5WA2pismgwBuWsX6kxYRhWERUQjS63HfZTOwaMJkm6p+7LX7TG6f58wMg5yzpVixZROeXPklfjiwFxWNDazH0I2SQ8TVUFKIiN6wyCgkhw+2OM4wDL7dsxNmFvqNha4WAoRLDAGuVTUE2Ff5Q21j/atvbbE45qPT9bp7yPduH6Vddfhf7W48X/5zzzFqISOEENuJ+WemKyeD2ExUnCo7hx2nT9r02BvGjcfjs+dhSJjlJjBsMJnN2FdwxqbHNnd0YPPxY3hh9Xd4Y81P2HXmNDoM3Aynpuoh4ipoS3oJazN3YVvzaYzxjEGAm2WLlVREekf0+8NWoVDg2jFZePHHVTBeVDJa09KCupYWBHp7Ox1HnG8k8htKnH4eZwixXX03IbatB/5MnPC5fT1g2xb2QiaEpFAlBFivFBJintCJ9jL81HAYW1pOoaCzuuf4vYGTEKR2/ucDIYS4CrEmhFwxEQSwXxnU1N6GVfv34mBhPtyUKiSGhmGQ3qffr/Fyd2c1houplEr87bIZ2J2Xi/0FeWjttG1uaEF1FQqqq/Ddvt0YGR2LrIRExAYFD7jLmSNoa3siZ5QUkphmUwd+az6J9U3Hsb35NDoZI54JnYMbA6y3WNkqRBcm6jfbIL0PpqUOx7qjhwCcb0+ZNDQFM4aPhIdGw9p1KDF0PhEhVHKI78QQ0HdySMoJIbaqhGypoGtotRz+KMTOY4fbS/Fh7e8Wx7e1nMY1fqN4j4cQQqTI1oTQ8fYyrKjZhpfC50OnZG8ddjExr025xnYyyGw24/fcU/gl+wDa/6isMZpN+HbPLiy+7ApOEin2CPcPwDVjsjAnYwyOlRZjT14uTp47C1v6AbqMRuzJy8WevFwE630wNiERmXEJ0Huw3+YG/Pl3Q8khIheUFBIRP01Av2/G9cZWXHr6ZXQxxl7HNzTlOJ0UEtpA1UIAcHnacOwvOAM/Ty8syByHMD9/nqLjn5CJIcD1qoaA80mg7sSQkIOlpaTTYLC6C6CvjpvKxYq2sj5noE30SrR6fFszJYUIIcQWtiaEznXV467iT1BtbEZpVx3+G3ULAt3Yrch05WQQwH5CqKS2Bl/v3oGSWsv11anyc8guKkBGTByr13SUWqXCyOhYjIyORX1rC/bkncGevNOobbFsV7emsqkRPx7cjy0ncvDCNdcPOAzbGVQ9ROSCZgpJiJ+bJ4a4h1gc39taiDqj9R2A7CHkwGlbaNzc8OAVs/DA9JmcJoTEMF8IEHbGECBs+5KQs4acTQjJpUrIFn1uRy9ApVC4xg8J2mCL4ztazsDAmHiPhxBCpMTWhFCjqR13/JEQAoCj7Wdxbf67KLygbdcZrjovqBvb82vau7qwcu8uvPrrj1YTQt1W7d+D9i5u5vI4w8/TCzOGp2PpvIX42+VXYlRMHNyUKpu+NiM6jtOE0MVo9hCRMkoKScx0farFMRPM2Nx0QoBo2GVLht3X05OX8lZKDJ0ndGJIyEHNjhA6IcQmW/4N9LkdvQAzhQBgondSr98roECsNgjVhmZB4iGEEDnpNBvx1+LPkd/Ze9vws4Z6LCh4F3kdVX185cAoGcRuQoFhGGQXFeD51d9h26kTYPrZlMVdrcYVw9KhdRNvA4lSoUBSaBhumzAZLy24AQsyxyEioP81U1aC9QpirtFwaiJF4v3X76IGaiGbrk/Fq5XrLI4faCvGtf6juQzN5YhhvhAgjlYyQJg5Q4Bws4bsJYYEFt9JRDFVCgHAJK8kfFu3D+O9EzHRKwkTvBMlPYSfEEL4YGuV0FlDHfI6rSd+UtzDEaW1v9LWlRNBADfby1c3NeKbvbtwquzcgI8dFROHeaMzOZu9wwWdVosJQ5IxYUgyztbVYk9eLvYV5KHtguHUUYFBNnUVbD15HJEBgYgJGsTpcGpqLSNiR0khiYnSBmCoeyhOdpQjVhuE6fpUXKFPxVB3dj4MCj1w2pbZQq5I6MQQINycIUDYWUN8EVOVkK3EVik0yjMae4c+CTeFbaXlhBDi6uzZaSxOOwjfxv4FdxR/jOILvm6IeyjejrwRajt+9rp6MghgPyFkMJmwKecI1h89AqO5/7bpIL0eCzMv4WyLeb4M7hlOPRrHSkuw68xpnC47h6z4gauEGtva8P3+PTAzDIJ9fJAVn4QxcfGcJMho9hARO0oKSdBTobPgq9Ihwd1yfgZhl1iqhQBKDAHirRoSQ9uYEK2G1iqFlAoF9B4enF2zv2HTKgV1RBNCiK0c2Xo+ShuAb2Lvxb3Fn+FweylC1T74IOo2eKts27KckkHcVAedLj+Hb/bsQlVTY7+Pc1OqcHnacFyWNgxqlXw+BqpVbj3DqetaWuCp1Q74Nfvyz8D8R1tdZWMjVh/ch5+y9yN1cCSyEhKRHB4BFQcziShBRMRIPj8NZGSgFrLRnjE8RsM/Z6qFaluasWrfHlyeNhzRQYNYiYcSQ72JoZ0MEE/VkBjaxthm60yt+lbLnUB8dDpeBzsSQgixnyMJoW4Bbl74LOZOLC37EXcFTkCwWm/T17l6QoiLZFBTexu+378XBwrzB3zskNBwLBg7DoP0PqzHISb+XgO3jTMMg915uRbHzQyDo6XFOFpaDL2HBzLjEjA2PhHBPr4cRErtZUQ8KClELAjdQuYIg8mEzTlHsf7YYRhMJtS3teKhK2ez9uGUEkOWqGqInYSQVKuEAOuVQkK1jhFCCLGNMwmhbh5KDV4ZfK3Nj5faupJtbCeEzGYzduaewk/ZB9Bu6H/XML2HB+aPHouR0bG8bNYiBQVVlQNWVTW1t2NjzlFszDmKuEHBGBufhJHRMdCq1azHQ9VDRGiUFCKiZE+10Mmys/h2zy5UNzf1HCutrcHO3FMYPySZqxAFRYmh84SsGhJLQkhIDa1tFseEGjJNCCFkYGwkhIjtuJqTaWIYbDl5vN+EkALA+CHJmJU+Ch4aDSdxSFVdawt0Gi3aujoHfjCA/KpK5FdV4rt9uzEyJgZZ8Uk0nJrICtX4E6v6mtkhRiU1Nb0SQt1+OnQAzR3trF1HLNvUdxN6u/puYkhsyLGFy1ZCfR90GgxWF1N8VAq5+h1nQghxhFAJIVf8mc31luRqlQoLx47r83xEQCD+OXMOFmSOo4SQFaNj4/Higutx24TJGBIaDltTO51GA3afycUba3/Giz+uwqaco2huZ++zxoVoa3vCJ0oKiZSfxv5tPeXG1gz5lJQ0BOkt+9nbu7rw48H9rMZEiSHrEgYFCp4cCg0L5C05JOcqIVu/x7uMRqQOjsRg/wB4af8cMErtY4QQIl3t5i48fPZbnOuqZ+X5XC0hxOeH+KTQcIyKiet1zF2txrWZ4/DQlbMRFRjESxxSpVa5YVRMHO67fAaenb8QVw4fCX/PgecRdatobMDqg/vwxMovsWLLRpTUcle1TskhwjVqHyOSp1apsGDMOCzftM7i3J68XIxLSELsIPZ2ahPTfCFAPK1kgPDtZAD3s4bElBASMino7eGBe6de3vN7g8mIhtY2uGvY77V3loExIbu1GF83HsWj4fOFDocQQnhnS5WQiTFjSek32NR8Ajta8rAi6jakeDheOe6KCSG+zRudieNnS9Fu6EJGdCzmjR4LHx37W6rLnb+XN64cMRJXDE9HbnkZdp85jSMlxTCaTQN+rZlhcKSkGBOGpHAeJ80eIlyhpJDMFHRWI7+zCpfpnf/BJIaB07bOFhoaPhjpUTE4VFxoce7bvbvw0Mw5rG4rSYmhvoklMQSwP2vIldvUBqJWuVmt2BNKrbEFW5pPYWvzaexsOYMW8/lWt/n+45DgIY4KO0II4YMtCSGGYfBC+c/Y1HwCAFBtbMaNhf/F2xE3Yrx3ItchShoXySCDyYTWzo4Bq2/1HjoszLoEnlothoYNZj0OV6NUKDAkLBxDwsLR2tmBAwX52J2Xi7N1/f8bCvDyRkIIv2sLShARNlFSSMQG2poeOP8mfqazEusac7C+KQe5nZXwVGqxd0gStErX+uudNzoTx8+Vosto7HX8bF0tfj99EpOGcp/BF5LYEkOAcNvWdxPb9vWAuKuExNYe6YydLXl47Nwqi+NrG7KR4DFTgIgIIYR/ts4R+qDmd/yvbk+vY63mLtxV/Clej1iImT7D7Lqu0DcV+cBVZdDp8jJ8s2cnvN3d8cAVV0E5wDDji1vICDs8te6YODQFE4emoLS2BrvP5GJ/YR7auyyHe2fFJw7492Q2m6FQKGg4NRElmikkce9Vb8XMvH/j7erNyO2sBAC0mjuxs+UMK88vhoHTtv6A8/P0wozh6VbP/XLoAJraLXdKcoYYP0CLZcZQN7HMzWGjwkdMbWNk4A8c470SoLAyOnJdQzZXIRFCiKjYmhDqMhvxS+MRq+f0KnekuNu3FpR7Qoir+S5N7W349PcteHvDGlQ1NSK/qhJ783JZvw6xX0RAIBaMHYeXFtyA28ZPRlLon/8mFAAy4xMGfI59BXl48cdV2HychlMT8aGk0B+WL1+O5ORkjB49WuhQ7DLWK9bq8fVNx3mORBwmD01FsI+PxfEOgwGrWR46DVBiyBZiSYQ4M4habG1jYvs7FiM/N0+M8LBMKG9rOo5WU4cAEUnD9u3bMWvWLISFhUGhUGD16tW9zt922209dzq7f11xxRXCBEtEQarrJ7mzZ6cxjdIN/4u5C5d4xvc6rlW44b9RtyJaa/t7oCskhNhmNpvx+6kTeP6H77C/IL/XudUH96Glg96zxEKtcsOo2Dj87fIr8ez8hZgxPB1jExLhZ8OA6t1nTqOisQE/HPhzOHXO2RKYzGZOYqXkEL+kvn6ipNAfFi9ejBMnTmD/fvYTB1wa7hGBYDfLOR6bm0/AwAw8HE0qbK0WclOpsCDzEqvn9uWfQV5lBZthAaDEkC3EkhgC7E/wsJUQEtNr4ComeidZHHNXanCy/awA0UhDa2srhg8fjuXLl/f5mCuuuALl5eU9v7766iseIyRiI9X1k5w5svW8t8odK6JvwzzfDACAAgq8GXEd0nXiW+MIgasP2KW1NXh97c/4Zu8utBss25JaOzvx48F9rF+XOC/AyxszR2TgxnETBnxsZeP5yq9u3cOp39u8AU9/9zV+yt6PqqZGTuKk6iF+SH395FpDZyRooLlCSoUSl+tT8Hnd7l7HW02dONVRjjQP54fOiWHgtD2SQsOQER2Lg0UFFue+2bMTj86ay+rQabES04whQDxzhgD+Zw2xmRDiKuEnxuSmsyZ5J+Gtqo1I1AZjoncSrhs0FVleSVC72Lw1e8yYMQMzZszo9zFarRYhISE8RUQIsYcjCaFuaoUKL4fPR7jaF35uOrs3LZHSWtFWXH2Qbu/qwq+HD2LbqRNgGKbfx56rr0OX0QiNG713SdWevNN9nmtsb8OGY0ew4dgRxAeHYGx8ItKjYqBVs7+bK80e4o7U10/000UGpvuk4vO63dAo3HCpVwKm61MwVZ8MH5WH0KGxytadyABg7qhM5JwtRafR0Ot4eUM9tp08jikpaazGJrbdyLqJLTEEiGN3sm4DbV9PbWPSluwehm2JjyBM4wsAiPYauOdfjjo7O9HU1NTrmFarhVardej5tm7dikGDBsHPzw9TpkzBCy+8gICAADZCJYQITKFQ4P7gaXZ/HSWEbMMwDA4VF2LVvj1oHGDWpbtajVnpozA+aSiULnAzU65MZjP25ts26zWvsgJ5lRX4bt9uZMTEISs+EVGBQawPp6ady2zD5toJEPf6iZJCMjBKF423Iq7HBK9EeKvcObmGWKqFbE0M+Xp64soRI/HDgb0W59YcycbImNgBt/m0FyWGbCe2xBBgWTVEbWN9a2xrw578XPjpPOHr6Qk/nSd8dJ6838WsaCvrdxi+QqHoSQhJkbubh9PD/hUA3nvvPbz99tu9ji9duhTPPPOM3c93xRVXYN68eYiJiUF+fj4ef/xxzJgxA7t374ZKpXIqVkKIc5ypEnKGGNaHbOKqOqi6qQkr9+3CiXMDtzBnRMdi3uix8NHpOImF8GvuqEzsPpOL3Arb/q10GAzYmXsKO3NPIdTXD2PjEzEmLh7e7uzf8JdjgshbrXdq/dTq3g6DwQCfi+bUOrp2AsS/fqKkkAQM1EKmUijt3irUFUwamoI9ebkob6jvdbzDYMDqA/tw24TJrF+TEkO2E1M7GdC7akiMCSEuq4TsbR2raKzHz9kHLI7fNXkahkdGsxQVYcu9996LF154odcxR+90XXfddT3/nZaWhmHDhiEuLg5bt27F1KlTnYqTEOI4oRJCcsJVMshgMmFzzlGsP3YYBlP/8z6DvPVYMHYchoY5P/6BiINKqcTo2HiMjo1HTXMz9uTlYk9eLhraWm36+vKGevxwYC9+yt6PtIhIZMUnYWhYOCfVY9Re9ie1Wo2amt6fUZypEhL7+omSQkRybK0WUimVWJg5Dm+t/9Xi3IHCfIxLSEJiqHN34aVEjIkhQJxVQ6R/9a3WFzJ6D7qjKUZarRZ6veWGBGyIjY1FYGAg8vLyRLGoIcQV2ZoQer96G0boIjHGM4a1a8uhSojLAbyny8vw7Z6dqBxgiLCbUonL0obj8rThUKvo45lcBXp746r0DFw5PB2nysuw+8xpHC0ttmkHMpPZjMPFRThcXIQwPz88Nmse621l3eRYPeQIrtZOgPjWT9SgSmzmbBuDEOJDQjE6Nt7quW/37uJkG0gxD+wV60waObZYSaVKyBENfSSF2G7JJOJ39uxZ1NbWIjRUXN+jhLgKWxNCK+v249XKdbit6EOsaTzKyrUpIdS3pvY2fPr7Fry9Yc2ACaGk0DA8Nns+Zo7IoISQi1AqlUgOH4w7Jk3Fi9fegPmjxyLMz8/mr48PDuUsIXQx2rWMG2JbP9FPHokYqIXM1dg3dHoMjpUWo8PQe+h0RWMDjpYWIz2KvTtm3cTaRgZQxRAf5JjkulC9lZJnpUIBHw95Dbd3RS0tLcjLy+v5fWFhIQ4fPgx/f3/4+/vj2Wefxfz58xESEoL8/Hw8/PDDiI+Px/Tp0wWMmhDXZOu6cHvzaTxVthoAYGBMeKD0K5QbGnF7wKUOf7CUekKIyw+6LR0deGH1KrR1dfb7OL2HB+aNHouM6FjePuAT8fFyd8fk5FRMGpqCktoa7MnLxYGCfLQbuvr8mnEJSTxGSGwh9fUTVQoR2dN76HBVekavY4Heevxl6nROEkLdqGLIfgmDAmWfULEX139XjnyfWqsU0nvoBNkdReofTMTmwIEDSE9PR3p6OgBgyZIlSE9Px9NPPw2VSoWjR49i9uzZSExMxB133IGMjAz8/vvvTvXZE0LsZ2tC6Hh7Ge4v/RIm9K6MfrliDZZVWLbX20LKP3dLmks5r3zwcnfHiKjoPs8rAEwYkoynrr4Wo2LiKCFEAJzfHCMqMAgLx16CFxfcgFvHT0JiiOUacLB/AAb7D7xj1dGSYjR3tHMRKrFC6usnqhQidhHLLmSAfdVC45OSsftMLqqaGnF52nBMSx3m8iW6Yq0YAqRdNeQKSS1rwxH9PKl1TA4mTZoEhmH6PL9+/XoeoyGEWGNP5fjK+v1oNVuvOEhwD2ErJNHjuwVmTsZoHC0pRktnR6/jEQGBuG7sJYgKDOI1HiItGje3C4ZTN/0xnPoMGtpakWVDlVBzezs+2LoJCoWC8+HU5Dypr59c+1OxC+g0G7Gz5QxitUGI1sr/w2pfVEolbrl0IrRqNQK9uRsadjExt5EBlBhiG9sJIbFWdFkbNE3zhAghRHyeDp0FjUKFj2t39jp+X9AUXOs3yu7nE8uNQXsIMRPFU+uOq0eNwf92bgcAuKvVmJU+CuOThtIHc2KXQG89rkofhSuHj8Sp8nOIDhw04NfsK8iDmWEAhukZTu2r0yEzLhFZCYm8fhYi0kBJIQmxda5Qu7kL25tzsb4pB1uaT6HF3Im7AyfioZArWIlDqtVC4TaUWnKBEkOOE9u29QToNBiszkmgSiFCCOGevfMllQolHg+9CmFqP7xU8SsYMJjnm4H7B02z+9piWfvZSugBuZlxCdiTlwsfDx3mjR4LHx3t0Ekcd3449cA7gTEMg91nTlscb2hrw/pjh7H+2GEkhIQiKz4RI6JioHGjdAChpJDsmBgzJp9+FbWmll7H1zfl4J/B06lvWSCUGHKOFKqGpFgl5NA8obY2q8epUogQQrjlzIYjtwVeghC1D35sOIQXwufavR6UUkKIy2SQwWTC5pyj8HJ3x6VJQ/t9rEKhwF+nXUEfugmvimuqUdHY0O9jzlSU40xFOVbu3Y2MmFhkJSQhMiCQPie6MPopJTMqhRKZnjFY03Ss1/Hirlqc6qjAUA9xtqM4w55qIdI3Sgw5zhXmCHVraGuxetxXwEqhirYyhOjCBLs+IYRwjY0daK/wScV0fYqsP/hxuR7MLS/DN3t2orKpEe5qNVIjIge8IUIJIcK3vMoKmx/bbujCjtxT2JF7CmF+fsiKT8Lo2Hh4ubtzGCERI2pqlRg/zcAtUNN9Uq0eX9+Uw1oc9AHMfmLejaybWGfYdHOV5IuY/x6szRMCAD9PL54jIYQQ18BGQqibIwkhKVQJcbmrWFN7Gz79fSv+s2ENKpsaAQAdBgO+37+Xk+sR4oxpqcOwdO61uDxtOHw8bG9ZLKuvx6r9e/Dkyi/x4dbNOHGuFGazeeAvJLJA6WsZmuiVBK3CDZ2Msdfxg21FwgTEAzaqhRiGwYHCfOg9PJAUGs5SZL2JvY0MkEbFECCeOUNSTVQ5mqS0th09QO1jhBDCBTYTQo4Qe0KIy8ogM8NgZ+4p/JS9H+1dlju4ZRcVICs+EUPDB3MWAyGOCNL7YPbI0bhqRAZOlp3D7rzTOFZaApMNSR6j2YxDxYU4VFwIP09PZMYl4tLAyxHmM/CAayJdlBSSIU+VFhO8ErGx+QTC1b6Yrk/FFT6pGO4x8HAye4hp4LSzyhvq8e3eXThTUY5Abz2emDOPsy3rpZIYAiD65JDQiSEuEkJirhICgHor29ErFQr4eHgIEA0hhMiXrQmhQ23FON1Riev8x7B6fTGv8bgeG1BaW4Ov9+xEcU11v49buW83npwzn3YUI6KkVCqRMjgCKYMj0NzRjv35edidl4vyhnqbvr6+tRXrjh7CohHFlBSSOUoKydTiQVPxl0GTkeoeLuve8Qs5Ui3UaTBg7ZFs/HYi5/zWjQBqmpuwKecYZgxP5yJMSZFC1ZDQiSFX02AlKaT30Am+IKa5QoQQObE1IVTYWY17ij9DvakN57rqsST4ctmv+7hMCHUYuvDroWxsPXUczB/rwr5E+AfguqxLBX//I8QW3u4emJKShsnJqSiuqcbuvFwcLMxHh8HQ79f5eXphQuxInqIkQqGkkATZsjV9igd9OLJFdlEhNh0/ZnF8w7HDGB0bj0Bvb06uK4VqoW5SSAwB/LeTuWKVEGC9fay/7egjvdmtUCSEEHJerbEFdxR9gnrT+V0h36vZinJDA14Knw+N0rklvhirhLhMBjEMg8PFRfhu3240tlvfZbObu1qNq9JHYULSUEoIEclRKBSIDhqE6KBBmD96LA4VF2L3mdN9DqgeG58AlVLFc5SEb/STjDhFbHfm7f0AmhkXj6iAIIvjBpMJq/bvZissq6QweLqbFJIVUp3tIwRnvvestY/RPCFCCGGPLVVCbeYu3F38KUoNdb2O/9h4GHcWf4JWU6fD1xdbQojLIdIAUN3UhHc3r8eH2zYPmBAaGR2LJ6++BpOGplBCiEiexs0NmXEJ+PsVV/U5nHpsfKJA0RE+UaUQcWlKpRILxo7Da7/+iIuLhI+VluBYaQnSIqSTvOGS2CuGAP7ayVy1SqjLaERbp+UHjf4qhQghhNjO1raxbc2ncbT9rNVzOqUG7kq1Q9cXU0KI67lBBpMJm3OOYv2xwzCYTP0+NtBbj4WZ42ioNJGt7uHUM0dk4FTZOew6cxoGkxEBXtx0TRBxoRS3RNmyNT1fpF4tFBUYhHGJQ6ye+27fbnQZjVbPsUFK1UKANBIXXFcMuXJFUl/b0VOlECGEOM+encZm+KThlfBr4XbRUn64RwTejLgOKoW0l/hcJ4Ryy8vw8k/f45fDB/tNCLkplZgxPB2Pz55HCSHiElR/DKe+a/I03Dt1utDhEJ5I+x2DEJbMHjkKnlqtxfHalmZszDnC6bUpMcS+hEGBkkre8PmaOvP9Zm3INAD4iqRSSEx3uAkhxB6ObD0/128kVkTfBk/l+fVLpMYf/426BR5KjUMxiOFnKNetYq2dHfj09634z4Y1qGxq7PexSaFheGz2fMwckQGNGzVXENejlPnQevInSgoRWbK3WshT6445Gda3ct147Ciqm5rYCKtPlBjiBtuJISklmrjQ2tlhdYHg5+klQDSEECIPjiSEul3qlYCvYu7BEPdQfBi1CAFujv08FjohxHUyqJtKqcSZiv7/rN7uHrht/GTcd9kMBPv4cB4TIYQIjdLeEmbLLmTWlHU14EBbEWb7jmAtlhBdmOALCmeNjU/ErjOnUVRd1eu40WzCyn278Jep02W/zas9pDBjCGBvzhBXCSGpJNiA8wM2R0RGo7mjA/WtLWhoa0VDWysG6fVCh0YIIZLkTEKo21CPUPwYdx+UDraMCbl+4yMRdCF3tQbzR2fhw22bLc4pAIxPSsZVIzOg01hWjxNCiFxRUshFFHfWYn1TDtY35fQMJhzjGYMQtXzvgER6R9i12FAqFFiYOQ6v/PojGKb32OkT587iWGkJhkVGsR1mDyltU99NSokhgP9t6+VIqVTCR6eDj0438IMJIYT0iY2EUDdKCNluRFQ0ksMH48S5Pwd1R/gH4LqsSxEVaLkjLSGEyB21j7mAHxsOYdqZ1/Bq5bpeO1VsbDouYFTiFBEQiPGJQ62e43roNCC9NjJAWpUujlb7yKVKSIrfX4QQQuSFr1axvigUCizIHAe1SgV3tRrXjMnCQzPnUEKIEOKyKCnkAjI9Y60eX89yUkhsu5AB9s8WAoCrRmbAy93d4nhdawvWHz3MQlT9k+IHdzknhuSSEHIVUm9jJYS4BluqhJpNHXiveiuMTP/bpTtKiJ+XXCeDapqbUN/aMuDjAr31uG3CZDx59TWYNDQFSiV9JCKEuC76CShxtmxNH6L2QbqHZaJhf2shao0Dv3G6Gp1Gi6v7GDq9+fhRVDb2v1uFq5JSksPVB0YTQggRji0JIQNjwt9KvsDrleuxuOQLtJm7WI1Bbgkhg8mEdUcP4cUfV+GbPTstxgBYMzwyGr46ceyeSQghQqKkkIu4wifV4hgDILutmNXryKVaaExcAmIHBVscN5rNWLlvl02LDWdIsVoIkF5iaKDkEFUJEUIIYZMtCSGGYfDEue+xszUPAPBb80ncXLiCtRt5cquozC0vw8s/fY9fDh2EwWRCztlSHC1ld31LCCFyRkmhPyxfvhzJyckYPXq00KFw4nL9+aSQCkqM84zHc2FXY9eQx3CZPkXgyMSpe+i0te23T5Wdw+GSIs5joMQQP/pK/Mitmkiq30+EEHGT+/qJTbYOlv5P1Sb80JDd69jR9rO4Nv9dFHVKc8MELqqEmtrb8OnvW/GfDWtQ2dS7invl3t3oNBhYvyYhhMgRJYX+sHjxYpw4cQL79+8XOhS72dJCNljjh/+LuBG7hzyOT2PuwPX+mQh08+YhOnFwpFoo3D8AE4YkWz23at8eXhYbUv0gL5fEEBek9toQQkh/pLx+4pOtCaHyrgZ8UPO71XMdjAFqhcqpOORQJWRmGOw4fRLPr/4O+wvyrD6moa0Va45kWz1HCCGkN0oKuZDpPqnwc+O+d1qMLWSOmjkiA3oPD4vjDW2t2HDsiAARSYfUkh8XtpPJrUqIDQ2trThXV4vWzg7O2yedJYcPPYQQ+bBn6/lQjS8+j7kTfqre6zVPpQYrom5DuMbP4TiE+tnIZpXQ2bpavLHmJ3y9Zyfau/qes6QAYDKbRf9+RQghYuAmdACE8CXSO8LuhYmHRoO5ozLx6e9bex3PjEvApKH8tN7F+UYiv6GEl2uxLdE/FLl15UKHYRcuE0JCJcrYqDjbk5+LXw4dBACoVSr4enrCT+eFOydPhU6jdfr5CSFEjuxJCHUboYvEyth7cUfxJyjuqoUKSrwdcSNSPBy/6Sb1ZHmHoQu/Hs7G1pPHB0z0RPgH4LqsS2mLeUIIsRElhQgnQnRhkl+AdBsVE4eduaeQV1mBcD9/LMgch7jgEF5joMQQEVpDa2vPfxtMJlQ3NaGmuRlaN7WAURFCiHg5khDqFqUNxDex9+Le4s+w0H8MxnsnshgZf5ytEmIYBodLirBq3240tLX1+1h3tRpXpY/ChKShtMU8IYTYgZJCMuGnCXBq8eEqHKkWUigUWJh5CU6Vn8OEIclQCbTQoMSQtEmtne5i9W2tFsd8PHSC/XtwBRql1qaZcf2zHJZPCJGGADcvfBV7D9wkOkfI2YRQTXMTvt27CyfOnR3wsSOjYzBv9FjaYp4QAp1K59T6Sa92vc/UlBQixAahfn4I9XO8j59QYkjqLqwU6ubrSYtvQgixhq0bdVJNCDnDYDJh8/GjWH/0MAwmU7+PDfTWY0HmOCSHD+YpOkIIkR9KChHOiLWFzJFqIbGQcrUQ4LqJISGrhNjawc5apZCfiO/IVrSVyWroPSFEOsRSuS3kGszRdVZuRRm+2bMTlY2N/T7OTanEtNThuDxtODRu9HGGEEKcQXX/MuJomZyRMWF3Sz5y2s+xHBHhglS3qe8m9TYqV9RlNKKts9PiOFUKEUJIb7YmhL6u24dGUzvH0UjLubpa/Gf9mgETQokhYXhs9jxclZ5BCSFCCGEB/SR1UV1mI/a05mNdUw42NZ1EvakVM32G4a2I61m9DlULcYMqhqRDDkmwBitVQgBodgMhhFzA1oTQZ7W78Hz5z/i0dic+cHKb+b5IsUoo3D8A6VExOFRcaPW8t7s75o0ei1ExcVAoaF6aWDiyHpX6DU5C5IaSQi5qYcF7yOnoXRm0pfkUOswGuCtpNyFHdBmN6DIa4eXuLnQokuBKiSGhsNY6ZmWeEAD4UaUQIYQAsD0htKHpOF4o/wUAkNdZhQUF72JF1G1IdmK7+YuJ8WacreaPHosT586i02joOaYAcGnSUMxKHwWdVitccMSCozcobf06Sh4Rwg9qH5MZW1vIsrziLI61mbuwo+UM2yGJVqR3BCvPYzabsScvF8/9sBKr9u9m5TltIYc3SjlU0fRHLn8+qVYKSfmDESFEOmxNCGW3FWNJ6ddgwPQcqzI244bC/+L35lxWYhH6556zVdi+np6YOWJkz+8H+wfgH1fOxsKxl1BCSGT4qFjPbyix+RchxHFUKeSiputTsaJmu8XxdY3HME2fzOq1xNpCxoYT587ix4P7cK6+DgCwvyAfk5PTEBkQyMv1pd5GBlDFkBTUt7ZYPe7n6cVzJIQQIi62JoQYhsGzZT+hkzFanGs1d8livtBACSGGOZ8MG6j1a+LQFBwpKcaIqGhMGJIMlZLuYYuJWNedVH1EiOMoKeSihnkMRqjaB+WG3sP8DrWXgGEYl+nVdma20G/Hj+H7A3stjq8+sBd/u/xK3l5DSgyJk1yqhADr29ErFAroPTwEiIYQQqRHoVDgv1G34K7iT3Cqo6LXuYeDZ+Aq3+FOX0PMN+AMJhM+2f4bRkTFYHRsfL+PVSmV+PsVM11mLSolUl9vAvb9GSiBRFwFJYVclEKhwHR9Kj6p3YkgN29cpk/GdH0qxnjG0JuwjTJi4vDL4YPoMva+65dbUY4T584iZTA77WmuQo6JISGxuZCxth29j4cH3b0lhLg0e7eeD1H74MuYe/C3ki+wszUPAHCT/1jcGTje6ViETggNdIPtq907cKSkGAVVlUgJjxiwFYzWouIih2SQI6j6iLgKSgrJkJ8mwKaFyo3+YzFdn4p0XSRUCm4/3Im5hczRaiEfnQ5TU9Kw9sghi3OrD+7DkLBw3j40y6FaCJBPYkhOVUKA9UohX2odI4S4MHsTQt28Ve5YEX0bnjj3PZpNHXgydJbTCRCxrq+6ldbWYF/++ZmVzR0d+PnQASwce4nAURFbyWF9yTWqPiJSR0khFxatDUS0lp/ZN3I1NSUNO06fRHNHR6/j5Q312Jt/BuMSkniLhRJDhCvWKoX8RD5kultFWxlCdOzt6kMIIY4mhLqpFSr8K/wadDEmp2/KiSEhNNCNtYtvnu04fRKZcQmIDhrEZViEBXJYV4oNVR8RMaLaf8IbMX8wc3QnMne1BleOyLB67pdDB9FpMFg9xxW5vIFIudJGDLGz+X3QZTSirbPT4rjYdx4jhBAuOJsQ6qZQKKBVyv/ebGltDY6WFvc6xgD4YOtmi/Z7Ih60o5fwaNc1wif5vxu5KFtbyIjzxiUkYevJHFQ29h7a3dTeht9O5GDG8HSBIpM2qhgShz63o/ekpBAhxLWIbV0lhSqhNUeyrR4fHRsHjRt9DBEjSjRIC7WuETbQT2NC/uDobCGVUok5I8fg/S0bLc5tyjmKSxKToPfQsRGiTeTSRgZILzEkhiohttVbmScEAH6UFCKEuBBbE0L7Wwvhp/JEvDu3rVFSSAiV1tbgWKnlekTrpsbUlGFchUUcJJe1I+kbta6RvlD7GOGVmFvInJEWEYm4QSEWxzuNBquDqLkmpx/mcky0SEmflULUPkYIcRG2JoRyOypwT/FnuK7wPexvLeQsHjEkhGzx62HrVUIThybDy92d52hIfyghRC5ELWquh5JChFzA0dlCCoUCc0eNsXpuZ+4pVDQ2OBGVYygxxC+xxMj233t9a4vV41KqFJLKByhCiHRVGBpxR9EnaDZ3oNHUjtuKPsLaxmNCh8WZgaqESmprkHPWepXQlOQ0rsIiDqAP/YQQSgrJmJ8mwOGvrTE2Y2X9AZgZM4sRnSfXaqHooEEYGR1rcdzMMPjp4H4BIpIXsSRdrBFzbM6yth29QqHgtSWSEEKEYkuVULOpA3cVf4IK45+zBbsYI+4v/RIf1fwOhmFYi0cqSe41VCUkelQFQgjpRjOFSI8KQyM2NB3HusYcHGgrAgMG8dpBSNfJp+LEFo7OFgKA2SNH4UhJEUzm3sm0o6XFyKusQHywZYsZl+Q0XwiQ3owhObgsbTiGRUahobUV9W2taGhtRZfRCJWS7ikQQuTN1raxd6q34FRHhdVzx9rPsRaPWBJCA62RimuqrVYJuaupSkgs5LQ2JIQ4j5JCBACwr7UQNxa+b3F8fWOOyyWFnBHorceEpGRsOZljcW71gb34x5WzoVAoeI2JEkPcknOVEAAEeHkjwMvboa91tB2TEEKEZs9OYw8MmobSrjqsb+r93p/pGYuXw69h5X1fLAkhW6ztY8exiUNSqEpIYHJaDxJC2EO3emXO1hay4R6D4anUWBxf35TDatlzN7G3kDnzYXb6sBHwUFu+lkU11ThUzN3gyf7Iab4QIP9EjKPk9vdMCCFCsHfreXelGv+JuB6LAi7pORavHYR3Im+CVimv+6+2VQlZPsZdrcaUlFSuwiI2oIQQIaQvlBQiAACtUo3J3kMtjp811ONEh3TuTomBl7s7pg8bYfXcTwf3w2gy8RuQTIkhMSSGGIhtpHSXnRAiHHsTQt2UCiUeD70Kj4fMRLCbHh9GLYJe5cFKTGL5+WVLa/2aPqqEJg1NgaeWqoSEQgkhQkh/KClEekzXW7+Dc7CtmOdIxMGZaqGJQ5Ph5+llcbympRm/nz7pTFgOk2MVCSVlCCGEsMXRhNCFFgVeivUJSxCm8XU+IIgnIWSL4ppqHO+jSmhyMlUJCYGGSRNCbEFJIRdgawvZRO9EeCjUAIAMXRQeD5mJbYmP4JaAcZzEJfYWMmeoVW6YlZ5h9dzWkzkwm9nf1c0WlBiS/nX7Ise/W0II4QsbCaFuniotK88jpoQQVQlJDyWDCCG2klejM3GKh1KDtyNvxBD3UASr9UKHIwrO7EQ2KjYeW07koLTu/EJTqVDgksQhmDE8HUoBd26S2+BpQHzDpwkhhBBXUlRdRVVCIiG3NR4hhHtUKUR6meidxGtCSM7VQkqFAlePygQADIuIwhNz5mPh2Eug99AJHJk88Vm5I7YqIUIIIY6zpUqowdiGnS15PERzntSqhNYeOWT1+KShqVQlxCNKCBFCHEFJIUIG4MxsoaTQMDw2ex7unnIZgn182QvKSXJtNaJkDbu42HmQEELExJaEUKfZgL+UfI7biz7C13X7OI9JTAkhWxRVV+H4ub6qhFIEiMg1UUKIEOIoah9zEX6aAFb75Yntwv38hQ7BKjm2kQHct5KJMfHEVZJvxZZNKKmthq/OE36eXvDVeSLU1xfjEodwcj1CCOGTLesiM2PGQ2dX4kBbEQDgqbIfUGZowIODLoNCoWA9JrElhGypEnLXaDAsIgpHS3tvTEJVQvyQ41qOEMIvqhQigpNCC5kz1UJiRhVDpD+1Lc1oaGtDUU01DhUXYsvJHOw6c1rosAjHli9fjujoaLi7uyMzMxP79nFfGUEI32y9UfavirVY23Ss17F3q7fg4XMr0WU2shqTFBNCABDi44u7p1yGR666GsMiogCcrxKaQrOEOEcJIULEQ8rrJ0oKEUJkiYvEkKslmxraWi2O+Xp6ChAJ4cs333yDJUuWYOnSpcjOzsbw4cMxffp0VFVVCR0aIayxNSG0syUPH9XusHpuf2shmsztbIYleREBgT3JoeuyLoVOy84ubMQSbTVPiLhIff1ESSEXYuvW9EKgaiHhyLVaCHCNJA5Xf39dRiNaOzstjvvpvDi5HhGHN954A3fddRcWLVqE5ORkvPfee9DpdPjoo4+EDo0QVtjTSj/OMw5/H3SZxXEflQc+iFqEQDdv1uKSapWQNREBgRgVE8diNORClAwiRHykvn6ipBCxiZkxI7utGHta8oUORXZaOjpQWC1sFpkSQ/w9j1RYqxICAF9P2j2PL50dlkk5e3R1dcFkMqGzsxNNTU29fnVaSfh1dXXh4MGDmDZtWs8xpVKJadOmYffu3U7FQogY2DtbUaFQYPGgKfhX+DVw+2PJrFao8G7kzYh3H8RaXGJLCBHxooQQIf0zMSZ0WFnj2KP7621ZOwHyWD9RUoj0ycSYsbe1AM+V/YQJp/+FhQXv4bXK9UKHJSg2q4W6jEasP3YYz3z/DT7YsgldRnZnE9iLEkPkQg2t1pNCfp5UKcSHGTNmYMPajagorYRW5e7Qr09XfI6kIYn4+uuv4ePj0+vXsmXLLK5ZU1MDk8mE4ODgXseDg4NRUVHB1x+dENGZ55eBFdG3wUupxWuDF2C0Zwxrzy3GhJAzVUKEG9QuRoht5syag88++hzmLsbh9dOH736E6Ogom9ZOgDzWT7T7GOnT/aVfYkPT8V7HjrSXoryrAaEaX9avF6ILE+XiiG1msxn7CvLwy6GDPdUYHQYDtpzIwfRhI4QNTsac2ZXMFZNK9X1VCulophAfRowYgXnXzMUzTz+Ljz+zv/S4oaEBL7/4L3z22WeYOnUq/vnPf/Y6r6VZH8TFOLsD66VeCfgt8SH4udHPQMIvSgYRYrsbbrgBr7/xGt75v3fxj4eW2P31Ocdy8M1X3yI7Oxvh4eG9zsl57USVQi7GnrlC4zzjrR5ff1GiyNU4Wy10qrwM/9u53aI9Z2POETS3Czu0Us7VQoD8kjtc/n31XSlEH4j4suzFl/HjDz8h++Ahu7/2tX+9jrRhqZgxYwa0Wi30en2vX9YWNoGBgVCpVKisrOx1vLKyEiEhIQ7/OQgRmrMJoW5sJ4TEeCOMqoTEhRJChNhHqVTitVdfx6svv4baWvt/9j/x6JO48+47MHToUJvWToA81k+UFCJ9ulyfAgUUFsfXN+Vwdk0pDJx21tCwcMQOCrY43mEwYO0R+z/8sY0SQ849Xi6szRRSKBTQe9BMIb5ERERg8d/+iscfeRwMw9j8dSUlpXjn/97F66+9AYXC8md4XzQaDTIyMrB58+aeY2azGZs3b0ZWVpZdsRMiFmwlhNgm5YTQV7t3YPeZXJjMZo4jcl3ULkaI46ZOnYqxWZlY9uLLdn3db5t+w769+/HM08/a9XVyWD9RUoj0KUjtjQxdlMXx3I4KtJicG+Aldc5UCykUCswdlWn13I7ck6hsbHT4udlCiSFS39picUzv7gGVkt42+PTk408h59hxrFtj+zy3Z59+FlfPm4ORI0fafb0lS5ZgxYoV+PTTT3Hy5En85S9/QWtrKxYtWmT3cxEiNFsSQgzD4PfmXLsSr84SY0LIVgVVldiZewpf7NqO51d/hz15lBxiGyWDCHHea6++jg/f/wgF+QU2Pd5sNuPxR5/AQ4/+EwEB9u/YLfX1E63uXZA9LWTT9akAzm+/Os83A/+NvAW7hjwBL5V8eyr5EBM0COlRloMqzQyDn7L3CxCR67ElMeTKyaOGtjaLY9Q6xj8fHx88/fTTeOKxJ2G0YRj94UOH8cOq1XbfHeu2cOFCvPbaa3j66acxYsQIHD58GOvWrbMYnkiI2NlaIfTfmm24vfhjPFP+I0yM6yY3bK0SurCiuaa5Cf/beT45dLZOnBVZUkLVQYSwJzU1FdfdsBBPPbHUpsd//eXXqK9vwJIH/uHQ9aS+fqKkEOnXVb7D8FHUIuwe8gT+NfgaTNEPhVbJ7XxyqbSQOTtbaPbI0VarLo6UFCG/SvhJ9XKvFgKknfTh+u/HWqWQLyWFBHHvvfeiq6sLn3/6v34fxzAMHn/kCdz713sQFWVZ5Wmr++67D8XFxejs7MTevXuRmWm9spEQsbI1IfRjwyG8/seuql/W7cXikv+h3dzFZWiSrxI6WXbW4nhrZwf8vWhnSmdQMogQ9r34/EtYv3Y99u3t/4Z7e3s7lj71LF568SW4u7s7fD0pr58oKUT6FejmjfHeiVArVEKHIjtBej3GJw21em71gX28lrL3xZUTQ1JOGDmry2hEa6dli6ifjhb9QtBoNHh52ct47pnn0drHAHAA2Lh+I44cPoqnn7TtrhghcmRrQmh3Sz4eO7eq17HNzSdxc+EHqDVaJsXZINaEkK1VQmuOZFs9PiU5FToNVZA7ihJChHAjLCwM9//9b3js4f5nMy5/+x0EBQXi+uuv5zE6caGkkIuyp4WMcOeKYelwV6stjhdWV+FwSRH/AVnhKomhC5NArpwQAoDGvraj96Qh00KZP38+oqKi8O83/mP1vMlkwuOPPoFHn3gEvr6+/AZHiMQ0mzrwt9IvYGBMFueOtZ/F8fZzrF9TrAkhWxVUVeJUmeXr4qHRYOLQFAEikj5qFyOEe4898jjyzpzBzz/9YvV8TU0NXvvX63jt1dehdOG5ma77Jyei5iotZF7u7pieNsLquZ8O7ofRZLlgJdyRSjKI+9axvrajp0ohoSgUCrz+2ut48/W3UFFh2V76v8/+h7a2djxw39/5D44QkbC1Sshb5Y6Xw6+Bu8LypszTobMxwTuJ7dBEi6qEhEHJIEL44e3tjWeeeRZPPvYUDAaDxfmXX/oXssaNxZQpUwSITjwoKUSIwCYOTbE6wLe6uQk7ck8JEJElV6gW6iaVxBCXrG1HDwC+OpopJKRLLrkEU6ZNwYvPvdTreGtrK55d+jyWvbQMGo1GoOgIEZa9W89P0yfjs5g74af68+faPYETcWPAWLZDE22VkK0Jof6qhCYNTWU7LFmj6iBC+HfnnXdCoVDgow8+7nW8IL8AH77/EV579XWBIhMPSgoR0XKVaiGNmxuuSh9l9dy6I4fQ3sXt0EtbuVJiyNX1VSlESSHhvfqvV/G/z77AqZN/Jozffuv/EB4ejgULFggYGSHCsTch1C1dF4mVsfciUuOPWT7DsST4cpYjE29CyB5rDvdVJZQGD0pE24ySQYQIQ61W45V/vYIXn3sRTU1NPcefemIprr/xOqSkUAus6JNCy5cvR3R0NNzd3ZGZmYl9+/b1+djjx49j/vz5iI6OhkKhwFtvvcVfoBJEc4XEY3RsPML9/C2Ot3R2YGPOEQEiso4SQ67BWqWQQqGAj45mCgktMTERt95+K556/GkAQFVVFd547U288fobUCgUAkdHCP8cTQh1i9IGYmXsX7Es/BooFewui8WcELK1Sii/qgKnyvuqEqIPUraihBAhwpo9ezYSk5Lw5mtvAQD27d2P9WvX48XnX+r/C12EqJNC33zzDZYsWYKlS5ciOzsbw4cPx/Tp01FVVWX18W1tbYiNjcXLL7+MkJAQnqN1PY2mdvxQn40Wk+UuRa7G2WohpUKBq0eNsXpuy4kcq9uDE9fER2LOWqWQ3t0DKhcewCcmzz/zPLZt3Y4d23fgpeeXYeLkiRg/frzQYRHCO2cTQt383TyhVbqx8lzdxJwQssfaw4esHp9KVUI2oXYxQsRBoVDgjdffwH/eehvnzpXhsYcfxwMP3o/QUBobAQDsvgOy7I033sBdd92FRYsWAQDee+89/Prrr/joo4/w6KOPWjx+9OjRGD16NABYPU+cV2dsxaamE1jflINdLXkwwox3VFpcpufmblGILkw2C6uBDA0bjKFhg3Gy7Gyv41q1GlVNjaIZ8hvnG0kLHJmzVilkbe4VEUZQUBD++fA/sPgvf0NJcQkOHbL+oY0QOWMrIeSKbK0Sau/qQmN7m8VxnUZLO47ZgNZKhIjLmDFjMGPmDMyZOQfVVdVYt3ad0CGJhmiTQl1dXTh48CAee+yxnmNKpRLTpk3D7t27WbtOZ2cnOjv/rHRpbGwEgF79hs5o6mLnebiighoNXfU2PfZcVz3m5L8NE8yI0wzC7d5jMdUnGfHMIDQ3cVfJ0tpufb6J2ATAH6XNzm1je0VSGk4UFoEBoFaqMGFIMiYnp8JdrUFbczs7gbIgVBWEwkbbFpWEXW0q7r8PRoVHI9LLD43trWhoa0NjWxu8lfZ/D7ZCXP92m9xZ+rn+x/sDwzCsPJ8j/rnkIax4/wPcctvNGDJkiGBxENcl9PqpuUu8FbRV7eVCh9Ave36WPzB5Bo6VFmHDsSOobDr/d3xpYiqYThPaOsWzLhEbWiMROWHt57oI1k+vvPwKUlJS8Oabb8Lb21uwOMRGtEmhmpoamEwmBAcH9zoeHByMU6fY25Fp2bJlePbZZy2OR0Q41w4kd7l//HpH6EBk7ltsx7dCB0EIgEIAv+FLocMQldraWvj4+AhybZ1Oh9IS+tBBhEPrJ9f1BXbiC6GDIITw5jk8z+rzCbl+io2NRXs7JbQvJtqkEF8ee+wxLFmypOf3DQ0NiIqKQklJiWDfrFLV1NSEiIgIlJaWQq/XCx2OpNBr5zh67RxHr51jGhsbERkZCX9/y+HwhLgKWj+xh34WO45eO8fQ6+Y4eu0cR+sn8RJtUigwMBAqlQqVlZW9jldWVrI6RFqr1UKr1Voc9/HxoX/oDtLr9fTaOYheO8fRa+c4eu0co6TB28SF0fqJffSz2HH02jmGXjfH0WvnOFo/iY9o/0Y0Gg0yMjKwefPmnmNmsxmbN29GVlaWgJERQgghhBBCCCGESJ9oK4UAYMmSJbj11lsxatQojBkzBm+99RZaW1t7diO75ZZbEB4ejmXLlgE4P5z6xIkTPf997tw5HD58GF5eXoiPjxfsz0EIIYQQQgghhBAiNqJOCi1cuBDV1dV4+umnUVFRgREjRmDdunU9w6dLSkp6lZ+VlZUhPT295/evvfYaXnvtNUycOBFbt2616ZparRZLly61WhJN+kevnePotXMcvXaOo9fOMfS6EWKJ/l04jl47x9Fr5xh63RxHr53j6LUTLwUj5J5whBBCCCGEEEIIIUQQop0pRAghhBBCCCGEEEK4Q0khQgghhBBCCCGEEBdESSFCCCGEEEIIIYQQF0RJIUIIIYQQQgghhBAX5JJJoeXLlyM6Ohru7u7IzMzEvn37+n38ypUrMWTIELi7uyMtLQ1r1qzhKVLxsee1W7FiBcaPHw8/Pz/4+flh2rRpA77Wcmbv9123r7/+GgqFAldffTW3AYqUva9bQ0MDFi9ejNDQUGi1WiQmJrrsv1l7X7u33noLSUlJ8PDwQEREBB588EF0dHTwFK14bN++HbNmzUJYWBgUCgVWr1494Nds3boVI0eOhFarRXx8PD755BPO4ySEb7R+chytnxxDayfH0frJcbR+cgytnySMcTFff/01o9FomI8++og5fvw4c9dddzG+vr5MZWWl1cfv3LmTUalUzCuvvMKcOHGCefLJJxm1Ws0cO3aM58iFZ+9rd8MNNzDLly9nDh06xJw8eZK57bbbGB8fH+bs2bM8Ry48e1+7boWFhUx4eDgzfvx4Zs6cOfwEKyL2vm6dnZ3MqFGjmCuvvJLZsWMHU1hYyGzdupU5fPgwz5ELz97X7osvvmC0Wi3zxRdfMIWFhcz69euZ0NBQ5sEHH+Q5cuGtWbOGeeKJJ5jvv/+eAcD88MMP/T6+oKCA0el0zJIlS5gTJ04wb7/9NqNSqZh169bxEzAhPKD1k+No/eQYWjs5jtZPjqP1k+No/SRdLpcUGjNmDLN48eKe35tMJiYsLIxZtmyZ1ccvWLCAmTlzZq9jmZmZzD333MNpnGJk72t3MaPRyHh7ezOffvopVyGKliOvndFoZMaNG8d88MEHzK233uqSCxt7X7d3332XiY2NZbq6uvgKUbTsfe0WL17MTJkypdexJUuWMJdccgmncYqdLYuahx9+mElJSel1bOHChcz06dM5jIwQftH6yXG0fnIMrZ0cR+snx9H6iR20fpIWl2of6+rqwsGDBzFt2rSeY0qlEtOmTcPu3butfs3u3bt7PR4Apk+f3ufj5cqR1+5ibW1tMBgM8Pf35ypMUXL0tXvuuecwaNAg3HHHHXyEKTqOvG4//fQTsrKysHjxYgQHByM1NRUvvfQSTCYTX2GLgiOv3bhx43Dw4MGeEumCggKsWbMGV155JS8xSxm9TxC5o/WT42j95BhaOzmO1k+Oo/UTv+h9QjzchA6ATzU1NTCZTAgODu51PDg4GKdOnbL6NRUVFVYfX1FRwVmcYuTIa3exRx55BGFhYRb/+OXOkddux44d+PDDD3H48GEeIhQnR163goIC/Pbbb7jxxhuxZs0a5OXl4a9//SsMBgOWLl3KR9ii4Mhrd8MNN6CmpgaXXnopGIaB0WjEvffei8cff5yPkCWtr/eJpqYmtLe3w8PDQ6DICGEHrZ8cR+snx9DayXG0fnIcrZ/4Resn8XCpSiEinJdffhlff/01fvjhB7i7uwsdjqg1Nzfj5ptvxooVKxAYGCh0OJJiNpsxaNAgvP/++8jIyMDChQvxxBNP4L333hM6NNHbunUrXnrpJbzzzjvIzs7G999/j19//RXPP/+80KERQojLovWTbWjt5BxaPzmO1k9EDlyqUigwMBAqlQqVlZW9jldWViIkJMTq14SEhNj1eLly5LXr9tprr+Hll1/Gpk2bMGzYMC7DFCV7X7v8/HwUFRVh1qxZPcfMZjMAwM3NDadPn0ZcXBy3QYuAI99zoaGhUKvVUKlUPceGDh2KiooKdHV1QaPRcBqzWDjy2j311FO4+eabceeddwIA0tLS0NrairvvvhtPPPEElEq6h9CXvt4n9Ho93eUiskDrJ8fR+skxtHZyHK2fHEfrJ37R+kk8XOq7VKPRICMjA5s3b+45ZjabsXnzZmRlZVn9mqysrF6PB4CNGzf2+Xi5cuS1A4BXXnkFzz//PNatW4dRo0bxEaro2PvaDRkyBMeOHcPhw4d7fs2ePRuTJ0/G4cOHERERwWf4gnHke+6SSy5BXl5ez0IQAHJzcxEaGuoyCxrAsdeura3NYuHSvThkGIa7YGWA3ieI3NH6yXG0fnIMrZ0cR+snx9H6iV/0PiEiws655t/XX3/NaLVa5pNPPmFOnDjB3H333Yyvry9TUVHBMAzD3Hzzzcyjjz7a8/idO3cybm5uzGuvvcacPHmSWbp0qUtvqWrPa/fyyy8zGo2G+e6775jy8vKeX83NzUL9EQRj72t3MVfdQcPe162kpITx9vZm7rvvPub06dPML7/8wgwaNIh54YUXhPojCMbe127p0qWMt7c389VXXzEFBQXMhg0bmLi4OGbBggVC/REE09zczBw6dIg5dOgQA4B54403mEOHDjHFxcUMwzDMo48+ytx88809j+/eUvWhhx5iTp48ySxfvpy2VCWyQ+snx9H6yTG0dnIcrZ8cR+snx9H6SbpcLinEMAzz9ttvM5GRkYxGo2HGjBnD7Nmzp+fcxIkTmVtvvbXX47/99lsmMTGR0Wg0TEpKCvPrr7/yHLF42PPaRUVFMQAsfi1dupT/wEXA3u+7C7nywsbe123Xrl1MZmYmo9VqmdjYWObFF19kjEYjz1GLgz2vncFgYJ555hkmLi6OcXd3ZyIiIpi//vWvTH19Pf+BC2zLli1Wf3Z1v1633norM3HiRIuvGTFiBKPRaJjY2Fjm448/5j1uQrhG6yfH0frJMbR2chytnxxH6yfH0PpJuhQMQ3VthBBCCCGEEEIIIa7GpWYKEUIIIYQQQgghhJDzKClECCGEEEIIIYQQ4oIoKUQIIYQQQgghhBDigigpRAghhBBCCCGEEOKCKClECCGEEEIIIYQQ4oIoKUQIIYQQQgghhBDigigpRAghhBBCCCGEEOKCKClECCGEEEIIIYQQ4oIoKUSIyBUVFUGhUODw4cNCh8Kp999/HxEREVAqlXjrrbd4v75CocDq1at5vy4hhBBC2EfrJ37Q+okQ6aOkEHFppaWluP322xEWFgaNRoOoqCg88MADqK2tFTq0HhERESgvL0dqaqrQoXCmqakJ9913Hx555BGcO3cOd999N2fXeuaZZzBixAiL4+Xl5ZgxYwZn1yWEEELkgtZP4kDrJ0IIGygpRFxWQUEBRo0ahTNnzuCrr75CXl4e3nvvPWzevBlZWVmoq6vr82u7urp4i1OlUiEkJARubm68XZNvJSUlMBgMmDlzJkJDQ6HT6Swew/VrHhISAq1Wy+k1CCGEEKmj9ZN40PqJEMIGSgoRl7V48WJoNBps2LABEydORGRkJGbMmIFNmzbh3LlzeOKJJ3oeGx0djeeffx633HIL9Hp9z52YFStWICIiAjqdDnPnzsUbb7wBX1/fnq/Lz8/HnDlzEBwcDC8vL4wePRqbNm3qFUd0dDReeukl3H777fD29kZkZCTef//9nvPWyp+PHz+Oq666Cnq9Ht7e3hg/fjzy8/Ot/jm3bt0KhUKB9evXIz09HR4eHpgy5f/bu7eYJtI+DODP1E+loJW2UUGjlXoghC1ERWPEQ8QgZpUETyDqBm5wza6YeLgxMcHNRjGCXHhABTUYd1eNIhdGwA2rhoqIByipSallBXdNUBRNtEJU5P9dmJ3PclBYPqO1z++Keeedef/TksyTt3OIQXNzM0pKShAWFgadTodVq1ahtbVV3a60tBSzZs1CYGAgjEYjFi9e7DHG69evsX79egQHB8PPzw8mkwmZmZkAABHB9u3bMXbsWAwePBijRo3Chg0buq2voKAAFosFAGA2m6EoChobG9VfpI4cOYKQkBD4+fn1qi4AePDgAZKTk2EwGBAQEICoqChUVVWhoKAAP/30E2pra6EoChRFQUFBAYCulz/b7XbExMRAq9XCaDRi7dq1cLvd6vrU1FQkJCQgOzsbwcHBMBqN+PHHH/HmzZtuj5OIiOhrwPzE/MT8RPSVESIf1NLSIoqiyM6dO7tdn5aWJnq9Xjo6OkRExGQyiU6nk+zsbKmvr5f6+nq5evWqaDQaycrKEqfTKQcOHBCDwSDDhg1T92Oz2eTQoUNit9vl7t27sm3bNvHz85P79++rfUwmkxgMBjlw4IC4XC7JzMwUjUYjdXV1IiLS0NAgAKSmpkZERB48eCAGg0GWLl0qN2/eFKfTKceOHVP7d3b58mUBIDNmzJCrV69KdXW1TJgwQebOnSsLFiyQ6upqKS8vF6PRKLt27VK3O3v2rBQWForL5ZKamhqJj48Xi8Uib9++FRGRrKwsGTNmjJSXl0tjY6NYrVb57bffRETkzJkzotPppLi4WO7fvy9VVVWSl5fXbX2tra1SVlYmAOTGjRvS1NQk7e3tkpGRIQEBAbJw4UKprq6W2traXtX14sULMZvNMnv2bLFareJyueT06dNy7do1aW1tlc2bN0t4eLg0NTVJU1OTtLa2iogIACkqKhIREbfbLcHBwbJ06VKx2+3yxx9/SEhIiKSkpKh1p6SkiE6nk3Xr1onD4ZDz58+Lv79/j8dJRETk7ZifmJ+Yn4i+PpwUIp90/fp1j5NYZzk5OQJAHj16JCLvgkdCQoJHn6SkJFm0aJFH2+rVqz1CTXfCw8Nl37596rLJZJI1a9aoyx0dHTJixAg5ePCgiHQNNVu3bpWQkBB5/fp1bw5VDTVlZWVqW2ZmpgCQP//8U237/vvvJS4ursf9PH78WACI3W4XEZH09HSJiYlRg9/79uzZI5MmTep1jTU1NQJAGhoa1LaMjAwZOHCgNDc3f3DbznUdPnxYhg4dKi0tLd32z8jIkMjIyC7t7/8/5OXliV6vF7fbra6/cOGCaDQaefjwoYi8CzUmk0na29vVPitWrJCkpKTeHDIREZHXYX5ifuqM+YnI+/H2MfJpItLrvlFRUR7LTqcT06dP92jrvOx2u7FlyxaEhYUhMDAQQ4YMgcPhwF9//eXRLyIiQv1bURQEBQWhubm52zpsNhtmz56NgQMH9rr2zmOMHDkS/v7+MJvNHm3vj+lyuZCcnAyz2QydTodx48YBgFp7amoqbDYbQkNDsWHDBvz+++/qtitWrEBbWxvMZjPS0tJQVFSE9vb2PtULACaTCcOHD/do+1hdNpsNkydPhsFg6PN4/3A4HIiMjERAQIDaFh0djY6ODjidTrUtPDwcAwYMUJeDg4N7/N6IiIi+FsxPzE/dYX4i8k6cFCKfNGHCBCiKAofD0e16h8MBvV7vcUJ9/wTXW1u2bEFRURF27twJq9UKm80Gi8XS5aF/nQOKoijo6Ojodp9arbbPdXQeQ1GUj44ZHx+Pp0+fIj8/H1VVVaiqqgLwvwcWTpkyBQ0NDfj555/R1taGxMRELF++HMC7N344nU7k5uZCq9Xihx9+wJw5c/p8v3h3n/nH6vq3n8+/0ZfvjYiIyNsxPzE//T8wPxF9WTgpRD7JaDQiNjYWubm5aGtr81j38OFD/Prrr0hKSoKiKD3uIzQ0FDdv3vRo67xcUVGB1NRULFmyBBaLBUFBQWhsbOxX7REREbBarZ/0gXwtLS1wOp3Ytm0b5s+fj7CwMDx79qxLP51Oh6SkJOTn5+P06dMoLCxU3zqi1WoRHx+PvXv34sqVK6isrITdbv/kdUVERMBms/X49pNBgwbh7du3HxwnLCwMtbW1ePnypdpWUVEBjUaD0NDQfh0DERGRt2J++jDmJ+YnIm/ESSHyWfv378erV68QFxeH8vJy/P333ygtLUVsbCxGjx6NHTt2fHD79PR0FBcXIycnBy6XC4cPH0ZJSYlHEJo4cSLOnTsHm82G2tparFq1qt+/hKxfvx7Pnz/HypUrcevWLbhcLpw4ccLjstz+0uv1MBqNyMvLQ319PS5duoRNmzZ59MnJycHJkydRV1eHu3fv4syZMwgKCkJgYCAKCgpw9OhR3LlzB/fu3cMvv/wCrVYLk8n0yetKTk5GUFAQEhISUFFRgXv37qGwsBCVlZUA3r2tpKGhATabDU+ePMGrV6+6jLN69Wr4+fkhJSUFd+7cweXLl5Geno7vvvsOI0eO7NcxEBEReTPmp54xPzE/EXkjTgqRz5o4cSJu3boFs9mMxMREjB8/HmvXrsW8efNQWVn50Xuqo6OjcejQIeTk5CAyMhKlpaXYuHGj+upP4N2JX6/XY+bMmYiPj0dcXBymTJnSr7qNRiMuXboEt9uNuXPnYurUqcjPz+/zPfIfotFocOrUKdy+fRvffPMNNm7ciKysLI8+Q4cOxe7duxEVFYVp06ahsbERxcXF0Gg0CAwMRH5+PqKjoxEREYGysjKcP38eRqPxk9f1z2tyR4wYgW+//RYWiwW7du1S711ftmwZFi5ciHnz5mH48OE4efJkl3H8/f1x8eJFPH36FNOmTcPy5csxf/587N+/v1/1ExEReTvmp54xPzE/EXkjRfrypDgi+qC0tDTU1dXBarV+7lKIiIiIvALzExHR5/Ofz10AkTfLzs5GbGwsAgICUFJSguPHjyM3N/dzl0VERET0xWJ+IiL6cvBKIaJ+SExMxJUrV/DixQuYzWakp6dj3bp1n7ssIiIioi8W8xMR0ZeDk0JERERERERERD6ID5omIiIiIiIiIvJBnBQiIiIiIiIiIvJBnBQiIiIiIiIiIvJBnBQiIiIiIiIiIvJBnBQiIiIiIiIiIvJBnBQiIiIiIiIiIvJBnBQiIiIiIiIiIvJBnBQiIiIiIiIiIvJB/wXYE/I8bKqJngAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0IAAAJgCAYAAACnTdP9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3hjZ5X48e+5krs9tsfj8VRPL8n0ZNJ7gwAJEHpYlrqEDgu7C/yApewusCywlAUWssBSFkJNSCUhkEbKpMxkMiWT6b16bI/HY4+LdM/vjyvHkizbkq1yJZ3P8+ixJV1dvWr33PNWUVWMMcYYY4wxppg4uS6AMcYYY4wxxmSbJULGGGOMMcaYomOJkDHGGGOMMaboWCJkjDHGGGOMKTqWCBljjDHGGGOKjiVCxhhjjDHGmKJjiZAxxhhjjDGm6FgiZIwxCYhIk4g8LiIPiciTInJVrstkjDHGDLA4NX5iC6oaY8xQIhIAUNWwiMwFfq2q5+S4WMYYYwxgcSodrEXIFD0RmSEiKiKzc10W4x+qGlbVcORqHbAhh8UxxhQwi0NmLCxOjZ8lQlkWab5UEXlD3O3nRW7fk+Axn47c97YUniflx5jCE/V9uzTu9h0i8vYsPP8XRWS3iJwUkWMi8jsRaY66PyAiXxWRFhHpFJHfi8ikTJcrWSIyR0QeBe4Dbst1eUz+i/wec3rCa3HIZJMP4tCbROSvkTgUSnD/aHHqJyLSLyKnoi7vz3S5k2VxanwsEcqNLcC74257d+T2GCLiRO5rA25KZudjeYwpaK3A10REcvDcPwdWquoEYDawD/hV1P2fBF4FnAfMiHpMVojImgSXbwzcr6q7VfXiSPm+k61yGZMFFodMNuUyDrUD3wP+fpj7R4tTAD9V1eqoy/cyVdhERopVFqfGxxKh3LgVWBXpz4mI1ACvBf43wbYvBaYDbwUuFJGlSex/xMeISLWIfE1EdkVq4Z8XkUuSuG+PiLwlaj+zI7U8M6Lu/4yIPBipMdkoIstF5MZIzU+HiPxQRILJvlFj2aeINIjIz0TkSOTyUxGZGHX/FBG5I/LYbcC1cc9ZGXkPdotIm4jcKyLzRyjjSO/ZaGXZIyKfEpG/RF7fJhG5MJl9p+B/8JKMG1N83Lip6guq2hG5KoALLIra5CbgK6q6K7Ldx4FrRWRWov2N9n6k+n1R1fMTXD4a2VdZ1FOfBE6l7Y0xJvcsDiXJ4lDex6H7VPUWYNcw948Wp1KWxHc4pe/TcLHK4tT4FVQiJCK/FJGDItIb+eI9ICLLcl2uBHqAXwDvily/EXgYOJxg25uAP6rq3Xh9P9+TxP5He8yP8GoOrgImAK+Meu6R7kvG24D3A/XAc3jNtFcAK4Blkf29MYX9jWWfv4hse0bkMonYVoZfAGGgGbgUeHvc8/0PsBg4H5gCPAncJSIlw5RvpPdstLIAvBP4MFAL3A/8NMl9J6sL+CzwpbiDZtJE5HsicmKEyydHeOybRaQD7wD9EeDzkdvr8D6DtQPbqupOvIP5imF2l8z7ka7v4Dki8oiIPAj8IVJ2Y9LlJSKyPfL7+ZGIVGT5+S0OpcbiUB7HoST2nTBORXltJCHdJl537upRdjnae2Zxyi9UtWAuwGN4P/jv4h3QFdiS63LFlfEh4DPAUuAQEASeAV4BvAXYE7XtNKAfeHXk+ofxmngrRtj/iI8BJkfelyUJHjvsfZH79wBvibo+O7L9jKj7/ynq/pdH7m+Muu03wDdSeL9S2mfk9SuwIOr+RZHbpuLVUCowL+r+ayK3zcYLEAo0R93vAB3Axam8Z6OVZZjXtyRyf+1on0eK37cAsAn4eOT2HcDbI//PAx4B/go8CqzO0Hd/CvBp4PLI9ZmR1zcnbru90d+zZL+fmfoO2sUu6bxEvo8KHAF+DByLXP96FsswcFywOJTc+5XSPrE4NNz3LadxCLgcCI2yTUycitx2NtAU+QyWAE8Bt4ywj2S+wxanfHIpqBYh4A3AGqCTwZkzFovItNwVKTFV3YR3wvfPeD+aexNs9i68/tV3Ra7/H1DByLUEoz1mduTvtgSPHem+ZEXXeHQDYVVtibutJoP7nBn5uzvq/p1R9w2MQ9kbdX/0tnMifzcM1DLhvZ8lUfuONjvyN9F7NlpZBkS/vq7I35pR9p0S9WaV+SfgUyLSEHf3CeAGVb0Erxb3G+N9vmHKcASvlvOuSLeMzshdtXGb1uG1CsWbHfk72vuRie+gMen2HlV9J4PjdN6a7QJYHMrYPi0OJeCHODSaBHEKVV2rqkdV1VXVzcBHgdeN0LI1O/J3pPfM4pRPFEwiJCILgBeAbwOfAD4YdXdjTgo1upvxAtCPdXD6Q+DFgabvwjspPCAiR4Dn8WpUEnZLSPIxeyJ/FyTYxUj3gXfiWhV13XcJJrA/8nd21G1zo+47GPl/VtT90dsOBKYFqloXdalUr49xvD0D24+hLKMZad8pU9U/Ak/jdU+Ivr1VVVsjV3vxumvEEJHvS+yMOfGXTyVZjCDed2iaqp7AG5R6VtTzzMXrRpBoCtA9kb9peT+MybGBSQleiPydNNYuQ+NkcSj9LA4NwydxaDQvxqlh7ncHijTM/Xsify1W5YGCSYTwmvSrgfV4B+CmqPtyMUtJMm4BXgJ8K8F91+LV1lwIrIy6XAecP8zYp1Efo6rHgN8B3xNvkKmIyHwRmT/SfZH9rwVujAwCbMQLnr6iqoeAPwFfF5E6EakHvo7XV/2wqh7Aa6b/DxGZICJNRB2QI+/BL/Heg+ngjWURkRsS9Qke5f0csSxJvJbRPo+x+Ee8k5EhlQPiLcz2beDfE5TlvRo7Y0785UsJ9ueIyAdFZHLk+gy8bqt7GDz5uxn4hHjTf04AvgLcp6p7EpQhE++HMblyRuTv4sjf46ram4NyWBxKM4tDo8paHBrYp4iUA6WR6+WRiyQTp8Sbfrsu8v8CvPfvDlXtSfR8FqvySyElQkcjfxfiHdD/lMOyJEVVe1T1z6ranuDu9wB/iDTJHom63Ac8QeLauGQf8068hPFhvNq12/H6xY5232fwamkO4x3E46eXTJl4NTx/HO9+4rwFr+xb8Q5kJ4jtdvJmoAyvNuyvwM/iHv/uyGMfEpFOYCPwerw+vImM9J6NVpbRjLTvlN8/VX0O78RnQvTtIiJ44xXuUtVE3WPG6uXAJhHpwhvs2w1craoDazn8O3AnXg3hQbxa47ck2lHEiO+HMXnkByLyI7xuOJDFaeOjWRyyOJSEfI9DfwucxltnJxD5/zSDLXKjxan3Arsi9/8JbwjGO0Z5TotVeUJUh/tN5ZdILcIP8MYJnQT+gcED5CpVXZ+johnjeyLyHeCoqv5rrstiTCETkYGg+x688RKT8WaMer+qduesYMbkmMUhkwsFkwgZY8ZGRC7Hq+V6PHJTm6q+JmcFMsYYU1QsDplcsUTIGGOMMcYYU3RyOkZIRH4sIsdEZFPUbRNF5H7xFpq7PzKwzxhjjDHGGGPSJteTJfwEb4aZaJ8E/qKqC4C/RK4bY4wxxhhjTNrkvGuciMzGmyFkaeT6VrwVfQ+LyFTgIVVdlMsyGmOMMcYYYwpLMNcFSKApam77I8SuBxRDRG7CW4GYqqqqsxcvXjzcpsMKu6NvY4wpTIExtomvXbv2uKqmfaFmERGnerorVdMIHXnKr+ufmRRYnDL9KX6APWHYf3rwugPMrfbvgogGwm7mGhWqygJjelym4hRAYOJiFXEItT6f919LPyZCL1JVjZpqNNH9N+MtyMjq1av1mWeeSfk52ruHLF5sjCkS9ZVjCzAisnf0rVJXMucVbvjEdtyTexCRqckseGj8zeJUcWrpHH5t3NNhZW0bLKiBpvKh55FhVd70uEtH/+Btn17usHpi3p9zFoTWzr6sPt8F8+vG9LhMxamyRW9UQt2ouojIUlXdNPqj/MuPidDRgROASNe4Y7kukDGm8LR09lJfWZnrYrxIRIJS0UjpnJfjdh/D7dx7CKsENiYvjJT4DFjbptxx0GVtO/S58I45wo2zhv7EAyJcOEn40xFlRR1cOEmYV52BQptRZTvp8Tuv18IMgtMuBHUJHX16I3kep/yYCN0BvA1vxfm34a3Ga4wxo0rmZMSvgjMu79f+TqS0GqekilDLc4jIElXdnOuyGWOGSvV4c7hHeaJ18Ppjx5UbZyXe9m9nC++eK1SX5PU5Zl6xpGd0JXNf4Ybbd+BURnrcOSWUzn+V9u24PW+/qDlNhETkFuByYJKIHAA+h5cA/UZE3gXsBd6QuxIaY3ItXcnN+nbltgMubX3Q2uvVsn572BGI2SUi1VLeQOmC1wxcp2TaBYSOrt1Ente2GVNIRjoeqSp7umBaBZQFhv5sL2gQ/gtloL//tk441qNMTtA9blKZ/ewzxRKesRGRgFRMpnTO4GTPwann07/3fkTEUdW8HM2Y00RIVW8c5q6rsloQY0zWpSvB+d52l6M9+mKC86PzHCoSnISc7CemNvZYr38Wkw5OOaeTQDkSKH3xNqdqCkiA0vk3aN+O2+ysyJgcGe1Yta1TefiY8thx5dBp+PxShwsnDd2uoUw4YwI8fxKayrzKGJNZlvSkT3DmFSHt7UBKa168zSmrxamagjNpWZg8rbTzY9e4lIjI9cD18+fPz3VRjCl66Upu1rUpf21R2vqU1j64ukl49YzEU7w9flw5FvW0bb0wPcHQn4ay2OttPomPIjJFKiZRuvB1Q+4LTjuf/r1/yevaNmNxKt+kehy7/4hy+8HBipXHWnTYJOfd8xzKHJhX7bX8mvSxpCdzRKTK67Vww5D7gk2r6dvxB0SkXFV7clC8ccn7REhV7wTuXL169btzXRZjClG6kps+V/n1PqWtF1r7lNNh+OrKxLO27e1W7j48eGKxsCbhZgBMLCU2EepLnAhNLI293uaT4USBhjMPOzXNiAx9L5yyOpzKyTiN+VvbZixO5YPRjnOnw5qwpRm8lp3oRGhNqxJ2lYAzdPsltfYzTgdLerIrOOXcUwRKkUDZkPskWE5g4kJQTpOHcSrvEyFjTOrSOanA+nZlY8dggvOyqQ4XJKgNDQr8cq8SjuqR1hvWhH3p45OW1hG6sU0sAzqjtu1TEh2LJ5XBZ850aCjz9h//HLkgImdI1TSCMy4fdpvglNX07bgdESlT1VE/OBH5CPBuvDfhf1T1myIyEfg1MBvYA7xBVdvT8BKMyVujHQfb+5Q1x70ub8+2w83nOEyvHHpsWV4LNUHoDEGJwOIJ0NEfOTaZcbGEJ/dEpEkqJlG6YGivhQGBScvp2/Y7RKRBVVuH3XBwn76JU5YIGVMg0pncdIW8Pu+tfV7LiSPwoYWJu6Y93ab8dv9gorJ4giZMhBwR6kvheFzrzdSKoftsKBVAY7YbzqunO1w5mRcTnPgucANKHOHSycPvJxecCbOfDzadPWIXGQlWEKhfCCI9jFLbJiJL8YLLuUAfcK+I3IW3oOdfVPXfReSTwCeBT6TrdRiTT5I9Vv778y7Pnhi8/thx5Q3NCaa7doR3zBGqS+CciUJVMO8qxX3Bkh5/CjQsPeLUTEec4dfdEydIcPIq3NMtx8mzOGWJkDE+l84E5/kOZXeX0trrJRevmCYsqBl6zOoNwze3DSYiNUH40MLE+xzaejP88zfEJUKtvYkToZmV8L75QkOp0FAGjSPUrK6sz8+TjrIFNygS8CZFGEWg8cXatomq2jbCpmcAT6pqN4CIPAy8BngV3gydAD8FHsISIWNGdMEk4dkTg8fBx48rb2hOvO110xNXFJnELOnJDyKyWKqmEpxx6ajbOvULCR3fiIjMU9WdI2zqqzhliZAxPpNq4nOqX9nU4XUJa+2FmhK4YZiJBW4/qDx4bDCwnzGBhIlQbSk4wMDo/M7Q8N3Y4ltgvK5pib1yutAVgomRBGdOVeLtakuFG2bkZ4KTrFDLRoJzroTqiaNuK0Bg2mrctp2tIrI26q6bVfXmqOubgC+KSANwGng58AzQpKqHI9scAXwycbgx2dXS2UtYlc0dXgvP+nblv852KE0wnufCScL3dgwezzr6hz8OmuFZ0pO/Ao0rtjiNZyA1DaNuK0Cw+VJCB9bsyKc4lfeJkM3GY/LZaElPV8hLcrZ1KtdOERoTrDdxqAc+u2lwQrE5VXDDjMT7a4ifMGCY+BQQYWIpHO+L3TZR683cKuGNzd6+J5YKMxJMVDDgmilWazrA7dh5l5Rcf12y20tJJe6JHR9X1a8Ot42qbhGRrwB/ArqA9UA4bhsVEf/MHV4ELE75Q0tnL629yr9sdtlycvD29e1wboLzvMnlwtVNwrQKuGiSMLvKZnobjSU9hSXc8tz3A9POfm+y20tJJXpq/7dV9SPDbeO3OJX3iZDNxmPyRSotParKx59z2XhisFXmzAlCY/nQbeOTm5G6psUP3h1p7M3Lpgl97mCCM6Ek8XbNVcK75trJgV+o6o+AHwGIyJeAA8BREZmqqodFZCpwLJdlLDYWp/zj4WMakwSB1zJ0bkPiY9jHz7DKm2RYAmRS4ac4lfeJkDF+NZ6xPSKCMJgEwfCzodXFdWM7GfKmqk7U1WNBtXBNk9edraEUFiboFjfgb2fbCUA+EpHJqnpMRJrx+l2fD8wB3gb8e+Tv7TksojFZN3A8fs1MhxmVyje2urRGzt3XtSmqaq09Y2RJkEmVn+KUJULGpEGySY+ryu4ub8rp9SeUyoDw/85MnHCsrBfWRw3UHW7dm4AIlzQKpc5ggqPDNCivqBdW5OnkAiZpv4/0ve4HPqCqJ0Tk34HfiMi7gL3AG3JaQmOyKP74fG6DcPM5Dt/c5nL5ZIfV9dblbawsCTJj5Js4ZYmQMSkaT0vP3i543zOD7TyVgeEX3ltZ500hPbMSVtQJZ46wEN+nl1jrjfGo6iUJbmsFrspBcYzJqeGO1zUlwj8vGX46YDMyS4DMePgpTlkiZMwIxpL0tPQojkBD2dDEZXYV1JZ4sw8BdIdhWyecUTt0P4tq4JcXOExKsB9jjDEmFywJMoXEEiFjooy1tWfbSeXeI95UrAdOwxubE08gICKsrBMebhnsu7axQzkjQWtPwBEm2crkxhgzJi2dvTb2J80sCTKFJu8TIZuW1IxVOhcqPXhauevQYHKzvn34WR/PnwR9rjcGaGWdNyWrMaZwWZzKvpbOXlxVPrXB5ex64TUzhYAlRONiSZApRHk/sEBV71TVm2prE/QtMiaipbN3yCVZfWGvped/d7m09SZOcFbGTUCwvdNb6DSRq5ocvrAswA0zHOZUi9VWGlPgLE7lxh8OKOva4X92Kf/wrMuBbls+a6wsCTKFKu9bhIyJl86Wnu9td7n7kDKQ08yqgiubhiYu9aXCrErY2w0BgcU10N4P1cOsvWOMMSYzWjp7OdCt/Hj3YOLz/En40S6Xzy21CRJSYQmQKXSWCJm8l87EJ15FAKIbdp5thyubEm/79jkOJQ4sq4WKoLXyGGNMtg3EgyM9UOZ43ZABqgLwgQV53wkmqywJMsXAEiGTV9KR9KgqB09743iePaHs6YL/OcfBSdBFbWW9cMu+qLE/J4bvWnFRoyU/xhiTK9HxYfVEb62gb21zWdMK718gNgNnCiwJMsXCEiHjW5lq6XEVPrjWpTs8eNvuLphXPXTbMydAiUB9KayqF1bUeYuiJkqajDHG+EdDmfCFpQ7r2uGs+lyXJn9YEmSKiSVCxjfSmfic6FNO9kNzVeJpqVfUwROtg7etb1fmVQ/dtiwg/Ox8h4mltvK4Mcb41XDxQ0Q4e2KWC5PHLAkyxcYSIZMTmWjtOdaj3HrAm+FtVxcsr4WvrUo8MHZlvfBE62A3t80dymtnJt5vooVRjTHG+EMmx4kWC0uATLGyRMhkXLaClAK3HhhMbrachJ6wUh4YmsisqhdW1Sur6oSV9cKCBN3ijDHG5IfOfqU6aC33Y2FJkClmeZ8I2UJ1/pOJxCfkKts6vckKltUKy+qGBrumcmFqORzu8a73K2zuIGG3iNlVwldW2DSqxpjMsziVOS2dvYRdb+HUCSXw0UWOTYqQAkuCTLHL+7kkbaE6f8lEEnTPIZfXPeby98+6/GS38vCx4WduG1jYVID51RC29fOMMTlmcSozBuLNb/YrWzvh6TZ491MufzrsomoH/9FYEmRMAbQImcIwELQSdWuYWCp0h5ObwvoVU4VzJgrL62BCidUKGmNMIdt9Svn5nsGY0BWGNa3KNVPs+D8cS4CMGWSJkEmbVFuDjvUo608o69u9Wdu+utJheuXQ7ZbVeU2XkXXx2NcNrb2acBKDhROEhSmX3BhjTD4ZiDflAVg8ATZ1eLfXlsCHFjo2VmgYlgQZE8sSIZMz/7nVZV374PVn25XplUODV1VQWDQBDp/2ur6trPNWDDfGGFN8oivdplYIX1vpcPtB5ce7lA8uEOpLLQlKxJIgY4ayRMikRaLWoK6Qsq8LzqhNHJRW1gnr2qO7vMF10xPv/1+WOkwosRmBjDGmmCWKNY4IN8wQLm1M3FPAWBJkzHAsETJp1RdWfrHX6/K29SSUOHDrxQ4lztDgtLJeYPdgIvTCSUVVEyY7tVbDZwpQcOpsnIokl7wPH6c/s8UxJq9ZEpSYJUFmPIKNMwg0zEtq21CpO/pGPmOJkBm36Bq6EgfuO6K0RY67vS5sPQlL64Y+bkENnF0PZ0zw1vJZPMFafIwxxiRmC6emxhIgY0ZniZAZl/jAJCKsqBMejJri+tkTytIE6/4ERPiyreVjjDFmFAOx5mC3UlNis4KOJttJkCq0d0NtBQRsDK/JI3mfCNlCdf6zqh4ePOb931wJ1Xn/LTPGmLGzOJUe/a7yr5tdTvTDRxY6XDDJkqFEsp0EdfXCLU8E2XPcobxEufLMMOfNcy0hMnkh77+mtlBd7gzXTeGcicInzhBuucDhh+cGuGFG3n/NjDFmzCxOjc9ArPnlXmVXF7T1wec2ufzHFpeQawunRst2EtQbgp8/6iVBAD39wj3PBfnVGqsBNfnBvqkm7RrKhKuarKbO+NeLJwtNCRauMsb4xkAStOuUcsve2KTHVQgmmIinWGU7CQq5XkvQgfahlZ1nzQ5ntSzGjJUlQmZMbNCqySc2aNiY/BMdZ2ZWwptnCbfsU8IKE0vh/QssCYLcHN9chd8/HWDH0aFJ0OKpLmdMs5Y6kx8sETLjsuWkMr3CBq4a/7Ckx5jCU+IIb50jXDBJ+doLLm+f41jcITfHO1W4Z32AjftjJzuaVufSVKtccebwrUGn+6CiNNMlNCZ5lgiZlA3U0vVFBq52h+BV04XXzhQLTCbrLPExpvAM1+tgQY3wvbMdAtYlLmfHvoe2OKzZGZsENVQrb704RHX58I/rPA3f/lMJy5tdrl4StoTI+IIlQmbM7jusHI/Eqlv2KX88rPz8fIeygAUokzmW+BhT2Ebrem1JUO6Og0/tdPjL87GnjjXlytsv6R8xCQK4d2OA0/3CkzsDbDrgcO3yMCubXWz5QJNLlgiZlES3Bt2yL7YP8OWTxZIgk3aW+BhjzKBcHRM3HRDufDa2Jai8RHn7JSHqq0Z+7K5jwnP7Bh/b1Sv8/ukga3e7XL8qTFOtjSkyuWHzGpuxUXj1dKG2xLta6sAbmy0JMuPT2tk35GKMKR4DlW3bTiobTtjJcbRcHhN3HhV++1QQZTDOlwSUv70olFQSIwL1VUO323Pc4bt/DnLvhgC9obQW2ZikWIuQSVp0d4XSgPCGZuH6acqdh5Re15s225hUWKJjjBkwEGN6w8pXXnDZ3w03TBfeMVcoL/LeBrk8VqrCA88HCLuDn4EjypvODzFrUnLJ6pxG5cMv6eeRFwL8datDKGpfrgqPbguwYb/Dy1eEWDJdrbucyRprETJJGa7PdkVQeEOzw9/Otq+SGZ219hhjRvPTPcr+bu//2w4q73vGpTtUvK1DuT5WisBbLgoxa5L74m03rA6zaGpqn0lJAK5aEuZDL+lnQZM75P6Tp4VfrSnhp48GOd457mIbkxRrETLGZESug7cxJn8MVLYd7VFu3R97gr28TqgMFmcTgV+OoxWl8PZLQvx6TZA5jS6rZg1NZJLVUA1vvTjE84eEe9YH6Tgd+9nuOOrwX/eXcMkil8sWhykJDLMjY9Ig76vxReR6Ebm5o6Mj10UpWLZ4qkmGtfYYk5jFqZFFx5imcuErKxyaIjOQTS6Dm+YVXxLkx+NoSQDefGGIixYmToL2dHaxp7MrqX2JwJLpykde2s8li8I4Epv8hl3hoS0Bbn4wiFu8jYEmC/I+EVLVO1X1ptra2lwXpeCp2tHIDLLEx5jkWJwaXqKKthX1ws2rHa6fJnx0kUNVkbUG+fl4OtzM5dEJUCoJUWkQXroszAev6WdO49AE66zZ7rDPaUw6WNc4M6LoIHX7QWVTh/I3s4Q51XZkKiZ+DszGmMJTERQ+tLD44kyuj7VhF25fF+DC+S5T6pKr/Bwu6dnT2cXsmlHm1Y6YPAHeeWmIDfsd/vhcgFO9wtQ6l3Pnjr0LnjHJsETIJKU3rPxqn9LWB39tUS5tFN49T5hcXnyBqhjkOhgbYwqfdbuOlevjrqtw2zMB1u8L8PxBh7dcGGJ248jJ0GgtPwP3J5MQicCKZpdFU13+sjnA8pkugWH6LZ3u88YtGTNeed81zmROdJC665CXBAEosKZVKbFvT8Gwbm6FQUQWicj6qMtJEfl7EfmqiLwgIhtE5DYRqct1WU1xsyQoVq6Pu6pw3wYvCQLo6Rd+8tcgO44OX9mZbPe3VLctL4FXrAwzsyFxEtYXgu/+uYRfPxng5Omkd2t8wm9xyk5lTVKebY89IL1yulBfaq1B+cgWLS1cqrpVVVeq6krgbKAbuA24H1iqqsuBbcD/y10pjRm04YTy8z0uoSIdEe+XY/Cj2xwe2x47PVtNBTRNSPy5pJLYRD9mLI+L9/ALAU50Cxv3B/jWfSU8vt0hbD3o8obf4pR1jTMJxdfW/esyhyda4ed7XA50w+tnWhKUL/wQZE1OXAXsVNW9wN6o29cAr8tNkYwZjC+nQ8rXX3A53AOPH1f+abHD3CIaf+qXY/Pa3Q73bYw9HawqU95+ST81Fel/vlTGDsVr6YRHtw7W4feGhHueC7Juj8v1q8JJL/BqfCPnccoSIZMUEeHCSXB+g8P+bqiz1iDf8ktwNaOrn1xPsLohqW1PnaymB84TkWeibr5ZVW8e5iFvAm5JcPs7gV+nVlJj0iO6ku1Hu5TDPd7/O0/Bh9a6/PR8h0llhR9f/HKc3nJI+MPa2JagsqDytotDNFQnfkw6WnVSGTsULewKk2uVwydivyNHOhz+5yGHVbPCXLs8TFXZuItoImon1VI2Jbk41eNO4DQszac4ZYmQGWKkvtuOCLPGVpFjMsAvwdRkzZOqOmotmYiUAq8krmuBiHwaCAG/yEzxjBledGw51a88ejy29v7l08SSoCza3SL8ek0QZfA9DzrK31wYYlp9+rrEjSTV1qEptcr7rgrx1E6HP28O0NMf+315dm+AFw45XLM0zOq5NvV2jmxS1Y+MtpFf4pSNETIxbACrv9nYHpOklwHrVPXowA0i8nbgOuBv1BYFMzlWXSL8YLXD5ZO9M9Vp5fDOuYV/1uqX4/bhE8L/PRYk5A6+54LyhvNCzJ2cnSQoer+p7NsROH++y9+/tJ+VzeEh95/uF+54NsgPHghysK3wv1N5zBdxylqEjPE5vwROk1duJKq7gYhcC3wcuExVu3NWKlO0ElWy1ZYKnzpTuKRRmVgKFYHCPWn103G87RT89K9BekOx7/erzg5z5vTsJkHxz5FK61B1Obzu3DBnz3G589kAx07G1u0fbHf4/gPCOXNdrlkatum2/ccXccpahMyLogPV6bDyWIviWsVxTvkpeJr8ICJVwDXArVE3fweoAe6PTFf6/ZwUzhSl0XoaXNIoLKm1JCgbOnvgJ38t4VRv7Pt9zdIQq+cknnotG0lQ9HOl+nxzGpUPXB3i2mUhSgOx5yyK8NSuAN/+Uwl9oXSW1IyHn+KUtQiZhO48qPxwlzKvGt4yy+HCSd6ECSZ7/BQ8Tf5Q1S6gIe62+TkqjjFFzU/H8Z5++NmjQdq6YmP5hfPDXLrIX/NPp9o6FHDg4kUuy2a63PNckM0HY+v5l890KbUzXt/wU5yyFiEDxLUGhZTf7vdqVXaegi9sdvnDQWsZyiY/BU9jjBmr6NhSbEPT/HYcV4WS2AniWNEc5toVYYar58xma1Ci5071+Wsr4cYLQrzt4n4aqr3vW025cuWZQ8cSGQOWCJkE7jikdPQPXq8MwFVN1hqULX4LnsYYMxbRSdAzbcrHn3M5fLrwkyG/TmZTUQpvvyTEoqle68/CKS6vWR0edma1XCZB0cZSjgVTlA9e089VZ4a4bmWIspLE253u8xJEU7ysodAM6b99foOwoxMeaVEUePUMYUKJJUKZ5sfAaYwxYxEdV7pCyn9udTneC+952uXv5gnXTROcAuxu7ffjeGkQ3nxBiEe3OVww3yUwTHW4X5KgAWNZhLUkAFecOXyXP1fhp48GKQvCdatCNNaMt5QmH+V9i5CIXC8iN3d0dOS6KAVjVpXw6SUO31/tcHWT8JoZhRes/MbvwdMYM3bFHqe+v0M5HsmLelz43nZlr7/Os9MiX47jAQcuWzz8mBm/JUEDxtJVbiRrdzscaHPYeczhO38q4f5NAZtQoQjlfSKkqneq6k21tbW5LkpeGmk2nznVwsfPcKw1KMPyJXgaY8am2OJUdFzpd5XW3ti+R6+bKcypLqy44sfj+Gn/FSkt0pEMdfXCnzYNDpgKq/DwC97sclsOFdZ304ws7xMhM3a2eGru+TF4GmPMWMXHlRJH+OJyh48uFCoD0FwJb51dWCeafjyOr9/n8J/3lrD3eGrvtV9bg+KNt3WoPwxT64YODjrRLfzi8RJ+/liQtvx4K8w42RghY3LAj4HTGGMyQUR42TThrIlKdwhKC2ThVL8ex7cdFm59OoCrwk/+GuRN54dYNHX0GQHyJQmKNpaxQwB1lfCOS0JsPODwx+cCdPbEfie3HnbYebSEy84Ic8lCl2BgmB2ZvGctQkUqvtbOFk7NHr8GT2OMGY/Rehk0lRdOlzi/Hsf3tQq3rAniqvc+94eFX60Jcqpn5MflYxI0YKytQyLe+kIfeWk/Fy4I40jseVDIFf6yOch/3V/C9iOF8b01Q1kiZOgKKe96yuXX+1xOhywhyiS/Bk9jjBmPYupq7dfj+NEO4eePBukPD560C8prVoepLh/+cfmcBEUb6+soL4GXrwjz/qtCNDcMnWWu9ZTw00dL+NWaACdPj7eUxm8sESpC8QHrtgPKwdPwo13KW590ueOgv1aYLhR+DZ7GGJNOXQVcoebX43h7lzcV9On+2JaL61aFWTZz+JheKEnQgPGMHZpSp/zd5SFeszpEZenQ7/CmAwG+eV8JJ7rHW0rjJ5YIFblT/cqtBwZ/8B39cLJ/hAeYlPl1cT1jjEmH6Mq1x48rb13j8uBRFy2wLtd+PY539cJP/1rCydOxSdCVZ4Y4b15xVmyONRlyBM6a7fL31/Zz7twwQux3eEGTUleZjhIav7BEqMjEtwbtPOUtKjagJgg32LpBaePXwGmMMekQHVNO9ivf2urSGYIvb1H+dbNLe1/+J0N+rszq7YefPRrk+KnYuH3evDBXnDFyElRorUHxxtM6VFkKrzwrzHuuDDGt3nsfSwPKy1bYQkOFxhKhIreiXvjZ+Q5vnuVNbframUJV0BKhdPBr4DTGmHSIr1j77nalPapHwROt0JrnQ4f8fBwPheGXTwQ52B57Krd0RphXrAwjI4TyQk+Coo3ntc6YqLz3yhDXrwrx0uXhYVuDevpjK5VN/rDps4vIcINZJ5QIb58jvGaGYmunpoefg6cxxqSbqjKvGh5tgf7ICeGbZwnza/I3qPj5OO4q/P7pADuPxSZB8ya7vO6cMI4lQTEGXvNYptp2hFG7GP5hbYC2LuGVq8LMmGgZUT6xFiHzogklQoW1Bo2bn4OnMcakQ3zFmojwhmaH7612WFQD86rhxub8jSd+Po6rwt3rA2w8ELu4zfR6lzdfEBpxzZtiTIKiZeL1bz8ibDoQ4FC7ww8eCPKHtQG6/fv1MXGsRahIFNPUprni58BpjDHpMlI8mVUlfHOVw4l+CI7ULOFjfj+Wr93j8OTO2GxnUrXy1otDlJXkqFB5ZDytQ/FCYbhr/eCptCI8szvA8wcdXroszKrZ7oitcyb3rEWoCFgSlHl+D5zGGJMtAUdoKMu/sz8/T4oQbflMl4VTBrtqTahQ3nZJP1VlIz+u2FuD4qXj/egPw7S6od3muvuE29YG+eFDQQ6fyL/fQjGxFqEi9FiLMrcaplbYjzMd8iFwGn+aMqWGstoJSW3b0lLJ8QyXx5jRFGrFWj4dx0uD8DcXhrj1mQDbDju87eIQ9aM0blgSlNh4W4cqSuGN54c5+6jLXc8Onb1vX6vD9/4snD/f5aolYcrzsMWusbGKmunJxamTfVUcyXB50s0SoQIXH7RO9itffcGl14VrmoQbZ4klROOQT8HTGGPGIzqeqCrbT8HCPJ4MYUA+HscDDrz2nDAnusJMrB55W0uCRrens2tcXeXmNykfvKafR7c5PPxCgP7w4O9CEZ7YEWDjAYeXrwizfIQFbk32Wde4IvOrfUp3GMIK9x5RPvqsS8jmfExZvnShMMaYdIivVFvTCh9c6/KfL7h0hfI3huTzcdwRLAlKo/GsOwQQDMDlZ7h8+CX9LJ46NNk51SP85skg6/faqbef2KdRwOIDV1uvcufB2ID1mhmStwNas2Ug6Ym+GGNMMXvgqBdL7j2i3PS0y+aO/EqG8uVYfqIbjoxxjIklQWMz3vetvgreclGIt1zYT13l0N/F8wft1NtPrGtcEZlY5s3m86UtLvu7oaEUrp9evElQPgRBY4zxo73dgyd4Lb3Q2T/CxmZMevrh548Fae8S3nR+iIVT8ivZzFfpmE0OYPE0Ze7kfn74cJBDUYve1lTY5+gnlggVqOEGtM6rEb5ztsMPdiiXTRYqAoWVCBVachNyoaMbevqFSTVKmf1ijTE5FnaVg92xt51Zm5uyjEU+xImwC79aE+Roh3cC/X+PBbl+VZhz5iY3vsRag/whGICO7tjzrCXTbYyQn9hpVQEabVafioDw94vyJwHKh6CVDvtbhZ3HhLYuoT1y6ej2BloClAaUlbNczp8fZnJyE7gYY0xGfGm5w75uZV83tPYqE0ryJ6b4nSrc8WyAHUcHWxFcFbYfcVg9x0VGeastCfIPR+Bj1/bzwmGHTQccDp8QZjdai5CfWCJkcqZYEpz+MLR3QXuXl+ScPdulNMEvb/tR4YHnh/9J9oWFp3YFeGpXgLmTXS6YH2bRVLXF2owxGRVfuRZwhBX1sKLeDj6Z8MhWh7W7YxdMnVHv8rpzQ6MmQcZ/ykpgRbPLimaXsIvFbJ/J+0RIRK4Hrp8/f36ui+IL0QHLVcXJwVGzWBKcAa7CqR5oOxXdmsOL/3f2xH4Gsyf1M7VuaI3QaOtARNt1zGHXMYf6KuW8uWHOnuNSUTreV2KMyQSLU/7h9/i0Yb/D/ZtiT83qKpW3XBRKWIEWz1qD/C1g8yT4TlKJkIhMTGIzV1VPjK84qVPVO4E7V69e/e5sP7ffxNfafW+7ElblPfOF8iyNBfJ7kEmX9fscNuxzXkx6Qm7y7297F0ytG3r7xKrEzeWVZS6uQk/f0CNoe5dw78YgtZUhltnaBMb4ksUpk4w9x4XfPx3bElReorz14n6qy5N4vCVBxqQs2RahQ5HLSGd7AaB53CUyafHEceWOQ96J9aYO5f+d6TC3OrPJUD4nQWEXTp4ebMVpO+UlOK88K5ywpaW9C7YdGVvVTluXAINJz0Dw6hFh6axyaipcairD3t8Kl2AAXBd2Hy1h58FK9rXGPu+ECuVMG3xpjDEj8nOMOt4Jv3g8SDiqUi0gypsvCNmY0CxK14xxJn8kmwhtUdVVI20gIs+moTxmjKJbg473Kl9/YfDEeG83fPl5lx+c42Ssq5yfAwx4g09P90P7KaG9O7YbW1tkUgJXh743lyxyqSgd2lIzMYVjpaBUlbuRBMdFg33s6QwN2a68VDl/8emE+3AcmDe1n3lTOzh+MsDeQ1Vs3O8QcoVz5oaHbW7feUyYWqdUWrc5Y4zxpa5e+NmjJZzui41Br14dZu7k5AbWW2uQv4RdELHxQPkg2UTogjRtYzIgvktcZz9Ul8DJyLl2QOAfFhdvEvTg8w6PbQ/Q05/662/rgmn1Q2+P78ZWUaJUVoSZUOEOadGprnDT2i940oQwkyac5NrlVTyz2+Hs2Ylbg3pD8MvHg7gKy5tdLpjnMiXB2CRjjElWd0jZ3QXNlVBjM8WNW3/YawnyegoMuvLMEKtm2VTZ+Wrjfod7NwZYOt1l6QyX5kk2sZFfJZUIqWpPOrYx2TGnWvje2Q7f3a7cf1R522xh8YT8/wWqejVngy05DHZj6xY+cFU/lWVDH+c4jCkJAm//ibqx9Tlw1YoSaiq9ZKesJPsJRktfF5ctHr5pav1eh96Q97rX7g6wdneA2ZO82eYWT1MbtGmMSdkLJ+GTG7wT9PoSuKhR+PBC/x9M/Fhh5yr8/unAkO7Oq2aFueIM6+6czzYecDjVI6zZGWDNzgBXnhniyjPtM/WjlGeNE5FPqOpXMlEYk7rh1gyqDAr/dIZwRZNyVoIWjXRJd3DpC/HiBAQD3daiZ2HrDw+f0LR3CZVlY+/GVlWm1FcpE6sUp6TPa9GZEGJP59CDV2kQ5kzJ/VLqezq7EvZpVoU1OwJDtz/usOe4Q22Fcu68MKvnuFQlSB6NMSaRfd2Dx9j2fugJ57Awee7pXQ6bDsQep+c0urzq7HDS02Rba5D/nO6DHUdiP8DFU603hl+NmgiJyG+irwIrAUuEfGC0hVMBVk/MXEvQWJIgV6HzNEyoIOGB/t4N3jo5Y9HWJUyfmGhaau+2oKNMrFbqK6G+WiHQG2nR8bqxleTpZPKJkqGwerWKT+4KDFnVGqDjtHD/piAPPq9et7n5bsIpvY0xxS0+zuzrjr2/uTKLhRkjP7YGAZw122VPS5iNkWSoscabHCGYZAObJUH+tOWQQzhqzHFDtVp89bFkTv1OqurfDVwRkf/OYHlMkpJJgjJppMDS009M17Xo7mvtXRB2hU9e15dwOtD6YaaQTkZbgpiwp7OLcADefLlQUaoFuxhdfDIUdODSxS4XLXR54bCwZkeA3S1Do2vIFdbtCbBuT4BZkW5zZ1i3OWPMMCaWwqxKOHgaQgrNVQV6UM2CkgC8/rww9VWwbo/DWy/ut/XgCsDG/bEBdNkMt2DPPQpBMonQF+OufzoTBTFjt+WkMq8KSnO8VlB7F/x6TZAD7aOfRbd3CdXlw7feDKc06HVdq68i8te73k031RUuezqHPibgkLDLXKFJ1DIUcGDJdGXJ9BBHTghP7PTWP0rUxXDvcYe9xx2aJrh88BpbwdwYM9RbZju8ZTaEXeVwj5cYmbFzBF6yLMxFC8MpdVO21qD0S8fU2d293myt0WyNP38bNRFS1d0AIjJJVY+ralvmi2VGEt0adLBb+eRzLlPK4VNnOszKcO3ccElQfxh++USQwyeSa0po6xJmNgxNThqqvWSovlKpr/aSnIlV3m2ntIuyksStOoUci7e2eH1RFjWO3gdluDFDAFPqlBvODvPSZWHW7nZ4cmeAEwm6zc1vKtyWM2NMegQcYYZ1i0sbS4IKw+aDTsxSHI01yuQJhV8Rm89SGRXxY+CVmSqISU50EtTvKv++xeV0GHZ3wQfWunxggfCyqZnp1zRSQLl7fSDpJKiiVOkbuowOAL2BU7z24qG3h4AkFtYuCAOJT6Lbx5sMAVSWeusjXbTQ5YVDwhNR3eYE5bx5iUc/hyOVWtZtzt9EZA/QCYSBkKqujrrvH4CvAY2qejw3JTSm+PT2w7GTiSsAU2FJkL9tPBDXLW5m8hNfFBM/xalUEiH7KH3md/uVrVFdwfrcwZPVbHp2r8Mzu2MnOJhQoTRNGOy6Vh/pzlZfpRzt9Q7kibqxFaPhEp/htk1HMgRel4wzpytnTg9xtENYs9Ohpx8mVifeftMBh3s3BDh3Xphz5rgJx3gZ37giPoCIyEzgJcC+3BTJmOIUduHXTwbZeUx4zeowK5qtq1QhOtUDu+O7xc2wz3oEvohTqSRC1raXY/ETJLxyurCnCx485n00F06CV0zL7qKpRzuEO9bFJkEN1cr7rurnSE9szVUfcDS3czz4QiqJz3CPT1cyNKCpVnnVWWF0hF/5mh0OnT3CXzYHeWiLsmymt0hropn6jC99A/g4cHuuC2JMNvihW5yq12Ni2xGvpeC3TwVp7wpx2eLUB9Bba5C/bT7ooFFtBlNqXRon5LBA+SnrccpahPJEolniqoLCJ8+A1RPhV/uUjy1ykAy0wY4UTF44HLu2T8BRLl3eyRFbXOJF4018httnsskQJD8IdLivz4E2YX/bYJN/2BXW7w2wfm+AmRNdzp/vsmSGm/S0r8Yzc3I1lfVJRsraCrbBeSLyTNStN6vqzXFbKvAnEVHgB6p6s4i8Cjioqs+NdowQkYlJlMZV1RPJFdzkq1zPTloIHtvmDFkS4vlDDhctdClJYaUIS4L8L362uKUF0ho0taGKSVOSi1PHOqrYCEvzKU6lkgj9vxS2NVkiIlwzRbhyshJwspsEAVy22GViVYjb1gboCwkXndlNQ01xJ0GZSHyGe55kkiFIrXUokZZOoSSgCWeb29/msP8phz9uUM6dG+acuS411m0uU55U1deNss3FqnpQRCYD94vIC8Cn8LobJONQ5DLSASUANCe5P1Mg/nlDmIqg0FwJzZXC+Q3Zm600VX5oDdp0QLh3Y+xpVm2l8rcXhVJKgkzmjXfGuJOnYe9xmy0uYpOqfmSUbXwTp5JOhFR1k4i8HrhXVTtF5DPAWcC/qeq6ZPdjUpdMrVwukqABy2a6TKlzeXRnmIXTcx98si1bic9wz52NZGjVLJfFU13W7XFYszNAe9fQ79upHuGB54M8vEVZOtNbpHWGdZvLOlU9GPl7TERuAy4D5gADtWwzgHUicq6qHkmwiy2qumqk5xCRZ9NcbONzvWHlqTbQSC95QbnjEmsCHs6+VuF3T8WeYpUFlbdeFEq5oshag/xv84HYbnHT6l0ahhlva/wVp1JpEQL4Z1X9rYhcDFwNfBX4b+C8FPdjkpSrrgmp1qZ10cWqeRkqjM/kMvFJJFvJUEUpXLTQ5YIFLtsOC2t2BthxdOiJUFiF5/YFeG5fgBn1Li9fGaZ5nDMlmeSISBXgRCqrqvBq1/5FVSdHbbMHWD3CbDwXJPFUyWxjCsiB7tiBwk3lUObT1qBcaz0F//dYkJA7+P44orz5ghBNtakdCy0Jyg+bDw5dRNUk5rc4lWoiNNDn6RV4ff7uFpF/S3EfZgx6wsp/blX+drYwszI3awUNp9AP1H5LfBLJZjc5R2DxNGXxtBAtJ2HNzgDP7nHoS9Bt7kC7Q0mguLtKZlkTcFukRi0I/FJV701lB6rak45tTGHZ1x17At/s4zWEctktrrsXfv5oCd19scfDV58dZl6TVQgVqrdcFOKFQw4bDzjsOCoFMz4oQ3wVp1JNhA6KyA+Aa4CviEgZYG3jGRLdGvT9HcpDx5QnjivvXyBcO0UyMjHCSFyFrYeFxVMLe8HNfEh8EslmMjSgcQJcvyrMNUvDrNvjLdLaemrwyzFrksvUOgv+2aKqu4AVo2wzO5V9isj5wOfxlvL6pqr+YYzFM3ns3Abh6yuFfd3Kvm6Y7eNEKFdCYfjFE0GOn4oNkJefEeas2amfGBd6JWMhKS+BlbNcVs5y6e2HspJcl8i//BanUk2E3gBcC3xNVU+IyFTgn1Lch0lCdBL0aItyz2HvZLLXhW9sVcIuXDc9u+OCHtvmcN/GIEtnhHn12WHKSwrjQJ2viU8iuUiGwAsCFy7wZo/bfkRYsyPA9qMOF8wfvjXoj88FmFKnLJvhErSBw74hIlPi+mR/DLgBb1Dqk8AfclEuk1tVQWFZHSyrK+BasHFQhVufCbD3eGzd8IrmMFedmXqreCHE1mJlSVDmpTNOpZQIqWo3cGvU9cPA4VT2YVK3ti22Rn16BVzVlN0kaHeLcP8m72x104EAh084XL7iJPV5OBgw3xKfHce88s6fnFyCk6tkCLxuc4umKoumhjjeCfXD7Pp4Jzy23fs+3btBOWeuy7lzw0yoSFtRzNh9X0TWAf8R6VpwAngd4AInc1kwY0aTq25xf9kcYMP+2Bqd2ZNcbjg7XNA9KApBOmOgyZq0xamUurWJyGoRuU1E1onIBhHZKCIbUtmHGV38BAkfXih8bJFQ5kBQ4FNnOlQE03tkHSl4nOqB3zwZxFWJuk3zphZ/a0t3zCVf7DjW/WISNHA9Wam8zkzVPE6qgcAwR5g1Owe/PF29wkNbAnztnhJ+/WSAfcdlxIVdTWap6quBZ4G7ROStwN8DZUAD8OqcFcxkla0hlLxtR4SHXogNiJNqlDdfGBpTnLTWIGNGls44lWrXuF/gdYXbiJd1mTRLFHxEhGunCktqle2dyoKa7CVBrnpJUGdP7HNetryLmgp/fgXyKdmJN1qys+NYd160DI2kPwzr9w7NkFwVNu4PsHF/gGl1Xje7ZTNTW3TQpIeq3iki9wDvB24Dvqiqj+S4WMaMKFetQfMmK+fNC/NkpIKnqkx560X9VJamvi9LgvKLq15PCJN96YpTqU500KKqd6jqblXdO3BJ9UnN2MysFK5sSu/cFKMFjgeeD7CrJa7P85zTNDeG0lqO8cjXFp9o8a0/o22bLD+0DMUrCcD7rurnwvlhyoKJm34OnXC49ZkgX727hPs3BejIz481L4nIK0XkQeBeYBPwRuBVIvIrESmSSfKNSV7AgetWhnnZ8hAlAeUtF4aYmIfdxk1qjnfCV+8u4e71Afa1Wk+GbEpnnEq1RehzIvJD4C/Ai00Xqnrr8A8xycp2V4TRkqDtR4SHt8QmQVPq+zl7fm5nzs3XZCeRVJKa+MdlqmUIMt9nuqEaXr4yzFVLw6zf67BmR4CWzqHVat19wsMvBPjrVoczp3utRLMaCnvWQh/4N+BcoAK4T1XPBf5BRBYAXwTelMvCmezbeUrpDnlTZteW2o8vERFvnbXlzW7KC6YOsNag/LJxv0Nnj/DEjgBP7AiwbGaYN55ny0VkSdriVKqJ0DuAxUAJg13jlKgJFMzYDCRBqkpbHzSU5TbYnOiG3z4VjFkpubpMuXJFF06WJ0wvpMRnwFgToPh9ZCIZgux1lSsLwnnzXM6d67LzmDfb3NbDEvO9A6/b3KYDXrL0wav90xpZoDqA1wCVwLGBG1V1O5YEFaXf71f+fNSr7q4tgQ8tcLh0sr8SolyuHRTNkqDisfFA7MnQnEZrEsqitMWpVBOhc1R1UYqPMSm474jy3zuUDy4Qrm7K3FpBIwWNsAu/XhOMWRBOUC5ddorKssz/0Asx8YH0JD+J9pnvyRB4tanzm5T5TSHaTsGTOwOs3ePQ0x/7/b9gvmutQZl3A3Aj0A+8OcdlMT6wP2ox1Y5+qE71zKGAhF042C40N6QvFloSlDtjjXFHO4RjJwcTIUeUJdP9OW66QKUtTqV6OHtcRM5U1efH86Qm1kBr0P5u5bvblV4XvvqC8kwbfHiht35DOo1Wc3bfxgD722JrOs6a38O0hszUxBdq4jMgEwnQWPk5GRowsRpetiLMlUvCPLfXYc1Oh2MnHSpKlOUzEweaUz3Q0inMnmTd5sZLVY8D/5Xrchh/UFX2xx3Cmn0223C2WoNU4Z7nAjy10+EVK8OcP99OfItVfGvQ3MlKVVmOClOE0hmnUk2EzgfWi8huvDFC4pVHl6ejMMVoIAnqd5UvPe/SG3Vcffy48pbZQlUaa99GCxibDwqPb4+dpmvGpH5Wzk3fuKBCT3wGZCsBSqVVCPIjGQKv29y581zOmeuyq0U4eVooHea38OTOAA9uCTCl1htHtHymO+y2ZmQisk5VzxrvNiZ/RY9X7XHhnInC/m4vISpxoGEMs6EVgse3Oy/ODHfX+iBtXWGuXR4e16xh1hqUf1Rh0/7YRGjZDEuKsymdcSrVU4VrU9zeJCko8Ippwvd3KH2R39P7FwgzK9NXvT1aEtR6Cm59OvYrUVuhXL6sa1y17MWS+AzIRQtQoSZD4HWbmzdZ8YYjDhUKw1O7vKB0pMPhD2sd7tuorJ7tcu688LCLupphnTHK+nAC1GarMCa3KgLCp5d4ASCsSlsvGeuy7WebDwr3boitJNx8wOGyxeExtwRYEpSfjnQIx08N/gYCopxp3eKyLW1xKqVEyKbKTq/oWjcR4bppwtJa5cvPu8ysFK6dkr0kCKDtVOzzBUS5bHkn5aWp9YUutsQH/NH9rZCToZFsOuDQ1Rv73T3dJ/x1W4BHtzmcMU05f36YOY3WbS5Ji5PYxqZGKkIBERrHOBlApmSjW9z+VuG3T8ZOHlQWVP724pB1hypCG+Nag+Y3KRVF2kqaQ2mLU0klQtZVIv2Gmyp7dpXwX2c59Gv6at2SDRQLpijvu6qfX60JcqTD4ZxFp5lcl9r5TrElQX5IgKIVYzI0qUY5c5rLlkNDZ5tThOcPCc8fcmia4HWbW9Fs3eZGYhVexgxqOwX/93iQkDt4bHFEufGCEFNqxz5hgrUG5SfVoeODlg4zdtVkTjrjVLKnA9ZVIotKA0KuKhcm1cB7rgzx5639LJ7hj+lI/chvCVC0YkuGZkxU3nxhiPYueGpngGf2OJzuG1qJcPSkw+3rvG5zZ892OW++NWoYY4bX3Qc/e6xkSIvzK88KM7/JkqBidKhdaO8a/D4EHeWMaZYI5bNkE6Gsd5UQkR8D1wHHVHVpOveda9lcOHUs3QZKAnDGzNQfV+itQX5OfuIVWzIEUF8FL10e5oozw2zY77Bmh8ORjqGLXvX0C49tD/D4docJ5SEuWWTNQ8bko0x2iwuF4ZePBzket9DzZYvDrJ5jJ76FYCwxLL41aMEUpbwkXSUyuZDU0piqujeJy4E0l+0nFODkDANJ0PZO5cGjmT2YjjVIjKW2qpCToB3HunOaBO05cvLFSypSLXOqn6FfazVLg7B6jssHrg7xrsv6WTLdRRJMtBAMwIrmQII9mGgi8mURCUb+d0RkQq7LZEwmqcJtawPsOR57irR8Zpirloyvztevx00zuoTd4my2OF8YT5zybVWoqj4iIrNzXY5MOB3ypso+eBqeaXP5wAKhMstrBanCmh0Oq2a7MbUZdpAelOsWoFQTn3QYS8sQjH1RukwS8Vb6ntMY4kR3pNvcbufFhYJXNLtMqLDZE5JQraohAFV1ReQbwLtyXCaTBVtOKt/Y6tJcKTRXwpm1wuqJ/vjNZLI16IHnAzy3L7aSZFaDy2tW21TZxWx/m9DRPfgFKAkoizPcLa6hxmZhSNKY45RvE6FkiMhNwE0Azc3NOS7N6AZag763Qzl42rvt/qPK8yeV75ztpG3h1GQCxFO7HO5+LsgTO7xBn1PrdMwH6UJrDcp1AgTDJ0F7jpxk9pTkK+RT7SIHqSdD4M+uctHqKuElyyLd5vZ5i7T6YTHEOZMqqGlI7r3uqc1ZQIxvTuvMSSnyVL7GKYA9XcqeLu8vwKWN+CYRypR1exwe3BKbBDVUK39zYYigNSAXtfi1gxZOUcry+iw6OTPry5me5HlE6bGcTaM45jiVVNe4ASLylWRuyxZVvVlVV6vq6sbGxlwVIykDweXQaeWBo7Gf1/I6yWoSdLBNuOc574je1iX84IEgmw8UdnAbzUD3t1wnQcl0gct0FzkYW3KbD7WdJQE4e47L+68a34xPRWadiHxNRGaIyFRgcq4LlE/yKU7F2x/3k25OrX4k7xztEP6wNjbbqSxV3npxP5XjPL/Lh+OjGdkVZ4Z5zeoQC6e4OKIsm2kT7vjImONUSokQcE2C216W4j6K2rQK4b/Odl4MKDMr4b3zs5cEne6DW9YECUdPBepAf3BsCUC+twb5IfkZkEqCY8nQ+Nh6QslT1Z8AvwM+DXwJ+LecFshkzd7u2MqCmT5JhDLVLW7yBOWyxYMtxUFHecuFIRqqx7fffDkumpFVlMJZs13eenGIT17Xz+Kpma1Ms25xyRtPnEp2HaH3Ae8H5sZNo10DPJZ0SYtU/Cxxc6uF75zt8MOdysumCRWB7JyVuQq/fzrIie7Y57t4SRd1Val3E8rnJMgvyQ9kbyyQdZMzYyEiv8FbImEv8Ai2mGrR+MQZDvu7YV+Xsq8bFk0o7BoEEbhqSZj6KuX2dQFed26I5knWclyIxhujxttCaNJrPHEq2d6NL8ebynorcH3U7Z2q2pbsk6VCRG4BLgcmicgB4HOq+qNMPFcmDTdVdnlA+ODC9AWVZGrIHtvm8MLh2EbAM5t7mDulP23l8DM/JT8DxpMEpTpeCCwZMqlT1TcAiMg84GPADwCbOa4ITCgRltTCktrCToDinTXbZd5kl9o0tIBZa5AxmTeeOJVsIjQP6MdLhE7C4PLtIjIxE8mQqt6YzHYicj1w/fz589NdhLyRTBK0u0W4f1Ns3+fp9S7nLTo9pufMp9agQkuA4vdjyZDJJBG5GngFUAn8FfhUbkuUfyxOpU8mZ4uLZkmQMfljPHEq2TFC3wf+AiwC1sZdnkmlsOmmqneq6k21tbW5LEZCLZ29hNzMNqsnExRO9cBvngzi6mCtXkWJcvGyTgKpjhLLI34a/zNgLOsBJbPPVNmYIZOCH+MFl4eBp1S1I8flyTt+jlPF7EBb5lq67NhnxsPGB6VszHEq2QVVv62qZwD/q6pzVXVO1GXu2Mpc2Fo6e1FVvvi8yze2upwOpz8hSiYJctVLgjp7Yg/4lyw7RU3F2KYP9ntrkB8TIMjNukDpZslQ8VHVZuBfgS7gLZFuy8ZkXTpbg57Y7vD9B0r4y+YAasOAzDDCLnz3z0H++FyAA21i3xWfGk+cSmkGdFV9n4jUAwuA8qjbH0llP8Xi7sPKY8cBlE0dyqfOcJhXk70Z4sBbGG5XS2y+e+miMM2NoTE9r1+TID8mPgOykQBlq4scWDe5InVQVQ8At+e6ICZzhhvTWmi2HBpcQuLBLQHau+DVq8ME09RDwip/CseuY8LhEw6HT8Bj2wNMq3d535Uhm3nUn8YUp1JdR+jv8GZjuA/4QuTv51PZRzFo6exlb5fygx2DVQf7u+E72100i9UJ248ID2+J/YhnT3KZ35z/LRMD/Nr6MyCbrUDZ6iIH1jJUTETkHcBfROQOEfmOiFhGWwQePOryXLvS3qdZjVuZdrzT6yWhg0Odef6QQ/up9OzfjnP+l0ql3MYDsedQU2s140mQdYtL3XjiVKpr4n4EOAdYo6pXiMhivPm6TcRAjVpYobEMDkTmIqgIwD8udpA0/IKSaQ060Q2/fSr2YF9dply49CTOGGu9/NQa5OfkB3LXDS4fWoZg/FOXmqy6TFWvBBCR5cDngI/ntkgmk8Ku8tUXlFAkAaoJwv+d71CRpoW/xyJd3eLW7AzQH45aR0+UN50fotHmQTRxQi48fzD2hGnZzLENKTAZN+Y4leopcY+q9kSeqExVX8CbQMHEmVstfPdsh5dO8Q64H1wgTK/MThIE3tig2srBWjxBuXTZKSrL8rtmz+8tQJCfY4Gy2TIEVmuaZ178QqvqBlKvQDN55nAPhKJCRVDIaRKUTvuOx76Oa5eHWTglPXHRjmuFZedRoad/8PtSWarMaczvc6gCNuY4lWoidEBE6oA/APeLyO14ixfljIhcLyI3d3TkfiKj+P7VFUHhHxY7fGOVw9VN2UuCACZWwU1XhFg9x1tT6qolYaY1jG1cEOS2NWgg+cmHBMgPSdBYy2DJkBnG+SLybRF5m4gsBazfRor8FKeSsS/uJ92c4wbcdLUG9YXgSEdsLF7ZnJ4afjueFZ6N+2NPkZfMcAt6pt08N+Y4lfRHKl6frg+r6glV/Tzwz8CPgFenWNi08su0pCMNMl1SK+PuEjeWQFASgFefHeZtF/cza3rnmJ87V0lQPiQ/A/yQAEWzZMiki6qeC/wHcAJ4AzAnpwXKQ36JU8mqLYErJgvzqqHMgZlp6M3gB4faJWYZiYZqpbIshwUyvtUfhi2H4rrFzch8tzgbHzQ244lTSTcdqaqKyD3Assj1h1Mrphmr8daGlVSlaRRoluRL8gP+S4CijWW8EGR3zBDYjHJ+JyJfBv5ZVW8XkTuBmlyXyWTWklphSa2XMLiq9BbIsIj9cesGzZhorUEmse1HhN5Q1BjrcmW2dYvzrfHEqVQb+daJyDkpPqbgtXT2srZN6c3RWkEjGe8BOlutQfnS/W2AX7rB+Y21DBWkalUNAaiqC/xnjstjMmC4Xg2OCBWB/J8kAWB/W+wpz8yJ44/ZduwqTPGzxS2d7uIURsNooRpznEo1EToPeEJEdorIBhHZKCIbUtxHQWnp7OWFk8pnNrp8aJ3L7lO5qTH4y+YAB9vz71eaT8nPgFwkQAcPju05s91FDiwZKkDxB7X8amI2BlCF/a2xMXJmg9XwF5tkeh/0hWBrXLe4pVmYLc66xY3LmONUqonQS4F5wJXA9cB1kb9FqyukfPl5l7DCni740DqXPx1Ozw8m2ZqwZ/c6PLglwM0PBnlqp/Piysd+bg3K1wQo20nQwYMnX0yCLBkyObJORL4mIjNEZCrQmOsCGZOqjtPQ2TOYCAUdZUrt+BIhO14Vpm1HhL6oKdYnVCjNljT73ZjjVErToKpqTmeI85uWzl5+sVc53DN4W58L1SXZmyHuaIdwxzpvheywK9zxbJD27jCLZo/vhD1TSVC+JT8D8qkVKJFsjxcCGzNUKFT1JyJyPvBToAf4xxwXyRSJdHaLOxA3PmhavY5rBjBLggrXxv2BmOtLZ1i3OL8bT5xKKhESkY+NUoCc9RkXkeuB6+fPn5/V5x3oT/2WWcKJPvjzUa+24JXThAsnZWeGuN4Q/GpNMGZxuKCjTJrorwN0viY/kLvJEIZLgg4ePMn06dld+c+SofwhIuXAI0AZ3vH9d6r6ucisn/8GvB4IA/+tqt9OYn+rgDfjzcJzBFitqlsyVf5Clas4ZQbtb03/+CBTeHr7Yevh2HM4my0uvfwWp5JtERqYfWERcA5wR+T69cBTyT5ZJqjqncCdq1evfne2njN6UGllUPj4GcLqiS53HlTePS87SZAq3L42QEtn7PNdtypMw4TwuMqQrtagfE6AwL+tQGNNhsbaKgSWDOWRXuBKVT0lIiXAoyLyR+AMYCawWFVdEZk83A5EZCFwI15g6QR+C1yuqrtFZHfmX0LhyUWcGqvvbXdZ1640V3rTZl/RJMyuyn51eDpbg2DojHEzG8Z+cmutQYXrhcMOIXfwu1JXqcywpDndfBWnkkqEVPULkSd+BDhLVTsj1z8P3J3KExaqK5scrpis41ovKJUD/1O7HDbENd+umhWmoWHs6wWliyVAY5POrnDDycdkCJIb4Gq8ZQ4YHCRaErko8D7gzZHZdFDVYyPs5gXgaeB1qrox/inSW2LjN7tOKfu6BxZVVRZPEGYXwM/vdeeG2N/qcKBN2N8mYz65tSSosC2c4nLD2SE2HnDYdUxYNsNlnMtAmjh+i1MpjRECmoDos/W+yG1FY6SFU7OVBB1sE+55LjYJaqp1WbHg5Lh/sONtDbIkaGxSTYLG00Uu35IhKNzWoXkNFdQn+Z60TigDOE9Enom6+WZVvTl6OxEJAGuB+cB3VfVJEZkHvFFEbgBa8BbH3j7MU70GeBPwJxH5M/Ab4F5V7U/hpZk8tS/uEN48tp+s70ysgolVLiuax74PS4LyWzIxpKIUzp7jcvYcl65eXpx8qpg115czP8k4pXXlAEvzKU6lmgj9DHhKRG4DBHgV8JNUnzRfjZQEZcvpPrhlTZBwVNNtaVB50/khxnuIztaaQX6UyzWBxtoSlIvxQrlUqMlQip5U1deNtIGqhoGVIlIH3CYiS/H6Yveo6moReQ3wY+CSYR7/B+APIlKFd4y/CfhhZEHt4vnCFZGB2NbZr5yIOo0oEZhSnv3ypLtbnDFjUVWWnecpwPFBm1T1IyNt4Kc4ldKcKar6ReAdQDvQCrxDVb+cyj7yWUef8qkNYfZ1pbeKIJVxQb9/OsiJ7thmnxvODtM17jRo/PK1NSiXrUDZ6A6XyHhecy6m1R5gNbLJU9UTwIPAtcAB4NbIXbcBy5N4fJeq/lJVrwcWA08ARb1uXKGrKRFuvcjhW6sc/mGR8PY5QsCmywLs2GNMJvghTqWUCEVmerg8crkMuDxyW8E7drKHr291eaYNPrDW5e5DLpqGNtNUar4e3ebwwuHYj+z8eWFq6sY/LqgYW4NysS7QgHQlQOPZjyVDhUdEGiM1bIhIBXANXl/qPwBXRDa7DNiWyn5VtV1Vb1bVK9NXWuNH1SXCGbXCS6c6vL55HPNLFxA75hiTPn6LU2PpGtcJDExn92bg53hT3RWsls5e7jiorGn1rve68K1tSnkArmrKzrigPS3C/ZtixwVNr3c5Y27uunTlq1x2g4PsTIqQrHwcLwTWTW4EU4GfRvpfO8BvVPUuEXkU+IWIfBRvkOrf5bKQxgzHusWZYlKA3eKS4as4lWoitFRVz4y6/qCIPJ/OAqUqW+sz7DgVe/2MCXBZY3aSoFM98Osng7g6+HwVJd64oI40TG+fjtagfOkWl49jgZLZb67GClky5C+qugFYleD2E8Arsl4gA9g6Qrm0v1XYfNBhZoPLzInKhIrUHm+tQcXh1mcCVJbCspku0+rUZorLIL/FqVTbvddFVm4FQETOA54ZYfuMU9U7VfWm2trajOx/YBDpxxYJ/7hYKHegMgCfPMMhOMa+06nWeJWVwBnTYjOe150bosMd/wG6WLrE5bIbHGS+FShXXeTAuskZM5pMx6lCkYnWoK1HHB7dFuCWJ0r4j7tLuW9DYPQHRdjxpXCMVGnW1Qvr93rfk//+SwnfvK+EbmuYLBqptgidDTwuIvsi15uBrSKyEW9q8FEHNuWT6FniRISXTBGWTFAOnoapFdlJggBKAvDKs8LMmqTcvjbA+fNdyqpPjf7ALPF7a5B1hRvdeLrIgbUMGWP86UDcQqqTa20+ZBNr8wEnpsdN0FEqi7LHWnFKNRG6NiOlyCPTK4XpOVpXYUWzy4yJLh3h9NRSFXprUK4TIMhuEjTeLnLjTYbGw5IhY3JjoMLvWI/yxHGluUporoSJpeNbG88PXB2aCM2YmFx/cmsNKh4bD8R2jlo6Mw1jDpJQpOODfCepREhEPhZ3kwLHgUdVdXfaS+UDmVgzKB3N/g3V0Dn+SeLSxq+tQblOgnLVCpSv44XAkiFjcmlTh/LdHcrAouyXNMI/L0m+G9l4ZaJb3PFO6OmPHVvbUD364ywJKh6dp73JqKItm5GdRMj4Q7JjhGriLhOA1cAfReRNGSpbzhw52cPh07lZK2g06TpAF2prUK7HAkF+dIUbTi7HC0F6xgzZSYwxqdsX99NrKs/v1iCA/W2xpzgzJiq2LJKJtvmggzL4pZha5zKpJocFMlmXVIuQqn4h0e0iMhH4M/CrdBYq1361V/n1PuWDC4Rrpsi4uwekmgT9aWOACRXKefPcmJlL/JYE+a01KNcJEPgjCcp1F7lctwyBtQ4Zk6r4hcKbs9gFPFNTZu9vjY3dMxtGr+m3ipTisnF/bLKcrdYg6xbnH+NaLU1V24CCql95+EAPP9+j9Ljwta3Kl7coXaGxtw6leoB//qDwyNYAd60P8usnA/T2e7fbwXl4fmkF8kMSlC753jIE9psxJhXnNAhXNQkLqqHcgebK/A/tQ8cHjRzL7ZhRmIarFOvohr2tuRkfZPwj1ckSYojIFUB7msqSc/vae/jyFpfon8Gz7UpvWKgawzuVahLUegp+//TgE206EOB0n/COS0OpP/kwCqk1KNfJzwA/JkC5HCs0wFqGjMkfL5vq8LKp3v+u5v/Mar0hONqRWiJkxicdx+xs2hQ3ScKMepeJFi6KTlItQiKyUUQ2xF0OAF8B3p/ZImZPeQDe3CyURb0r/7TYYWJZ6jVjqSZB/WH41ZogvaHB5wqIcvWSsO+6xPmBJUGjG2/Z0vEeW8uQMfnHEcHJ0oxxmeoWd7BNYsZ+TKoZeUpkO04Un/jZ4pbZbHFFKdl2juvirivQqqo5P3Kka8Xuls5eRISXTROW1Cpfet5lRb1wbkN2gsHd6wMcPhH7o3zp8jDhUv+sFzQgl61BfkmAwN9JULqkY0ptaxkyxS5dccokb39ct7iZI0ybbUnQ+OVbRWt7FxyIm0xjic0WV5SSahFS1b1xl31+SIIgPSt2x0+V3VwlfPssh3fNzc6iqev3OjyzO3aa0iXTXS6Yn74fZb4dpBLxSxKUT+OB0lFOP7zv1jJk8lk64lQmZGKZCL+IP8kdrlucHRfSK1/ONeK7xTU3uNTlT68+k0bjmiyhkJUGhNIxzLOZahLU0gm3r4tNghqqlRtWh9h7yg7Q4I/JEAbkSwIUzQ9lTkcroiVDxhSWTHWLU00wY5yNDzJRhswWZ5MkFK2iT4TSWSM2loP6Y9sC9IcHD9hBR3nT+SGO9KTvhC2dNTTZ7hbnlwQI/JFQ5IofxguBJUPGZJKqsr1Tae3N76ThVC+c6o1NhBqqh74mOxYUp55+OBQ3FGHpdBsfVKzGNWucGb+D7bEH65etCDO1TtnTmaMC+YQlQMYYkx1He5Q/H1EeOKbs74a3zhbeMjt/p88uCXiViiFXqCxVbrwgRFlJrktVuPKlO1y8ylJlwRSX2ZOUmopcl8bkStEnQodOKwe6ocSBUgcay2ByllbUVoXWztjnOjNLtRJjkY3WID8lQGBJkDGmcDXWlNHS2cszbcpP9wy2mDxwVPmbWTruxcRzpbwEXrIszBM7Arzt4n4m1STebnZNlbUKFaHyEvjg1f1MrlXGMAJiXFo7+6xVyGeKPhF6tEX54a7BAPC6mcJN87Lzyzh5GvqiusWVBZXqsvQ+Rz7V1FgSZIwx2XdJo/Dd7crA2uEHTsP2U7BwmAQiXRpqSjM2TujCBS5nz3atJSgH8mE9oSl1+d3906RP0Y8R6otrgCnJYu3A8bjWoEk1ikjx9Vv202QIAywJMsYUiwklwjkTvf8DAuc3QLZCYSZrxy0JMuC/c6pMJf9mbIq+Rag/PhHKYmp4/NTQRKiY+C35gcJNgA4ePMn06eNbD6hQNJVV4SpZ7xKRyIyqShqTXN9oe3mam4uNYbB73A0zHM6ZqFw6WZiQzRrBHOgLwXP7HFbPca173DjlU68TMzbTKiuSXoevo7I8w6VJv6JPhKZXwOqJXkLU70LTGD/DsWT4Q1qEEsxq4xfpHh9kSVDyWg+3AtAwtSHHJSkMv30qyJ7jwpRa5aldfbx2dZAZE4u+cdwUuZX1wsr63CRAmewiF6+rF37+aJAD7Q7dfSEuW+zfcbn5LB+6xxkDlgjxkqkOL5mam+e+dnmY8+eHOd4pHO8UZk9KbyLkx5oaPyZA4N8kyMRKR2A9fELoCwn7WoV9rSGuX1n0h0Fjci4byVDrKfjZoyW0Rnpj3L8pyLzJ/cyeaK1Cxaw/DHtahKMdwsWLspMY26QJ/mFnADkUcKCh2lvfYNFU/7YGpYMlQGMz0Bpk0uN0n9DZM1jrXRKA5obC7gZkzGgGuscVulBY6Ip7mU/tcpgxMZybAuW50Spb/dQqtKeza0j3rrALv3wiyK5j8uJ6jitn9VGdf727zDjkfX8QEbleRG7u6OjIdVEK1ni7xVkSNDaWBKVfW2cg5vqsSUIwYImQySyLU8nJdA15U63ymtWhmNs2HXDoCw3zAFPQAg509hCzqP32o3l/WmxSlPefuKreqao31dbW5rooaVFIzfN+nA1uQD4mQZYYjV/rydhEaP7kvD8EmjyQr3GqO6Ssby+s3gqLpyk15YOvqS8kbD7oJD0Y3BSWhU2x3+/tR7JXMWazx/mDnQUUqFyOD/J7ApSPSZBJj96e2JnX5jXZIdAY8LrHAbiqPHFc+eJmlzc+7vLpDS6d/dlLhjLdKuQIrGyOHQfy7B47DmSKn8YqJ6poXjgl9ruw/aiDW1i5vxmF/frNiNI9W1wu+T0BMpl35ERsbd88axEyJoYAP9jh8nCL0utCv8Kjx7N7ZpjpZGjV7NgxQbtaHNq7sFahFPgpwRmPGQ1KRcng9/t0n3CgzbpLF5OiPwv48S6Xz28K88XNLl/d4rKvKzsH/Ce2O9y7IcAzux32tAi9BdJH2c8tQfnAWoMyJxSGlk5LhIwZiYhwZVPs7+SBo4VVRT55Asyoj20JWL/PjgXFyBGYH9cqtO1I9r4L1j0u94r+l7/xhPL4cXi4Rbn/qNLRn53nfW6/w6PbAvxhbZAfPlzCvuNWA5EJ+dAVbkChJ0HzJ+d29qATXQFcHfyd1VUq1eX2uzNmwED3uOhEaHIZnDlBUC20VqH47nEBsvwSi4afWo8Sd4+L/eC3ZXGckMm9op8+O77rc0kWUkPVBIup1qTvCJyug06+d4vLlwQICj8JSofxTsMaP1HC1Do76zEmkRmVwjvmCMtqhTNrwZHCW2h1+UyXe55Twq732tq6hL2twuxJtqZQsVnQFJsUH2p3ONVD1qbRtjWFcqvoW4T649bOykYi1N0HPf3Ra5kotZX5P2Ocn7rFWRJk4oV6Y6PalFpLhIwZzo2zHJbWSc6SoEyrKIUzptmkCWPhpxaedKguh2n1QydNMMWh6D/pDyxw+OwSh/93hvCPi4TJZaM/Jl6qNVbx4xQaqhWnMGNNTuRTEmSy53DcRAlT67Kzgrgx+WSge5xfZLKmfNWs2GPAwJpCNmlC+vk9eYqfRnvbYTspKxZFnwgtrxMubhSuaHJ4yVSHmpLMf/kz2S0uXfKxW1w+jQcakGprkLUejY0qHOmI/d1Nsa5xxhS1+U1KddSaQr0h4fmDRX9aVPASjhOaGpsU7zjqEM5iXZlNmpA79ovPgSGJUHX69p2rWpdcd4vLtwQIsp/U5ON7lC6nepyY7qhlQaU+t3M3GGOSlKlWoYATu6ZQfZVSoD0B08bvLTtjNWOiUlEaNY12v3DQptEuCkU/WUIu5EOLUD7JxxN8a9nJLkeUixeGOXxCOHxCaJxgJzzGDKexpoyWzt6Y21SV3V1QEYCpFdn/8WRq4oSzZoc53ed1k5s1afC4MLvGJk1It60t3eOe9CZTHIH5TS4b9w9OqrPtiEPzpPAIjzKFwBKhHDh+yt+JUL50i8vHBAgsCcqFJY2VLGn0Apoq9FlsMyYpx3uV+48oDxxV9nbDK6cJH1xYOLUIkyfADavtgFBs9nR2DRkLtnCKsnG/939pQAlleRipzR6XG5YIZVnYhbZTsbdNqtG8rnnKRbe4fE2CTO6JQJkd+YxJygsn4X93D1bWPdyivHe+EszBDD+ZnE47EWsVKi4LmlwuWhBm4RSvdTAYGP0xJv8V9RghVeV4r9LRp3SHlH438y0z7V3ELOpYXa6Ul6Rn34XadzdePidB1hpkjMkn5zZAdVTFQUc/rGvPXXlM7qTjHMPP5ynV5fCyFWHmNVkSVEzyPhESketF5OaOjo6UH9sThjc/4fL6x11e/ajLDY9mvh106EQJ1i0uWfk4K1w0S4LGzq/9yv1GRH4sIsdEZFPUbStFZI2IrBeRZ0Tk3FyWsRiNJ07lysA02qWOcEmjF7cc4JyJUJnDk0TrOmTSxY+tfcUwe5zf4lTeJ0Kqeqeq3lRbW5vyY/viF1PNQku/38cH+VU+J0BgSZDJmp8A18bd9h/AF1R1JfDZyHWTReOJU37wiqnCBxcIv7rQ4YvLAyyty+0YoUwnQ1298MQOW1PImAz5CT6KU0XdU743HJuElGQhLYxvEWrM80QoG+ODLAky43Gy26FNoL6Kgp8pTlUfEZHZ8TcDEyL/1wKHslook/cWThAWTijwHw+w46jw1M4AWw8LYRUqSkMx02sXs3R2afPz7HF+UOiTJvgtThV1IuQqTCyFfte7VIyhuT/VZsw2axFKWr4nQJCZJKj1cCsNUxvSvt9CtWN/Nb/ZE6AsqEypVa44M8z8Jn/87uqrS5MOeDUVQYDzROSZqJtvVtWbR3no3wP3icjX8HoBXDiGopoilGgabb/IxMQJO446PH9osEb02T0OK5tdmzShiLkKnaehtojzttrKkqTj1ITKEoCl+RSnijoRmlLp8KsLs9vZ+e2XhjjR7bUMHe8UptWnZ8a4dNTW+Gl8UCEkQcYfjpzwKh96Q8LeVgHyeqrcJ1X1dSk+5n3AR1X19yLyBuBHwNXpL5ox2ZXuZGjVLJdHtw2eE+w6JpzohroiPgkudImm0e4NwfMHHbYdFnYcdairUj5wdShHJcxLm1T1Iyk+JmdxKu/HCOUbR2BilTdf/YULXGrKc12isctUt7hCSYKsS1zuuS4cOxnbCjul1h+tQVn0NuDWyP+/BWyyBGMSaKpVptcPdoVThPV77TQpE/w8e1x/CG59OsDGAwFO9wuHTzh09mS3DMUwaUKcnMUp+4UbX7EkyKTTiS6HkDuYCNWUK9V5XPkwRoeAyyL/Xwlsz2FZTJ4ZmD0u3umQ8lRr7isV0j2WYtWs2DFBz+4NoFrckyb4OWnJhOpymFYf+93efsROlzMsZ3GqqLvGmUG57hZXKAkQWBKUyPzJuelb0toZe4ibWpf7E7dMEpFbgMuBSSJyAPgc8G7gWyISBHqAm3JXQpPvnmpV/nJUefy40uvCT89zmFpROBMpLJ/p8scNSjhSgdJ6StjXKsyaVNjHjlzwy6QJibrHLZyiHIxaL2vbEeGs2dktV6HyW5yyRKgA5KK2Jp3d4iwJMiMZT6AM98Y2/xR6tzhVvXGYu87OakFMwfrlXpfnow7ZDx1TbpyV++m009WVqLIMFk9VNh8cfE3r9jrMmhS2SROKyMIpLg9uGRwvtuOoQ9gNE8hiw1Chzh7ntzhlbX05VuwH1UJKgvJBsb3fh0/EnqAVeouQMZkQ3T3uyqbY39QDRxXV3P+u0nnCeNbs2AlVNu331hQqRsXWLW7A9IlKZeng97qnX9jfVjgtn2ZQUSdC2zrC/Gy3yy17XX633814f+e7ng3wx+cCPL3LYXeLEPLJ5FW56BZ38ODJgjspt9Ygf1EdmghNqbU1QYwZj0sb5cUTh0llcG6DEMp9HpRW85uU6rLBF9UbkphptU36+DXRcgTmN8XGi22H7TtQiIq6a9wLHS7/t3fwYHdpo3dQzwRXYe0eh/7w4P7/3/X5OSvIeLvFFVoCBNlPgmwtodF19wrdfYO/t5KA0lCTwwIZUwDqSoX3zBfmVgnL6sDx0SrF6eoiF3BgZdxU2ramUGFLOE5oqrJh/+D17UeFlyzLbrlaO/ugKffjqApZUae3fXEtMiUZfDc6uolJgipKlarEk/GkxK+1KcOxJMhkS1tn7BphTbWK459zNmPySnT3uBtmOKyoF18lQekWP3vcwJpCpngsaHIRBivLD59wOHk6hwUyGVHciZAb255fksFj+vHO2J1PqvZHX4JsdYsrxK5wYEmQn4V7K2KuF/pECcaY9I0VGmlNoWKZSjtbFa1+rdCtKoPpNo12wSvqT3RpfYC3zBLe2Cy8ZoZw1sTUHp9KE/zxU3GJUE3xnJQVYgJk/O9Ih02UYEwxSlcyNNyaQqYwJeryuHBq3DghS4QKTlGPEVo+MUD5nOx8qYe0CNVoXvYzTnV8UCEnQdYa5G9HTsT+ti0RMmZ8GmvKaOnszXUxsmb5TJc/PqeEVairVJbPdAm5UBIY/bGmMCycojzw/OD1nceEsEtWp9E2mVXUiVA2JUqExmu8zcmZ7BZXyAkQWBKULWNdQ6g/BK2nBq8LSpN1jTMmY3af8n5fc6r9MW4oHRMnVJbBy1aEmTxBmd0YO8aw0CdNyHZ3Nb8srhpvWr03jfbAxDs9/d4Cu3MaLZ4UCkuEsmToGCEo1DF3lgSZXBOB15wT5sgJ4XCH0B+CMjvaGZNW7X3Kn44oDx5VdnV5U2t/Zok/EiFITzJ0/nybcr+YxM8e5wgsmOLy3L7BZsDtRxzmNPpk/RMzbnZqkAV9Ieg4PRgcBKWhWjngz/GBwxrvtNmFwJKg/BAMRPr3z8p1SYwpLNHd4w6dhh/tGqwZX9OqdIWUqqB/kiFjxmvhFGVPi7JwqsvCKS5zrTWooFgvxyxojZsooa7KO1HLpUx1iyvk1iC/JUF+K4+fFMusTsbk0pkToKl88HqfC4+1+OskMV0TJyRix5n08uvscctmuvzjy/t51VlhzpimlJXkukQmnSwRyoL4bnGNPhgfZIwxxoyHiHDlZC++OcDqephUZq1B+c7OL2I54nW3NoWpqLvGfX5dD3fsDVPieGsIvXOuw8WN6f+2t3TGXp9UnX8zxhV7tzhrfSk8mawpNqaQRXePe8kUoa4ULp8s1Jf682wxHWOFBnT3wcb9DqVBr/ttoU+aUIzixwmZwpb3iZCIXA9cP3/+/JQf29artEUdG3vCCqT/QJ6JGePGI1uLqBYKS4I8e46cZPaUCbkuhjF5Zzxxyu+mVwo3VPozAYo23mSorQv+tDHAlkMOYVdoqFZWNrvWUpBmfp09zhSuvO8ap6p3qupNtbW1KT+2L24ymFInM0e0Yl5MNd8VYhJUyOO4ANo6HZ4/KLR1YYsfGl8YT5wy/lAehC0HvSQIvLG/+1sLLwuybnGm2OR9i9B49IVjz5JKMpAWqsLJ7qGJUFto7PvM9oEq2W5xhXaCXYhJUC7Mnzy22r2x1gq2tlXz8AvebCRlQeWapWGbAteYNMvHxVXH0ypUWQaLpymbDw7G83V7HZonha17XAEarntcTz/sPCpsO+LQWKNcvMhiS74r6kToG+dXsOlwN/0K/S5MKkv+sckeTEXg49f1c/K010Wu9ZRQUw5tp0Z/rDEmdUdODJ6o9IbEZvgxxrxoPMnQqllhNh8crDHduN/hFSvDlOR4FthC49fucTuOCj97NIirXoyZUutaIlQAijoRqi0VGssz37TtCNRVQl2lMr/JxgflA2sNyl+HO2J/01Pr/Ns/rqG6lMaa5GpgasotozP5oSesrG2DCyd5M8sVigVTlOoy5VSv95p6Q8LzBx1WNNukCcVgWp3GdLc+0uHQ0Q21/svZ0qquqiTpOFVfmX9xKu/HCOWjfDpYFuNscZYE5a+ePuFk1OLFAUfTMl29MWao+JOjdW3Kf2xxeePjLl/Y7LK1c5gH5thYZ4wMOLCiObYF4Nm9hXMa5afxQX4oS/y5WmUZzJgYG0+2Hy2cz79Y2SeYZ/xwcEikUMYH5VsSlG/lzbTWztg+KpMnKAE7yhmTFXcccvnzUeV02Lv+4NHCq4RYNTs2Edp5VOjwZ1g2GbBwSuznv+2IBZh8Z59gEbFucSOzpCL/xSdCU2oTn4jZGkLGpN+Vk2NPKR46poTdwkqGptQq0+oGT4YVYf0+73Xb2jOFb+GU2O/zzqNC2IYJ5TVLhIwxBaP3dGxXHT+PDzKmEER3jzuvASojdRENpXBVk9Dj05PE8VSGxLcKPbsnkPdT9fuxt4kfyzS1XqkqG/ywe0PCvgKcRr2YFPVkCQ8eDnGgXSkRb+rsxROgJI1rCYXC8IvHg0yq0Rcv8ybnz9GymMYHWWtQYTiSRxMlGFNoygLC++YLk8uF5XUQKKCJEqItn+ly73NKODJ72PFTwv42oblBbdKEAhM/jbYjsGCKy/q9g70Pth12mNMYzkXxTBoUdSL0sTU9tPcNnij95kKHujT2mGnr8gbSbT/qXZ9QoXz8Ff1j3t94akesW9zwLAnyn7FMnRp2oeVk7InXcF3jjDGZ8dKphd/RpKoMFk1Tno9eU2iPQ3ODnQwXg4VTlPV7B69vOyq8NHfFMeNU+EesEfS5mV1Q9Xjn0IVUC7GmKJ8nSrAkqHC0nwq8uL4DeNPVV9hQIGMyLtmpdQvJWbNik55NBxz6LQ9KOz92j5vf5CIMnj8ejUyjbfJTkSdCsdfTnQi1xCVC+TSNbzF0i7MkqLC0JTlRgjHGwPjGCS2YEjtWpKdf2HIoPydN8GOy4SdDptEuhZkNNo12oSjaT05VuWJqkHMmwso6WDIBSpLszpzsqtRDWoSqc3NiZt3iTDHo7ymPuW7jg4wxmRJwYGVkTaEJFcpli8PMmOjTmSFM2i2In0b7cNGeTue9oh0jJCLcfHEF245mLkloPRWbCDWMo0XIamzSq5Bag1oPt9IwtSHXxci5wyfixgfV2UmJMdnSWFNGS2dvwvv2dXlrCy2aUFiTJ5w3L8yCKS5zJyvx8yzZpAnps7Wle0zjRjNp4RTlL5sHr+88JoRcCFo+lHfsI8ugRGOE8kEq3eLycXxQISVBxqOaYMY4W0PImJw52a/8br/L+58J83dPu/zPzsKrmJhYDfObhiZB+cQqWZMTn9ROrUswjfbxPP4iFLGibRHKtO5e6O4b/FEEHaWuEk6eym45rFtcLEuCPAcPnmT69Am5LkZaveuyEEc6hMMnhOOdQl1+ddM3pqB09sPNOwdPFDd0wLEeZXK5nSya/OcILJzi8uzeAJWlyvwml/KSXJfKjIUlQhkS3xrUUK3sO2XN5LlkSVDhEvFq6KbWKatm5bo0xhSn6O5x0yuFRTWwtXPw/oeOKW9o9lci1FBTmvS431RZ97j08WP3uIsWupw712X6xPxuFSx2lghlSMup+G5xOSpIigp1tjhLggpbvs3SZEwxuLJJ2NqpOMCKephZaWeLpnDYzKSFwRKhDEnn+KCx9uG1bnEmH/mt1s8YMzaXTxZc9f42lBV+EtTTDxv3O2w+6PA3F4YoCfi7VcjGB6VmT2eXVboVoKJNhHZ1unx+XQ/9/WFKHGFGJbx9TvrmjsjXiRJSkS8TJVhrUO7Mn2xJjTHFJLp7XH2p8NqZhZ8AAdy9PsDTuxxCrvd6txxyWD6z8CaIyCU/do8z+a9oZ41r71UeORLmiVZ4pEV5tj29iYpf1hAqdpYEGWOMGUk6ZpIU4cUkCODZPUV7emVMXinaX2pvODYxSXYx1WSEXWiLmx0u2y1CY+kWV2jjg4opCSqm1xqv/ZTDA887bDkktHd5U2kbY0w2nTUrtvVnx1Hh5Gnvfz92p7JucWMzUjfH/jBsPyK0dA67ifGhok2E+uJarEvS+E6c6oFAYPB6VZlytHdsfYTtYDU2xZwYFJtDrSU88HyQXzxewtf/WMptawPDblsMawiJyLUislVEdojIJ3NdHlN8GmvKcl2ErJtSp0yNWsRZEZ7dW7SnWBnjx3OinceEnz8a5Et3lPDTR0tYu3v4GGQ8fopTRTtGaFm9w/9eUsHutl76XaWuNLkmoWSm2aythH9+VT+dPdDSKfT2j7e0/pMv44NM4evtiT3paizA8XjJEpEA8F3gGuAA8LSI3KGqz+e2ZMZ4esPKk61wwSQoKbA5h8+a5XL3icHkZ/3eAJcuchHx96QJZny6e4WtRwY/921HhGuX57BAPue3OFW01RUN5Q5XTAtycaNwRZPDqvr0HpBFYEIFzJusnDnd/ydmhdQtzlqDisuRjtjfbj5Naaqp9ONLbttzgR2quktV+4BfAa8aU+GMSaMNJ5SvbnF54+Mu//a8y7r2XJcoVjpai5c3uzgy+Dtt6RQOtBVWsucHuW4Vik9o5ze5CIOf+7GTDif813A1ZqnEqSS39VWcKtpEqJAV87TZlgQVF9eFY3GJ0NS6/EiEPvWZz1730P33UlEaSOry5/vuAZgqIs9EXW6K2+10YH/U9QOR24zJqvjucQ8cVe4/qnSHB68XmqoyWDQ19nX5sXtcrhOJQlNRCs0NsZ/79iP++9zH4rv/ffN7H0whTv3lT3/kLW99+4fzKU4VxidVoOxglRpLgvJfqlOjdnQ7MTM1VZcr1eXpLlVmfOnf/qX2B//9XU6dOjXqtmufeYb29jZU9WOqujrqcnMWimrMuF3ZFFth8fhx5XSo8JKhs2aHY65v2O/QH7nJj5MmmPRYMCV24Pm2AkmEPvC+m0ru++M9HDp0aNRt9+7dy8MPPcj//ewnwXyKU4XxSZlxKYRucZYEFafWk7HDHKfmV7e4k+/8u5v45n9+bbTt+MynPsGf7rt3RRK7PQjMjLo+I3KbMTm1tBYaI41E9SXw8qlCbwEus7NwilJVNngc6ukXXjhkp1rp5reK4oVTYmPPzmNCqAC+36oa+uSn/5l//fxnR932C5/9DJ/9/L+gquFRNvVVnLJfZxZkc4BkNrrF2UQJxi9CvbHNP1PypFvcgI9+5IOl99x1J4cPHx52mz/eczczZzajqhuS2OXTwAIRmSMipcCbgDvSVFxjUhLdPc4R4T3zHL683OGXFzi8b4GT9CRF2ZKOcUIBB1bELaS6LmpNoVy3CvktgchX8ed1U+uUmvLB+NMXEvYe99f3e6ze8NpXO7t372Lzpk3DbvPsunW0tBzjVde9LJm8wldxqmgToY4+5VC3S3uf0hVSQm56TqCOdAj/+0iQO58N8MQOh30F8kPwM2sN8qT6PhRCQnv4RH6ODxqgqv2f+NRn+LcvfC7h/aFQiC/+y+f5+c9+MjPhBkP3FwI+CNwHbAF+o6qb01VeY8bj0snC2ROFQIHNFhdv1ezh1xQyhUlkaPe4QhknpKr68EMPnveZT31iuPv5zKc+wZ/v/9MqTWK2BL/FqcL4lMbgx9v6uPDOLt74uMsNj7r8cm96TqCOdgg7jzk8uTPA3euDPLJ1bPPJZ6vWJt+7xVkSVLxUh84YN7V2+L4Ifl1D6E2vf42zffs2tjw/dObQn/3kf7n6JS9FVQ8kuz9VvUdVF6rqPFX9YloLa4wZ1dQEawqt9+GkCfnOb61bC4eMEyqchF9Vn6quqeHBB/4y5L4/3XcvU6dOQ1XXp7A/38Spov1lZmpB1eOdsV/8SVlc06TYZouzJKi4ne4TunoHf28lAaWhJocFGiNV1b8+8vCF//zp2DXlTp06xfe/9x3+49+/VJebkhkzfsW4uCrAqlmxJxnP7g28OAN+rrvHmfSI7x43b7LGTJ9eaNNo/+43v573+c9+Btcd/G6Hw2H+9Quf4xf/97NZOSzauBRvIhSOTVDSlwjFXs9mIpQNfulOZUmQaT0Z29raNEHJ1x43qvpEaVkZjzz80Iu3fesbX+cd73o3qtqRu5IZY8ZiRWRNoZpy5ZKFYW68oB/J8fHJby0ohaaiFGbGTaNdKLPHAajqrnPPO59f3/LLF2/7+U9/wuVXXImq7sth0cYlJ5+QiFwrIltFZIeIfDLB/ZeKyDoRCYnI6zJRhqoSYUqFUFsClQEoT1cidCquRai6sBIhP7AkyAC0dcYmQvk2UUK8237/uwWf/cyncF2XI0eOcNcdt/Oxv/+QP/vzGZMmB7qVDSf889tNVxfaqjJ4z5Uh/vHl/bx0eZjJE2Lvt1ah9PBbcjeke9zhwkmEAL7z7W9O+uZ/fo2enh66urr43ne+zde/+pW6XJdrPLL+CYlIAPgu8DLgTOBGETkzbrN9wNuBX5IhH1taxppXVvPbiwL84ZIA100f/a1o7ewb8X5Xh3aNOy2pzxg3lh/2WLrF5fv4IFNYUl1DqOd0bJebfJsoIZ6q7jh79Tn85te/4t++8Dk+8anPoKr9uS6XMeMV3z2uK6T8fr/LB54J886nXL61zU1p9fp8Mb1eCRTWebAZRfw02ruOCaHRJpPOI6ra+sY3/w3f/c63+fY3/5O3veNded9rITj6Jml3LrBDVXcBiMivgFcBL44UVtU9kfvyahb2k6ehPzyYCJWXKOWlhXdwzyVrDTIDjp2MrXSYkkdrCA3ne9/5duOixYtbGhsn86Mf3uy8qQBPDo0JufDDXcpAD/XeMJzoh3pr/8wYv7WcFIo9nV0xrXtTar3ukJ09g/GppVPyvqIu2qc/+fGKZcuWn3Ych+eeW1/2Dx/9cK6LNC65SISmA/ujrh8AzhvLjkTkJuCmyNVeERl+kvMcuSe9u5sEHE/vLn2n0F9jRl9f5+ibxNiT4vaPJbdZTj7DB7L7dIsysVNVPX7r7Xfx2ldfvyKZaUiN/+VDnEqzlH//e4HzM1OWTLE4lf+y9hrvzcaTJJapONXz5wcfwXECXHnZRSN3lcoDuUiE0kZVbwZuBhCRZ1R1dY6LlFH2GvNfob8+KJ7XmKl9v+ZV14nlQIXD4lThKfTXWOivD4rnNWZq31dfcWmeTk00VC56rx4EohcHnBG5zRhjjDHGGGOyIheJ0NPAAhGZIyKlwJuAO3JQDmOMMcYYY0yRynoipKoh4IPAfcAW4DequllE/kVEXgkgIueIyAHg9cAPRGRzEru+OWOF9g97jfmv0F8f2Gs0ZjjF8L2x15j/Cv31gb1GE2F90Y0xxhhjjDFFx2a4N8YYY4wxxhQdS4SMMcYYY4wxRccSIWOMMcYYY0zRsUTIGGOMMcYYU3QsETLGGGOMMcYUHUuEjDHGGGOMMUXHEiFjjDHGGGNM0bFEyBhjjDHGGFN0LBEyxhhjjDHGFB1LhIwxxhhjjDFFxxIhY4wxxhhjTNGxRMgYY4wxxhhTdCwRMsYYY4wxxhQdS4SMMcYYY4wxRccSIWOMMcYYY0zRsUTIGGOMMcYYU3QsETLGGGOMMcYUHUuEjDHGGGOMMUXHEiFjjDHGGGNM0bFEyBhjjDHGGFN0LBEyxhhjjDHGFB1LhIwxxhhjjDFFxxIhY4wxxhhjTNGxRMgYY4wxxhhTdCwRMsYYY4wxxhQdS4SMMWYYItIkIo+LyEMi8qSIXJXrMhljjDEDLE6Nj6hqrstgjDG+JCIBAFUNi8hc4Neqek6Oi2WMMcYAFqfGy1qETMETkRkioiIyO9dlMflFVcOqGo5crQM25LA4xpgCZXHKjJXFqfGxRGgcIs2QnxnudhH5kYg8KCJO1H2OiDwiIj8Y7f5RnvvTkYPm29L7qkw+iXzXVEQujbt9h4i8PQvP/yYR+auInBSR0AjbXS0ia0TklIgcF5HvRd0XEJGvikiLiHSKyO9FZFKmy54sEZkjIo8C9wG35bo8xqTC4pTJNR/EqZ+ISH8k/gxc3j/Mtk6km5mKyIyo2y1OFShLhDLrI8BM4GNRt30cmAx8NIn7E4oEpHcDbcBN6S2yyUOtwNdERHLw3O3A94C/H24DEbkc+B3wNaABmAH8MGqTTwKvAs6L3Afw87SXdPjyrUlw+cbA/aq6W1UvjpTvO9kqlykOkZM0FZFv5qgIFqdMNuQyTgH8VFWroy7fG2a7jwLdCW63OFWoVNUuY7wADwGfGel2vC/lKWA5sDLy/9lR2454/zDP+zKgH3gFoMDSuPur8U46dwGdwPPAJUnctwd4S9R+Zkf2PyPqtj3AZ4AHI2XdGCn7jcAOoAPvJDeYwvuY0j7xTqZ/BhyJXH4KTIza3xTgjsjjtgF/F3kds6O2qYy8D7vxAvW9wPwRyjjS+zZaefYAnwL+Enl9m4ALk9l3kt/BLwOHgDdH3b4DeHsWfwuXA6Fh7nsC+PcRHrsXeFfU9XmRz2vWGD6LtH4/gbKo/ycBm7L1ntqlOC7ATyLf929maP8PYXHK4lQRxym839gPk9huIbAz8h2P/05ZnCrQi7UIZZiqPgl8BfgF8H/Av6nq2mTvH8ZNwB9V9W68vqDvibv/R3iB6ypgAvBK4HAS9yXrbcD7gXrgObxm2CuAFcCyyD7fmMF9/iKy3RmRyyRia2Z+AYSBZuBS4O0Jnu9/gMXA+XgB6UngLhEpGaZ8I71vo5UH4J3Ah4Fa4H68IJTMvpPRBXwW+JKIlKXwuBgi8j0ROTHC5ZNj2GcVcC4QFJF1kW5xD4nI6sj9dXifU/RvYidwEu+zT2S09yud389zIl2AHgT+gFc7bkxBsTiVkX1anIqV6zj1WhFpE5FtkS5u1XH7dYAfA/8InIi7rw6LU4Ur15lYOi94zZU/xcvce4AtwDkZfL6HgNN4P5roS4ioGjggADwNrAGcBPsZ8f64bafh1bK9OnL9w3jdkyoi1yfj1VIsSfDYYe+L3L+H5Gra/inq+ssj2zRG3fYb4BspvI9J7zPy+hVYEHXfoshtU4Hpkf/nRd1/DVE1bXgBQIHmqG0cvFqYi1N530YrzzCvb0nk/trRPpMkv4OfiXyHNgEfj9z+Yk0bXs3VI8BfgUeB1Rn4LVxOghYhvN+kAgfxarxK8Wodj+EN6pwZuX9O3OP2Rn8XU/wOp/X7aRe7pPMCXIxXA9yFV0P/KzLfImRxyuJU0cYp4GygKfL+LQGeAm6J2+ajwO8SfaewOFXQl4JpERKRSuAB4K14SdDP8Q680zL81F9U1broC96P+EXqzeaxGa+50o3fwWj3x3kXXhP5XZHr/wdUMFhzMDvyd1uCx450XyqiazW6gbCqtsTdVpOhfc6MXN8ddd/OyN+ZDPbd3Rt1f/S2AHMifzcM1CLhvaclUfuPNjvyN9H7Nlp5BkS/vq7I35pR9p20yHfon4BPiUhD3N0ngBtU9RK8WtpvjOe5UtQZ+fu/qrpBVfvwukiUABdG3V8b97g6vNq2eLMjf0d6vzLx/TRm3CI1y3cCS/ESiknA67Pw1BanLE6NVJ4BBRmnVHWtqh5VVVdVN+MlPa8baJkSkfnAPwAfHGYXFqcKWMEkQngZ9QK8L9cqVX23ql4I3JPbYqVPpOn2XXg/vgMicgSv32mAwW4HeyJ/FyTYxUj3gfdjr4q6nukkciz2R/7OjrptbtR9ByP/z4q6P3pbGAw+C+JODipV9ZYEz7lnYPsxlGc0I+07Jar6R7wa28/G3d6qqq2Rq7143TGGEJHvx82qE3/51BjK1IH3GjX+Lu9uPQHsA86KKsdcvK4EiaYA3RP5O+73y5gcuA7v+L0DuFpVXw6sz2WB0s3iFGBxalg+iVMDifzAxA0XA43AJhE5DqyL3L5BRN5vcaqwFVIiNFB7slFVX5zxQ1X7c1SeTLgWr/bmQrzBfAOX64DzRWSZqh7Dm6HreyIyWzzzRWT+SPdF9r8WuFFEqkWkEfjnrL66JKjqIeBPwNdFpE5E6oGv4/VFP6yqB/Ca4f9DRCaISBNDD7jHgF/ivQ/TwaupFZEb4vsNR20/3Hs6YnmSeD2jfSap+ke8k43G+DvEW3Tt28C/D1OW92rsrDrxly8l2qeIlON1eUNEyiOX6JmBvge8Q0TOFJEgXo1gL/B45P6bgU+IN/3nBLyxCPep6p4EZUz3+2VMNk2P/N2uqgOVA+Nt+fAbi1MWp0aT7Tj1JvFaYxGRBXiv/Q5V7Yls8hu8rnkrI5eXR25/CV73VbA4VbAKKREaaPJdJiIVAzdGTrwKxXuAP0SaeY9EXe7Dm5lroLbtnXi1jA/j1Z7djjfQcrT7PoNXC3MY7yD9q/EWWLzamz+Odz9x3oJX9q3AC3hN6m+Nuv/NQBleTddfGTyQRXt35PEPiUgnXp/91zO05WLASO/baOUZzbD7TvX9U9XngFvwaqpeFElMfgzcpar3plC20fwt3viD+/BqfE9HLtE1nV+LPPcDwHG82aReFmktAi/g3YlXS3gwsp+3jPCcI30WxvjZQEvAgqjKgoW5KkyGWJzyWJwaRg7i1HuBXSLShZcQrgHeEVWeblU9MHDBm1UP4Iiqnor8b3GqQMlgpVR+E2+M0Hq8psiteF++xcB/qurtOSyaMTknIt8Bjqrqv+a6LMYUq0hN/G68sQYP4LWMXovXRedbqvr3uSudMbllccrkQsG0CEW6w12FN0lCJd7UhJPx5q03pmiJt6DpTcBV4k1dfWtuS2RMcVLVdrxpcTcDF+ANtP59TgtljA9YnDK5UjAtQsYYY4wxxhiTrIJpETLGGGOMMcaYZOU0ERKRH4vIMRHZFHXbRBG5X0S2R/7W57KMxhhjjDHGmMKT6xahn+ANFI32SeAvqroA+EvkujHGGGOMMcakTU4TIVV9BG+l5GivAn4a+f+nwKuzWSZjjMklWdmgcn6TDd40xhjjS7K6UeWcxoKIU35cY6cpaoGvI0DTcBuKyE14s4xQVVV19uLFi1N+srCGxlJGXwtrwgWZx01R9ve10RE+DYAgTA7W0FhSg7y4QLM/9Lt9uS6CyZESpzTpbUudsjE9x9q1a4+r6pDFAMdLRCZRGYRSBxERtdls8p7FqbHJRBwLq8v23qP0R+272ilnTtmktD9XJlhcS+34nksBCaRxX2M7Vc9gnCqnOggIIlKqqnn9xfRjIvQiVVURGfZEQFVvxlvtl9WrV+szzzyT8nN09MU3SOW/9r7WjOz3no4NfGT/LTFfmpdNPJ/PTXtVRp5vLI5022zpZqgpldMS3j67esGY9icie8dTnmHNrGqhthTae6G52gWf1TCYlFmcSl2mYlivG+K/jv2Z/zn+CG5kTdLpZZO5Ze77qQqMrVIkGyyuxRrueO439aUNadlPbenEMT0uY3Fq/gSvNtxVmFbZS57HKT8mQkdFZKqqHhaRqcCxXBcon2QqgAC8ZMIS3jvpcr5//CEAlpRP45NTXp6x50tWoQeJfZ37E97eXDMzyyXJX4m+I34LpiIyn9pSWFgL9WWwvhURKVHV/lyXzZhCUOYE+ccp13LVhDP5xIHfcnblbL44/QYcyfVw6cQKPbaZ/CMiDVSXwDmNgMLTLYhInaqeyHXZxsqPidAdeIuh/nvk7+25LY4ZEJQA/zDlpZxbNYfPH76db828kTKnJCdlKYYAMZAAhV2XYx0dTKyupqykZMj9AywxSs2R7kNjbhHKiMnl25lRDSJQFoDGcphW2Uee17YZk4pMVuYNWFXZzO3zP4SDY0lQHjrSfch3FVmJtPe1pq1VyDdmVh1nQikEBBCYWQ3doXbyOE7lNBESkVuAy4FJInIA+BxeAvQbEXkXsBd4Q+5KmF+yEUAALqlZyH3VHyOYxj6wySqG4BCd4Ow93sL/PvwAx091EnQcFk2dzormWSyd2cyEisphHweWGOUTOadRcYGJUd1zmqvhmRZEpFZVO3JWOGOyJFsxDKDCp2NNiiHG5StVRSRvz/fHTUTmUVvi9VoYMK1yoFWoWVX35a50Y5fTREhVbxzmrquS3YeIXA9cP3/+/PQUKk9lM4AAWU2CiiUwxCcyT+7czi2PP0rI9Qb2hlyXzQf3s/ngfuQJeO9VL2XJjOGTnej9WVLkXyIi1JXC4rrYO4KOV9t2OnSCPK5tMxanzOiKJc6lS7ZahU6GT3NPx0ZuO7GO19ev5nX1qzP+nL7VVLGD6VVer4UBIjB3Ahzt3kuexik/do1LiareCdy5evXqd+e6LCa9iikwRCctYdflD888xYNbNg27vYgwp3HymPYPlhj5yvKJLq09UJ2gm+nUF2vbZqjqgewXzqSDxanRZaIyr6W/kwP9bayqnJX2fadLMcW5fHPXief4xMHf0ReZtTGAk3IiVCjd4+TcyUrIje21MKChDPadQkRWqur6rBdunPI+ETKZCSCnwr28b9/P+NDkqzm3ak7a9z+cYgsK8QnKqZ4efvzwA2w7MvL7sGDKVCrLEs9y9KeNz9F5+jTLm2cxb3ITjjO0D7wlRv4gIiXUlMDKYQKlIzC3Bo717CdPa9uMyQVV5dOHbuXhzq28a9IlfGTy1Tkb0zqcYot36ZbpVqElFdNeTIIAnu7ezf6+NmaOcRa3fCUiQn0pLKobbgOYPwF2nHxWRJx8W/bBEiEzhKry2UO3saZrF0/t/h8+Mvka3tt4WcYGlRZjMEg0E9yBtlZufuB+2rpOxdxeEghw4wUXM31iAxv27eW5fXtY0Tw74X5Vlb9u3UJ71yke3LKJ6rJyls5sZkXzLBZNnU5pMPFP3hKjHFlU20ef602OMJxJ5bC/CxFZoarPjbQ7EVkE/DrqprnAZ4E64N1AS+T2T6nqPeMpujHpkonKvFtPrOPBzhcA+J/jj/Bg5wv87+x3MqWkdpRHZl4xxrx8NKeskVUVzTx7enDoy5pTO5k5MbVEKO9bhZZPdDk+TK+FARNKodSBlQ2jLvvgtzhliVCey0QA+W37M9zZ4Z1vuSjfOPYnKpwS3jHp4rQ+T7EGg0RJ0DO7d/KLxx6hPxy7iGB9VRXvvuIamhu8Bf+m10/kZStWMVyFy4G2VtqjEqlTvT2s2bGNNTu2URoMcsa0Gd5kCzOah21RSlRGS4zST0QmUB2E1aOsdzdQ27bz5HpGCTCquhVYGdl/ADgI3Aa8A/iGqn5t/CU3xt86wz188fBdMbfVOOU0BmtyVCJPoce8fZ37sx4rMt0qdEP9WbSEOrmh7ixeVbeKWWV5nNCMgYgER+y1EG3eBNjYhogEVIdfEdlvccoSITPE0VDsBFULy5p408Rz07LvQg8EIxluPaCHt2zmt089MeT2+U1TeNdlV1FTUTHkvuFmrtmwf/j10/pCIZ7bt4fn9u3BEWHBlKksb57NipmzqKuqSqnslhilwZyaDsoC3qQIo5lQCiUOcvYk1bXHk+0idxWwU1X3FvNMR8bfMlGZVxMo51szb+RTB2/lSKiDcinhP2a8nkCOpsouhrg3ECNykQxl0uvqV/PG+nPG3SMmb1uFzqjrpyc8cq+FARVBbw28GVUhku/KnfM4ZYlQHsvUTHEfmnw1Kypm8o8HfkuP28e3Zr55XFONFkMQGMlwCdCAJTOaufu5dXT39r5426WLzuS1555PIMH4npFcvWQ5M+obeG7fHjYd2E93X2/C7VxVth4+xNbDh/jtk48zq6GRq5ctZ9Ws5MaDWWKUBrs77+LlM6+jIsnDcHM1PNXyexF5JurWm1X15mEe8SbglqjrHxSRtwLPAP+gqu1jKbYx+eCSmoXcveAjfPHw3SypmMbssklZL0OxxL7RYlymZbJVqCQHy4T4ypYT3+eKqe+lNslzwNk18PDhB/IpTuV9IlSs05JmerrsS2sWcef8D7O15zDzy5OfnSxasQSB4SQbHCbV1PCuy67ku/ffiyPCG86/iAsXLBrTc5aVlLBi1mxWzJpN2HXZcfQwz+3by4Z9eznR3TXs4/a2ttDT1zem5wRLjLLoSVV93WgbiUgp8Erg/0Vu+m/gXwGN/P068M5MFdLEKtY4NZpMx7EJgQq+MuN1w3YlzqRiiX+J4lyhtQqlS962CqU+T88mVf3IqHv1SZzK+0TIpiXNnKaSCTSVTEj5ccUSAEaSag3ZoqnTedP5FzG1fmJK02KPJBBZgHXR1Om8/twL2Nd6/MXJFo50nIjZVkRYOrM54X6OnezgeGcnC6dMJRhIrnbMEqOcexmwTlWPAgz8BRCR/wHuGu6BJv0sTuVWNrvcFFP8GynOZTsZyta6QiatfBGn8j4RKkbZXjw1FcUUBBIZKTC4qnR0d1M/zHicCxcuTnj7zhOxizXPq0ucsIxERJg1qZFZkxq5/qzVHO3oYMP+PWzYt5fdLceYN7mJmvKhY5EAHt/2An/evJHykhKWzPBmoDtz+gzKS5LvLmmJUdbdSFR3AxGZqqqHI1dvAIZfpMqYLPBzHBuLYot9ue4Ol2thdcc05ix/W4UywhdxyhKhInfa7eOFnsNpWXCu2AJBtNGCwum+Pn761wc52N7Ox6971bBJR7z4JCj6trEkRAOaamu5pnYF1yxdQUd3N6d6exJup6o8t8+bgKGnv5+1u3eydvdOgk6ARdOmsWLmLJbNnJVwQoeRWGKUOSJSBVwDvCfq5v8QkZV4XQ72xN1nTFalOwna1dvC/Sc3865JlxDM8piOYox7ySZBhdYqpKps6jnIbe3ruKdjI3+Y/0FfTMeej/wUpywRyjPpDiD/evhOft++NuNrBRWy0YLC0Y4T3PzA/Rw96c3G9+OHH+CD17xs1IkQEiVBie4fT0IEUFtZSW1lZcL7jpw4QUvnySG3h9wwmw/sZ/OB/cgTjzJ3cpM3A13zLCbVpN6d0hKj9FHVLqAh7ra/zVFxjMmokIb5+IHf8tzp/fzp5Gb+Y8brmVeWnu7FIynGBAiKuyXoowd+xd0dG168fvuJZ3lP4+Up78dahfwVp+yst4jdfuJZftv+zItrBb1zz//SFhp+QP1IijEo7OvcP2pQ2Lh/H1+9+/YXkyCA7UcOc/f6tSM+brQkKH7bVLZPheM4XLhgEdXl5cNuo8DOY0e57Zkn+fytv+HLd9zK3evXcqBt7En7wHubzHtsjMkf6a7M++Hxv/Lcae8YseH0AV6147/Y2Xssrc8RrxjjHQyfBO1rPU7YdVN6TKZk8rNZVRlb6XjriXU5mYjDpJe1COWRdAaQE6FuPnfo9pjbDvWfoFRS/0oUW1BI5sCuqty3cT13P7uW+MPkzIZJXLLojGEfO9akJl0tRNGaamt584WX8Cb3Ina3HIvMQLeH46c6h33MwfY2Dra3sfd4C++/+tq0lMNajIwx8Xrcfv6vNXYNtkurFzK3dJRFiseo2GJdtOHi3s6jR/jO/X9k8bTpvOPSKykNFu5p5XW1K/j3w/cQ+v/tnXecVOXVx7/PzPZeWZatsHSWDoKi0gRBAXuJMdEkRhPTTcybYqLJG5O86TExURNbqh1BURQRRaX3DktZyrLLwva+OzPP+8cWdrZOuXfuvbPP9/OZD3ufueUMO3vP/T3nPOfQKvrKHbWUtFSRHpbg9blUVMg8WP4bO1DKkmo9i5YQEsUfsz7Fg2depsJZR7gI4bHsO4ixh2t6nWDC05mtppYW/vnJh+w6WdjtvUuGDef2Sy/v1VloEdnRQxDZbDby0gaTlzaYG6ZdwtnKCvacKmT3qZO9Rn4mZPW87kxKSYvT6ZfDVMJIYSUGip/qD639WIQtlNeHf5UfF73OmpoDJNqj+WnG9ZpXiRvIAgh6933FFRU88f67tDid7D19ij+/+xb3zV9IdHhEt+ODYa1QckgMV8WNpVk6uTFhCnNiRxNus/xj9IDH8r9BVZbUd2bHjmLl8K/xrdMvcF3CZEZHpHt9joHiIDwVQeerq3lq3RqKK917gNmE4IZpM5gzZlyvTlrr9DY9BBG0VqDLSEwiIzGJxROnUFZb01GW+1jpOaSUCGB8L0LoVNkF/vjOKsYMyWRidg75mdlEhfsnwJUwUpgZ5af0IyUklsez72RF5U5i7BGkhMRqdu6B4t/6ojffV1FXy+PvraahU/+54+dLOXS2iKlD8wJlXsD5Y9an1FrqIMPyQmggoGeZ0cGh8fxr6Bexed8wa0A4CW/ymw8WneHZ9euob25yG48OD+fzs+cxKj2j12P1WuPT+dxaC6J2kmNimTs2n7lj86ltbGTv6VOcq6rotQDD7lOFNDsc7D5VyO5ThdiEYMTgdCZk5zIhK6fX8uLeoISRQmEu9PRjQgiuT5yi6TkHgn/rj978X11TI4+vWd2tSfeSyVN7FUHBEhXSUgSp9DhzoISQwqda+MGONwJISsna/XtZsWNrt4WTGYlJfHHuAlJie5+l1FME9XQdvQQRQExEBJeOGNnnPnvaynG345KSw8VnOVx8lpc3byAnOZUJ2TlMzM4hLT5BkzQXJYwUCoUnKAHUSm8+sNnh4Mn313Rryn3FqDFcPX6S29jRkmIykpKJDAvrOKe69yrMhhJCJsesTeeC2Vl4I4KaHQ7+veEjtp841u29KbnD+PRlVxAeGtrr8YESQT1dU09B1Bt1TY00tjT3uc/JsvOcLDvPGzu3MSgunonZOUzIziUnJRWbRrn/7b/jmfpX2VUoBjxm9WOdCWaf5i29+UCny8Wz69/neOk5t/FJObnccsmlHZNWx0pLeGvXDg4Xn2XJ5KksmjBZd5t7Qu++QlqgokLGo4TQAOFnxW+QbI/hPg16BQWrw/ClzKcQgrIuFdQEsGzKdK7Kn9BnNMMIEdTT9QMpiKLDI/jfmz/FqbIL7D5VyJ5TJ7vNLHamtLqKNfv2sGbfHhKjo/nxDbcSag9sw0SFQmEOdtSf5E+la3l0yI0M8aFSV08Eqz/zld78oJSSFzd9wt7T7n5reNpg7rpiDra2vnibjh7hX5+s73h/7f69zB49LuijQo2uFiJsvU96KsyLEkImRqtZtLer9vJ82QYAttSf4DeZt5IcEqPJuYMBf/ochNrt3DNnPr96cwXVDfVEhoXxuSvnMjaj7xu90SKoM4EWREIIclJSyUlJZdmU6ZyrqmTP6ZPsPnWSwvO99/9IjY1XIkihsBha+bF6VzPfPfMyJ5vLuPboH/hh+hJuSpjqc+qsEkDd6csXvrV7BxsKDruNDUlM5N55Cwi1X3yUnJCdQ+TWsI4iCg3Nzaw7sI9rJmm7hstT9IwK1TqbeLt6L8srdlDramTl8K/7dB4VFTIWJYRMilbO41RzOT8oerVj++PaAr5y6l/8d+h9PjmQYHIeWjV6S4iK5otzr+LFTZ/w+dnzGBQX3+f+ZhJBnTEqZS4tPoEF8QksyJ9IVX09e06fZM+pkxwpOevWpG9Cdu/luP+94SOGpQ4iPyubuMieizQoFIrAomVK3G9KVnOy7Xy1ria+X/QqoyPSyY/svQiNwnP68ocfHT7I27t3uo0lRsdw//xFRIW5V/yMCgtn3tjxbk3D1x3Yx5wx4zqqgwZDVKjW2cTlh39BneticaSDDcWMifS++q7CWCwvhFR/hr4511JFqLg4ix4q7PwwfYkSQT6IICllr/9vQ1MH8d0l1/e7hsWsIqgzRq4hio+K4opRY7hi1Bjqm5s4cOYMu08VcvDsGSb2IoSKKsrZdPQIm44eQWyEYYPS2oot5JISGxfgT6BQdEf5Kf9okU6ONblHi+9ImuGzCAomX6YFffnDXSdP8NKmT9zGosLD+cqCRST0UuFzzphxrDuwr6OCakNLM+8f2MeSyVO1M9oL9IgKxdjDmRKVzUe1BR1jr1fuYEzktT6dT0WFjMPy5cKklG9IKe+Nj+97Ft5KaDmLNj16KCuGf51pUbkA/M/gxYyPzNTs/FbjVM1pn0RQRV0dv1/9JsdKS3rdJxhEUGeOVZ4y1OaosHCmDcvjC3Pm88vb7iQxuud0zt2nCjt+lsCx0nMs37aFR157iZ+vfJVVu7ZzuuxCt4p+CkWgCEY/1R9a+rFQYefZ3M/zcPoyIkUoWaFJfDdtsWbnH8j05Q8bmpv594aP6HznDLXb+dK8hQyOT+j1uMiwMObnj3cb++DgPuqaGj26rlW4IcE93e90c7lBlij8wfIRIUX/pIfG88+h97Cqag/L4if5dA6rz6D5c9M9VlrC39etpaaxgb+vW8v/LLm+15mwXs/hp6A4Ul7MyCRjQu5GRojaCeljbVDXctydOVtRwdmKCt7evZOk6JiOSNGwQWnYbZafB1IoBgw2YePO5Eu5ImYE1a5Gou2+NWG2ui/Tkv78YmRYGPfNXcCT76+hoaUZmxB8fvZ8hg1K6/fcs0eP5f39e6lrao0KNba0sHb/XpZNme52/UClyOkRFVoQN45R4YOZFzeGGxImMzQ81a/zqaiQMSghZDL0KjMaIuxcl+BbCUurOw5/RNDHhw/y8paNHWtVahob+Nu69/jm4mvdFoj2hhYRlSPlxW7/DmRB1BOfvWIOe04VsvvUSc6U9/73U15XywcH9/PBwf1Eh4czPiuHS5OvIithcACtVSiCHz3LZeeEp+h27oGEp35x+OB0vrl4CX99bzXXTprK+CzP7v8RoWFclT+BFdu3dox9cHA/88aOJyYiwiebzUaELZQ3R3zDaDMUfqKEkCJo8UcAOZxOXt6ykU+OHOr2XkxEBA6ni9B+CphpKYK6jhklhsB8gigjMYmMxCQWT5xCeW0Nu0+dZM/pkxw9V9JrOlxdUxObjx4hIsS3WWWFQmE9rD6ppxXe+saMxCQeuv5mIkLDvDruylFjWbt/L7WNrSlxzQ4H7+3fw/VTL3GzxcpRIa1RUaHAo4SQidBiFm1D7VFmRg/zu1dQO1Z0HP7mHlfV1/P0B+9xvIdSzlePn8S1k6Z09EzoDb1EUOf3jBRDYD5BBJAUE8vcsfnMHZtPbWMj+86cYvepQg6dLaLF6XTbd9igNFJjEg2yVKEITrSKBtU6m4jxMf1N0Tu++kdvRRBAeGgoC/InsHzblo6x9YcOMH/seGIjI32yw1+sIIYUgUUJIZOghfNYW32QL536B1fEjODXGvQKspoI0mLxZeH5Uv627j2qGurdxsNCQvjMrNlMzh3a7zn0FkGd9zFaDIE5BRG0Ru5mDh/JzOEjaWpp4eDZM+w5dZK9Z07R0NzMhOxco00kLCseEeNZEz5no8TBeZ0tUiiM593q/fyoaDk/HXI9V8fna3JOq/kzPejLRzpdLtYd2MfsMWM9Svv2lCtGjeW9fXupaWwAWqNCa/bt4cbpM9zssno5bS0xW1QoND0GW7pn66JdIbW06GyP1qjVwkFCcXMl3yt6GYCPagtYdvQxttUVGmtUANFCBG06eoQ/rH6zmwhKjonl29csM5UI6ryvN/vriZmr4oWHhjIpZyifvWIOv7ztTr62cDHThuYZbZZCEVRoMaFX5qjlR0XLKXfW8dXT/+bbp1+kytmggXUDm758pJSSFzd9wuvbt/D4mtUdZa+1ICwkhIXjJ7qNfXT4ANVd/Gwg0VsUt0gnNc7G/ndUmAIlhEyAFs7jJ8UrqezkLMocdf2Wc+4Lq8ye+VoOuzNOl4tXtmzkX5+sx9GpgSfA6PQMvrvkOjISk/o9T6BFkBbHaY3RJbc9wW6zMSo9g/go1XhVodAKLfyYlJKHz66g3FnXMfZW1R6Kmiv8Oq9V/Jle9OcjV+3awYaCwwAcPVfC799+k8q6uj6P8YZZI0e7NbpucTrZfLTAbZ9gKKd9oOEsjxa/yeWHfsFT5z802hyFhyghFCQ8POS6jl5BAA+kLWRKVM8NKPvDCk5DCwEErVXg/rzmbT44uL/be/PHjefLV11NdHj/FW7M8PBvFjEE1hBECoXCXEgkYyOGuDUB/8qgeYyN9H1NhxX8mZ705yc/OnSA1Xt2uo01tbSA7/Oo3QgLCeHqtqhQRmIS985dwFX5E7S7gA9o/b1YXbWP6479iefKPqHcWcfrlTtxSlf/B/aCnpUXFe5Yfo2Q1Tt2a/Vlb+8V9FjpexxsLOaelCs0Oa8Z0XLm6OPDBykocRcQoXY7d1x2BdOHefad0uqBXwshY5Z1Q+2Ydf2QQhFIrO6n+kMrP2YTNu4fNJe5saP5btFLhAo796XO0eTcA5H+fOWukyd4afMGt7Ho8HC+smARCVHe9crrj8tGjiIhOprxWTm9ZqtYea3Q5TEjiBShNMjWFTIljio21R1nVkxw/s0HE5aPCA3Ejt29ESLsPJB2NU9kf9bnqnFmnj3TKgrUmYXjJzEq/eJsY2J0DA8sXmpJEdT5XGaKDoGKECkGNspPeceYyHReHfYV/pr9WbfokLeY2Z/pTX++sqCkmOfWf0DnBgNhISF8ef7VpMUnaG5PqD2Eidm5/absBzJFTsvvR4w93K2wR6wtgpKWKr/OqaJCgcHyESEro9eX3B5kIkjPG6PdZuNzV87j16teJykmls/PnkdshGdlPc0ogrqe10zRIVARIoUi2NDLj4XZQkizxely7mCnP59ZVFHOU++vweG62FLAJgSfnz2P3NRBepsXtNyUMJUKRx03JE7lqtgxhNs8qwiqMBYlhAzCX+chpUT4UQzBCgRqZigmIoJvXH0t8VHR2PvpD9SO2UVQ5/ObTQyBEkQKhUJfzDqxpzf9+c3y2hr+smY1DS3NbuN3XHYF+ZnmuB9btcnqzJg8ZsZoW420ormM+LD+izUpfMfyqXEDkY9rC/jiyecoc9Rqdk6zOQ2tRVBRRXlHVZyeSIqJDToRFOjr+IJKmVMorIu/E3ou6WJPvfWrhZmF/vxmbWMjj69Z3a1FxNIp05g5fKSepvVKTWMDO0+eMOTaCgUoIWQI/jiP0pZqvn36RT6sPcKyo4+xue643/aYSQTpsQ5oZ+EJfvvWSv678WMOFp3x61xWE0Gdr6cEkUKhMBP/Ld/MTcf/wk/OrqDe1dz/AR5iJp8WKPrzm80OB0+8/y7nqt3XrcwePZaF+RN7Oco7vLmH1zY2smL7Vh5+9UWe/fB9ympr3N636lohhfVQQshCOKWLb595saPHQqmjhs8VPkOxnwvyzIAeAsglJSt3bOXpD9fS7HAgpeTZ9es4X13t0/msKoLMcm1PUIJIobAG/kaDTjaV8X8lbwPwr/JNLD36R/Y3qAdSX+jPdzpdLp75cC2F50vdxqfkDuWmSy7VJM2+/b7tyf1bSsmf17zNmn27aXY4cEnZrYS3QhEolBAKMP44jxpnI44udem/nDqX9FDfKxGZYSZEj5mfhuZmnnz/Xd7du9ttvL65iR2F3kfRgunh3OxiCJQgUiiCGSklPyh6taPUMLQ2AY+3e1aopi/M4NMCiSf+s7SqiqPnStzGRg5O5zOXz/Gr8Xo73t6rhRDMHZvvNrb5aEG3ScpgiQoVN1cipex/R4UhKCEUQPydQUsIieKfQ+/hSylzALg0Oo/7U+f6fD6jHYYeUSCAkqpKfr1qBfvPuJ/bbrNx+8xZXD1hklfn0/KB3CwixCx29IcSRAqF+fDXlwkh+FbaQrI7LQL/4eBryQxL9Ne0AYWn/jM9MZFvLlpCXGSr0MxITOKLcxcQave9NHk7Pd2fPblnTxuaR2rcxaqAwRYVqnc1s7xiB5898XdmH/kV2+oLjTZJ0QuqapzFCBF2vj34ai6JHsroiHSfS2UbiZ6zPHtPn+T5jz6gsaXFbTw2IpJ75swnL22wV+cLRhHUTrs9Zqwq1xVVZU6hMAdalcueFp3LG8O/wW9KVnO6pZybE6f5fU6jJ/cCibd+NDMpmQcWL+OFTR/zmVmziQwL08kyz7DbbFwzcQrPf/RBx9iW40e5esIkBsVdzHKxagW5HxUtZ2XVro7t5ZU7mB49VJNzK7TFek/RFkXrXgtXxI4kNTTW5+ONcBh6RYCgdTbp7d07efL9Nd1EUE5yKt9dcr0SQb1gZtu6oiJECkXwEGUL48dDlvHX7M8EfTsILfHVj6bExvLVBYuJj4rSxA5/78VTc4eR1qnJsGzz410JZIqcVixNcC9A8VbVXho0LAii0A4lhAYgRokgvWhsaebpD9ayatf2bu/NyBvBNxdfS2J0tFfnHCgiqB0r2NgZJYgUisCjV/PUEOF/itZAiQaZRRT0d//15P5ss9lYPHGK29i2E8coqar0xzS/0Op7dHnMCFJDLk5W54Wncq7Ft0JNCn2xvBASQiwVQjxVVWXeymm+Oo/9DUWa9goyAj2jQADnq6v47VtvsPtUodu4TQhuvuRS7px1JaF27zJAB5oIasdKtrajBJHCCljBTynMjye+tKiinL+tW0NDszWiD1NyhpKecHFtWLBEhUKEnbuSZ3FvymzeHv4tXs37CrnhKUabpegBywshKeUbUsp74+N9r5xmRsoctdx38h9cd/RPmvQKaidQs2Z6CyBo7UPw67dWUlxZ4TYeEx7BVxcuZs6YcV6nWwxUEdSO2fsN9YYSRAozEwx+yp9oULPLwXMXPqHJ5dDQoosMhGiQJ/60vLaGv6xZze5TJ/njO6uo7tI4VSs8vdd6HhWa7Da248QxiisqejlCf7T6Pt2XOpsHBy9ieMQgTc6n0AfLCyGz44vzcEkXD555iXOOas45qvnsib/zl9J1ftsSSBEUCGIiIpgzepzbWGZSMt9dch0jB3u/4NHMIqig9IKm5+sPK4ohUIJIoTAjj59/n0dL3uTm449zQPUK8hpPfGptYyOPr1lNVZv4OVNexm/feoO6pkZNbdHj/jopZyhDEjtFhYC39+zotp/VokIKa6CEkI74OoP2euVOPqot6Nh2IS2zyC7QN6pFEyczISsHgKlD83hg8VKSYrwvImHmh+d2EaTEkOcoQaRQaIc/0aA99ad58vyHABxqLOGmY4+zpnq/VqYFfTTIE5/a1NLCE2vf4Vy1e+rl+KxsosLC9TJNM2xCcO3EqW5jOwpPUFRRbpBFwf+9UlxECSETsixhUkevIIBpUbl8I+0qv84ZrH/UNiH4zOWz+dSll3P3FXMIC/G+IrzWD8xaCoiu4keJIe8YiIJICJEghHhFCHFICHFQCHGpECJJCLFGCFHQ9q9q2KIICL899w5OLjYCTwqJZnqUKiPsCZ6IIKfLxTPr36fwwnm38Sm5w7hx+kxNq/H5ci/19JgJ2TlkJiW7jb21S0WFghUz+SklhHTCnxm09l5Bz+R8jrzwQfwu63a/quoEQ0rc6bILuHrpzBwZFsaskaN9Wg9kZhHUG0aIISWILMUfgdVSytHAROAg8D1grZRyBLC2bVuh6Bd/K8U9lv1prouf1LH9s4wbSQjRpnxzsE7wgWf+VErJfzd+3K15+MjBQ/jM5bOxGSyCvEEIwTVdKsgdKT5LbaO2qX3eoMf3yyGdFDSe0/y8FsQ0fko1VDUxV8SO5K2Y4dgs2DRVK6SUfHBwP8u3bWbh+EksmTy1/4M8QI+beiDXBRWUXmDEoMBWoDlSXmyJ5qt9EeyNWYUQ8cCVwN0AUspmoFkIcR0wp22354EPgP8JvIWKgUa8PZLfZN3Gwvh8dtafYm7saKNNMj2eTiq+sXMbm44ecRvLTErmi3OvItTuf0nydvz1l8cqT3l0zx2flU1WcgqlVVXMGTOOeePyiQ6P6LZfIJusasXhxhKWV+xgZdUuWqSDj0f9gHDbwHwEN5ufGpi/BZ3RsteCvyLIyjNmzQ4HL2z6hC3HWtdLrd6zk8ykJCbl+JdWYXUR1HkfJYZ8wyzRocEpiYTEe5bDX1vcQinMEEJs6zT8lJTyqU7bQ4HzwLNCiInAduAbQJqUsv1LWgKk+W+9ItjR0pctjBvHwrhx/e/oIVb2bX3hqQj64OB+3t27220sOSaW+6+6msiwMD1M0x0hBJ+dNZvYyEhiIroLoM4ESgyV1J9lcJT3xZc60yKd3HniKSqdDR1j62oOsSg+31/zAkJqUjwRaZ5VvGyst3MW8q3kpwZuqMFEyF5SvvwlkI5C67S4iro6/rD6zQ4R1M6/PlnvVxUcK4ggbwh0mhxYf92QxdkspZzW6fVUl/dDgCnAX6WUk4E6uqQXyNYbjj43HUXQoFfzVEXveOpHdxQe59UtG93GYsIjuP+qRcRFapN22E6gJ43SExP7FUFWI1TYWdopPRRgeWX39U9BxD4r+SklhDTGW+dR6ajn9hNPsqXuhE4WWY9j50r41ZvLOVXm/pAfERrKXVfM7TFU7tF5LSKCvBU3RokhJYhMyRngjJRyc9v2K7Q6nHNCiHSAtn9LDbJPofCbYIwGeSqCjhSf5R8ffeD2hBgWEsKXr7qaNI37VGnpM/Xwv4EqnKDF9+2GxIvrn6Jt4QwKidVtEtwCmMpPKSGkId6KICkl3yt6hR31J/nMib/xeOn7OKWr/wM9wKrRoI8OH+SP76yipssCybS4eL5z7XWMz/JtbUewiiB/j/MXJYbMhZSyBDgthBjVNjQfOACsBO5qG7sLWGGAeQqL4Gs0qMbZyDdO/YfCJmPuR1bFUx96pryMp9atweG6+JxgE4J75swnJyVVL/MUGpAfkcFtidP5TeatbBz9A/434wZNK/pZCbP5KbVGyECeK/uEtTUHgdZeQX8oXUOCPYpPJ8/067xWnC1rcTp5ZctGPjlyqNt7+ZlZ3HXFXJ/zns2yHqQ//BUzRqwZguBZNxREfA34txAiDDgOfI7WSa+XhBBfAE4CtxponyJI+UXJKt6q3sv7NYd4cPAi7kyaqXmxHyv6t77wZiLRJSUhdju0tHSM3TnrSsZmaL9Wxkx+0yUlu06eICU2juxkdx9nlbVCQgh+lnGjhhZZHtP4KSWENMKXGbTqTgvnACZEZnJL4jStTAoIWkSDqurrefqD9zh+vnsUdNGEyVwzaYrPZUD1upmbNRKixJBCSrkL6OlGMj/ApigsiK/RoHU1h3i5onV9dKNs4X+L38COze+JvWDGW/+ZnZzCtxcv5fE1q7lQW8N1U6dzSd4Ize3Sy296Wj2uHZeU7D5VyFu7dlBcWcHo9Ay+unCxLrYpAouZ/JRKjTOQb6Qt4Omcu0m0RxNri+APWZ8izM9yilabLSs8X8qv3ny9mwgKCwnhnjnzWTJ56oAQQVqmthmZJmdWgahQKPTlveoDbtt54YO4OVGbdgftWM2/9YWvk4ipcfE8cM1Sbpo+k6vGTdDYKnNReL6Upz9YS3FlBQCHios4dq6k235WWiukMB9KCGmAP9V1rowdxRvDv85fsu8kKyzJLzsC/Ufq781n6/Gj/GH1m1Q11LuNp8TE8p1rlvlVJnugiiA9z+kpSgwpFNbEH1/2syE38IuMm4ixhWPHxq8ybibcFqqhdcGDv74zLjKKuWPzdVljondKnDfnHzYojZGD3TMNVu3qudpaoMSQIviwvBASQiwVQjxVVVVltCk+kxYax8yYPKPNCDhxkZE4u1RNGT0kgweXXMeQRN9FoZVEkJ4oMaRQmINg8FP9IYTg5sRprBr+TX6ZcRMTorRdtxEss/GePrBLKWl2OHS2xh0zrQtq55pJ7lHFIyVnKSgxzr9o/T0saalSxUUMxvJCSEr5hpTy3niNy0Z6ill6LVjRSYxKz+CGqZd0bF+VP4H751/tc3lssJ4I0lusKDGkUBiP0X7KE7TyZUPCEri+U6lgxUW8iVqs3LGN369+k5qGhv53DmKGpw1mVLp7kYJVu7b3WHraKlGhBlczKyt38bnCZ5h9+P/43bl3jTZpQGN5IWQk3jiOGmcj2+sKdbHDCBGk1Q1n7th8Zo0czd1XzOX6qZdgs/n+lVQiyNjr9IQSQwqFwl+sONHXFW985gcH97Fm325Ol13gd2+/wYWaah0tayWQ0SBvr3Vtl6jQ0XMlHLFwVGh/w1m+feZFPq4twIXkvZoDVDkHtuA1EiWEAoCUkoeKXuOOE0/xl9J1uDTqFWQlHE5nj+NCCD516eVMG+ZfaqDVRFCgMVoMBcv/o0IRjPgSDXLInu/piu54I4K2nzjGq1s2dWyfr6nmqXVrcOnYfNOMKXGdGTYojTFDMt3GrBwVmhqVQ3anNeEt0smqqj0GWjSwUULIR7xxHP+t2MJb1XtxIfl96bt8vvBZKh31/R/oAWaPBjldLl7bupm/vLcap0sfAWj2m3hPGCFMjBRDEDyiUqEIJnwRQSUtVSw48lter9jR48Oollg9GuSNvzxcfJZ/fvwhnf9Hw0JC+PRlV/pcPbU/jPKf3keF3NMtj5ee41BxkZYmeYU/30shBNcnXPw8YyOGkGiP0sIshQ8oIaQzFxw1/KJ4ldtYubOOSA2q6ZjdQdQ2NvKX91bz/oG9HCkpZvm2zZpfQ8+buNVT4sx2bVBiSKGwOu0ZDmdaKniw6GXuP/UvLjhqjDbLlHgjgs6Ul/G3dWtwdJowtAnBPXOuIiclVQ/zLEVu6iDGZboX4Fi1q2chboWo0A0JU/hC8hW8OfwbrBj+NRbHjzfapAGLEkI+4M0MWkpILH/O/jSJ9mgAom1hPJZ1h99lRY0SQZ7eYIrKy/j1qhUcLr5o5wcH97Pp6BHNbLGiCDIDSgwpFArwLRr0SsU2Pqy9eB9/r+YAb1bqk9Zj9sm+vvDmYfxCTQ1/eW81jS0tbuN3zrqSsRmZvRzlP1bLprhmontUqPB8KQeKzhhkjX/fz8ywRL6Xfg2jIgZraJHCF5QQCgCzY0excvjXmB41lP8dcgO54SlGm6QrOwtP8Nu336Cs1n2WMCEqivSERE2uYVURZLQIacdoO9S6IYXCmjhwES4uNv6eFpXLZ5IvNdAi8+GNCKppbODx996mukt1uOunXsIleSO0Nq0DM4ggb23ISUllfFa229hbFo4KKcyBEkJe4muJ0cGh8fxr6D0sTZjktw1mjQZJKVm5YytPf7i2W/+DvEFpfHfJ9ZqE+JUI0gYz2KPEkEJhDL76sk8lzWDl8K8zMTKLSBHKLzNuxi60f5SwajTImwfwppYWnnjvXc5Xu1eFmzs2n/njVKpUT3SNCp0sO8++Mz3/nwdCDFn1e6q4iBJCXuBvnwWbBs7CzH90Hx85xLt7d3cbv3zkaL628BriIv1fDKhEkLaYwS4lhhQKazEsPJUXht3Hf4bdR054stHmmAZvCwk9/eFaTpaddxufOjSPG6bNQOhUHAHMEQ1qx1tbspJTmJid4zZWUGLe5yKF+VFCSGP0rqBjVqSUrN2/123MbrNx+6WXc/ullxNit/t9DauKILOjxJBCMbDQonlqiLCTH5mhgTXdMfOEX294I4KklPx7w0fd1reMSh/CZ2bpVyEOzCWCfKU9KjR6SAbfvmYZN06f2eu+VooKOaWLj2sLqHU2aXI+hWeE9L+LAjx3HD8oeo2ssCS+lDpbkwhQZ4x0Dv3dTE5eOO/W9C3EZuNrV19D3iBtFgJaWQSZQWj0R0HpBUYMMnbtWvvvYWRSuqF2KBQKhTd4+7C9es9OthwrcBvLSkrmi3Ov0mTSMNjJSErmoetvZnB8gtGmaMLxpvO8WrGdFZU7Oeeo5hcZN3Fz4jSjzRowqIiQhrxasZ1XKrd19Aoqc9Rqdm6zz5BtPX7UbXtcZpYSQVhDBLVjFltVdEih0A9vo0Fnmit0sqRnzO7ruuJLxGFK7jCSomM6tlNiYvnyVVcTERqmpWndMGs0yBe7vBFBZo8KvV65g6cufMg5R+tk8vKKHVqZpfAAJYQ8wBPHUdB4jp+cXdGx/UndUR44/YKeZgWM/m4iTpeL7YXH3camDxuuybXNeuMOVpQYUigU7RQ0nuPqgt/x3TMvU+1s6P+AAYavD9hp8Qk8cM1SMhKTiI2I4CsLFmmyhrYvlC81L52bqwJsqT/B6eZyg6wZeKjUOI0od9QRYQujwdnaByBChPJQ+lJNzm32GbJDZ4uobWzs2I4MDevW+MxbAnHTVtGgnjFDmhy0/n6CPU1u0OAkwhMjPdr3/Mk6SnW2RxHceBMNckgn/1P0Ms3SwfLKHWysPcYvM29mVow2k1w9YXZf1xl/owwJUdF8c9ESKupqSY2L18iqnrGCCDpWeYq8hOz+d/SRUzWnyY7177mkP0rqzzI4aojXxw0LT2VSZBa7Gk4TZQvj6rh8XCZab56SmkDsEM+KolTXSKzzV9yKEkL94KnjmBEzjJXDv8a3Tr/AtvpCHh6yjBERaX5f32jH4MnNftsJ97S4Sbm5hNp9/2opEWQ8ZhJDoNYNKRT+4m1K3JPnP2RvQ1HHdomjinIN072tjFapVpFhYUSGJWlyLgWUVlex4cghlk2Zjs1mrYSn+wfNo9JRz8K4cUTbw402Z0ChhFAfeOs4BofG88+h97Cm+gCL4vJ1ssp8TMnNo9nhZP+ZUzhcLr/S4oJBBAULZhFDMDCiQwqFmZgTO4pVVXsoaDoHwKK4fJbET9TtekZP+nmKtyKooq6WUHsIMREROF0u7AF+QLdCNMhfzldXtxagOH4UKSWZSSlMG5bXbT8zR4Xmxo7WwRqFJ1hLMluAEGFncfx4TXoAGO0YPL3hj8/K5otzr+Lnt32az1w+m+Fpvj2wBosIsno0qDNm+ixKwCoUvuFLuexxkRksz/sq96bMZlBILI8MuU7X3jZWwJdI0Fu7d/C7t9+grLaGE+dL2XT0iA6W9YzVRJCv9r6ydSObjxV0tC9Zf2h/r/sGonCCwlooIaTQjKiwcGbkjdC1B4LZMZNwUCgUCn8It4Xw4OBFvDPi2ySHxPR/gKIbzS0OSqur+O1bKzl14TwvbPyY46XnjDYrqIjsUm2v2ek0yJJWjJ7EVniHEkIKUxAs0SCFQqEwG4lhni107o2YAKxZ8CWdKND4klZ1Vf4EQmx2qhsaeG3bZhwuF39bt4by2hodLHRHz+IDeuCLvU0tLd0a0/aVnq93ahxY47usuIgSQooeCWT42Grh+97QMxpUfFZFmhQKhe/4K4YApJScaDqvgTU9Y4UHSG8fpLOSU/j0rCvcxmoaG3ny/TU0tbRoaVqP5CVkW0IQ+WrjhoLD1Dc3dWxHhoUxa+QorcxSDABUsQQ/2Fh7jF+fe5sEexSJ9mimRefyqaQZmpxbhVa1xcrRICWCWlHFEhQK/0gMS/ZpvRC0iqCfl6ziv+WbeTrnc8yIGaaxda0MjhoSdP5v+rDhlFRW8s7eXR1jRRXlPP/RB9wz96qApJPnJWQHzaRjOw6nk7X797qNzR49VvfGtHrhlC7+WLqGckcd5Y46ql2N/DP3HqPNCnosHxESQiwVQjxVVVUV8GsXtVSwt6GIj2oLWFm1i+11hQG3wShqGxt5adMGjpYU+1XvPlhuzIFYG6QEkUJhTYz0U1rglC4eOruc58o+oUk6uO/U8+yq1+/ePThqiKmjQ76kV107eSoTs3PcxvacPsmbO7dpZVa/mDUy5Ktd204co7K+rmM71G5n9phxve4fiLQ4f7AheObCx7xYsZU1NQfYXHecWldT/wcq/MLyQkhK+YaU8t74eH0bkvVEpbPebTsxJDrgNhjFrlOFrD98gD+8s4ofvfxf1u7f4/U5gkUE6YkSPwqF9THST3XFlxS5DbVHealia8d2nauZB06/SIvUd1F6MIkhmxB89vI5ZCS69w16d+9uth4/2stR2mM2MeSrPS4peW+f+3PHpcNHERvhWYNqMyKEIKnLc2S5o66XvRVa4ZEQEkIkefBK0NnWgOJJ+kClw10IJdij9DInoHiyPmjHieMdP1c11NPscOhpkl+o5qkKhUJxEW/F0BWxI3kwbVHHdpI9msez7yRU2LU2rRvBJIbCQ0O5b95CYiMi3Mb//clHFJ4v1dK0PjGbGPKFfadPUVJV2bFtE4J548b3ur/Zo0HtJNm7CCGnEkJ64+kaobNtr74SWe2A9f+6vOCu5FnMjxtDhaOeSmc9YyLMe8PWkuqGegrOuYuLKbne5YuraFD/qGjQRfRYHxQMDwMKha94u17o3tTZ1LuaeaViG/8Yeg/DwlN1tM6dYFo3lBQTwxfnLuCxd1bhcLkAcLicPLVuDQ9eex2J0YEpU95+/zPSF/t6D5ZS8u6+3W5jU3KHkRIbq4VZhvK5lMupcTaSFBJNkj2a4eGDjDYp6PFUCB2UUk7uawchxE4N7LEUqaGxpIZa/w/PW3aeLOxoXAaQkZhEWnyCx8cH8sYbbNGg4rMXSB+SEtBrKhQKBcA3Bl3FXcmXGZIG3h4ZMpsgyo7N8rrK6rBBadxx2RX84+MPO8aqGxp48v01fGvREsJDQ7U2s1eMKqLgz0TUsXMl3SJoC/In+GuSKbguoc9HbYUOeLpG6FKN9lF4gJE3es/S4o65bU8dmqeXOQMWFQ3SFxUNUii8T5ETQhi+FtaMqXK+pF1dkjei28P7mfIy/vnJh34VIPIFq90P13RZGzQuI4uMpN6/y1ZJi1MYg0dCSErZqMU+CutTUVfHsS5dsafkDvX4eBUNUniLKputUOiHFv2FoDVd6bkLn1DlbNDkfH0RLGJo6eRp5Ge6i5Cs5JQ+1yDoRSDFkD/Xqm6o50iJ+2RxsESDFMbgddU4IcT/6GGIwhrsLDzutp2TnEpKbJxHx6p1QZ6hokEKhSKQ+CuGXNLFI8UreLTkTe4pfJZap/4lf81eYtsTbDYbd185h/SERMJCQvji3Ku4evwkRAD6CvVEIMSQv9eIi4zipzfdzqIJk4gMC2No6iDy0gZrZJ3/WP07ORDpd42QEOKlzpvAJOD/9DJIYW52dBFCU4Z6Hg0KJoyMBql1Qv4xLF6lSSgUWuGQTn5Q9CrLK1uXCe9qOM2XTv2Dv+fcTYRN/7UuZiqk4Mt6oYjQML40fyENzc1k9pHeFSjMUEShP2IjI1kyeRpX5U+guqGhT+Go0uIU/eFJRKhaSnlr2+sW4D29jbICzS4HW+tOUNB4jjJHLQ6d+ykEgv5u4GW1NRReOO825mm1uEDfVPVOi9MLFQ3Sn92nCvnNWyvZWHCEumb903gUCivga1SoRTo53VzhNnaksYQzXcb0xEyz8L48eCfHxJpCBHVGj+iQ1ueMCA1jUJzxvbm0RkpJnbOJ083lFDSe6/8AhV94UjXu0S7bP9TDEKtR4qjmjhNPdWwPCU3gw1HBnTXYNRo0bFBawEp9KgYmWq8PykvI5vGtqyk8X0rh+VJWbt/Ob5Y9wA3j52t6HYXCinhbUhsg0hbGUzl3cVfh39nbUMSgkFiey/0CwyMCW/bX6pGhvnBJic2AdDktK8pZrSCDUZxqLueagt/TJFt7M2aFJnE85XKDrQpu+o0ISSlPAAghUtq2y/U2ygpUdun2q1UzVbPcyHti+4kuaXEDNBqkV1qcN9EgFTnyjbLaGg6dPdOxXdNUx/AU5aAVinZ8iQzF2iN4JufzzIsdw3+G3seIiDQdLOsfM60b0iIlyyUlK7Zv4fn169xaVgQSKwsYK6bFxdkiOkQQqIaqgcCbYgnP6GaFBal01rttayWEjKK/2avS6irOlF+cKRTA5Jz+1weZOc9YMbDIS8hmY8FhOj9OTM4Yzfj0EYbZpAdCCLsQYqcQ4s227eeEECeEELvaXpMMNlERhCSERPFkzmfJCTc+xcssYsgfGlua+du6NazZt4fthcd5Z88uw2zxVwz5e3xjSzP7zpwyTAwGkjh7BPZOj+Z1riaaXC0GWqQfZvFVnjZUBQyp6GhawkQIkyKzqHTWU+msJ8ng3gp6s6NLNGjE4HTio8wn/gZCNGigoHVanNPlYkPBEbexO6cu0fQaJuEbwEGgcznHB6WUrxhkj8Ji+JIi1x/tD7GBqohmhlQ5f1Lk/rPhI/aevjiR+Oau7aQlJHg0AakHvhZR0CKi9MmRQyzftoUhiYksyJ/IlNxh2G19z+NbMRoEYBM2EkOiqHI2kGSPJikkmhpnA+EBKDxiAKbwVd4IoeCX4l4wMyaPl2Pu79gO9pmK7JQUxmdlc7DoDA6Xy6O0OBUNCg4KSi8wYpD1q9TtP3Oa6oaLkdzwkFBuGD/PQIu0RwiRCVxL69rOBww2R2FhtBRDLuni0ZJVJNqj+OqgwK3Hs7IYWjZlOoeLz1LXdLEU+T8//pCUmFiyko27H2u5bsgTWpxO3t+/D4CzFRU8/9EHVNbXsSB/YsBsCDRrRz5IpAjtmDRICfWsRYmVMJOvUhEhjTCq7r8WeHKTHpuRxdiMLOqbm9hz6mS3JnBdCUYRZLZokCqj7Tl5Cdn8dfs7bmNThw4jJtzYqOawlESikj0rOGKPK+cIzBBCbOs0/JSU8qlO238AvgvEdjn8USHEj4G1wPeklL02ehFCJHlgjktKWemR4QrLooUYckoXDxUt55XK1q9ttC2czwVw8Xd7mpyRgsgXMZQSG8cX5sznz+++jattorXZ4eDJ99fw3SXXERdp3L3LUzGkRTRo2/GjVHWawAq127l0+Ci/z2tmomxhRpvgRlZiAqkeToaeK21mL+T346fAT1+lpZ/yRgh934t9FUFKVFg4M4ePNNqMHrFiyWyVEhcYahsbOXS2yG1s1sjRBlnjF5ullDf39IYQYglQKqXcLoSY0+mt7wMlQBjwFPA/wE/7uMbZtldfszt2wLqrqBUB4+GzKzpEEMDPS1YRa4/g5sRpAbXDDNEhbxk5eAi3zZzFfzd+3DFWWV/HU++v4RuLriXU7s0jnLb0J4a0EEEuKXlv3x63sctGjCImIqLP46yaFhdE7JNSfqO3NzXyVZr5KY+LJUgp9wkhbhFCxAIIIR4SQrwmhJji6TkUfWO1m3RvqGiQwl+0XB+Ul5BNTEQEj9x4K9dMnEJCVDSZSclcnjtZs2uYhFnAMiFEIfACME8I8S8pZbFspQl4Frikn/MclFIOk1IO7e0FaLuARGFafO0v1M6NiVOIFBfXNyTbY8iPzPDXLJ8wsoiCrw/ns0aOZs6YcW5jhRfO858NHxmekq93Rbm9p05yrrqqY9smBPPHjdf1mv4QDEU6AoQWvkozP+VN1TiAH0kpa4QQlwNXAU8Df/XyHAqF5qhokKI/EqNjuGbSFH56023cN2+BpdNZe0JK+X0pZaaUMhe4HXhfSnmnECIdQLR+4OuBff2c6lIPLufJPoogwR8xNCUqhydyPkuYCGFwSDz/HXYvoyO0LYTiDUaW2PZVDN0wbQZjhmS6jW09fow1XaIlRpCXkN1NEGkhkKSUvLtvt9vY1KF5JMV0zaRSWA2NfJVmfspbIeRs+/daWnP+VtEawlJYFC2bvoGKBgUaJab6pieHbLPZBloj4H8LIfYCe4EU4Gd97SylbOzvhJ7sowgu/BFDl8UM54nsz/DfYfcxNDxVQ6ushy9iyG6z8bnZc0mLi3cbf2PHVvacOqmVaX7Rfq/VKkpUcK6YkxfOu41dlT+h3+NUWpyl8dhXaemnvE0wLRJCPAksAP5PCBGO92IqKPhB0asIBAn2KBLsUXw6eabpFrj5i5SSVbt2MCYjg6GpaYZ0tg5WlIDpHa3LZvdEsDtLKeUHwAdtP/tVGk8IMRN4BIgA/iClfN0/6xRWxZ/iCVfEmmttqdXWDEWFhXPf/IX8ZtVK6ptb149L4LmP1vHA4qVkJhnfv0nLVLmua4PGZWaRkejJ+njrU9xcyfs1hyh31lHhqGNC7Ei+mb7UaLN0QStf5Y+f8lYI3QosAn4jpaxsC2M96OU5goKVlbvcuv/ekTTDQGv04VTZBVbv2cnqPTtJiIpmRt4Ilk4J7AJXT9AzLc7M0SBF31i5I7qRCCEGSylLOg09ANxA66LUzcDrRtilCF6klJxtqSQjLDGg1zVKDPlaUntQXDxfmDOfx9d0ryT34LXLDK0kpyVnyss4UHTGbWxhEJfL7kphcxmPFK/o2L68pTJohZCvaOmnvIrmSCnrpZSvSSkL2raLpZTvenOOYKDB1ewmgkKF3ZLRoP5uxNs7NVGtrK+jpKpCb5MGBL5Eg4rO9T4Lq6JLvVPT0NBtQXGwR4M04AkhxI+FEO2lmSqBm2l1MtWGWaUwBf4WT+iKS7p4uHgF1x37E4carbfW01d8vQ+NSh/CLZe4L32oqq/jRGmpFmaZgq5rn4alDiIvbXC/xwXLvT0xxF3QXmhRt90e0MxPeSWEhBDThBDLhRA7hBB7hBB7hRDGr9YLMBWOerftRHuU3wuvzRaid0nJjsLjbmP9NVE1Yn3QQIgG9SWCgg0t0+JcUvLrVSv45RvLWX/oAA3NzZqdO5iRUl4P7ATeFEJ8FvgmEA4k07qAVTHA0UoMOaST/yl6hf+Wb6bK2cDdJ57hRNP5/g/UECtWkrti9FiuHDUWaE2Z+8qCxUzMydXQMuO4UFPd7dljwfiBEw0CSLJHu22fdygh1BUt/ZS3qXH/pjUVbi/g8vLYoCHeHsljWXdQ4ayn0lGPXQTfMqkT589RWV/XsR0WEtJvE1VF/6joTWDIS8jmQNEZyutqoQ5e2ryBVbu287Nb7jDaNEsgpXxDCPEWcD+wHHhUSrneYLMUJkKLZqtvVe3l9cqdHdtlzlq+dfoFlud9NeiqOmrNTZfMxCVdzB83ntQuRRSszNr9e92i+IPjExjnwbNHsESDABJDork1cTpJ9miSQqIZHTPcaJNMiVZ+ylshdF5KudLbiwQb0fZwFsebt5a9J/SXFrfjhPuMTH5mFuGhob3sbQwDIRrUmaJzZWSkGb8g1ip8cuSQ2/a4zGzyEnKNMcZCCCGWAd8CHMDPgX8CPxJC3A/8UEp5zEj7FMHD0viJ7G44zT/KNgAwKCSWX2feGnARZGThBF/XC9ltNm6/9HIdLDKO2sZGNh094ja2YPzEAVeoKVTYeTTjxo7t3JgRBlpjTrT0U94KoYeFEH8H1gJN7YNSyte8PI/CxLhcLnaePOE2NjU3r89jgrFsttZovTao67nTh6R4ff5gJC8hm+qGevaedi8rO2vkKIMsshw/o7WRXSTwjpTyEuDbQogRwKO09n1QKPyOCgkh+OHga6l3NrOx7ijP595DTrgxkz1WFEPBRnR4OF+5ahHv7tvNgaIzJEZHM21o388eigGLZn7KWyH0OWA0EMrF1DgJKCEURBwtLaG6oaFjOyI0lLGZmX0cEVyYMRo0ENByfdCmowUdVZWgNb1iWGqaZucPcqqAG4EooGMFdluRHCWCFG74K4ZswsbPMm6g0llPcsiA6u/lhpZiyOF08tbuHcwdm09sRKQm5wwEQgiGD05n+OB0zpSXUd3QgN3W/9IDM6TFGbnWbICimZ/yVghNl1KqadUgZ3uXtLjxWTmE2r39quiLnmlxeqBnNEhxkbyEbFxSsqFLWtyskaPJiVNr3DzkBuBTQAugFlUp+sVfMWQXNlOIIKN7C2khhmobG/n7B+9x9FwJx86d42sLFxNit2tkYeAwQ18khanRzE95u8p/gxBirD8XVHQn0Dfevm60TpeL3ScL3cb6qxYXTJg9GqTEUf8cKT7Lhdqaju0Qm43pw9RiU0+RUl6QUv5JSvmElFKVK1IYiku6+HfZRppcLUabYnoq6mr5zaoVHD3X2l7lWGkJL27+pFsLAYXC6mjpp7wVQjOBXUKIwwO5fHa5o44aZ2NQ3lyOFJ+ltqmxYzsyLIwxQzL6PCbQ64MGQjTIzNfRAy3S4tobqG4ocI8GTcoZythUtdjUU4QQO7TYRzGw0Lq/EIBTuvh+0Ws8UrySr5/+Ly3Sqfk1umJ0ipM/aV5xkVEkxrhH1jYWHGHdgX3+mmVazJAWpzfNrhZqnQ397ziA0NJPeZvvtMjL/YOS75x5kY9qCwgVdhLsUfw+63ZmRAdH1KRr/f6J2bmWDKv7gpmiQSry4xs1DQ3sPtW1SMJog6yxLGP6meASQPDU61VohhYltdtpkU6+c/pF3qreC8D7NQd58MxL/DbzNt1bVlg1Rc5us/GF2fP5zaoVblHx5du3kBafwLhM84kGl8tFVUM9idHGp0aaiTcqd/GH0jWUO+qodTXxlcGL+UPuF4w2y0xo5qe8EkJSypP97xX8VDpbG6q2SCfnHTWECXOtn+mLvm6uDqeTXacK3cbMlhanokGKvth8rACn62KLs0Fx8Qz3oCO5wg1PlKP+U/MKS6KVGKpzNnGk6Zzb2Ja6E5S0VJERluj3+c2Or2IoJiKC++Yv5LdvraSxpTWdUErJs+vf5zvXLGNwgrn+7/acPskzH77PtGHDWTBuAumJ5rLPKJzSxanm8o7tCy0qS7kLmvkpj6ZVVKqEOxWOerftRHuUQZZoy8GzRTQ0N3dsx4RHMCq97zSBYCmbraJB1iYvIRspJZ90SYu7bMQoVSTBS6SUJz14nTHaTkVwkxASxfO5XyA7LAmA9NB4/jP03oCJIKNT5PwhPSGRz105z60fU2NLC0+8v4baxsY+jgwsUkrW7N2DS0q2HCvg0ZWvepXGF8xpcYkh0W7b55UQckNLP+VpfHlM25qg3l57AU2bmAghnhFClAohAp7c2t9sVrgtlPBOUaCuX1irEhUWxriMrI7mZRNzcj0qXanoGb2iQX0JJStGoLQqm11wrpjz1Redhd1mY8ZwtTZIoQg0Wq0XGhQaxz9y7+Gy6Dz+O/Q+csMD2yvNaDHkz4P+uMwsbph6idvYhZpqnv5wrVvU3EiOlBRzsuy829jo9L7XJA8Ukjo9V9qw4QjA+riBiqc5XUakSjwH/Bn4h8bn9ZvVI74FQIOrmUpHPXG2CJ/PZWQeclfy0gbz5bTB1DU1svvUSbJMVr5Sr7Q4PaJBVhQkVqWjSMKRw27jE7NzLNVDQ6EIJrRKkcsIS+T5ofdoYJE18aek9tyx+RRXVrDx6JGOsYKSYl7avIHbZ85yixgZwZp9u9228zOzPU6NC+ZoEMDI8DTeHv4tkkKimRg/HrsYGGu1jcCj6X4jUiWklOuB8n53NJBIWxjpYQmG30w8xdObaXR4BJeNGEVWcmBn3xQqLc5XpJQ0tDS7jc0aObpPZ2n0bK9VEEL8QojWELgQwiaEiDPaJoU10KOSXKAxw33C14d+IQS3zZxF3iD3dZKfHDnE+kMHtDDNZ06XXeDQ2SK3sYXjJxpkjfkIt4UyPGIQSSHRSgR5gD9+yjqr/HtACHEvcC9AdrZaBxBoArk+SEWDvLt++hBriFh/0+Lao0FCCL48/2rOV1ezoeAwx0pLGDHY+AeY/hiWkEZckmf364aY8/3vpA8xUkoHgJTSJYT4PaDKF3mI8lP64ZQuHj67golRWdySOM1oc0xJiN3OPXNbK8mV1dZ2jL+6dROD4uMZMyTTELvW7HMv+JU3KI1hg9IMscVfzCCW9SQ7LpksD311WFyTztb0is9+ytILQKSUT0kpp0kpp6WmphptjkLhFyoa5D+pcXFcN3U6DyxeSq4qkqAVXRum1fS4l6JHBrqf0isq1CKdPHjmJV6s2MIPi17jzcrd/R/kI2Z40PUnFSw2IpL75i0kPCS0Y8wlJf/8eD0tTocW5nnF+epqdp484Ta2wItoULCnxSl8wmc/5ZUQEkL8nydjCvPha46xGVDRoO4o0eQfZniwsRA7hBC/EUJkCiHSgUFGG6SwFnqIoQfPvMQbVa3iRyJ58MxLrKs51M9RvmOGe4Y/AmBIYhJ3XzmX9kT+uMgo7pu3gFB74BOD1u7f49aQPj0hkXEZStwo/MJnP+VtRGhBD2OLvTyHwmRsLDhC4flStxuTQmF22tPiFPoipXwOeAX4IfBz4GeGGqSwJFqLoSXxE7F3eoRJDokhJwjWJPWHP2JofFY21029hOzkFL577XXkpAQ+QlndUM+mowVuYwvyJ1hmrbXCnPjjpzyaChBCfBm4HxjWpZNrLPCJx5Z6gRDiv8AcIEUIcQZ4WEr5tB7X8oaPao6ws/4UCSFRJNijGB+ZwdBw66Y7NDQ38+KmT3C4nCTHxDA5dxjXTJxCWEjfXw2r9w8yWzRI6wiPFdYJaVU2uydU6oR2CCFeorVL90lgPaqZqsIEXBU3ll9l3sJ3zrxEZmgizw/9AlltPYf0YnDUEFNUevWnktz8ceOZPWYcoXZjFuCvO7Afh+viLSQpOoapQ/M8Pl7d2xU94Y+f8jQmeg2wBDgMLO00XiOl1KWym5TyU3qc118+qj3Cs2UXtd+DaYu4N3W2T+cK1A21rxvm3tMnO25KZbW17Cw8wXVTpgfELk/QKy1OYW3ao0EFJcVEhYeTkej5A5AZUlyshJTyVgAhRB7wAPAkoCrHKbxGq5La7SxLmIRd2JgalcPg0HjNzhvMCCEME0ENzc18dNi9Wt28ceNVv0KF3/jjpzwVQnlAC61CqBo60kwRQiTpJYY8QQixFFg6fPjwgFyv0lnvtp1ojwrIdfViR+Fxt+0puUODPkQd7NGggYKUkpc2b6C4soLclFRmjRzN1KF5/UYzFd4hhLgKuBaIAj4CfmCsRdYj0H7KzGgthq6Nn6DZuTwhGKJCvdHscFBaXUWmTj0EPz5ykMaWlo7tmLZWHQqFv/jjpzyV4U8Aa4FRwPYur23eGKs1Uso3pJT3xscHZjaooqsQ6tT912rUNzVxsEsd/ym5w/o9LlBpcSoa1DdWFlD+pMW1R4NOnC+luLICgMIL5/nvxo+pb2pSqRPa8wytzuVDYIuUsspgeyxHoP2U2QlUfyGXdHG+Rfsih2aJKmt5r6uoq+P3b7/BY++8RWm19n/iLU4H6w7scxubPWasVxNX6t6u6AOf/ZSnDVUfk1KOAZ6VUg6TUg7t9Or/yTmIuD5hCl9OncunkmawKC5f95xkPdl9qhCny9WxPSguXreZILNgtmiQnpjVLq3YUHDYbTs/M5uE6L4nJszyAGMlpJTZwP8CdcCdbes3FQq/0FsMOaST7xW9ws3H/8LZ5kpdr2UkWoiDwvOl/HrV65wuL6O+uYkn175LfbP2/WAW5E8kIar1Hh0WEsIVo8Zqfg3FwMQfP+VVDomU8stCiERgBBDRaXy9N+exMtfGTwh4KN4f+gqdb++WFjcs6NPizIaVozpG0B4NamhuZvuJY27vXTZylJox1I8iKeUZYIXRhigU/dHscvDAmRd5p7o1AnFX4d/5z9D7SA2N1ewaZkmR04KCkmKqGxo6ts9VV/Hsh+v40vyFmq3fCbWHMHdsPleMGsO2E8eoa2oiJiKi/wPbUPd2hQf45Ke87SN0D63VGN4BftL27yPenENhDmoaGzhS7H4Tn+pBWlygsEpaXLBHXfRAi2px244fpcV5sShMQlQ0Yw3qkB7sCCE+B6wVQqwUQvxZCGHdfGCFqdArKvSf8s0dIgigsLmM7xa9rMu1zIC/IuGq/AlMH+Zeue3g2TMs37bZr/P2RIjdzszhI5k/brzm5zYClWVgDvzxU95K/W8A04GTUsq5wGSg0stzKAhcxbje2H2yEFeXhmbpiYn9Hmflstl6pMX5QyCiQcEo1KSUfHzEvXHiZSNGYVOVh/RitpRynpRyGfAU8LDRBimCBz3E0J3JM1kUl9+xPSQ0gUfSl2l+HTM9BPsjhoQQ3HHZFeR26Sv0wcH9fHJEvya1CoWG+OynvH1yaJRSNgIIIcKllIdoLaBgGEKIpUKIp6qq1PrdrvSVFte1WpyKBnmPGUTGQEqta0+LO1V2gaKKi4UqhRBcOmJkvw8C7Q8thxqLebz0fXbUn6TF5dDP4OChuv0HKeUevEypVig/1R9ai6EQYee3mbcxO2YUuWHJvDD0PnLC9emrFixiKNQewr3zFnSs4WnnxU2fUFBirE9WaXEKD/DZT3krhM4IIRKA14E1QogVtDYvMgxVjcd7qurru93Ypgw1jxDSA7NFgxS+03WGcmxGJonRMR4fv6Z6P38oXcNtx59g0La7+d1ZteylH2YKIR4TQtwlhMgHwow2yGooPxV4wmwh/Dn707ww7EukhyUYbY4liIuM4r55C9wqubmk5O8fvMeFmuo+juwdV6eCTAqFjvjspzwWQqJ1Ff3XpZSVUspHgB8BTwPXe2mswmB2njyB7LSdmZTMoDhzOOiBEg0aSJGczvi6Pqg9GtTY0sy2LkUSZo0Y7dW5dtZfTO+sdTWSFKLdAupgREp5CfArWtOgbwWGGmqQIijRI0UuwhZKcojnkyS+EixRIYCs5BQ+c7l7k/i6piaeWPsuDc3NXp3rVNkFHn7tRdYd2EdTp/5BCoXW+OOnPBZCUkoJvNVp+0Mp5UoppXd/GRZmbfUBJh14hLmHf8WNx/7MH86tMdqkXtEjLc6q64MGejTIDCl8WrHtxHGaHRfT2eIjoxiXmeVxWhzAkzl38dKwL/PAoIXMixvP3PjgWLSrF0KIXwAlUsoVtBbHucNYixTBSqD6CwE4pYuXK7Yhpex/Z4vhrxianDOUaydNdRsrqarkufXrvIrwrNm7m4q6Ol7duokfvfoCm48VeG2LSotTeII/fsrb1LgdQojpXh4TNJQ766lzNXGmpYK9DUUUtVQYbZLXVNTVcrz0nNtYsKfFaY2KBgWW9mgQwIYuaXGXjhjpdXnXUGFnclQ2Xx40l3fGPkxOeGr/Bw1sYqSUDgAppQv4ncH2KIKYQIihFunk22de5AdFr7Km5oAm5zRTVAj8FxCLJkzqNkm6v+g0K3Zs9ej40uoqdp080bFd39RETLjn5bIVCi/x2U95K4RmABuFEMeEEHuEEHuFEHu8PIdlqXTUu20n2qN8Oo+RFeMam1sYm5GJra1fUG5KKskx5kgN0iMtTutokBmjK1YRVv6WzT5ddoFTZRf//wVw6QjVOygAdJ0yrzXECoVCA5pcLXzt1L9ZVdX66PKPsg2anTuYxJAQgk/PupLsZPciE2v372XT0SP9Hr92/163G0dGYhJjM1SLA4Vu+OynvK3+c7WX+wcVlU53IZRgt147jfTERO6/ahG1jY3sOlVITHi4R8dZNS1OETx0LZIwekimRyLebA8nFmSHEOI3wB8AJ6BCaApdSQxLpqJZnwmeo02lrK052LG9ue44RxpLGBkxWJfrWZmwkNZKcr9+cwVVDa3PPymxcd3KbHelqr6ezV3E0lX5E7xu2K4muRRe4LOf8koISSkNrRDXE0KIpcDS4cOH636tb6ct5N7U2VQ46qhw1jPIpIus+1of1E5MRASXj/RukbmeDJRokFHRm+KzF0gfok/5WD3pnBY3Mn0IxZUVHGtL7Zw10tDK/QMGKeVzQoiZwPNAI/Adg02yHIH0U8GCXmJoXGQG06OGsrW+NW0rXIRwsLFYMyE0OGqI4X0CO5Mdm+XRM0FvJERFc++8Bfxh9ZsMTR3E52fPJyai7xS3dQf34ei0lig5JoYpJmrRoQg+/PFTHgkhIcQD/RhgWM64lPIN4I1p06Z9Ue9r2YSNeHsk8fZIcvW+mEKhcGNK7jCm5A6juLKCrcePMj4rR80YdkEIEQGsB8Jpvb+/IqV8WAgxFHgBSAa2A5/xpNCNEGIyrYtObwVKgGlSyoN9H6XoSiD9VDChlxi6M3km5xxV3JE0k5sSppIQ4luae28EmxjKSUnlG1dfS1ZySr9rMhuam/n4sPstYt64CV6v5bTCvV1lG/iG2fyUpxGh9tDHKGA6sLJteymwxdOLKRQ9oaJBwY8v64M6R4M6k56QyLIpntVs6eyo/l22iUpnPZfF5JEfmUmosHttkwVoAuZJKWuFEKHAx0KIt4EHgN9LKV8QQjwBfAH4a08nEEKMBD5Fq2OpAV4G5kgpTwghTvR0jEJhJa6Oy2dRXD424e0yaevirxjKTR3k0X4fHT5IY6dS2TEREVw6fKTP11UEJabyUx4JISnlT9ouvB6YIqWsadt+BFjlzQUV+uLPja431Pog81N0royMtMCVnrUi/y3fzOGmEv5QuoZoWxjP5H6e3JgRRpulKW1tDtoXiYa2vSQwj4vlRJ+ntbxojw4GOARsBW6WUu7tegkt7VUo+kOPqJA9AALIbFEhPWlxOgm122lxOlh3YJ/be3NGj3Nr0KpQmM1PefvtTAM6h6ma28YUHmLUjfHQ2SIiw8LITk7xesGi1TBjNMgMWGmdUG/RoM54kzpR5qjlcFNJx3a9q4W8cM9mOPUkJy6DpIREj/YtiS4CmCGE2NZp+Ckp5VOd9xNC2GlNKxgOPA4cAyrbS4sCZ4CMPi51I3A78K4Q4j3gJWC1lFJ1RFQYgp7FEwYS/kaFeqK0uoon177L1RMm0exwUNPY0PFeeEgoV44e6/U5rZAWN5DIjB3skU8GaIlpAMi3kp/yVgj9A9gihFhOa/Xa64DnvL2oIvC8unUTxZUVpMTEMjl3GPPG5hMbGWm0WbqkxZkRlRZnLJvq3JsIj4sYQrzd+O+/D2yWUt7c1w5SSicwSQiRACwHvKqKIqV8HXhdCBFN6z3+XuDvQoi3gDhfjFYo/MWKYsiMUSEtxdChs0U88+H71Dc38a9P1uPq0px21shRRHlYmVYRVOyTUn6jrx3M5Ke8ig9LKR8FPgdUAGXA56SUv/DmHFalwdXMS+Vbebd6P1vrTnC86bzRJnlMcUUFxZWtzV8v1Nawdv+eoI0KqWiQ9ek887Tr5AmWb9vMuaoqt308mTHsvD5oelQujw65kSXxE0kJieHSmDztDDYpUspKYB1wKZAghGif+MoEijw4vk5K+R8p5VJandRGYMD0jVMMPM631FDhqNP0nGZcUK9FxKW2sZG/rXuP+uYmgG4iyG6zMXfseL+vowhuzOCnvIoItVV6mANcAbgAuxDioJSy0ZvzWJHSlmp+ePa1ju2M0AQ+GPU/BlrUnd5mebYXus+Gj0rP6Lf8ZTt6rg9S0SDtr9PfOiErpccBrDuwj2Ol51i7fy/D0wZz0/SZZCV7b/+g0DhuTZrOrUnTkVLS1BF9Dy6EEKlAi5SyUggRCSwA/o9WR3MzrRV57gJWeHNeKWUF8FTbS6EwBD2iQlJKttef5F/lG3mnah/3ps7mW2kLNb1GMBITEcHtl87i+Y8+6PH96cOGkxjtfa9FlRYX/JjNT3m7YvAfwDjgMeDPwFjgn16ew5JUdGmmmmiRZqpSSrYXHnMbC9Z6/ioaFFx07hkEcPRcCWEhoX6fVwhBhC2UxLCgLC6RDqwTQuyhdSHpGinlm8D/AA8IIY7SWpr0aQNtVCh8Ruu/2zeqdvOpE0+yqmoPDly8VLGVZpe2EyXBGhWaPmw4C8dP7PG9q8apaJCiV0zlp7xdI5Qvpey88m2dEOKAlgZ5S6Aa1VV2EUJa9x3QizPlZZyvru7YtttsTMzJMdAixUDC2/VBndPiNhQcdntvxOB00uLjvU6LG0hIKfcAk3sYPw5cEniLFKAaqmqNlpGhebFjiLaFU+dqTfG64Kjlnep9LE2YpMn5zYwW64WWTJ5GSWUlR0rOcv20GZRUVlDX1MRgD4vAdLVHEfyYzU95K4R2CCFmSik3AQghZgDb+jlGV7RuVNfbzTUlJJYbEqZQ6ayn0lHPqHDvu1DruWiyt5vZji5pcWOGZBIV5tniRSulxZk1GqRVWlxTYSXhuQmanMsKtDgdbD5W4DY2a4RXaykVCtOgGqqalxh7ODcmTOGf5RsBGBqWQqjQvtyzGQsngP9iyCYEd10xh8r6OtLiE4DWTBSFwip4+9c+FdgghGh/Qs4GDgsh9tJaGnyCptaZiPzIDH6VeYvRZniFlLKbEJo6NDjT4hSeY9Z1Qu5FEgqpb2rq2I4KD1eRTIVC0YGWUaFPJ8+kuKWKTyfP5LLoPN0arQarGAoPDe0QQUDQFmPqzEDNOghGvBVCi3SxQqELJy+cp6y2tmM71G5nfJZnteD1REWDvKOpsNKra5qlsao/ZbO7psXNyBtBqD3E67S4cy3V7Gk4zSXRw6xaLluhUPSCVmIoL3wQf835jAYWKXxFpcUpjMIjISSEeKDLkAQuAB9LKU9obpXCKzxNixubkUVEaFggTFIovKJzNOhcVRUFJe5iedaIUT6d9/2ag/z47OvYEIyLHMKnkmZyS+K0YC2UoFAMOKzWXyhYo0IKhVXxNP4b2+UVB0wD3hZC3K6TbQo/cEnJjkJ3jepNWpxe64MGSjRID7yJDFmZDQWH3LbzBqUxOCHRpxnDjbWtFRNdSPY2FFHuqO3nCIVCYTXUxIY2qKiMYiDiUURISvmTnsaFEEnAe7TW/FaYiBOl56isv9gYLiwkhHEZ6iYXKALVO8hX9F4n5GtaXIvTyeajXYokjPS8SELntDiXdLGpzj0qOjM6+BupKhQKc2PWqBAYExlSAkxhJH6tCJRSlgPBvypOAwJ90+vaRDU/M5vwUP97sJiJgRANGghRoM5pcXtPn6S26WJ/5siwMCblDPXpvA2uFpYmTGRkeBoAMbZwxkWqBa4KRTCidVRISsmm2mPsb+i3ub1PqMX2CoU58KtGpBBiLlChkS2m5s4Tf8MpXSTao0gIieL7g68l1h5htFk9zty4XC52nfQ9LU4vtE6L0xItRZDR0SAzFUzwlk+OuKfFXTJsOGEhnhVJ6Eq0PZwfpS8F4IKjhuNNFwgRdpVGo1AEKVqsF6p1NvF65Q7+Xb6Jo02lzIsdw5M5n9XIQmug1gspBhKeFkvYS2uBhM4kAWcBQ+8QgWhUJ6VkZ/0pmuXFbtMPtT1gmZHapkbSExKpaWxESklEaChjMzI9Pl7P/kFaoXU0aCBihjLanaNB56urOVzsHjm9zIu0uL5ICYklJSRWk3MpFN6iGqoGDn/F0JGmEn5SvLJje13NIc40V5AZ5n2D0P5QKXIqLU5hPJ5GhJZ02ZZAmZSyrqedA0kgGtU1yBY3ERQmQogU5k0zi4uM4msLr6GmoYFdJ0/Q2NJCqF37BnHeMFCiQQrf1wdtPOpeMjs3dRAZiUkeH69STRRmRTVUtQ6TI7MZE5HOwcZWnyWR/Ld8Mw8O1qd7iBJDCoWxeFos4aTehpiZCoe73ku0R5miYVh/N6jYyEiuGD02QNYEDjNHg7RMiwv29UGdo0EAC8dPJDkmlk+OHOJU2QVmjWiNBqkZQ4VC4Q3+RIWEENyZdCk/PPsadmwsjBvH/LgxGluoAHVvV5gDY8MEFiE1JJY3hn+dSkc9Fc56ZLcsweBBj7Q4FQ3SjqbCSsJzE4w2QxciQsOYNXI0s0aO5nTZBQbFxWt+DbU+SKEYGPgjhpYmTKTUUc0tidNJC43T2LLuqKiQtVDZB8GFEkIeEGYLYXSEb+k+CoURGFUwwdO0uK7RoK5kJbeuXfJ0xrAvx9ToauGCo1aXHH+FQmF9pJRsqjtOjD2c8ZGZRNrC+Oqg+QG7vllFkN6cqjltyahQ++9LCaLgQAmhAYDD6STEbvdo37yEbM2jQiOT0k0bFUofkqJpVCgjLVmz9Ljw3IRu6XGeRoOsWjXOV0rqz7o5pWpnA29V7WVdzSE21B5lQmQm/x52LxXNZSoqpFAoAKh01PNq5XZeKN9MYXMZc2NH81TOXQG7vhUEkN7RoM7nt5oo6vz7U6LIuvjVRygYsdJDUn83DZeUbCw4zI9ffZHiSs+rnPc3W+8Lvi6g74kRg1IYMUi7amfpQ1I0rZ6mpQgJz01we2l5fU8/s6f/11r+jv2lytnAj84u5/2agzTKFrbXn6TK2WC0WQqFIkB4khZX2HyBX5a8RWHbvh/WHOZsc6XOlrU+QJtdBJ2qOR3wlDgjrqkV7b9Ts/9eFd1RQihABHq2oLiigj+ufpN/b/iI6oZ6Xtz0CVIau7ZJ6wdlLcUQeC4MPCEjLdmQqIzWIsiqZIUlMaKtkSqAExcf1Rwx0CKFQhEoPF0bNDEyizGd0t5dSF6q2KqXWZZ4UPZFjLikZMuxAp7+YC0rd2ylxIuJ175sUKJIEQhUapwfSCkNrx7X20LG4qoKjpWe69g+eq6ELcePMiNvhEfn1SNFDrRPkxsxKEXTKnLtAkGrdLl2YRKIJqt6CC89okFdI45Ol4sjxWdJjI4mMTqG8FBtStPPjR1NQVPr38DgkHgaZQuAqdLjMmKGkBrr2f/x4Qgl5BSK/vCmQIIQgtuTZvDw2dcJFXYWxo3jytiRmttkhQdiX0XH6bILvLR5AyfOl3aMvbt3NzkpqcwcPpKpQ4cRFRbut11WS5trJxjS59Ki0jz+/6+I8k8EG4ESQj3QV7WZ8y01vFO9j7er9jI1OocH0q4OsHWeMTlnKGMzMjlQdKZjbPnWzeRnZhEdHuHROawkhkDbstp6rB0C/QSRNyJI65Q4f6moq+Px91Z3bA+OT+Ch62/2+7zXxk8g2hbO3NjRjI4YbPikhUKh0BdfqsQti59EnbOJGxOnkBwSo5ktVhA/7fgiguqbm3hz53Y+Onywx2yTkxfOc/LCeV7dsomJ2TncNnMWUeH+CyJQokihLSo1zgs+qjnCrMO/4CfFK9lSf4I3K/d4lW6m1xe/p5uCEIJbLrmM0E5FEmqbGlm5Y5tX59ZjvRDos55Ej1Q5rVPI9Ija6CGCvMHf32VlXa3btq8Roa4PHmMjh3D/oLmMiUxXIkihCHL6EkHFzZXUOZt6fC/GHs4XU6/UTARZKSXKl/QzKSWbjxXwv8tfZv2hA/0+AzlcTo6fP0eERpF+sH7qHLinz1nl+xKsKCHkBZOisgkVF4XF6ZZyDjSa9wucGhfH1eMnuY19cuQQxzulzBmJFcQQaC8ejFo/5M3n0Csa1JOwrqjv0rA4OlqXa7td08f+IgqFwnz09fdc7qjjrsKn+Uzh3yhz1Pa6n79Y6YHWVxFRVFHOH1a/yT8//pCaxsZu74/LzGLk4O4TvpcMG4HN1vPjptPl8tqOzlhdELWjRJFxWF4ICSGWCiGeqqqq0v1asfYIrohxX2Ozpe6EV+cIZFQIYH7+BNK6NKZ8cdMnXt189IoKgX5iyCrRIX8FkR7FEbz5v9Pi91dR10UIRWmXnqJQmIFA+qmBRl8iqN7VzL0nn+dE8wX2NhRx6/G/crJJ20kQKz28+isaisrL3NYet5MSE8uX5i/ky/Ov5utXX8NPbrqNayZOITmm9V4+c3jPa5Prm5v44Uv/4R8ff8iRkrO4/CjoFAxRonaUKAoslhdCUso3pJT3xsdr24W+t8XUi+PHMy5iCN9Ju5r3Rnybz6Vcrul1tSbUbufWmbPcxooqyvnw4H6vzmM1MQTWiA6B74IoWHoFVXRJjUsIQERIoQgkevmpgU5/kd3HSt9jd8PFB+NTzeU8W/axJte20oOqVgJh+rDh5A0a3LEdYrNzzcQp/OC6m8jPvPiMkBwTyzWTpvDwjbfx3SXXkxrX8/d+x4nj1DY1suVYAY+98xY/ee0l3tq1g7LaGr/sDDZRpNAXywuhQLMsfhKvD/8a96XOISfcXCWIe4sKjUofwvRheW5jq3bt6DYT3x9KDLWiR3QIvBM2eq0LCnQ0CHqICOkshJpcjtbrqvQ4hcKyePL3+7XU+VzeKYvj0ug8vj/4Wp+vacWZei3FgBCCW2dehk0IxmVk8cPrbuKaSVMIC+m57pZNCLKTe/cpm466V8Isq63hrd07ePjVF3nsnVVsOVZAU0uLXzYHiyBS6IeqGuclWiy6Hhw1JOA30humzWDf6dM0tDQD0ORo4dWtG7lnzlVenUevSnKgfTW5dvSoKgfaV5YDz6rLmUEE+UJvQrqy2xoh31PjSurPdks/dUoXu+pPsa7mEB/UHGZwaDx/z73b52soFAprEG0P58nsz/KDolc53HSOx7PvJNzm/WOPlYRPO74+/De1tPDe/j3MHZvfY9nrjMQkvr/0RgYnJPj1PFTf1ERlfX2v7x8pKeZISTERoRuYnDuUmcNHMiw1zedrBkPVOYU+KCHUB32V0TYrvfUViouMYtmUaby4eUPH2K6Thew/c5pxmea5KeglhkD7nkOgfd+hdnoTREZXiGtHywhe19S4xChtI0LHmkq5/cSTHduFzRdocDUTaQvT9DoKhSIweOOXw2wh/CrzFmpdTcTaPWsd0c5AEkBSSnaePMFrWzdRWV9PXWMTt868rMd90xMT/TERgKjwcH56020cLj7LpmMF7D5ZiMPl7LZfY0sLGwuOsLHgCKlxcczMG8klecP9mjCzem8ihbao1DiDMKKG/KyRo8lJSXUbe2nzBpodDq/Oo2eKHOiXJgf6RT30TJdrFz96iqBA9QzqSrPDQV3TxbK2NiGIi4zU9BojwtPICE3o2G6SDjbWHtP0GgqFIjD4MjlpEzbi7J7fV6yW/gb+pYCdq6rk8TWreebD9zuiNB8dOcjpMm0n+Lpis9kYk5HJ566cy89vu4PbZ84it8szSmfOV1fzxs5t/PatlX4VVmgnmNYSKXxHCaEgpLdZDpvNxu0zZ7mFlmsaGzh14bzX17C6GNJTEOmBnoURvP2/8OV309v3pev6oPio6F7LrPqKEIK5saM7tm0IjjaV9nGEQqEwI32JoL0NZ6h2Nvh8biuu/2nH1wf5ZoeDlTu28vOVr3GouMjtPSklq/fs1MI8j4gKC+fyUWP4zrXX8cPrbuKq/Am9TopNGzYcm8a94ZQoGrio1Lh+6Cs9zildbKsvZHXVXg41lvCfofeavnFjVnIKs0eP5YOD+xmflc0tl1xKUkysT+fSc70Q6JsmB/qkyoF+6XLeXt8KVNZ3SYvTqVDC1XH5VDobmBs7mitjRpIQEqXLdRQKhT70JYION5Zw14mnGRKawN9z72ZwqOfV+awofNrxJw1uz+mTvLJlU7fUZGiNzM8bN57FEyb7a6JPpCckcv3US1g6eRoHz55h89EC9pw+2dH2Y+bwkT0e19jSzMeHDzF92HDio3y/x6vUuYGFEkI+0iKdLDjyG4paKjvGDjYWMzbS85Q3PYsm9LZWCODaSVMZlZ7B+Cz/ozpKDPWOHsUUPLmmNwQiGtQX3XsI+S+EeiqYMDMmj5kxeb0coVAozExfIuhscyVfKHyWGlcjh5tKuPX4X3km5/MMjxjU5zkHogCC1vSyV7ZsZH9Rz+cYOTidW2dcxuAE/9cB+YvdZiM/M5v8zGxqGxvZfuIYZyrKGByf0OP+OwtP8Pr2LazYsZWxQzKZOXwk+VnZhNrtPl1fFVgYGCgh5COhws7IiMFuQmh19V6vhJBRRIaFaSKCAoXVxRAEJjpklXVBnQl06WyFQmEtPOkVdM5R3bFd3FLFh7WH+xRCVhVB/gigZoeDNft2s2bvnh6LEsRFRnHjtBlMHTrMlJktMRERzB4zrs992stxSynZX3Sa/UWniQoPZ9rQPC4dPpLMpGS/q84pQRR8KCHkB4vjxrOu5lDH9vqaIzyQdrVX5zAqKqQlekeF4GIkQs+KcqB9ie12jIgOaY2v0aC+1pN1b6bqeyUghUIRXHhSGOGRIddR6axnbc1BAO5Mmsnnk3tvdD4QRdD+M6d5efMGLvTQqNQmBLPHjOOaiVOIDLNuJc3S6iqOlZ7rNl7f1MT6QwdYf+gAGYlJzMgbwfS84cRG+FaUR0WJgg8lhDygt3VC8+PGkFgSzRUxI1gcP54rOjVusyoul8unxeqBEEOgokP9ndtTjE6Ja2didi6xEZFU1NdRWVfXa8qDQqEYWHhaHS7CFsqfsz/NI2dXUums56H0paaMaPiKFpOZp8su9CiC8gYN5taZl5GRmOT3NYwmJjyCG6fNYNOxI5ytqOhxn6KKcl7btpnXt28hPzObmcNHMi4zC7uPBXqUKAoOlBDygzh7JBtGf58Q4Vv+aSDwJip0uLiIlzZv4M5Zsxma2nd+dU8oMeQZWkeHrJgS1864zCxd+lj1tE5IoVAEJyHCzv8OuR4HLuyi94daK0WDtMzmmJ8/ns3HCjhf05pCGBsRwQ3TZjB92PCgEY1R4eHMGzeeuWPzOVNexsajR9h24hj1ndoztONqKxax5/RJYttS7hb5WRhCpc5ZFyWE/EQLEaRnehz0L4aqG+p5betmtp1o7a3ywsaP+e6S632eJQkEgRBDoG+qHPgfHQpEhTh/okF6l1n3hXJHHetrDvNB7WEGhw/iiWFfMtokhULRCV96BQkhCKV3f2wVEaRHOnuoPYRbZlzKX9e+yxWjxrBk8lSiwsI1v44ZEEKQlZxCVnIKN0ybwb7Tp9h09AgHzp5B9tB7qKaxsUex5CsqSmQ9lBDykL7KaFud4sqKDhEEreHj9YcOMHdsvtfnClRUCPQXQ2Du6JAvIshM0SAjONJYwpKjjyFpdYhx9ij+lHsPoTZ1K1QozEBffvbd6v1Mi8olKcS7oioDQQSV19ay7sA+rp92SY+TmGMzsnj4hltIiY3zx0RLEWq3Mzl3KJNzh1JVX8+W4wVsOnqEc1VVbvvN6KUcd3u5bpU6F9yYd8pfoSl9/RGOSs9g2lD30sJv7txOZZeKXp4SyCiAno1X29FbPKQPSQlIZMeXzxGI/99AMjx8EIn2i/0lqp31fNKp4IlCoTCOvkTQ2uoDfO3Uv7n9+BOcae55DYhV8aeRp8Pp5N29u/nZildYd3Af6w7s63XfgSSCuhIfFcWC/Ik8dN3NfOeaZcwaOZrI0DCyklN6XSO17cQxfvzKC6zYvoWSqkq/rq+atZoXywshIcRSIcRTVV0UvtUwej3DjdNnEBl6sWJMk6OFV7du8vl8wSiGzCSIrNQ01UzYhI3ZsaPcxtZU7TbIGu0RQjwjhCgVQuzrNPaIEKJICLGr7XWNkTYORILFT+lJXyJoR/1JvnH6v7iQnGi+wK3H/8rBBs+yAcwcDfL34fhwcRG/WPkaK3dspdnhAOCt3Tu6tSVQXEQIQW7qID516eU8eusdfP7Kub3uu+noEaoa6lmzbw8/e/0VfvPWSj4+coiG5mafr9/+Ox/IoshsfsryQkhK+YaU8t74eM87SftKYlhyn++XOWr5T/lmPnvi7xxq1Ddlyxf6igrFRUaxdMo0t7GdJ0+w/4w1/lgDFbkIRGpZfyInUClx/v6f9ieGK+vqKK6soLHFd6fSF709AM2NHc3oiHS+nDqXj8b9nJ9m3a7L9Q3iOWBRD+O/l1JOanu9FWCbBjyB9FNWpL+082cvfEyTdHRslzlqOdvSf1TIrCLI3wfhyro6nvnwff707tucq3YX180OBx8dPuCviQOCsJAQUuN6/pu8UFNDQYn7c1zh+VJe2PgxP3jp3zy3fh2Hzhbh6mHdkacMYEH0HCbyUyoxXiN+d+4dnjz/Ia62tQdvV+1ldIR3D5J6F03oj8tHjmbT0SOcKru4ZuXlzRsYMfgmwkK8/6oEcr0QBGbNEOi/bgh6L6YQTOuCPik4xNu7dwIQGRrGNZOm+LQuzVsWxeWzOH48ALlBUPK+M1LK9UKIXKPtUCg8xZO1t7/JvA17kY1VVXsA+MmQ65kfN7bPY8wogvx96HW6XHxwcB9v7dpJk6Ol2/tR4eEsmzKdy0aM6uFohTecrSgnPCS0x//nFqeTbSeOse3EMRKjo5mRN4IZeSNJjfMt9XCgrSUym59SQkgjcsJSOkQQwOqqfXxz0ALTlabsq4KczWbj9ksv59erVnRUV7lQW8O7e3exZPK0Ho/pj2AWQ6BfVbl2OhdTCGQ6XCAibJ3TNxpamgkJUJVCM/1NDopMIy0qzaN9E8ITAWYIIbZ1Gn5KSvmUB4d/VQjxWWAb8G0pZXAtslBYEk8LEIXbQvhd5m2khMQQZ4vk9qRL+tw/GEVQQUkxL23eQHFlz3+6l40YxbIp04mJiPDrOopWJmTn8PNb72DnyRNsPlbQLTrUTkVdHav37GL1nl3kDRrMzOEjmZI7lPDQUJ+ua0ZRlByR4vHyjdPhZwHyreSnlBDSiKvixhJ61k6LdAJwvPk8J5ovMCw81WDLvCM7OYUrR43hw0MXQ+tr9u1h2rDhPje7DFYxBIGNDvmCUdEgT9aIVdTVum0nRMe4bZvFCZiMzVLKm7085q/A/wKy7d/fAp/X2jCFwhu8rcJqEzZ+OHiJTtboh78CqLqhnuXbNrP1+LEe389KSua2mbPI9aH3n6JvwkNDmTl8JDOHj+RCTTWbjxWw+WgB5V18VzvHSks4VlrC2Ypybrpkpt/Xb//uzLTer3aflPIbXh5jmJ9SQshLeiujHW+P5LLoPM45algcN57F8fkM9UEEBSI9rr++QksmT2PnyRNUNzQAreH4lzZ9wtcWXuPzbLoSQ4HHVxEUqPVWXasSJkZ7VxJX4RlSynPtPwsh/ga8aaA5CoXPrSg88T9miQZpsfbjg4P7eXPnNhpbuqdnRYaFsXTyNC4fORqbiXv+BQspsXFcO2kqiydOoaCkmM1Hj7Dz5AlanM5u+16SN9wAC62NkX5KCSEN+XP2nUTYfAuHmonIsDBumj6TZ9ev6xg7UlLM1uNHuSTPOmsqAi2GQP9UuWBBSklFvf5CqKT+rOEVGY1GCJEupWz/Q7gB6L2+rkJhIFJKni37mKXxk0gNjfX6eDOIIC0XvxdVlPUogmbkjeD6qZcQGxmp2bUUnmETglHpQxiVPoRbZlzGzsLjbDpWwPHS1uf4jMQkspJ7noQ8XHyWqvo6JuUM9WnddTBjpJ9SvwkN0UoEmSEqNCV3GBsLjnCouKhjbPm2zeRnZhMV7ltH6kBHhSCwYgjMEx0yezSovrmpo9wrtFbvCdZO54FECPFfYA6QIoQ4AzwMzBFCTKI15aAQuM8o+xSKvqJBT11Yz2/OreafZRt5JvdzXmVVBJsIAlg2ZTq7T56kvrkJaH3IvnXGZeSlDdb0OgrfiAwL47KRo7ls5GjOVVWx+dgRBvVShQ5gzd7dHCouGgBecQAAJNJJREFU4qXNG5iSO4wZw0cwLDXNVOtWA4HZ/JQSQj7QW3pcMCGE4NaZl/HzFa/hcLWGfmsbGzl49gxTuzRf9QYlhgJzfSPxbH1Ql2hQVPSAcwZ6IKX8VA/DTwfcEIWiB/rym69VbOc351YDcKalgtuOP8nfc+5iQpT51wrqVQI5NiKSZVOm8fr2LVw7aSpXjh6LXaXBmZK0+HiWTZne6/sVdbUcbptYbmxpYUPBYTYUHCY1Lo6ZeSO5JG/EgEkPN5ufUkJoANNfVGhQXDwLx0/krd07yEpK5vZLLycnxf/iD0oM6XtdXwlUNAi6C6GEAeIAFIqBSl8iSErJmmr33jcO6STcwywLo6JBWgigwvOlbD9xnBunz+hxMuiyEaOYkJ1DXGSU39dSGMfmYwX01HHofHU1b+zcxpu7tjM6PYMZw0cwMTuHULt6PA8U6n/apBjdU6idBeMnkBAdzcy8EZZfkGmEGAJrrBsKpAgCqOxSdSexS8U4LVHrhBQKY+kvg0IIwWPZd/BQ0XJeq9xOqLDz15zPMCqi/xQwI/ykFgKotrGRlTu2srHgMBIYOmgQU3KHddvPZrMpERQETM4ZSmNzM1uOH+0oRNUZKSUHz57h4NkzRIaFMW1oHjPyRmgy+azoGyWEfKS/9DiXdLGj/hRvV+8lJyyZzyZfFkDrPKe/qFCoPUSX5mxGRIUg8GIIAhcdMjolDjxLiwMCUihBoVAYj6dp5KHCzi8zbiItNI4xEenMiO4uCrpiRRHkkpKNBYdZsWMr9U1NHeOvbd3EuIwsn/vPKMxNWnwC10+bwdIp0zl49gybjh5h7+lTOF2ubvs2NDfz0eGDfHT4IIPjExh8/Rhm5/nWy1HRP0oI6cCu+lN89dS/OeeoBmB4+CCfhJBZokJ6ocSQtuf3lUBHg6DnNUIKhSK48HYtrRCCB9IWerRvoH2jFlGgU2UXeHHTJ5y8cL7be5X19ew+VWipyqwK77HbbORnZpOfmU1tYyPbThxj09EjnCnv+W+lpKqSuAj9MiYUSgjpQm5YCmWOi6k/R5tKKWg8x4gIzzrIB5r+okK9IaX0e4H7QBNDYI1UOb3pr5mqQqGwNsFSUEgLAVTf1MQbO7fx8eGDPa4TSYuL55YZlzF6SIbf11JYh5iICOaMGcecMeM4U17G5qMFbD1+lNqmxo59BscnMGmI9lk5iosoIaQDCSFRXBqTx0e1BR1jq6v3mVYI+UJJZQUvbPqEheMnMTYj02hzfMIIMQTaR4esFg2CHiJCKjVOoQga+hJBzS4Hj5a8yZdS5pAeluDT+QMRDdJCALmkZMuxAl7fvoXaxsZu74fa7SyaOJl5Y8cTarf7fT2FdclMSibzkmSumzqd/UWn2XT0CPvPnGbm8JGqoqrOKCHkB32tE1ocN57t9SeZGzuaxXHjuTJ2pE/XCFR6nKdRoWaHg9V7drJ2/16cLheV9Rv4wbIb/WoOZlRUCKwvhsywLqgdT9cHuaSkMsBrhFTBBIXCeFzSxfeKXuGNqt2srT7Is7mf93qC0Coi6Ex5GS9t3tDRaLMrE7NzuWn6TJJiVDRccZEQu52J2blMzM6luqGeECWQdUcJIZ1YmjCJpQmTNGuyahbOVVWyZu/ujvD+hZpq3t27myWTp/p13oEqhsC4VDmjokFOl4sF+ROoqKujoq6OhuYmIkLDDLFFoVBoS1/RoF+VrOaNqt0AnHNUc/vxJ3gm9/NM9LBXkN4iSAsB5HA6eX37Fj48dAApuyfCpcTGceuMSxmbYf7+SApjUdUCA4MSQjqhpQAyU1QoKzmFK0aPZf2hiz0f3tu3m+nD8kiLT/Dr+gNRDIHv0SEzRYO8IdRuZ8lkVQFHoQg2+hJBDunkdEu521hSSDSZYYl6m9UvWjZEtdtsFFdWdBNBoXY7C8dP4qr88apHjEJhIqzdGMYEJIYlG21CwFk6eRpxkZEd2w6Xixc3behx9stKGBUhAe9Fjb8iSOvP6mlanEKhCE76K44QIuw8lnUHn06aCUBqSCzP5H6e5BDPUsP0mAw8VXNaUxEErZXvbp1xGfZOfffGZ2Xzw+tuZvHEyUoEKRQmQwkhhRvZsf2H6yPDwrhx+ky3sSMlZ9l24pjf1zf6gdpoMWTVKI9CoRi4eFohzi5sPJy+jAfTFvG3nLvJCkvy6Di9RJBepMUnMH/ceJJjYrlv3kLum7eQlNhY3a6nUCh8Rwkhi2C2hd5Tc4cxKt3dpte2bqa+uamXIzzHDGLIaEHkz/v9YeRnM5Jg7smlUBiFL72C7k2dzbhIz3yaGUWQlJLtJ46xcsfWXvdZNGEyP7zuJsZnqWi5QmFmlBDSAE/S48oddbxYvoWHipYHwCL/8CQq1Br+n0VIp/B/TWMDb+zYpokNRoshMD465M24QqFQBBq9ewWZcfKipLKCP737Ns+uX8e7e3dz4nxpj/uFhYT4VU1VoVAEBssLISHEUiHEU1VVVUab0iNO6eKewme57NDPeejscl6s2MKxpp5vnP1htqhQWnw8C8ZPdBv7+PDBHrtm+4ISQ9qnyunxebz9PZXV1tDY0qy5HQqFWTG7n/KFvkRQmaOWewqf5VRzea/7GIWv0aCmlhZWbN/CL95YzpGSiwLtpU2f4HK5tDJPoVAEGMsLISnlG1LKe+Pj4402pUfswkaLdOHk4o3y7aq9BlrkGZ5EhQAWjp9Iamxcx7YEXtj4cVA5BqNTydrFULBEg/6w+k2+859/8OB//sGjK17t1lNIoQg2zO6nvKUvEVTnbOLek8/zYe0Rbjv+V/Y3FPl0DbOkxEkp2XnyBD9b8Qpr9u3B2cW3na2s4GSZMS0QFAqF/1heCFmBxfHj3bZXV+0zyBLtCbWHcOuMy9zGTpeXsf7wQU3Ob4aoEJhHDPmD0Z8BwOVyUVVfD0BDSzPFlRVEhYUH7PpmTLVRKKxEXyKoRTr5+un/sKfhDAAXHLV8+sRTHGjw7u/OLH+npdVV/OW9d3j6g7VU1HWfsBmVPoQfLLuRoamDDLBOoVBogUpg1YjEsOReHcSCuLE8cnYFw8JTWRyfz6K48T3u5wmB6ikEnvUVAhiTkcmU3GHsKDzeMfbmzm1MyR2qSUMwI/sLdcbIXkNmxVuhWtXQgKtTmfXo8PABnUcfH5rocQn+6BBVdUphbqSUJNjd7/kTI7MZHu65UNDLv3kTDWp2OHhnzy7W7t+Do4fshoSoKG6cPpPJOUMRQmhppkJhOuJC4z32U7Gh1ot6D9wnkACSHBLD+yMfZEhYgtGm6MaN02dwoOg0jS0tADS2tLCh4DCLJkzW5PxKDPmHGaJBABV1tW7bidGe9RBRKBTG019xhDBbCL/OvIXUkFieLvuIcRFDeDz7TsJsnj1qGB0JklKy9/QpXtmykfIu9yoAmxDMG5vP4olTCA/Vrmm6QqEwDiWEAoSWIsiMUaGEqGiunTSVV7duIjE6huumTGfK0GEBsDDwWE0MmUUEAd3WAyVERRtkiUKh8AZPK8TZhI3vpV9DbngK82PHEGMPXOprb3jiw2obG/nnJx+y/0zP+44YnM6tl1xGemKi1uYFDe2TlWZJaVcoPEEJIQ3pKz1uIHDl6LHYbDYuHT5Sl3Qns0SFwHpiyCx0jwgpIaRQmB1f/NrtSZd4tb/R0aCI0FDKamq6jcdFRnLDtBlMG5qn0uD6oLNv9tRPK8GkMANKCCn6xdOokN1mY/bosbraosSQd+gZDfLFiXVdcGxEalxJ/VnTlaJXKMxKXyLIJV3YhP81l/QUQZ6uDQqx27l1xmU89u5bQGsa3OzR47hm0hQiw8J0s8/q+OOPvTlWiSaFXighZFECmR5nNpQYsi7dhZCKCCkUZqUvEXSosZgHz7zMH7JuJ8+LYghdMYMIamdk+hCmDs2jsq6WW2dcRkaSZwvEByqB9MNKNCn0QgkhjfEkPU5Kya6G06yu2ssdSTPICTd/fxhPo0IDEbOKITOtDWqnsqsQUmuEFApT0pcfK2qu4J7C5zjnqOb240/wVM5dTI7KCaB1viOl7DPF7Y5LLycsJESlwfWBWSYie0Ol5im8QQmhAPNC+Rb+cv59iltaO4zH26O4f9Bcn84V6KiQr2KorqmRtfv3siB/omYpBmaKCoF5xZBe+OpAKurd1wglqKpxCoXp6EsEVTkb+PzJZznnqAag0tnAZ088zRvDv06ul5N6RkSDnnj/XVJiYlk4fhLxUd3bO6hqcH1jJr/rLyrKpAAlhAKOC9khggDert7rsxAyOw6nk48OH+Tt3Tupb24CYNmU6ZqdX4mh3jFjNMjhdFLT0NCxLWjtx6FQKMxDfxkN0bYwpkblcLzpfMfYLYnTyPGwz0g7RqR2F5QUd1SF21BwmCtGjeW6qdOx21RveU8wk78NNEo0BS/qrz/AXB03DhsXQ+6HGos50cmhmJ3s2CyP9/3w0AFe3bqpQwS9v38f5bXdq/L4g9luOGYUIGahsr4e2Wk7NjKKELvdEFsG6vo6hcJfQoSdR4fcyFdS5wGwOG48P0xf4lUqmd5/fz1Fg6SUvLlze8d2i9PJmfIyJYI84FjlqQEtgryl/f+rv5fCHKiIkA70tU4oOSSGS6KHsqv+NHNiR7E4fjyD/ejEa+aiCZePHM3a/XupbqgHwOFysnLHNu6+MjgjYO0YHRkyqxirVKWzFQpT42mZbCEE30xbwNjIIcyOGYXdi8pxRogggMPFZzlWWuI2du3kKbraEgyoB3b9UP+35kAJIQN4NOMmUkJiiLJZsySnp2uFwkNDWTp5Gv/esL5jbNuJY8wZM47cVN+rDHXFbClyYLwY0hPf1wepinEKhVnxpVfQwrhxOliiPVJK3ty13W1szJBM8gYNNsgi82M2n6pQ6IWKCRtAdliSpiLIzD1RZuQNJyMxyW3stW2bkVL2coRvmC1FDoyJzJg1GgSQFB3DzOEjGZU+hLS4eFJjfY+EKhQK7ehLBDW6WjS7jlHRoANFZyg8X+o2du0kFQ3qDSWCFAMJJYR0ItHLhaNWw9O1QjabjRunz3AbO156jl0nCzW3SYkhc5OXNpg7Z13J1xZew49uuIXrpmpXOMMXzJpSqlAEkr5E0Jrq/Sws+C2HGv2Pbhv199ZTNCg/M1vTrIRgQa1dUQxElBBS6M6o9AzyM92F04rtW2hxOg2yKLAESgwp0aVQKLyhLxG0va6Qb51+geKWKj51/Ek21x73+TqBEEG9RYP2nD7J6bILbmMqGtQdJYAUAxUlhIIEI9LjvKkgd/20Gdg6VRW6UFvD+kP7NbfJjFEhCB6REqj/X2++WwqFwnv6a5h636l/0CQdANS6mvjiyee44NC26qfeuKTkrV073MYmZueSlWz+JuaBRIkgxUBGCSEd8TQ9rsrZwKsV23m7aq/OFhnH4PgELh85xm1s9Z5d1DY2an6tgSiGgkVoKRQK/emvMEJ6aDzXJUx2G3sofSkpIbFeX8vIaNCukycoqijv2BaoaFBnVCqcQqGEkKEcayrlC4XPMvPgz/he0Ss8cf4Dv85n9qjQ4kmTiQy9WCSiobmZ1Xt26mHWgBRDCoVC0R+eVIezCRsPDV7Cg2mLAPjGoKu4Ncn7NX1GiiCXy9UtGjQldxhDuhTvGagoAaRQtKKEkIHE2SL5qLYABy4ADjSe5WST9yVMrUJsRCRXT5jkNrb+0AHOVVXpcr2BIoYCJa78+f9scTppaG7W0BqFQqEnQgjuTZ3NS8O+1NE81RuMLkayvfA4JVWVHdtCCK5R0SAVBVIouqCEkIGkhsYyPSrXbWx1tfXS47yJCs0eM5bkmIvpFS4pWbF9ix5mmRqtxItVIkzHS8/x4H//wXf+8zw/e/0VXtu62WiTghYhxCIhxGEhxFEhxPeMtkdhHnzpFTQ5KgfRaX2nJwRKBPUWDXK6XLy12z0aNH3YcNLiEwJglXlRAkhhFszkp5QQ0pn+1gktjh8PwLDwVL6SOo8FfjaoM3NPIYBQe4hb2eSwkBCyklNwadxXqB2zRoXAOiJGCyrqagFobGmhpKqSyi7NVRXaIISwA48Di4GxwKeEEGONtUphBnoTQVJKyxVB6A+XdDEzbySRYa2p2DYhWDxhcj9HBTdKBCnMgtn8VIhRF1a0siR+IpdED2VEeJrXs25mIjs2q9fZua5MzhlK3qA0BsXHs2TSNOKjonS1LS8h27ROYGRSOkfKfevRYSUhVVnnLnwSo6MNsiTouQQ4KqU8DiCEeAG4DjhgqFUKQ+krEvTX8x/wfNkn/C3nLiZE+V+t0ehoELROuF09YRJXjh7L+wf20tjSQmpcXEDsMhtm9X2KAY2p/JSKCBlMQkgUIyMGayqCzB4VEkLw9auv5dOXXam7CGrH7JEhs4saf///KuqVEOrKDTfdsOTCBc9TlS6cvwDQX5nFDKDzE+KZtjHFAKUvEfRKxTZ+X/ou5c46PlP4dz6qOeLXtcwggjoTGRbGtZOmctP0mTpbZE6UCFL4y1e//pUvXTjvhZ+6cIEHvvOtr/ezm6n8lBJCAcDTMtpWx5u1Qnab+up1xRsxZHbh1JX21Lh2EqNiDLLEPCx/dfmc3/7i94TbI/p9uZol/3ru3wB2IcS2Tq97jf4cCvPSlwja33CWh4qWd2zXu5r5zpmXqHM2+XQto4sjKC6iCiIotOLPjz0++o+/+RNhtvB+/VSoCONPv32c3/3m9z+0kp9ST6OKAYOZo0LtWE3geEpFl9S4BBURQkr5oaOlhU0b+y8c8fif/sIdd96BlPIPUsppnV5Pddm1COg8I5HZNqYYYPRXGGFsRDr3pFzRsR0mQvhT9qeJtofrbZpfeBoNGqgoAaTQEinl4fzx41j+2uv97vviCy9xyYzpSCl/biU/pYRQkGJUepw3UaGecLpcupZZDgYxFGixpMX/mVoj1DNvvrFq7I9+8GNkH8VCLly4wMsvvsz3v/uDCA9OuRUYIYQYKoQIA24HVmpkrsIieFIdTgjBdwYv4qH0JYRg43eZt3FJ9FCfrmeGaJDD6cTpchlthmGoKJBCL5564m+Df/3LX9Pcx7NZY2Mjf/jtH/jzY4+neHBKU/kpJYQChKfpcVJK9jac4dkLH+tskbmQUrL39Cl+vuJVXtu6SddrBYMYshKNLc00tFy8gYbYbMRERBpokXmQUh4cNXokK17v3Qf84tFf8q3vfAspZb85S1JKB/BV4B3gIPCSlHK/ZgYrTI+3JbLvSp7FOyO/zdXx+T5dL5AiqK9o0PpDB/jZ66+w5VgBrgEmiJQAUuiJlPLcsuuW8bcn/97rPn/581+59fZbkVL2ewMym59SQsgkSCn5dclq5h35NTcee5yfl6ziVHO50Wb5hLdRoeqGev707ts8+f67nKuuYtPRI5wpD97Gsp7SkxiyokDqlhYXFY3NwhUStebpvz2T/n8//z9aWlq6vXfs6DG2b93B5z7zebun55NSviWlHCmlzJNSPqqpsQpT40ufIIDssCSfjjNDJAigqaWFNft2c76mmn98/CE/X/nagPEhSgQpAsFPH/nfmOeffZ7Kyspu75WVlfHif1/koe//yOMZTjP5KSWETIIQgh31JznTUtExtrrKv+aqZq8e1050eARVDRcfliWwfNvmPtOF/MUKUSGwpvDpilof1DdSypIlS5fw96ee7vbej374MD/92SNIKQfWFLdCU5pcDk42XdD0nIEWQf1Fg2oaLxZULK+rDVhFUqNQqXCKQCKlrLv/q/fzm//7bbf3fvno//HNB76BlLK/qqamRAkhE9HeXLWd1dX+CSEj8baC3A3TZriNHS4+y/4ifRfFWk0MGSGKtFkf1KViXLSqGNeVn/300dhn/v4M1dXVHWObN22hqbGRhfMXqfCZol96iwa5pIv/KXqZm47/he11hYE1SiP6EkENzc2s2b/HbWzOmHHEBnH6rRJACiP48r33h6xb9wGnTl38ezxx/ARbNm/l83fd43HWgtlQQiiA9LdO6Oq4fASCcBHCgrhxfD75Cr+jIlaJCo3LyGJUuruty7dt1n3xq9XEkBVRPYT6R0pZ+6X7v8Rvf/W79m1+9IMf89aqt8cZbJrCAvQmgqSU/LxkFauq9lDlbOCuwqd5r9r/noVmSYkD+ODgfuqbLi6fiwgNZf648X0cYV1UFEhhJFJK549+/EN++vBPO8Z+/NAjPPLTH1s6a8EQISSEWCSEOCyEOCqE+F4P718phNghhHAIIW42wkYjSAuN4+mcu9k0+iH+kn0nSxImatpo1cwIIbhh2gw6f9pzVVV8cuSQYTYptKFralxilBJCPfHVL38t9L0173HmTBErV7zBiJHDkVIa0mlbYR36Whf0cW0Bz5dt6Nhukg5+e+4dWqTT5+uZKSWuvqmJ9/e7Z07MGzue6HBPCixaCyWAFGbghmU32YrPFrN71262btlGbU0Nixdea+kH1ZBAX1AIYQceBxbQ2k12qxBiZReHfwq4G/hOoO0zmitiRxptgmZkx2Z51fMhMymZmcNHsvHoxe7mb+3ewaUjRhJq1++rmpeQrZxMD2gVLevaTDVBpcb1iJTS8dqKV/nRD37E4UOH2blj15Cn//aM0WYpTEx/xREujxnBNwZdxR9L3wMgNSSWv+XcTajwLYvFTJEgaI0Gda5IGRUWztyxvlW/MyvKNynMhJRSCiGmPvT9H21vaWnhww/WWz78akRE6BLgqJTyuJSyGXgBuK7zDlLKQinlHsCyobbe8LSMtpZYJT0O4NrJUwkLaRU9w9MGc/9Vi3QVQe1YJUXOigxNHcTo9AzS4uMJCwlRqXF9cNP1N9uKzxZzzbXXIKUsNtoehXnxtFfQVwfN59EhNxJvj+TvOXeTGZYYAOu0ob+JtDljx7F44mQiQkMBmJ8/nsiwsECYFhCUCFKYESnljkFpgxg6bChSyn1G2+MvQs/KXD1esDXVbZGU8p627c8AM6SUX+1h3+eAN6WUr/RyrnuBe9s28wHL/0L6IQXQtvSP+Qj2zxjsnw8GxmccJaWMNdoIhflRfiooCfbPGOyfDwbGZ1R+ygMCnhqnJVLKp4CnAIQQ26SU0ww2SVfUZ7Q+wf75YOB8RqNtUFgD5aeCj2D/jMH++WDgfEajbbACRqTGFQGdaytnto0pFAqFQqFQKBQKRUAwQghtBUYIIYYKIcKA24GVBtihUCgUCoVCoVAoBigBF0JSSgfwVeAd4CDwkpRyvxDip0KIZQBCiOlCiDPALcCTQoj9Hpz6Kd2MNg/qM1qfYP98oD6jQtEbA+F7oz6j9Qn2zwfqMyraCHixBIVCoVAoFAqFQqEwGkMaqioUCoVCoVAoFAqFkSghpFAoFAqFQqFQKAYclhNCQohFQojDQoijQojv9fB+uBDixbb3Nwshcg0w02c8+HwPCCEOCCH2CCHWCiFyjLDTH/r7jJ32u0kIIYUQlitx6clnFELc2va73C+E+E+gbfQXD76r2UKIdUKInW3f12uMsNNXhBDPCCFKhRA99n0RrTzW9vn3CCGmBNpGhTlRfkr5KSug/JTyUwpASmmZF2AHjgHDgDBgNzC2yz73A0+0/Xw78KLRdmv8+eYCUW0/f9lKn8/Tz9i2XyywHtgETDPabh1+jyOAnUBi2/Ygo+3W4TM+BXy57eexQKHRdnv5Ga8EpgD7enn/GuBtQAAzgc1G26xexr+Un1J+ygov5ac69lF+aoC/rBYRugQ4KqU8LqVsBl4Aruuyz3XA820/vwLMF0KIANroD/1+PinlOillfdvmJlr7MFkJT36HAP8L/B/QGEjjNMKTz/hF4HEpZQWAlLI0wDb6iyefUQJxbT/HA2cDaJ/fSCnXA+V97HId8A/ZyiYgQQiRHhjrFCZG+Snlp6yA8lOtKD81wLGaEMoATnfaPtM21uM+srVUdxWQHBDr/MeTz9eZL9Cq9K1Ev5+xLXSbJaVcFUjDNMST3+NIYKQQ4hMhxCYhxKKAWacNnnzGR4A720rhvwV8LTCmBQxv/14VAwPlp9xRfsqcKD/VyiMoPzWgCTHaAIVvCCHuBKYBs422RUuEEDbgd8DdBpuiNyG0ph3MoXW2dL0QYryUstJIozTmU8BzUsrfCiEuBf4phMiXUrqMNkyhUOiP8lOWR/kpRdBjtYhQEZDVaTuzbazHfYQQIbSGOssCYp3/ePL5EEJcBfwQWCalbAqQbVrR32eMBfKBD4QQhbTmtK602EJUT36PZ4CVUsoWKeUJ4AitDscqePIZvwC8BCCl3AhEACkBsS4wePT3qhhwKD+F8lMWQPmpVpSfGuBYTQhtBUYIIYYKIcJoXWS6sss+K4G72n6+GXhfSmmVrrH9fj4hxGTgSVqdi9XydaGfzyilrJJSpkgpc6WUubTmly+TUm4zxlyf8OR7+jqts2wIIVJoTUE4HkAb/cWTz3gKmA8ghBhDq4M5H1Ar9WUl8Nm2qjwzgSopZbHRRikMR/kp5aesgPJTrSg/NcCxVGqclNIhhPgq8A6t1UCekVLuF0L8FNgmpVwJPE1raPMorQvIbjfOYu/w8PP9GogBXm5bW3tKSrnMMKO9xMPPaGk8/IzvAAuFEAcAJ/CglNIqM8KefsZvA38TQnyL1gWpd1voYQ8hxH9pfQhIacsffxgIBZBSPkFrPvk1wFGgHvicMZYqzITyU8pPWQHlp5SfUrQiLPT7VigUCoVCoVAoFApNsFpqnEKhUCgUCoVCoVD4jRJCCoVCoVAoFAqFYsChhJBCoVAoFAqFQqEYcCghpFAoFAqFQqFQKAYcSggpFAqFQqFQKBSKAYcSQgqPEEJkCiFWCCEKhBDHhBB/bKvLr/d1lwkhvqf3dfxBCJEqhNgshNgphLjCz3PlCiHu6LQ9TQjxmP9WKhQKRXCj/FTvKD+lUPSMKp+t6BfR2ghiM/BXKeWzQgg78BRQLqV8sMu+IVJKhxF2GoUQ4nbgKinlPT28Z5dSOr041xzgO1LKJdpZqFAoFMGN8lN9o/yUQtEzKiKk8IR5QKOU8lmAthvmt4DPCyGihBB3CyFWCiHeB9a2jb0khDgghFjeNgs1DUAI8VchxDYhxH4hxE/aLyCEKBRC/EQIsUMIsVcIMbpt/G4hxJ/bfk5rO9/uttdlXQ0VQtQKIX7ddv73hBCXCCE+EEIcF0Isa9snVwjxUdu1drSfRwiRLoRYL4TYJYTYJ4S4QghhF0I817a9t63pWufrTQJ+BVzXdlxkmw2/FULsBi4VQvxYCLG17RxPtTlshBDD22zc3WZHHvBL4Iq2c31LCDFHCPFm2/5JQojXhRB7hBCbhBAT2sYfEUI80+lzfl2rX7xCoVBYBOWnlJ9SKLxHSqle6tXnC/g68PsexncCE4C7gTNAUtv4d4An237OBxzAtLbt9n3swAfAhLbtQuBrbT/fD/y97ee7gT+3/fwi8M1Ox8f3YJMEFrf9vBx4l9YuyxOBXW3jUUBE288jaO0wDa0dpn/Y6fyxwFRgTafzJ/RwzQ4bO9lwa6ftpE4//xNY2vbzZuCGtp8j2uyaA7zZaf+ObeBPwMNtP8/r9HkeATYA4UAKUAaEGv29US/1Ui/1CtRL+Snlp9RLvXx5qYiQQivWSCnL236+HHgBQEq5D9jTab9bhRA7aHVO44Cxnd57re3f7UBuD9eYB/y17bxOKWVVD/s0A6vbft4LfCilbGn7uf2cocDfhBB7gZc72bAV+JwQ4hFgvJSyBjgODBNC/EkIsQio7uP/oB0n8Gqn7blts4172z7DOCFELJAhpVze9nkapZT1/Zz3clodFFLK94FkIURc23urpJRNUsoLQCmQ5oGdCoVCMZBQfuoiyk8pFKjUOIVnHKB1xqmDthtbNnC0baiuv5MIIYbSOgs3X0o5AVhF6wxTO01t/zqBEB9tbZFSti98c7WfU0rp6nTObwHnaJ19mwaEte2zHrgSKAKeE0J8VkpZ0bbfB8CXgL97YEOjbMu3FkJEAH8BbpZSjgf+hvtn1oqmTj/78/+nUCgUVkT5KeWnFAqvUUJI4QlrgSghxGehdWEl8FvguV5mhz4Bbm3bdywwvm08jlZHVCWESAMW+2DHl9ttEELEe/tB2ogHituczmdoTS9ACJEDnJNS/o1WRzJFCJEC2KSUrwIPAVO8vFa7M7kghIgBbgZom8U7I4S4vu3a4UKIKKCG1lSHnvgI+HTb/nOAC1JKT2b+FAqFIthRfkr5KYXCa5QQUvRL28zVDcAtQogC4AjQCPygl0P+AqQKIQ4APwP2A1VSyt20phocAv5DqyPyhm/QGr7fS2tawth+9u+NvwB3tS0SHc3FWcI5wG4hxE7gNuCPQAbwgRBiF/Av4PveXEhKWUnr7No+4B1a0xra+QzwdSHEHlpzpwfTmp7hbFuY+q0up3sEmNq2/y+Bu7yxRaFQKIIV5aeUn1IofEGVz1ZoTttMXKiUsrGtwsx7wCgpZbPBpikUCoVCofyUQqEAVH6mQh+igHVCiFBAAPcr56JQKBQKE6H8lEKhUBEhhUKhUCgUCoVCMfBQa4QUCoVCoVAoFArFgEMJIYVCoVAoFAqFQjHgUEJIoVAoFAqFQqFQDDiUEFIoFAqFQqFQKBQDDiWEFAqFQqFQKBQKxYDj/wGOEc+cB/8H3AAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABKcAAANoCAYAAAAVmYmSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xT5f4H8M85Sffee1BKC5S9BEVABBygchWcV8U96sCt1wGK46qoOIr36nWieN36u9eLiggqMpVZCoUWOumme6RJzvP7I6Q0zUmbNCc55yTf9+vVl5KcJE9Hkm8+53m+D8cYYyCEEEIIIYQQQgghRAa83AMghBBCCCGEEEIIId6LwilCCCGEEEIIIYQQIhsKpwghhBBCCCGEEEKIbCicIoQQQgghhBBCCCGyoXCKEEIIIYQQQgghhMiGwilCCCGEEEIIIYQQIhsKpwghhBBCCCGEEEKIbCicIoQQQgghhBBCCCGyoXCKEEIIIYQQQgghhMiGwilCCCGEEKJI6enp4Diu52v58uVyD4kQQgghLkDhFCGEEEIIIYQQQgiRDYVThBBCiIvdfvvtSElJQWhoKJKSkrB06VJ0d3fLPSxCCCGEEEWi2sn7UDhFCCGEuNgdd9yBQ4cOoaWlBXv37sXevXvx7LPPyj0sQgghhBBFotrJ+1A4RQiRVXp6OmbNmiX3MAhxqZEjRyIoKAgAwBgDz/M4cuSIzKMihBCiFFQPEWKJaifvQ+GUm2zfvh3PPvssFi1ahLFjxyI5ORkBAQHw9/dHXFwcZsyYgSeeeAJlZWVyD9UpmzZt6mlaescdd4geU1tbC19fX3AcZ/NNuLGxEQEBAeA4DmvWrBn0eKS6H0KUoPfz6+233xY9huM4LFiwwM0jE1dYWIirrroKI0aMQFhYGAIDAzF8+HDce++9qKqqEr2NIAh45ZVXMHz4cPj7+yMlJQX33Xcf2tvb3Tx66f39739HcHAwYmNjsXfvXixdulTuIRGiSowxvP3225g2bRrCwsIQEhKCadOm4d133wVjTO7hAaB6iBBXUls9BADPPfccFi9ejIyMDHAch/T0dJvHOlo/9d40ovdXcHCwC78j96DaybtQOOUmzz33HB599FF8+eWX2LdvHyorK9HV1QWdTofa2lr89ttvWLFiBUaOHIlPP/1U7uE6zd/fH2vXroVOp7O6bs2aNWCMQavV2rz9xx9/DJ1OhyFDhuDdd98d9Dikuh9ClGb58uXo7OyUexj9qqioQFVVFf7yl7/gueeew6pVqzB37ly89dZbmDhxImpra61uc8899+Dee+/FyJEj8frrr2Px4sV47bXXcMEFF0AQBBm+C9suv/xymwUhx3HYtGmTxfEPP/ww2traUFBQgFtvvRUJCQnyDJwQFevu7saCBQtw8803Y9u2bWhpaUFbWxu2bduGG264AYsXL4Zer5d7mD2oHiLEtdRQDwHA3/72N/z8888YOnQoIiIi+j12MPXTmWeeiTVr1lh8vfPOO676dpziSP1EtZOXYcQtLrroIgbAri9fX19WUFAg95AHZePGjQwAu+KKKxgA9umnn1odk5OTwy688EIWFBTEZs6cKXo/48aNY7Nnz2avvvoq4ziOFRcXD2o8Ut0PcZ20tDSbfwfEkvn5NWnSJAaAPfvss1bHAGDz58+XYXT2++yzzxgA9vzzz1tcnp+fzziOYxdffLHF5a+99hoDwD7++GN3DnNALS0trK6uzuZXd3e3zdt+9tlnbNasWW4cLSHqlJaWZlEjBQYGDlhHPfTQQ3IPm+oh4jCqh+ynxnqo93MuJyeHpaWlOXwftuonAOzaa691coTuM9j6iWonz0czp9wkPDwcixcvxr/+9S/8+OOP2LNnDw4fPoxt27bh5ZdfRnh4eM+x3d3dePXVV+UbrAQmTJiAMWPG4L333rO4fMeOHThw4ACuu+46m7fdtWsX9uzZg2uvvRZXXnkltFrtoM7yOXI/3d3deOGFFzBu3DgEBgYiLCwMkyZNwhtvvOHwccuXLwfHcSgpKbF6HLF+Au+//z44jsOGDRvw1FNPIS0tDQEBATjttNOwbds2AMAvv/yC6dOnIygoCAkJCVixYoXDPw9XPGZ9fT1yc3ORkpICX19fpKSkIDc3Fw0NDVbHlpeX49JLL0VYWBhCQ0NxwQUXoLi42OYYdTodnn32WeTk5MDf3x/h4eG44IILsHv3bru+R3t/p/Z+D+af2c8//4yVK1di6NCh8PPzQ1ZWFj744AOnxuCoSy+9FBMnTsTzzz8v+rNWurS0NACmZSa9ffLJJ2CMWU3ZvummmxAYGIiPPvrIrvu35+cuxXMgJCQE0dHRNr98fHxsjlGv1+Pw4cN2fT+EkFM6OjqQnZ2Nr7/+Gvv27cM///lPhISEWBzz0ksvobKyUqYRWqJ6iOqhvqge8s56KCMjw+n7sFU/mXV3d6OtrW1Q9+2u2gkYfP1EtZMXkDsdIyYrV660OOs3fPhwuYc0KOYzGS+++CJbtWoV43meVVRU9Fx/yy23sNjYWKbX622eKbz99ttZcHAwa2trY4wx9pe//IUlJyczo9Ho0FjsvR+dTsdmzZrFALB58+axF198kb3++uvs5ptvZmeddZbDxy1btowBYMeOHbMak9hZsffee6/n7M/48ePZSy+9xJ577jkWHR3NQkJC2Ndff80iIyPZww8/zFavXt0zhjVr1jj085D6MZuamtiwYcMYx3HshhtuYHl5eezGG29kHMex4cOHs5aWlp5jGxsbWXp6OtNoNCw3N5fl5eWxSy+9lKWkpLDo6Girn0l3dzebNWsW8/X1ZTfccANbvXo1e+6551hGRgYLCAhgO3fu7Pf7s/d35cj3YP6ZnXbaaWzMmDHs+eefZ6tWrWLZ2dkMANu8efOgxuCI3s+v9evXMwDsnnvusTgGEpwpNBqN/Z7R6vs10HOzs7OT1dXVsfLycvbDDz+wcePGMQDs119/tThu3rx5jOd51tXVZXUfp59+OouOjh5w7Pb+3N35vGtqamLvvfcea2xsZIIgsL1797IRI0aw6667zuH7IsTb9J055efnx44fP25xzJdffmk1e2rlypUyjdiE6iGqh6gecmwMjlBrPWRm78wpe+snACwoKIhpNBoGgMXExLA77riDNTU12TUeqp2IUlA45Ua//voru/XWW9mECRNYZGQk8/X1tTklPTg4WO7hDkrvN4v6+nrm6+vLnnnmGcYYYx0dHSwsLIzdd999jDEmWox1dnay8PBwi6mp33zzDQPA/ve//9k9Dkfu5/nnn2cA2COPPGJ1P73fZOw9brDF2Pjx45lOp+u5/Ntvv2UAmFartSg+dDodi4+PZ1OnTrX5/Q9Eisf829/+xgCwvLw8i/t+4403GAD22GOP9Vz2yCOPMADs3XfftTj27rvvZgCsfiYvv/wyA8C+//57i8ubm5tZSkrKgNPe7f1dOfI9mH9m48aNs/iZVVRUMF9fX3b55ZcPagyO6P38YoyxuXPnMj8/P1ZSUtJzjBTF2LFjx+xehmzrb723119/3eL49PR09tFHH1kdN2rUKBYbGyt6H4sXL2YALH72Yuz9ubvzedfc3MzOPvtsFhERwYKCgtiQIUPYfffd1/NBkRBiW99wauHChVbHGI1GFhkZaXHcokWLZBjtKVQPUT1E9ZBjY3CEWushM3vDKXvrpylTprAXX3yRff311+yDDz5gl112GQPARo8ezVpbWwd8HKqdiFJQOOUGRqORXXvttQ69uAHq/NX0fbNYtGgRGzZsGGOMsY8++ogBYAcOHGCMiRdjH3/8MQPAfv75557Luru7WUxMjEOFpiP3M2bMGBYREcE6Ozv7vU97jxtsMfbWW29ZXH7ixAkGgJ1xxhlW93PhhReyqKiofsfRHykec8SIESwmJobp9XqL4/R6PYuJiWE5OTkWx8bFxTGDwWBx7PHjx0WLsQkTJrDhw4eLnpW6/vrrmUajYR0dHTa/P3t/V458D7Z+ZoyZQpWJEycOagyO6Pv82rVrF+M4jl199dU9x0hRjHV2drL169fb/TXQ91heXs7Wr1/Pvv76a/bEE0+wcePGsVWrVlkdl5GRwVJSUkTv4+qrr2YAWGNjY7+PZe/PXY7nHSHEcX3Dqb6zI8zGjx9vcdz06dPdPFJLVA9RPUT1kGNjcIRa6yEze8Mpe+snMc888wwDwJ5++ukBj6XaiSiF7e1BiGT+9a9/2VyD7emuu+46zJ8/H5s3b8a7776LKVOmYOTIkTaPf+eddxATE4Pk5GQUFRX1XD5v3jx8/vnnqK+vR3R09ICP68j9HDlyBOPGjYO/v3+/92nvcYPVdy26eSePIUOGWB0bEREhydp6Zx7z2LFjmDRpktUuQ1qtFllZWdi1a1fPZUePHsXkyZOh0Wgsjk1ISLDot2Z28OBBdHZ2IiYmxubY6+vrkZKSInqdvb8rR74HM7GeAVFRUSgtLR3UGJwxfvx4XHHFFfj4449x//33Y8yYMVbH6HQ63HHHHdiwYQPq6uqQkJCAO++8E3feeafN+/X398ecOXMkG2dycjKSk5MBAAsXLsQll1yCyZMno6OjA4888kjPcYGBgaI70ABAV1dXzzH9cfTnLsfzjhDifagesh/VQ6dQPWQftdRDjrK3fhLzwAMP4Mknn8R3332HRx99tN9jqXYiSkHhlBt88sknFv+OiIjAc889h6lTpyIsLAyAaYvfxx57TI7hudQ555yDpKQkPPnkk9i4cSPefPNNm8ceO3YMGzduBGMMWVlZosd89NFHVs2SXXU/g8VxnM3rDAaDzev6FioDXS4FOR7THowxjB49Gi+//LLNY/or1FzJ1s+GMebmkZg8/fTT+OKLL/DQQw9h3bp1VtcbDAbEx8fjxx9/REZGBvbt24dzzjkHcXFxuPTSS0Xv02g0oq6uzu4xxMTEOPQ3M2bMGIwfPx6rV6+2KK4SExNRUFAAnU4HPz8/i9tUVlYiOjoavr6+dj+OPZT6HCCEiDt27JjVZYIgWH0gjo+Pd9eQ7EL1kCWqh+xD9ZD91FgPOcpW/STGx8cHiYmJqK+vl3wcSn2+EPWjcMoN+u4Yc/XVV+OWW26xuMy8w4Gn0Wg0uOaaa/Dcc88hICAAV1xxhc1j33vvPTDG8Pbbb4uePXrsscfw7rvvDlhEOXo/WVlZOHTokOgH4t7sPS4yMhIAcOLECaSnp/dc3tXVhaqqKmRmZvY7frXIyMhAYWEhDAaDxZk2g8GAw4cPW5xVycjIwJEjR2A0Gi3euKqqqtDU1GR138OGDUNdXR1mz54Nnnd8U1F7f1eOfA+uGoOzhgwZgttuuw2vvvoqNm3aZHV9UFCQxU4p48aNw4UXXojNmzfbLMbKy8tFz37ZcuzYMYu/dXt0dnbixIkTFpdNnjwZP/74I3bs2IEzzzyz5/Kuri7s2bMHM2bMGPB+3fVzJ4TIY926daiqqkJCQkLPZd98843V68lpp53m7qH1i+qh9J7LqR6iesgV1FoPOUqsfhLT1dWFiooKTJ06dcBjqXYiSuH4qxxxWN8zGp9//jm++uorFBYWYuPGjVi0aBH++9//yjQ617v11luxbNky/OMf/0BoaKjoMYIg4P3338fo0aNx4403YtGiRVZfV1xxBfbv34+dO3fafKzB3M9VV12FxsZGPP3001b31/vsj73Hmc9O/vTTTxbHvPLKKxAEoZ+f1ODp9XocOnQIZWVlLrl/MQsXLkRdXR3+9a9/WVz+9ttvo66uDn/5y196LrvoootQU1ODDz/80OLY559/XvS+r7nmGlRXV9s8U1hTU9Pv2Oz9XTnyPTjK3jFI8bt77LHHEBoaigcffHDAY/V6PX777TfRKe9m8fHxWL9+vd1ftmYoVFdXi16+ceNG5OfnWxVMl112GTiOw6pVqywuf/vtt9HR0YGrrrpqwO/P3p87IUSddDodzjrrLHz77bfYv38/3n77bVx33XUWx2i1Wlx++eUyjdA2qodMqB6iekhsDJ5cDznKkfrJ1pK5xx9/HAaDARdccMGAj0e1E1EKmjnlBhdffDG2bNnS8++qqipccsklFsckJCSgqqrK3UNzi9TUVCxfvrzfY3788UeUl5fjhhtusHnMJZdcguXLl+Odd97B5MmTJbufu+++G//5z3/w9NNPY+fOnZg3bx78/f1x4MABFBYW9hRV9h43Z84cZGdn44knnkBDQwOGDBmCzZs3Y9u2bXb1hxiMyspKjBgxAjNnzhQ9W+QKDz74ID7//HPk5uZi165dGD9+PHbv3o133nkH2dnZFoXBgw8+iLVr1+Kmm27Cn3/+iZycHGzatAlbt24V/ZncfffdWL9+PR544AH8/PPPmD17NkJDQ1FWVoYNGzbA398fGzdutDk2e39XjnwPjrJ3DFL87qKjo/HAAw/g8ccfH/DYO+64AyEhIbjmmmtsHiNVj4XbbrsNVVVVmD17NtLS0tDV1YU///wT//73vxESEoKXXnrJ4vjRo0cjNzcXb7zxBi6++GKcf/75OHjwIF577TXMnDkTV1555YCPae/PnRCiTlqtFoWFhVi4cKHNY+65556ePi1KQvUQ1UNUD3lnPQQAa9as6Vl+XFdXh+7u7p4wKC0tDVdffXXPsY7UT08//TS2bduGs846C6mpqWhra8P//vc/bNy4Eaeddlq/PbXMqHYiiuHO7uveqquri82cOdPmrnxz5sxh//jHPzxyt77+9N6dZtGiRQwA27dvX7+3ycrKYmFhYTZ3Jhns/XR2drKnn36ajRw5kvn5+bGwsDA2adIkqy117T2usLCQnXPOOSwgIICFhYWxxYsXs4qKin53p9m4caPVOAFYbP9sZt790cy81e1AWwpL+ZiMMVZbW8tuu+02lpSUxLRaLUtKSmK33347q6urs7p9aWkpu+SSS1hISAgLCQlhCxYsYEVFRaI/E8ZMO8S8+uqrbNKkSSwwMJAFBgayzMxMduWVV7IffvhhwO/R3t+Vvd9Dfz+zmTNniu66Ys8YHPnd9ff8am9vZwkJCf3uTnPPPfew0aNHi/5+XOHTTz9l8+fPZ8nJyczPz4/5+/uz7Oxsdscdd7DS0lLR2xgMBrZy5UqWlZXFfH19WWJiIrvnnnvs2grZzJ6fu1TPAUKIa/Xdre/ee+9lZ5xxhs2a6qKLLrLY4lwuVA+ZUD1E9ZC9Y/Dkeogx1u9nwb7fsyP10zfffMPmzZvHEhMTmZ+fHwsMDGRjx45lzzzzjEM7JFLtRJSAY4zm6rlDd3c3Vq1ahY8++giHDx+Gr68vsrOzcc011+D222/HmjVrrKal06+GECKVpUuXYsOGDfj5559la55KCCGOSk9Pt2h2vmzZMjz22GNYvXo11qxZg0OHDoExhpycHNx000244YYb+m3ETQjxblQPEaJcHhtO/fnnn1i/fj127NiBHTt29DQlH+jbff/997F69WoUFBTA19cXU6dOxWOPPYbTTz/dHcMmhBDJ3XXXXfj555+xceNGKsQIIYQQ4pWoHiJE2Tw2nFq4cCG+/fZbq8v7+3aXLl2KV199FQEBAZg3bx66urqwYcMGMMbwxRdf9NvfgBBClKi0tBTp6enw8/Oz2IHnzDPPFN1qmRBCCCHE01A9RIjyeWw49fzzz6O9vR2TJ0/G5MmTkZ6eDp1OZzOc+umnnzB37lxERUVh69atGDZsGABg69atmDVrFgIDA3Hs2DHRrXgJIYQQQgghhBBCyOB4bDjVl7+/f7/h1Pnnn49169bhlVdewdKlSy2uu/vuu/Haa69h5cqVuO+++9wwWkIIIYQQQgghhBDvwMs9ACXo7OzEzz//DABYtGiR1fXmy/7zn/+4dVyEEEIIIYQQQgghno7CKQCFhYXQ6XSIiYlBcnKy1fUTJkwAAOzbt8/dQyOEEEIIIYQQQgjxaBROASgrKwMA0WAKAIKCghAeHo7Gxka0tra6c2iEEEIIIYQQQgghHk078CGer62tDQAQGBho85igoCA0NTWhtbUVISEhosfodDrodLqefwuCgBMnTiAqKgocx0k7aEIIIarHGENraysSExPB8/KcL2ptbUXE0Bko2fUfmydpCHEVqp0IIYQ4Sgn105EjRzBi+uVoL9sCPz8/WcbgaSicktBzzz2HJ598Uu5hEEIIUZny8nLZgqGIYbNhrNuD9LFzYWg4KMsYiPei2okQQshgyVk/DZ90DoSWYwjOmAN95W+yjMHT0G59AP7v//4PF110EcaPH49du3aJ3j4iIgJNTU1oaWmxe+ZUc3MzUlNTUV5ejtDQUKe/h8YOo9P3QZSDMYbNNUb8cULAPSN90dCm6/f4u3YZUdZuedmwEODFcZoBH+fKrQI6+/z5TIsCHhrZ/22J/U60dss9BOJGU4aGS3I/LS0tSElJQVNTE8LCwiS5T0ccP34cSSlp8EmZDX3ZBuzdswtjxoxx+ziI93J17QRQ/eSJ6rsEbKrUoboLqOwEUgKBy1L7nz1R18Vw007B6vLLUjlckdb/bQ80Mzy6z/q2dwzjMCeeuqQQYq/MWNsrlRwhd/3022+/Ycass+GTPAP6ys1orK9GeHi428fhaWjmFIDU1FQAQEVFhej17e3taGpqQkREhM1gCgD8/PxEp/SFhoZKUmAZtVRceQrGGJ7P1+PTEgMA4Fojj+CQ/qeDpkcZUdEnW60GEBTMD7j0IS3aiMOtgB8PJAUAyYEcxoQDwSFUUA1Gg0gQFRTiL8NIiFyk+tBsJtfypdTRc8CHpkETMQxCRw3GT78AxpZSWcZCvJOrayeA6idP8+kxPV7I10OAb89lIzXADSH9n3ALDGbwDxbQ3Sdjque5AeuhYb4MfKDphuE+ploqKZDDkGgOwSG0/JQQe4WGShNOmclRPzHGMPPcRdDGTgAfkQ3+RCGis2fDUCM+yYXYj8IpANnZ2fDz80NdXR0qKyuRlJRkcb15NhWdTSZSYIzh5YJTwRQAVHYAWQPU4EmBHADLdKrdCDTpgQhf8duY3T+cR6AGiPYDeOrhYTexEIoQT5Gfnw9j42H4Dr8CAKCNmwTdwY+wfv16zJ07V+bREUKIte8rDfh7vt7q8srOgW/LcxwSA4CSPrPQKzsHXkQS4Qu8MZFHUgAQpKU6ihBv9tlnn4Hp26GJHQuO46BNPB3dR75CaWkp0tLS5B6eqtG0CQABAQGYPXs2AODzzz+3uv6LL74AAFxwwQVuHRfxTKsL9fjoqMHisnI7CqPkAMt/R/oCY8KADoP48b2lB3GI9ecomLKhobVb9IsQTzb29PnQROWA9zNNh+e0/tDGTcQ5F14Bo5FmmhBClGd3nXUwBQDNeqBNP3AtldSrlgrSAFkhwLDggWsjjuOQFcJRMEWIl9PpdLjimpuhjT8NHO8DAOADY8CHD0XG+Hkyj079aObUSffeey/WrVuHp59+GvPnz8ewYcMAAFu3bsU///lPhIeH44YbbpB5lETt1h7V419HrNOkyo6BbzsugsMjI0xL8pICgEAqkAaFQidCgA0bNkBor4Zf2hyLyzXRo2Go24+AjHPQXfqTTKMjhBBrda063DiUR7SfgH8UMfTtAFXZCWT79H8fV6TxWJRiCqnCfORbUk0IUafgjDkA7wNNZLbF5T4JU6A7+Al27dqFCRMmyDQ69fPYcOq7777DihUrev7d3W36QDp16tSeyx5//HHMnz8fADBnzhzcfffdePXVVzFu3DjMnTsX3d3dWL9+PRhjeO+996jJGXHajDgNPizWo6bL8vJNtQzz4hniA2wXSXH+HOL8qYiyF4VQhIgTBAFzL7gc2riJ4LSWUzI5XgufxKnQH9+Kzs5OBAQE2LgXQghxn7rWU03zFybziPdneLZAQNfJhGpIEKx6SYnJov5Qita7dosKGaBnBSFu1tTUBEPNTvikzQXHWS5A43xDoYkZjckzL4ShpZyC70Hy2HCqrq4O27dvt7q892V1dXUW161atQrjxo3DG2+8gfXr18PX1xdz5szB448/jtNPP93lYyaez0/Q46VxPB7cK+D4yf4IPIAlQ/h+gynSP6UFUe06oLKRAwcgIZwhmHqlEwVZu3YtmKELmhjxPop8+DBwtXsQOnQ29Me3unl0hBAysKnRHF4ez+PHaoZbM6ltgRoNVLuZr6eQiihFdPZs8AEx4ENSRa/Xxk6E7uBHWLduHc4//3w3j84zcIyxgRdoE4fk5eUhLy8PRqMRhw8fRnNzsyQ7ztBWyOrW+6xfg47hob0CyjuAB0dwODuO2r/ZQ2khlJneCJTVcyiq5VFUw6Gq6dTvkwNDShTDiEQBIxIFRNve8JOoyLTMcEnup6WlBWFhYZK9Twykq6sLAaEx8EmYajUlvTdjawX0x9ahtroCMTExg368gwcP4umnn8bPP/+MEydOICEhAQsWLMDy5csRHR0tepv//Oc/WLlyJXbv3g0AmDBhAh544IGemc7EM7mqdgKoflK73vUTUScp6jcKqTxDVpw0u/W5u34qLS1F+pBM+A67GHyg7brIULcXxoYC6NtqodH0v4Nof7y1fqJwyoWkftJQcaVeYoVVYzdDfjNwZgyd7etLqSGUGWNAbQuHohoORTU8Suo56I32/R5jQhhOH2bE5Aw71h8QxVJrOOWTeDqMTUfgm3XpgFPOu4/+F5xvKAx1+wb1WD///DMuuOACdHR0YPjw4Rg5ciTy8/Nx+PBhJCcnY+vWrUhOTra4zapVq3DPPfdAq9Vizpw58PPzw48//ojOzk68/vrruOOOOwY1FqIernhOUP2kXhRMqY+razgKqdRNreGU6YQeB98+vTr7YoIR3YfWQhM3Efqynwf1WN5cP1E45UIUThGACquBKD2IMmvtAopreBTVciiu4dHaNfhQ8dwxBkzPonBKzdQYTjU0NCA6NhE+Q86FJiRlwOOFrhPoLvwMRw4fQmZmpkOP1dHRgYyMDNTU1OCJJ57Ak08+CQBgjOHBBx/EypUrMW/ePPzwww89tyksLEROTg60Wi02btyIadOmAQAOHz6M008/Hc3NzTh48KDDYyHqQuEUMaP6SfnkrOEopFInNYZTu3btwsRJp8FvxJXgfAdeAmFsPAJ95Wa0NdUiKCjIocfy9vqJ1hIR4kJUWJ3S0Not+qV0BZUc3livxfP/9cUXO7XYU6pxKpgCgBGJFEwR94sbcTb4oHi7gikA4P0joYnMRvakcx1+rK+++go1NTXIzs7GsmXLei7nOA7PPvss0tPT8eOPP2Lv3r0917366qswGo249dZbeworAMjKysKjjz4Kg8GAV1991eGxEELU5Y96I17a1wk6f64sSqvh5H584h0YY5g880JoYsbYFUwBAB+eCc43BOGZsx1+PG+vnyicIkRi2+qMKGsXvDaYUmsIZQvHAdXN0r1UxoYKiAru/xjGgM93aLD1CI/Gdskemnix4uJiGOvzoU10bHMPbfwUCK2l2LrVscbof/75JwBgxowZ4HnL54+Pjw/OOOMMAMC3337bc/l3330HAFi0aJHV/Zkv+89//uPQOAgh6lLSJuDenTp8VMrw94MM3UYKqOSgljpOyWMjnmHdunUQOhugjZtg9204joNP4ukw1O5GTU2NQ4/n7fWTx+7WR4gcttcZsXSHDkFa4IWxPFKDPLuflNoLgo5uIHCAWeFDYhh4jkFg9v0ufbQMiZF6JEUZIDCgrNYH1Y3antuPSBy40K5t4bC3TIO9ZcB3e4GEcAHDExhGJgmID2OgTYmIo7ImnQtNRBb4gCiHbsf5BEETMw5nzL0Yxtbjdm+N3N5uSlUjIiJEr4+KMo3DfOavqakJZWVlAIDx48dbHZ+SkoLo6GiUlpaipaXFLf0lCCHudULHcPvWLrQaTP/eWMtQp2NYlsMjzJfe+FxF7bUcQDv7EdcwGAxYcMnV0MZPAqfxc+i2fHAi+JBkJOXMgaF+v9238/b6icIpQiSyq8GIpTt10AmArhu4f4+A58fyGBKs/oLKEwoXAOg2ACX1pibmxTUc6ls5/O1CPfx8bN/G3wdIiWQobRD/PfIcQ3SYEUlReiRH6RETZkTvEx2j0nTo6uZQXu+D+hMBGJk08JK+guOWj1XVxKOqCdh4UIPwQNPOf8MTBaRHM2ho/isZwPbt2yG0lMBv+FWDur02djx0DQfw9ddf4+KLL7brNuYd/kpLS0WvP3bsmMX15sIqIiLCZn+G5ORk1NfXo7S0FKNHj3boeyCEKJvOyHDntk5UdVlent8M3L1LwCsTeERQQOU0T6nnbKGQikgpIGMeIBihiRo1qNtrE6ahu/BTHDp0CMOHD7frNt5eP1E4RYgE9jcacdcOHbp69Vxt0psCqufG8sgKUUdB5WlFi8CA6iYOR2pMTcxLGzgYBcvfxbE6DsMHmM2UGSegtOFUChQZxBAXqUNSlAEJkQb4+fR/e39fhmGJ3RiW2A09AKD/5oiHjttOnJo6OGwt0mBrkQYBPgxZCQJGJAoYFsf6DdmI9zp93hXQRI8B5zvAelIbOI0vtHGTseivt6Cp2nKXGj8/P/j5WZ9NnDFjBp599ll89913qK+vt9j2uLKyEuvXrwcAtLa2AgDa2toAAIGBthulmosu820IIZ5jb6OAQhtP7cwQDmH0/uYwT6vpHEEhFZGCseZPaBOmguM1g7o97x8BTWQ2ck5fiMaSHRbXUf0kjsIpQiTwj0I92g3Wl7cagJ9rmCLDKU8tWpo6LHfV6+ju/2dfVMNjeGL/OzllJTAU13cjKdq0XC800LmG5iWtpim76SHWIVVzB1DZaN90qE69efmfBhqeYWjsqVlVIf5ODZF4kDPHp2JLVTgQHDno++AMaQjv2I+wsDCLy5ctW4bly5dbHT9v3jxMmDABu3btwnnnnYe8vDyMHDkS+/fvxy233AKDwfSC2befAiHEOw3xM+DZMTyeyhfQ3usteWQo8MBwDjytZ++Xp9Z0zqKQijgjPEiD9sh0IMiJ+iksBcN8S6l+shOFUy6Ql5eHvLw8GI20dbG3eDAbeKzbNP28tzlxHG4eKm9B5ekFi84AHKvlUFzLo6iGR12rYz/voloegPhz1RwiQQvMsV7G7bSe+8epoKpdxyE1SkB5AwcG+78Xo8DhcDWHw9U8vt0FpESaQqqRiQJilL28nKhEeHg4SkpKLC4TO+sHmJqBfvXVV5g/fz7++OMPnHbaaT3XxcXFYfny5Xjsscd6eioEB5tmdXV0dNh8fHMfhpAQ+3bLIepCtZP3Mm8gMz6Cw6oJPB7bL6CmC0jwB5aP4uGnoWCqN0+v61yBQioip+zsbGzfvt3iMqqfxFE45QK5ubnIzc1FS0uLVUpKPE9dqw6BWg7PjOGxPF/A7kbT5TNjONyX7b6zfd5SrAgMON7IoajG1DuqvIGD0c5m5WLqWzk0tgMRJycx9Q6M3KlnNlVEEG4+y4C2LuBQFY+Dx039sQyCY99j+Qke5Sd4rM8HcpIEXDFNZGofIQ7gOM6hRpppaWnYs2cPvv76a2zZsgWdnZ3IycnBVVddha+++goAkJOTAwBITU0FADQ2NqK9vV20b0JFRUXP/RLPQ7WTd+q7s3FaEIfXJvB48ZCAW4fyCPfyPlPeUtu5C4VURA48z1P9ZCcKpwhxQu+iKkDDYcUoHisOCOA54KERHDS8a4oqby5WXv/Rx+HZUWICfBmGxgrIjGOo1XWgWVDGdtW9l/xNGiJg0hABOgNQVMPh4HEehVU8OgdYqthXfJhzyxAJGSytVovFixdj8eLFFpdv2bIFADBr1iwApllZqampKCsrw+7duzF9+nSL48vLy1FfX4+0tDTF7zRDCLFP32DKLMKXw7NjBtfjRc28ubZzNwqpiNJ5a/1E4RQhgyRWVPlqODwxigcDoJUgmKJCxVpCuIC6VseLVg3HkBrNkBknIDC4A1GhRrgoO5RE75DKTwvkJDHkJBlhFIworedw6DiPg1U8GtsH/iZGDNDwHQCMAmjnP+IW1dXV+OKLLxAVFWWx+9/8+fPx5ptv4osvvrAqrr744gsAwAUXXODWsRJCXMNWMOUNqLZTDgqpiJp4Q/1E4RQhg9BfUeUzyMTDm4sVo2BaqsdxQHLkQDvnMewrt+9+Y0MFDI01BVK8fxt8VPiK17d5uoYHMmIZMmKNOG+sETXNHA4eN82qOt5knS5FBDHEhQ0cTv3jZy38fdDTUD2y/w0FCRlQfn4+MjMz4e9/qjt/RUUFLrnkErS2tuL9999HQEBAz3V333033nrrLfzjH//A5ZdfjqlTpwIAjhw5gmeeeQZarRZ33323278PQoi0vCmY8ubazhECA8oaOByo4FHVxEHDA7NGGDEkxj2z2imkIkrizfWTCj+qESIPxhg4jpO8qPLWwuVEm2mnvKJaHkdrOXTpOQxPEPDXM/rvjZQZZ3uJWqCvKYjKjDMt2Ws0ytM/yhXEdvjjOCA+nCE+nOGskQKaOmCaUXWcx7E6DgLjMCJBwEBtzxragKqTwdaxOh7/22taCjg80bT7X2I4G/A+COlr5cqV+PrrrzFhwgQkJCSgtrYWmzdvhk6nw+OPP45rr73W4vjs7Gy8+OKLuPfee3HmmWdi7ty58PX1xY8//ojOzk689tpryMzMlOm7IYQ4S2AM/yjowoIkDgEe2OTcW+s5Z1Sc4LCnjMeBCh6tXZZ/E8W1PC6aYMDkDPe1Jmho7aaAisjOm+snCqcIsUOjjuHuHTr8Nc20m4xUvKmQ6ewGjtZxKK7hcaRGfDnasTpuwOVloQGmGVG1LTw0PENaNEPmyd5R8eEMZW2mEKfRQzd8EgupzMIDgamZAqZmCujsBg5X83bNmjp03PoHXt3Mo7oZ2HRQg7AAhuGJAkYkCkiPYdDS8j9ih4ULF6K6uhp79+7F77//joiICJx77rlYunRpT6+Evu655x5kZmbixRdfxG+//QYAmDRpEh588EEsWLDAjaMnhEjt1YN6fHiU4Zc6hqdG8Yj0U29A5U31myvtL+exrch2q4Zvd2nBcQZMGuLegAqgWVREPt5cP3GMMWV0AfZA5h1nmpubJWlA1tjhoZ+2Fa5Vz3Dzli4camHw4YBlo3hMiaJ+UgMxCkD5CVMYVVTDoeIEB4aBf243ztIjPbr/l6WDxzloeSAtmuF4p+fMjhoMsZDKUf/apEVJvX2Jk78PQ1a8gBGJDMPiBfj7OP3wqjQtM1yS+5H6fULMrFmzsKUqHJrYMYO+D2NTCVI6fkdxcbGEIyPEmiueE1Q/ye/zEj2e3a/v+XesH7BiNI8hwcoPqDy9XpNTeQOHf27sv5DgwLBwkhET0+XZ3IVCKmllxQVKcj/uqJ8iIyPRnr4YfFDcoO/DcHwHLhgb2LPLHukfzZwipB/tBobcbTocajGFJXoGLM8X8OhIHmfEDL6g8sRChzHT8rCiGh5FNaZlZTqD4z+j4hoe6dH9f5AICGkDABzvHNRQPYp5JhUwuKCqXQeU1tv/e+rSc9hXrsG+clOT+YxY1tOnKjRg4NsTQgjxLr/XGvH3XsEUANTqgHt2C3gih8eESOUEVJ5Yn8lBYEB1E4fEiP5PNiZHMoQFMjR32P4bYODwzR8acAAmyBBQ0UwqQtyHwilCbOg0MNy5XYf9TZZvhAYGrDggYNkoHtOiHS+oPKnw6dIDRTUcjtTwKK7h0dRPcWGvY3Xi99E7hCHi+lvyZwvPAeeMMeLgcR5l9fbNbjMzMg5HTv7+/283kBRhWvo3ItG+JuyEEEI8m15geHqvDmKRgl4AfGVcJu5J9ZgSCMx0siu/gseBSh7tXcCD8/UI6efEFccBo5IE/H6k/12YGTh8/YcGHAeMT5NnBhWFVIS4HoVTLpCXl4e8vDwYjTSNXM18eCDKR/wDdpw/MCzE8fv0tELoeCOHf29zfl1XQriAzFiGoXEC0k4u6VN7GFVY1wEAyI6RZvqyIxwJqQJ8gelZAqZnCWjXAYeqeBw6blqKqTc6FjZWNvKobOSxt4zh7nP0A9+AEEJOotrJMzW1d+O5MTwe3y+gos9s5/uHcxgV7p5ZU55WfymFwICSOg4HKk1Nzdt0lr/PA5U8pmb2HyaNShbwZwmPEYkCRiULON7EYcMB64+oDBy+2mkKqMalyhNQARRSEeJKFE65QG5uLnJzc3vWwhJ1amzvxv3DOfjwwLqqUyFVrB/wwjge0Spu5CmV1CgGHw1zOMQI8bfcVS/45E6pJa3tqOxwwUDdyBxK9f63HAEV4PhMqiA/YGK6gInpAroNQHEth4JKHoVVPDq67f8dj0iUr2gkhKgT1U6ex7y7cVIgh1UTeDyZL2B/s+m6a9I5nBXnmmlTFES5ljmQyq/gUVBpHUj1ll8xcDiVHMnw8AX6ns1WshMYAIPNgOrLHaYlfmNlDKgACqkIcQUKpwgRYS6oeI7D0izTtPNvKxmifIHnx/KI8/fc5XztOtP2vUU1HOaNMvYER2K0GmBIDMPh6v5/Hj4ahiExpkBqaCxDbCgDd/ImJa3tqPeASTZ9Q6m+18kVUAGDW+7nqwVGJDKMSDRCYEaU1XM4eJzHweM8TojstNibPeFUdROHkACGID+7h0QIIUQlzHWUWagPh+fG8nil0LR4/Ko0aU7wqaW2UjtHAqneSus5tHZiwKV92l53V9LajiHJwGwWgp8LxAOqL3ZowHPA6BT5T4ZRSEWIdCicIqSPvgUVx3G4PRMI8wFmxHBICvSsYMpgBEobTu2qV9V0qu/Q0Fg24JmpobECDldbnv3kwJAQwZAZawqkUqMYtL3aCah9yV5v/YVSfY+TM6ACBhdSAaa+VOkxDOkxRpw7xojaFg4Hj5vCqspGy999iD9DUuTA/aa+/lOD440cUqMZRp5sqB4V7NCwCCGEKFDfOsrMl+fw4HDAyEy1lbOUXFt5gt6B1IFKHu12BlK9MXAoOM7jtKH915JidWFGSisYC8XGg9b9qBg4fL5DA45jGJWsjB6XFFIR4jwKpwjpxVZBxXEc/po+uEJKacUTY0BtC4eiGg5FNTxK6m33Fiqq4TA2tf/7y4wzFQWhAaYgalgcQ0asYDEjxpPCKDN7Q6m+t5E7oAIGH1IBpjOccWGmhuezRgho6QQOHjf1qTpayyE7QQA/wFOlpRM9oVZpPYfSeh7r9gGxocLJ2VoCEiPYgPdDCCFEXTiOs5glM1hKq608hVEASuo5HHAikAKAAB+GEUmmHlIZsbbDo4Hqw4yUFggsFL8csg6oBMbhs+1acDAgRyEBFUAhFSHOoHCKkJNsBVPOUErx1NYFFJ1cqldcw6O1y75io6iGB2NG9HeCMzaU4e553YgOgcVxnhhImQ0mmOp7W7WHVGahAcBpQwWcNlRAlx7QGwa+zcHj4n1Galt41LYAvxzSIMSfndz5T8CQWNbTi4IQQohyuaKW6ksptZUn+nG/ZsCd82zpHUgNjWXQ2HjfdqQ+5DhgTo4RjAG/FooHVJ9u1+JyzoCRScoJqAAKqQgZDAqniFdjjGFvo4AkHzs+UTtIzuJJbzTNSCk6uVSvunlwn+xbuzjUtQKxobaP4Tgg5uT1nhxIAc6FUmL3pYSACrD8vTkTVPn7mL4GYiuc6q21i8OOoxrsOKqBn5YhK17A8ESG7ATBrscghBDiPodbBOh13YgdRE9OR1Aw5VrZCYJD4VSAr2lpvnmGlBSBVF+lbe2YOyoIjAG/HbYeGwcoeqY1hVSE2I/CKeK1GGN47aAe7xcbkJvJ4aJk9U/N+LOEx74yHqX1HAyC8+/U4YEMLZ0cYkMHPyXbE0gZSvW9X6UEVGZSzKbqj84AHKt17G9TZ+Cwv0KD/RUAz5ma64842acqXFk/PkII8TrVnQJu29oFAHhqNI+sEAUnBV5MYAOHOOkxDMF+rN+G5/YGUoB0NWJpWzvmjQ6CwGARnml4hiumGjA8UVmzpsQ0tHZTQEXIACicIl7rn4dNwRQA5BUxdAsCFqdKE1DJdWav4gSH4trBfw9+WoaMWPOueqYG1X2X9HlDGGXmqlCq72MoLaACXBdS+WmBu8/R9+z8V1p/qgG/PQTGobjW9Hf+3z1AYoSAEQkCzswWLJruE0IIcb12A0Pu1i6cOFn23LdbwN9G8pgWLX1ARbOmHGcUgGMnm5oXVvG4c54egf3kIzwH5CQL2F5s+YYa4MswMknAqCT3BVJ9lba149wxQWAAthzRQMMzXDnNgOwE5QdTZjSLipD+UThFvNK7R/T452HLpXxvHzUFVFelOxdQuap4Ysw6KOorM07AzqP2f0LnwJAcyZAZZwqkkiPFCw5vCqQA94RSfR9PiQEV4JqQKjIYOCNLwBlZAtp1QGGVqaH6kRrbzfltOd7Io0PHYdYI+beTJoQQb2IQGJZu78TRXiWCTgCW5wu4NZPDXySckU7BlP16B1IFlTw6uk+9rx6s5DFxSP/vlzlJpnAq0PdkDyk7AinAPbViaVs7zhsTBJ4DMmIFZMWrJ5jqjUIqQsRROEW8zoEmI14/pBe9bk0Jw/QYhrQg+XfmExhQ3XRqVz2tBrhmev+9sTJiGDiwfmeiRAaZgqjMOAFDYhgCbLwvelsgBbg/lOr72EoNqADXzaQK8gMmpAuYkC5AbwSKazjT7n9V9u8SNCJRGDC4JYQQIq3VBV3444T15QzA9gaGC5MYNPTi7BbmQGp/BY+DfQKp3vIrBg6n0mMYlpypx5AYZQRSfZlnUHkCCqkIsUThFPE6sRoDbh7K4a1iy7MtPICHR3KyBlPNHZa76vUuLjQ8Q7cB8O3nWRvgCyRHMpSfOHU7f5+TS/ViBQyNMy3Vs8UbAykzOYOp3mNQckAFuLYnlY8GGJ7IMDzRCIEZUd7A9Sz/a2iz/bwckTjwrKmDxzm06zgMTxAQ7C/lqAkhxPvUtepwYRKH/U0MfzRaXpcWCDyew0sWTNGsKXFGAThayyG/sv9AqrfiWg4d3RhwaV9mXP8zkuSuF0ta213WG1MOFFIRYkLhlAvk5eUhLy8PRqNR7qGQPsxbHC9K4eHLC3jjiOnNlwNw33AOs2IHNwV9sIWT3mgqLEy76vGoa7VdWBgFDiV1HLIGWFufFS+A54ChcQKGxTEkRrhm9xRPoYRQqjc1BFSA6xun8xyQFs2QFm3EOaONqGtFT1BVceLUH3SAD0Na9MDT+n8/rEFJPQ8ODClRpobqIxIFRIe4ZPiEEAdR7aQe5loqSMvhqdE88o4wfFdleh2O8AGeHsMjSEvBlCv0BFIVPAqO8+i0I5DqTWCmkz4T0x1fCq+0mtGegKq8gUO3ARg6QNimFBRSEW9H4ZQL5ObmIjc3Fy0tLQgLC5N7OOQkczFldmESDx9ewKuFDHdmcZgb797d+ipOcPh4ixatXfYXFkW1PLIS+i/czxop4KyRtosOpRUXclFaKNWbWgIqwPUhFWDqtRYbCsSGCpg5XEBrJ3CoyhRUhQYMvOygXQeU1pueZwwcyho4lDXw+GE/EBNyKqhKimSK3o6aEE9GtZM6aXkOd2UBiQGm1ghPjeYR508vpFJyNpAyC/IzNTVPCHMsqFFy3dhfQFXWwOGD37QQGPDXMwwYGquOgAqgkIp4LwqniFfoG0yZnZfAY3QYQ3Lg4AupwZzVa9cBH23Ros2BYAoAimoGN04lFxbupuRQqjfzONUWUgGuDaoAICQAmJwhYHKGAGZHrVlYxdvsw1bXyqGuUINfCzUI8WfIThAwMtHU/JV2/yOEEEti9RTHcVicymFOPEOEr3TBFM2aAnaV8Fi3T+N0IDUqWUB69MAnc8zUVDeKBVRl9Rw+2KyFzmD6uX30uxZXn2FAhooCKoBCKuJ9KJwiHs9WMGXm7mCKMeCrPxwLpjScaSlSZpwAgcGu2R1qKizcQS2hVF9qmkVl5o7ZVGb2tDQ5eNy+ary1i8MfxzT445gGvlqGYXGmnYqy4wWbGwcQQoi3GKieomBKesF+zOFgKsiPISdJQI6DgRSg3tqxd0BVUs/hw81adBtO/dz0Rg5rftfimukGDIlRV0AFUEhFvAeFU8SjDVRIOWOwhdOOozwKqwauFGJCTu2qlx7D4DfAs1WtBYU7qDWYMlNjQAW4N6SyhTHTTEVHdRs4HKjkcKCSB88xpEebgqoRiQLC1ferIIQQp7iynuqLgqlTMuIY/H0YuvT9B1TmQGpUsqlmdGSJuqfUj+aAal8ZbxFMmemNHNZs1uKaMw1It6NXpRJRSEU8HYVTxCP9UW/ED+XduHEoB94F2xgPtnCqbQHW7RVfKxToyzA0TkBmnGlnvTA7PgB7SkHhKmoPpXpTa0AFyBtScRxw81kGNLYDh46b+nWU1nMQmP2vCwLjcLSOw9E6Ht/tARLCBWTFM0QFU18VQohnY4xhb60OSU7MMieWDAJwtMZ08uP8sUb4+dg+VsubdqTdXWpdO1IgZa2ktR0Lxgeh2wDsKbP+mXUbTbOqrp1usGszFaWikIp4KgqniMfZc8KIO7fr0CUA7Ubg7ixIGlANNpgyGIHPtmthEKzHEuzHcMdcvV1b3HtqQSEluUOpotpTj58ZK12gpOaACpA3pIoIAqYNEzBtmICObuDwyYbqR6o5dBsde31o7eIQ4Tk7WBNCiE15BV348BjDAyMGv6OxIzx11pRBAIprTE3NDx7ne2ZCZcQyjE3tf+e8UcmnwilnAinAO2rIsrZ2XDw5CAID9pWLBFSGkwHVmQakRqk3oAIopCKeh8Ip4lEONBmRu80UTAHAuioGvQDclw1oZN6G68d8DaqbxQu7iycb+g2mvKGYkILcoRRgGUyZ/00BlSW5l/sF+gLj0gSMSxOgN5p2QTp4nMeh4zzadAO/TgxPEFwyI5MQQpTky+IuvHPU9OH92QKGqk4Bl6dy4Fz0+udpwZStQKq3AxX8gOHU0DiGaZlGjEikQMpeZW3tuGRyEBiA/SIBlc5g2slvyZkGpKg8oAJMzx0KqIgnoHCKeIzDLQJu26pDh9Hy8p9qGLoF4OERpi2PnTHYwulINYctR8SX803LNCIr3vKN0RsLCWcoIZQCrIOp3pdTQGVN7pAKAHw0QHYCQ3aCEcIEIypPcCg4GVTVtYq/XoxI7P+DhBJpIuLgk5Q56NtzPnqgVMIBEUIU7ZeKLjx/0PK17r1jDMc7gbuyAB+ZT/gplT2BVG+HqznoDOi3r6iWB+aPM9o+wAZvryXL29uxaHIQGAPyK8QDqvd/0+K6GQYkR3pGQAXQLCqpaWNToAlPHfTtWftRAMr4nKIGFE4Rj1HY0I1OG+/dGs6+Xb36M9hgyigA/7db/KkWHyZg3mjToL29iBgMpYdSfY+hgEqcEkIqwLQLZkoUQ0qUEeeMNqKu1dSn6uBxHuUNHBg4+GqZ6raiJoQQR9R2CliWL0Av8lK3vpphXjyH0eHSPqaaZ02ZA6n9FaYTGwMFUpa35VBYxWNMijQnPaiWtFTe3o7FU4LAmKnHV189AdWZBiR5QEAFUEhF1I3CKeIR6lp1mBrNYfkoHk8dENDd6z1+ejTw4HAOGifSKWeKJg0PXH2GHp/v0KKq6dQbo5ZnWDzFiMoOKiQGQ03BVO9jKaCyrXdRLXdQBQAxIUBMtoAzswW0dQGHqnh06EyzrQghxFMJ+m7MiePwZYX1h/XbMjmMDpd21pQagymDESiq4ZBf6Xgg1VuwP0O3wfnxUChlW3l7Oy49LQifbteiQCSg6tJzeO83La6fYUBihGcEVACFVESdKJwiqtd7e+MpURxWjObxxH4BOgE4LQp4ZCTvVL8pKYqm2FDglrMMWJ+vwe8nl/edO8aITr7N6fv2NkoJpQDHgqnet6GAamBKmU1lFuwPTBqivuV8hBDiiLpWHTQch1syOSQECFh9hMH8yveXJA4XJbu+KbqSVTZy2FrkXCAV4m9qap6TLCAt2vEeUmYUSNmvJ6DapsXB4zYCql9NS/w8KaACKKQi6kLhFFG13sGU2fgIDs+N4fFVhYCHR/BO9UWQ8myeVgOcN9aIYfEC9lfwOG2ogFLKpuympFAKGFww1fu2UgdUACikIoQQMmh9a6oLk3jE+zM8UyBgXDhwc6b0fabUNmuqqQPYU+r49NkQf4acZAGjkgSkOhFIARRKDZaWBy6basC/t2pxqMo6oOrsNYMqIdyzAiqAQiqiDhROuUBeXh7y8vJgNDrevJDYTyyYMhsVzmFUuDLX3mTGMWTGGam4sJMnhVJ970fKgArw3FlUAIVUhHg6qp3kZaummhLFYdV4HvEBcKo9ghi1BVMAkBXP4Kth6DYO/LOgQEpZSlrbkR4ShMunGvDJNi0KxQKqbtMMqutnGBDvgQEVQCEVUTbvnpvrIrm5uSgoKMDOnTvlHorH6i+YkooriyYqMgZWWNfhscGUq+4PUF6YJ7WS1nZ6/hDigah2ks9ANdWQYA4BGs8OpvRG4OBxDvoBslHTDq+2l3iH+DNMyzTixll6PDBfjwXjjEiPcW7pHr3nSaektR1aDXDFVAOy4sV/jx3dHN79VYuaZs/ekbKhtVtxz0NCaOYUUZWWboaWDh38JC6S+qIXa3kpMWBxRZBkvl+aQeU4mklFCCHOc8fJPqXSm5uan9xlT2fgcNXpeoxI7H/GzKhkAfsrTs3OD/FnGJVs6iGVGuXcDCmATmC6mnkG1RXTDFi7RYsjNdZzNYL9GYL8PHPmVF80k4ooCYVTRDVa9Qw3belEkAZYPpqX/CyemTPBlMAwYFFCRYdt3hRK9X0MCqgGh0IqQggZnLLGLgRo3T87RM4TgOZAan85j8IqUyDVW34FjxGJ/U+fGhbPEB3MMCxewKhkASkUSKmOOaC68nQDPt6iRVGvgCouVMB1MwwI9pdxgDKgkIooAYVTRBU6DAy3bunE4VbTvx/dJ+Dp0TwCJS6qnCmYGAM+2apFdAjD2TlGaEUWzVLxIU6JoRTgnmCq92NRQDV4FFIRQoj9mroZbv9TwIwYDtcO4cBL3E/KFjmCKb0ROFJtmiElFkj1dug4D73RCJ9+2pb6aoG7z9FDih8Z1YXyMQdUV51uwEe/a1FcyyM+zBRMBfnJPTr5UEhF5EThFFG8TgPD7Vs7UdBy6rL8ZuCRfQKeGc0j2EeagsrZgmnHUb5ne9riWg6XTjEgOkSKkXkupYZSgHuDqd6PSQGVc3oX+hRUEUKINZ2R4c5tnajsBD4pYzjeCTwwHPB1ccsEd+odSB2q4tHdTyDVm87AoaiGG3BpnzPBFAVSytE7oPpxvwZnjTR6dTDVW0NrNwVUxO0onCKK9+ifXdjbZH35wRbg5UIBT4xyflc+Z4OpmmYO6/aeGsfxRh55P/lg/jgjJqYL4DgqRnqjUKr/x6eASho0m4oQQiwxxvDIH13Ibz512S91DHU6huWjeIT7ui6gcvWsqcEGUn0V1Qy8tG8wqA5UJnNAtWA87RTaF82iIu5G4RRRtLpWHS5L5bCrkaFZb3ldtB9w01D5N5zUG4HPd2hgELg+l3P4KV+DnCQBNToqSABlh1KA/MGUGQVU0qKQihBCTF7a34WNtdazggpagLwjDI/mKK+fZ3/MgdT+k0v2BhtIhQUw5CQLGJ0sIClSukbYFEipgzmgIuIopCLuQuEUUSzzDjIZwRxeGsfjwb0CTpysbSJ9gRfG8kgIcL6IcrZgWr9fg+pm8ZDskskGCqZOomDKMRRQSY9CKkKIN6tr1SHBH9BwgLFP/hLnB9w+TH3L+g5U8Phi5+A+zoQFMoxKMjU1T4p0vql5bxRKqY89ARVjwO+HeYxIEhAV7KaBKQiFVMTVKJwiitR3a+PUIFNA9dBeAToBeH4sj+RA+YOpw9UcthSJLys8PdOIYfEMJa1OPYTqKT2UApQXTJm5KqACQCEVKKQihHgPc101L4FHjD/DU/kC2k+uYgrSAE+P4RHhoiV9rlzONzxRgIZnMAr2jb13IJUcySRpam5GgZT69RdQMQb8dECDXw5psLWI4YZZekR6aRlBIRVxFQqniOL0DabMkgI5vDSeR5sBSAuSP5hq6wK+snG2Lj5MwNzRRq8uVCiUkoYrAiqAZlEBFFIRQrxD37pqfASHVyfweHS/gHod8MQoXpK6Soyr+0z5+wDD4hgOVdkef3ggQ06SgNEpApIipA2kAAqlpCb3STSxgIox4Md8DX4rNJ2Qbu7k8O4vPrhhph4RXlxCUEhFpEbhFFEUW8GUWZw/hzgJHsfZYokx4Os/tWjTWVc4Wp7h0tMMqOzwzmJFDaEUoI5gyowCKteikIoQ4qls1VWpQRxem8DjUIsprHIFVwdTZjnJAg5VWbZXCA9kGJV8cskeBVKqoZQasndAxRjww34NNh+2XCnR1MHhHQqoAFBIRaRD4RTxOlIUS9uLTY03xZw31ojYUHjdcj6lFBT2UFMwZUYBletRSEUI8SYRvhymRcs9CueNOLm0L8QfLg2kAAqlXEWshpS7PjEHVHojUFIn/sfU1MHh3V9NAVU4lVIUUhGnyb/VGSEA1h7V41B9l9zDsEtNM4fv94n3mRqeIGBKhuB1xYtagqmi2g5VBlNmrhq7Wn5/7lLS2t7zRQghajXQbHRXctesKcC0tO/OuXrcd54e544xuqSXFL0nuE5/NYjc9UlJazt8tcC1ZxqQFCGIHtPYbppB1UylVI+G1m63vgYQz0HhFJHd24f1ePGAHvftFlDbJd32vWKcfaHUG4HPdmhgEGm8GezP8JdJBpS2eU/xUljXIXvhYC81h1K9UUDlXvSBhBCiRrUt8p3wk+NDaXQIKJBSGbXUkCWt7QjwBZacaUBiuO2A6t1ffdDS6ebBKRyFVMRRFE4RWX1YrMfqQj0A4HgXcN9uAVWdrgmopHhx/HG/BjXN4k+bSyYZEOTn9EOogloKCjM5gqmS6haUVLe45L4poHI/+pBCCFGLDwo7sTxfQKfRtSf8PBG91ruHI/WGEmqTnoBqhgEJNgKqhjbTDCoKqKxRSEXsReEUkc2/j+nxSoHe4rIanSmgquiQtqCS4gXxcDWHrUXiy/lOH2bEsHjm8QWNGkMpuYIpV6OASh70wYUQomTfl3bhtcMMWxtM9VSDzr0BlSs+gG46yON/ezTocNEqRZol5V6DqTOUUJuUtLYj0Be4boCA6t1ffdBKAZUoCqjIQCiccoG8vDyMHDkSkydPlnsoitVtZPj0mF70uoZuoLhNumJKihfCti7gq53i+wfEhwmYN8ro0UWN2kIpQL5lfH2DKVcGVRRQEUI8BdVOzttR1YUVBwSYPzYXtQF37RJwTMKaqj+u+ODZ2gn8ckiDLUUavPy9D345xENvlOa+KZByL2drSaXUJoG+wHVnGhAfJh5Q1beeDKjU0UqXEEWhcMoFcnNzUVBQgJ07d8o9FMVq7ujGC2N5DA22vu6ebA4zY6X505SiUGIM+OoPLdp01s0MtDzDpacZoBWfUKV6agylAOUEUwNdLgVXBlRq/N0TQtSJaifnHKrvwuP7BXT0CW7qdMA9uwWccPEMKlfNiNhQoIHeaKq/uvQc1udr8cr3PjhSPbgGUzRLSh6eUk+Y/24C/UwzqOJsBFR1rRze+1WLNgqoCHEIhVPE7cy7x4T7cnhhLI/skFPX3TmMw7kJyvqz3F7M43C1+JjOG2tEbKhnbi2s1kJCacGUvdc7w5Xfs1r/DgghxFvUterQ0A3oxD8n4+JkDpF+EnYLd5PaFmBXiXX91dLJOdzjkwIpeUh9oksJNYn57yjID7h+hgGxoeJPvNoWHu9SQEWIQ5SVAhCP13db4xAfDn8fyyMnFLhlKIcLkqT7k5TiLF6XHlifLz4taniCgCkZgscVO2qdMSNXfynA/uDJHb2oXEGNfw9Efps2bQLHcQN+PfXUUwAAQRDw22+/4cEHH8TEiRMREhICPz8/DB06FLfeeiuOHTsm83dEiPKY66qsEA6vTeCRHGB5/dlxHK5Od20w5apZU+vztRCY9djHpBiRGDHwTDCaJSUvV9UOSqhJHAmo3vtVi3YX9Usjnsmb6yfxJjqEuEDfYMosSMvhxXE8tLx0xZNUhZK/D3DjLAM+265FXeup8QX7M/xlkkHSbYvlpoQ3+8GSK5QCHA+cSqpbkB4fKvk4imo7kBkbKPn9mhXWdSA7xnX3TzxPfHw8rr32WtHrjEYjPvroIwDAmWeeCQA4evQoZsyY0XPb2bNnQ6PRYMeOHfjnP/+JtWvX4n//+x+mT5/unm+AEJVJCODw6gQeTx0QsLcJGB1mapXAubBYcVUwVVLP4eBx6xOWGp5hzqj+m05RGCUvd9STSqhJSlrbkR4ShGB/U0D1zi8+Fp8VzGpOBlTXzfCeXb2Jc7y5fqJwiriFrWDKTInBlFlCOMNtZ+vx/T4Ndhw1zaJaNNn0BuMJBZCaQylAXcGUq1FARZRk+PDheP/990WvW7duHT766COkpKRg1qxZAACO4zB37lw8/PDDOOuss3o+UOt0Otx66614//33cdVVV6GoqAg+Pj5u+i4IUS6x2irEh8OzY3isKWFYlMLBV8L6yl0YA37YJz5rfepQAZFB1pd7Qj3mCdReUzrKMqDS451ffVAvElBVN5sCqptmGeBHb19kAN5cP9GyPuJSeoENGExJyVVn8Hy1wIUTjLjqdD1mjzQgM46pvhBS6/I9MzmX8QHOBVNq7T8FeF/hSVzDfNbvqquu6imihg4dih9//BGzZ8+2mOnh5+eH1atXIywsDGVlZdiyZYssYyZESfqrrXx4Dtdn8Aj1UedyvoJKDuUnrD+i+PswzBxuOWuKlu0ph7vrA6XUI+a/v5AAU0AVFSy+5DQjlsGXpoUQJ3l6/UThFHGZ/Y1GXPBTJwpb1LuFcV8jEhlmj7TRcVRFlPKGPlhyhlKANOESBVTEW7W3t+Pbb78FAFx99dV23SYgIABZWVkAgOPHj7tsbISogTtP+tniqprLKAA/5ot/gp853IjAXsuiKJRSBjlPdiqlHjH/LYYGADfMtA6opmcZcd4Yo0e1AyHu5w31E4VTxCUONQu4fZsONTrgob0CDjS7J6ByF7UWRGqfLQXIv4xPylCJAirijb766iu0t7dj/PjxGDlypF23EQQBpaWlAEz9FAjxVkoIplzpj2M8GtqsP8GHBjBMzTx1clCtdZinUUItoIQxAJYB1fUz9IgMMn32OTPLiHNGUzBFnOcN9ROFU0RyRS0CbtnShTaD6d8dRuCRvQL2NrouoHLHrCkzNRZEnhJKyR1Mqel+AQqoiLQYY2hpabH40ukc/6BsnpJu71k/APjkk09QW1uLmJgYnH766Q4/JiGeoKyxC88VCKjpkveEn6tqLp0e+LlAvNfUnBwjfMSvIjLwhLrSFcyfEcICgetn6nHuaAPmUTDl9QRBoPrJTrTylUiqskPAzVu60GKwvLxLAB7dL+CV8TyGhUj7Ci1VkWQUAI2HxbWeUjh4wjI+uVCTdAIAweHBCE6IGvTtOw2haNrThLCwMIvLly1bhuXLl9t9P1VVVdiwYQM0Gg2uuOIKu25TXl6OpUuXAgCeeuop+PnRdkfE+1S3dOHZAgHbTwB7GhmeGs0jO9T9n3hdeTLwt8MatOusv6f4MAHj0mjWlFIosbZUUi1ibpIeHghMz1Z/KxBvFx4dDt+YwddPLdVBKCz8k+onO1E4RaTV3Y3sUGBbg/VVEyOAISI7rDhDqiJJbwTe2qjFyEQBM0cIsLW5jVoKIiUWDoPlDcFUSXUL0uNDXXb/7gioACimMCSuER4ejpKSEovLHC10PvnkExiNRpx77rl2TS9vb2/HxRdfjPr6eixcuBC33nqrQ49HiCeoa9XhH0UM20+Y/t2oB+7fI+DhETzOiHFfQOXKYKq1E/j9sPgZwnmjjTbrMuI+Sq8tlRhQEQIA2dnZ2L59u8VlVD+J87B5IkROda06+Go4PJ7DY3q05XWTI4FHc3hoJawupCySftyvQVUTjw0FWryzSYtGkQxKDcGUp02z9oZgyl2P5Y6fpSf97RFrHMchNDTU4svR4sqRKel6vR6LFy/GH3/8genTp2Pt2rWDGjchavd1hYBvKy2X8ukE4KkDAtZXe8bMjA0FGuiN1jViRqyAYXGnvnc11GKeiN7fHWfv32pHN/DtLg10ehcPiMiG53mqn+xE4RSRRO8GnT48h0dH8jgr1lRkjAsHnsjh4avQYOpwFYetRacaGZQ28HhjvQ/2lqnr6eFJhYPc/aUAeZbyUUBFPNnBgwexe/duBAcHY+HChf0eKwgCrr32Wqxbtw7jxo3Df/7zHwQEBLhnoIQoSFVzF9ZXi/eYCvMBRoW5Z0qRK2dN1bYAu0rEa65zqV+P7NT0vq60sQ4UUHXogPd+1WLnUQ0+/F0LnaHfw4mX8qb6SV2fvokiie0co+E5PDiCw40ZHJ4czcNPo8zKoq0L+PIP69WtOgOH3wp5GE+ekFTymTqaLSU9OXtMUUBFPNWaNWsAABdffDECA/tfenHnnXfik08+QVZWFn744QeEh4e7YYSEKEtdqw5ansPKcTwmR1pe58sDT47mkRDg+vrK1ZvOrM/XQmDW38eYFCMSI2jWlFzUWl8qbcy2/m7bdcC7v2pR1WT6OF5az2PNZi26KaAifXhT/UThFHFKf1saazgOl6byCJA4mJKqSGIM+OoPrWjzTS3PcOlpBmh45RZDai0a+uPtwZS7UEBF3I0x1jOtfKAp6Y899hhWr16N1NRUrF+/HrGxse4YIiGK0ru+CtRyeGoUjwWJp+qVh0bwGCFDQ3SpldRzOHjc+uOIhmeYM8oow4gIoP73cKWNv+9nCXMwVd1s+bdfUs9jze8UUJFTvK1+ooboZND6C6ZcRcqzd9uKeRyuFs9nzxtrRKzr+lM7RWlvuFJQQigFKCeYcnWDdMD1TdIBZTUnJfL67bffUFpaiqSkJMyePdvmca+88gqeeeYZxMfH46effkJqaqobR0mIMtiakX7nMCAxwHRy7Uw3NUJ35awpxoAf9mlEr5s6VEBkr37SSj1R6Gk8scZUit5N0ju7gQ6Rk+MAcKyOx0e/a/HXMwzwpU/qXs/b6if6kycOa9Mz/H5chwmR7j1jJ2WBVN3M2SyIhicImJJhWs+npGLIUwsGCqbEUUBFPIm5keeVV14Jnhc/KbBnzx7cd999AIAhQ4bgmWeeET3uxhtvxPTp010zUEJk1t+JP47jsCjFM3bnAwAGYHyagMZ2Dm29Pqj7+zDMHE6zptzN0+pMJdYf5oAqOgS4foYe7/zqg7Yu6+f00ToeH28xBVQ+4h9XiJfwtvqJwinikE4Dw21bO1HQDDw0gsNZce5ZGSplgaQ3Ap9v18AgWL8ZBPsz/GWSARxHwZQ7KCGYUloo1RsFVMQT6HQ6fPHFFwCAv/71rzaPa2pqAmOm/jJbt27F1q1bRY+bNWuW4osrQgZDjhnpcuI5YMpQAWPTBPx+mMfmQg26jRxmDjcisNdGVkqqxzyRp9aYgDLrD3NAFRNqCqje/cXHIpw1K641BVRXnU4BlbfyxvqJwility4jw+1bO5HfbPr33w8y6AUB8xJcG1BJfebux/0a1LSIj3nRZAOC/JRTCHlqwaCEUApQdjBlRgEVUTs/Pz+cOHFiwONmzZrVU1wR4m2UFky5etZUb35aYPZIAZMzBGw5osHUTMFtj+3tPLXO7E3J9UdsKHD9TD3e+cVHtAduUQ2PtVu0uJICKq/kjfUTNUQnduk2Mty1rRN7mk5dxgCsLGT4b6V6iojDVRy2Fom/up8xzIjMOGU8sT2x2bkZBVOOc8dYqUk6IYTIZ0s9Q36TMmoQdwZTvYX4A+eMNlp8CFfKyUJPRO/J8un9dx0bClw/w4BAX/Hn/5EaHp9s1cJAK12JF6Bwitjls+Iu7LQR3K4tZWg3uKagkrJAausCvvxDfLJgQriAuSd3hZGzEPLkUAqgYErp3BVQefLfOCGEOOrXyi48WyDgob0CNtbIe8JPrmCKuI83vg8r8fvt/XkjLozh+pm2A6rD1RRQEe9A4ZQL5OXlYeTIkZg8ebLcQ5FEXasO8+I5XJZqPd003Af4+1geQVrpG3RKWSAxBnz1h1Z0yqyPhmHxFAO0GvmCKW8oFCiYco67xu2u35On/70TQhzjabWTvfbVdmHZfgHdAqBnwHMHGT4uETxmiYYzaNaU9Lz5vVeJ33vvv/H4MIbrZhgQYCOgKqzm8e9tWhjUs2CFEIdROOUCubm5KCgowM6dO+UeitPMPRA4jsP1Qzhck34q3AnRAs+P5ZEapOxgCgC2FfM4XC3+537eGCNiXdvSp19KfLOUUlFtBwVTEqGAihDiqTypdrLXsRNdeHy/gCa95eUflDCsPMRgdHNARbOmPJc3nAS1hxJ/Br0DqoRwhutnGBDgI/7cP1TF41MKqIgHo3CK2NS3OSfHcfhrOo8bMzgEa00zpoYEKz+Yqm7m8MM+8T5TIxJNDTgBOkPnCkoJpQD1B1NmFFARQoj61bXq8H/HGcpsvAQGat1bpLsjmDI68IGaajLp0Pus8vUNqK6bYYC/jYDq4HEen23TOvR8IkQtKJwiovrbNebSVB7vTOExLET5wZTeCHy+XQODYD3WEH+GhRMN4Dh5l/N5KgqmXIcCKkIIUS9zjXV5KodFKdb1yWmRwK1DOXCc9HWWnD7dpsWn2zU40Sb3SLwDzZYSp9SfSe/PIokR/QdUBcd5fLadAirieSicIlbs2c44wlcdBdMP+zWoaRH/M79ksgFBfm4ekBdQ0jI+wPOCKXejgIoQQqTTu8biOQ43D+Vx1zCupyAfGgz8bSQPDe++Ossds6ZK6jkUHOexv1yDV3/wwXd7NGi3UW7SrCnn0Xtq/5T68+n9t58UwbDkTAP8tOIB1YFKHt/8Kb4yhBC1onCKWLAnmHIVqYujE+3AjmLxP/EzhhmRGWd6sadZU9JRUigFeHYw5c7vjQIqQghxnq0aa0ESjxWjeaQGAitG8whwwSYztrgjmGIMFu0VjIzD1iINXl7ng+IadZzsVBN6L7WPUn9OvT+XJEfaDqh8NQwT0mnqFPEsFE6RHq/ld2KNTDvEuKI4igwCbpplQESQ5feTEC5g7ijTXqx0dk46FEy5HwVUhBCiDgOd/JscxeGfk3lE+3leWFNwnEP5CeuPHBxn6q/TG9Vlg0fL+DxH7+dBShTDtX0CKl8twzXTDRgSQ7t6Es9C4RQBAPyjoBPvHWNYU8Lw3jHm1oDKlWftUqIYcufoMS7VFEb5aBgunWKAVuZZsJ5UPChxGZ83BFNmFFARQohn0Li5x5S7mqD/uF8ret3M4UYEUnsFSdD75uAo+efWO6BKjWK4droBvloGX63p/9MpmCIeSPzdwg4ffvihZIO45pprJLsv4rh3D3Xin8WnXuD+XcagE4Bbh8LlzTjdURj5+wCLphgxLJ7BKAAxoabL6eyc85QUSgHeMVtKTEl1C9LjQ93yWEW1HciMDXT545gLxuwY1z8WIYS4kpwtE2xxR/0FAH8c49HQZl1LhgUwTM20XJJEdZnjlByuqEVhXYdia42S1nakhwQBAFKjTbOl+JP/T4gnGnQ4tWTJEsmCCwqn5LPmcCdeP2L9Avd1hSnIuSPLdeGUuwojs7Gpp4ogOQsgTykkKJjqX2WlaTxJSe4JjTyVkotGQggZSGVzF/44AZwerZzleu6qv3R64OcC8anqZ+cY4UO9nJ3iKfUk6V/vgCqdQini4QYdTgHA2LFjcdFFFw369t988w327dvnzBCIE+padeAAcADEXuoygt08IKIaFEz1zxxMuZMnzp4yo4CKEKJGtS1dWFXI8FMNw2WpHK4bwoF389I9OW0+rEG7zvr7jQ8TMC6NZk0NFoVS0lN6ndE7oCLEkzkVTo0bNw7Lli0b9O1LSkoonJKJeYr5OQk8fHgBLxxk6F0m3J7J4fxE17Ukc/esqd5o1tTgKS2UApQXTPVVWdnittlTFFARQogy1LXq8FGpKZgCgE/LGKo6gQeGA34a+QIqd9VfrZ3A5sPideS80Ubw3pPRSUrtdaSSKb3OcCSgOlLNobCax/lj6blG1GXQ6UNoaCgCA517AgcEBCA0lJa8uFvf3gez43g8msPDvHPxTRkcFiarK5jSG+07js7MDR4FU/YRmzXlzplUntgg3YyKckKIGtS16vBTtYA1JZbz0n+tY3hwr4DGbnmW5rjzxODPBzXQG60/FWfEChgWRzv0DQa9B7qe0n/G9jxXjlRz+HiLFtuKNPjPbg0EWglIVGTQCURTUxPeeOMNpx589erVaGxsdOo+iGNsNeU8M4bDEzk8rhvCYXGquoKpti7gle99sPkwr+gXYKW/4fWHgin7yLGcTwwFVIQQIo+6Vh1quxheKRQvSErbgSb5Jo+7RW0L8Ocx8Vry3NFGeNHKRkkU1nXQex/p0V9AdbjKFEwZBNOTbOdRDf67WwM3bsJOiFNcl0IQxRlot5ip0RyuSFNXMMUY8NUfWrR0cvh+nxYf/KZFa6f4sXRmznFFtR0UTNlpoGDK3cEVBVSEEOJe5jor1p/D0myuZ0a6GQ/gsRweQ4Ldn864c9bU+nwtBGb9PY5JMSIxgmZNOYLe79xPDT9zsedNYRWHj7eeCqbMdhzV4Ls9FFARdaBwykvIvY2xq4qibUU8Dlef+jMuruXx+nofHDxu+cIsd/Gjhje6vpQYSgHqDKYcPU6NKKAihJBT5sbzeG4Mj+Be3V3vyuIwKdKzg6mSeg4Hj1t/vNDwDHNG2dmDgdBsKZmp4Wff97NNf68s24o1+N9eCqiI8lE45QX21HTBKON6N1cVRdXNHH7Yb70PcUc3h10l9ALsDAqm7KfkwMndPy8KqAgh3krsJODYCA6rxvNI8AcuS3HtRjNKwBjwwz7rugwAThsqILJPL2e5TxwqFb23KYPafg9ZCQxXTjNAw4l/ANpapME6CqiIwkn+Lvn9998jIyND6rslg7Stqgt37RLwTIEAvZIbMjlIbwQ+366xmroKACH+DAsnGnp6Gshd/KjpzU3Jy/g8JZjy5OV9AAVUhBDv09/s9NQgDm9M5HFdhjyNltw5a6qgkkP5CeuPFv4+DLOG06ypgdBsKeKovp9xshMYrugnoNpSpMH3+yigIsoleTjV3t6O0tJSqe+WDMIf1V14eK+AVgOwuR5YcUBAt9G9r0auKop+2K9BTYv4n+8lkw0I8jP9v9zBlJooMZQClDlbCnAuZKKASlpU0BNC5GJP24QQHw68DF3A3RlMGQXgx3yt6HUzhxsR6Gd5GdVnlug9TJnU8Hvp+1wanshw+TQDeBsB1e9HNPhhPwVURJnE30VEPPHEE3Ydd/DgwUEPhkhnT00XHtoroFl/6rJtDcCyfAHLRvHw17i+SHJVUVRYxWFbkfi08TOGGZEZp5xXWzW8qQEUTHmDkuoWpMeHuu3ximo7kBkb6LbHA0zPt+wY9z4mIcR7yd3Psz/uDKYA4I9jPBrarGvL0ACGqZmCW8eiNmqpFb2VGmqLktZ2pIecWjc7IpHh8qkG/Hub+OYEmw9rwHHAvFG0eyZRFrvDqaeffhrh4eEICwvr97iODnqBlVt1SxeeyBdwQqQu+bMR+KyM4Zohrn0lclVR1NZl2p1PTEK4gLm9mm3SWTn7UDDlOClmPlVWtiApyX1hkRwooFKOiIgAxDrx99bcFQRlvlIQIo+6Vh3K2hmSAgGNl3+66zYAPxeInzSck2OET5+rqD4zoVBKPdRQW/QNqEYmMVx2mgGfbhcPqH4r1IDnTM9RL38J61dsbDCCEgdfP3HH/CUcjeeze1nf0KFDsXDhQhw7dqzfr7y8PFeOlwygrlUHDcfh3mwegSJ1wsQI4PJUdQZTjJmCqXad9fh9NAyXTjFAe/J7VkLho/SiQ6n9pQDPD6ZccV/2kOPnKsffmNKfe4QQdatr1aG0neHuXQKW5wvoNChnxjbg/llTPhpg4UQDYkIsfw7xYQLGpdGsKTH0PkVcoe/nn5xkhktPs73E75dDGmw4QEv8iHLYHU5NmzYNW7ZsGfA4juPA6C9cFr2nl+eEcXh+LI+QXpOMxoYDy0bx8HXhkj5XFkTbingcrhb/kz1vrBExnj0JRVJKDaUA7wmm5EIBFSGEDF5dqw6N3QyP7RfQbgS2NwD37RHQoFNG7evuYAoAOM60jOiOuXpcNMGAYH/Tz2LeaCP4PiWnEk4eyol6JKqXWn5vfZ9jo5IZFk8xgoP4a9SmQxqbMx8JcTe7w6m7774bt99++4DHzZw5Exs3bnRqUMRxYn0PskM5vDCWR5gPMDIUeMpNvaZcoaaZww/7xV84RyQKmDzk1Jk5JRQ+Sn4Do2BqcFwVTMkReFFARQghg2MUGJbtF1DTdeqyojbgzl0CituUEVDJRcMDkzME3HuuHhdPMmCYgnqAKgG9J6mfWn6HfT8LjU4RsKifgGrjQQ22Fkm+TxohDrP7r3DixIm46667BjwuOjoaM2fOdGpQxDH9NeQcGsLhpXE8nhnDI0CrzuV8ALA+XwODYD3+EH+GhRMNPWullRBMKZWSl/EB3hlMyYkCKkIIcUxdqw4baxkOtVpfV68Dvq2QN4yRY9aUGF8tMCFdsOpj4601Gs2W8ixq+V32fb6NTRVwST8B1fp8DTqV8RJCvJjdDdGJeqUGqXdnPgBo1wGHq8W/h0smGxDkJ3qVbJT2pqXkQAqgUMr8OJ7eHF1OamhkSghRNvOJwKNt4tfnhAJ3DFPn7HTiOkqrCYl3G5cqgDHgy53WEUC3gUNHNxDgK8PACDmJwimiePkVvOguE9MyjcjsNWXcW8/IiVFyIKXkMArwzFlShBBCpCHAtOygb5vv5S7u6TkQpcyaIiYUShGlGp8m4Mud1pfzHEOwwk74E+/jdDhVXl6Oa6+9Fj///LMU4yHEyt4y8dWn04YZ3TySgclVjCg5jAKUH0gBFEoRQggZ2K2ZPG7NNP0/YwwCAwwM8FNpT0938ZYTiBRKeT61z8RmDIgOZqhvs3zNSopg8PORaVCEnOR0ONXR0YFffvlFirEQYqWxHShrsA6nUiIFRAbJMKB+uLsgoUDKeRRIEUIIGSyO46DhANrnigAUTBF14Djg7nP0qG8Fimt5HK3jcayWQ0YsbWBA5EfL+ojTXDmVfF+5+KypsamWE+q95YwcBVLOo0DK+6j9LCchhCgNY7BqeO6tKJQiSpQeYvssPscBMaFATKiAqZmCaQao8hakEC9E4ZQHMDKGNw4zBPsAIdqTXz4chgQBSYHqrhzEwimeYxiV3Lfbg7xcVZgoPYwCKJAihBBCvM3WIh47j2qQEiUgNYohJZIhJpSBV3fZ6RAKpbyPp57s4jnTLpuEyI3+DF0gLy8PeXl5MBrdE0G3G4DvqvpOxWS4Jp3DX9PVWyUIDDgzS8C+cqCohutpij40liHY/9RxnjZrigIp6VAoRQgh6uDu2ok4p7SeR10rh7pWDXaVmC4L9GV4cIEe2j7nFT2tTgMomCKEEFegcMoFcnNzkZubi5aWFoSFhbn88Vr14peHqPy3y3PAuDQB49IEtOuA/eU89pXzGJPqWbOm1BBGARRIEUIIcR13107EOeUnrE9+hgUyq2DK01AoRQghrqPy+ILUterQahC/LtiDdlwI8gOmZprWRTPq1+c2FEi5T2VlC5KSQuUeBiGEENKvpg6gpdM6nEqN8twCjUIpoqYlff31myJEySic8gC2Z065fkmfK5uh29K7AafcU8U9cdYUBVKEEEKIeri7FisX2UUZAJIjPS+colCKEELcR5JwitFUFlnpBMCHA/R9fg1qX9andJ5UsKglkAIolJJSSXUL0uNpthYhhBD7lTeIn/xMjbJuuyD3SURneFKdRwghauB0fBEfH48333xTirGQQZoew+G/M3h0CUCbHmg1AG0GIM3DZ3SqueAB5J81RYEUIcRTffjhh5Ld1zXXXCPZfRH1W31EwB8nTLvScQA0HBDhCzw3ViP30NymTKTfVKAvQ6SH1J0USpG+1LSkz5aKExzKGjhkxDDEhnnXzprEfnLXT06HU2FhYbjlllucvRviJI7jEKABAjRAjNyD8QJqXc5HgRQhxBssWbIEHCdN5U3hFOmtXsdQ0Wl5WYyN3p+eSG8EqhrF+01J9JSTDYVSxBPY6je1r5zHliOmED3Ij2FIjICMWIYJ6YLHb2RA7Cd3/UQLv8igydFvijiOAilCiDcaO3YsLrrookHf/ptvvsG+ffskHBHxBGL7BXvT57qqRg5GZv3BJUVkSZ+aUDBFPN3R2lPP23Ydh/wKDY7WMkwaou7nLpGenPWTZOFUTU0NCgsLkZ2djbi4uJ7Li4uL8eijjyI/Px+pqal44oknMHXqVKkelniYbgNQ1sBhSAyDpp9qT84lfWqYNaWmQAqgUIoQIr1x48Zh2bJlg759SUkJhVPEilibVW9aHiO2pA8AUkSaoauh/QKFUmQgnrCkr10HVDdbf7DKiBW86vWL2EfO+kmycOrvf/87XnvtNRw8eLAnnGppacH06dNRW1sLxhgKCgrwyy+/YM+ePRg2bJhUD008SGEVj0+3axHkxzA6RcDYFAHJkeqfKu4OFEgRQohJaGgoAgOd+0AREBCA0FDaMIBYEkTCKW+qUcR26uM5prqd+iiUIp7I1pK+Y3XiL1IZMep63hLXk7t+kmwm8qZNmzBy5EhkZWX1XPb++++jpqYGV1xxBQoLC/Hyyy+js7MTL730klQPSzzMvnLTn2S7jsO2Ig3+udEHL3/vg9auU8fQrKlTSqpber7UoLKypeeLEEJcpampCW+88YZT97F69Wo0NjZKNCLiKYaFcJgcCUyKAMZHAOPCgZGh3pFOMWaa3d5XXBiDr4oahVAwRbzN0Vrxj/wZsbSkj1iSu36S7K2ksrIS06ZNs7jsu+++g1arxapVqxAdHY2lS5figw8+wC+//CLVwxIP0tkNHK6yLnp4Dgj2k2FAEpMqmFJLEGVGQRQhhBBPcc0QZXWYcmf/z+ZOoLVLvBm6GlAoRRzlCUv6APFwKjSAISpYhsEQ0g/JwqnW1laLKWBGoxFbt27FxIkTER0d3XP58OHD8d///leqhyUycUUxdKCSF22yOSZFUMSUebmKGrWFUWYUShFCCCGeQ2xJH6D8flMUShFv1twB1LdZf5DKiFHG5ytCepMsnEpMTMShQ4d6/r1582a0tbVh1qxZFscZDAb4+vpK9bDEg+wtEy96xqQae/5frmLH3cv5KJDyTpWVLUhKoh43hLhDV1cX1q5di4KCAvA8j1GjRuHyyy+nGoUQG8SW9AHK3amPQiniTWz1mzpaZ2tJnzpmPBLlcWX9JFk4NW3aNHzyySdYtWoVzj77bDz22GPgOA4XXHCBxXEHDx5EUlKSVA/r9XRGhmu2CQjxAYK1QIgPEKLlcGYMh2nR6onDWzqBEpFmfYkRAmJCZBiQDCiQIoR4mlmzZvW7lH/dunU499xz+72POXPmYMOGDQCA8vJyJCcnOz2uffv2YcGCBaioqOi5jOM4PPXUU1i3bh1t2kKIiHKRcCrIjyFS/DOxrCiYIs7ynCV9NpqhU78pxVJq7QS4vn6SLJx65JFH8NVXX+G+++4DADDGcNZZZ+H000/vOaakpAQFBQW44YYbpHpYr9dqABr1pq9TGNKCgGlQTzi1v5wHExnv2BT5XzhdPWtKjaEUBVKEEEdccsklCA62bm4x0Mmq999/Hxs2bADHcWBMurO8t9xyC/z8/LBx40ZMmTIF7e3t+Oijj3D//ffjrrvuwrp16yR7LEI8gd4IVDVZ12kpCttRmUIpQk5hTLzfVFQwQ7gM2VtUCM1MdoTSaifA9fWTZOFUTk4ONm/ejFdffRX19fWYOHEiHnjgAYtjfvjhB4wdOxYLFy6U6mG9Xqte/PJgF+6a4op+U3vLrV84OTCM7hVOKal/gTeiQIoQMlgrV65Eenq6Q7epq6vDfffdh3nz5qGwsBClpaV237agoAAjR44Uva67uxvbt2/HZ599hpkzZwIwbXu8dOlS/PTTT9i4caND4yTEGxxv5ET7goot6ZOjXqNQihBrJ9qB5k7r5+2QGPlP/pOBubt2AuSvnyTdcmTChAn44IMP8N133+Gpp55CSIjleqxbbrkFu3fvxvz586V8WK/WahC/PESroNNYA6hrBY43Wv8ppscwhAbIMKBeaNaUKZSiYIqoladMy/dGS5cuRUdHB1avXu3wbceNG4f7778fbW1tVtdptVr4+PigtrbW6rra2loEBMj8xkOIAokt6QOUsVMfBVNEamqrHWz1myoWmTUFAEOp35THcqZ2AuSvn1w4v4a4Q5utcMrHveNwxr4yjejlY1PVPWvK0SboSkJhFCFETt9//z3Wrl2LFStWYOjQoQ7f/qmnnsIzzzyDTz75BC+88AKuuuqqnut4nseFF16Ihx9+GCdOnMCkSZPQ0dGBtWvX4o8//qDWA4SIKDth/SGX5xiSIuT7kEuhFCH9s9VvimZOeSZnaydA/vpJ8nCqpKQEv/76K6qqqqDT6USP4TgOjz/+uNQP7ZXCfIAZMRxa9QytBtNMqjY9EKKS2JExU7+pvjQcQ06SvC+cri56lDZrigIpQoirvPPOO2hoaADP88jKysLChQuRmpoqemx7eztuu+02DB8+HA8++OCgHu/hhx/GX//6V9x33324+uqr8dZbb+GNN97A6NGjAQD//Oc/sWTJEjzxxBMWPRkWLVqEV155ZXDfJPEK9ToGgwDwnOmLA+DLAyE+7p+x7oo2C7acP9aA0ck8yho4lDdwqGriEBfG4KuSepMQbyMw4JjITn1xYQKC/WUYEHGYu2snQP76SbK3lK6uLtx0001Yu3YtAPTbfIvCKenkhHHICVPPEr6+jjdxqG+zHn9WAkOAinvmqWU5HwVShBB7McbQ0mL5muHn5wc/P78Bb/v0009b/Pv+++/H448/LloLPPHEEygpKcGmTZuc2pY4OTkZn376KW699VbceeedmDhxIm677TY89dRTiIyMxP/93//hyJEjOHToEABT78yMjIxBPx7xDk/sF1DUZ7XDmDBg5XjxWeCeIjwQCA8UMDrF9G+9EWjtsj5OjTPdCenNU5b01TZzaNdZf8bKiJFntqM3N0MXBGFQ9ZMctRMgb/0kWTj10EMP4eOPP0ZsbCyuuuoqZGRkiHaXJ+om9Vm6fWXia6HHyNwI3dOnilMoRYh3iQ4LQHp86KBvX9MYiD+bmhAWFmZx+bJly7B8+XKbt5sxYwZuvPFGnH766UhISEB5eTm++OILPP3003jiiScQGhqKu+++u+f4Xbt24dVXX8W1117b02zTWWeddRb27t2LV199FU899RT+/e9/4/nnn8eSJUswbNgwp7c9Jt5FEPlcp6Td6tzFRwNEin8mdgtPr9MIcdbROvEXpqGxtKTPEYnRQYhwon7qCvFH4R+FDtVPSqidAHnqJ8nCqU8//RTR0dHYs2cP4uPjpbpb4sEEBuwTWdLnq2XITpDvhdNTm6BTIEUIcUZ4eDhKSkosLhvorN9TTz1l8e+srCz87W9/w6RJk3DOOedg+fLluPnmmxEQEACj0Ygbb7wR4eHhWLlypaRj12g0uPfee3HllVfiwQcfxA033IC33noLeXl5GD9+vKSPRTybWHXCe2E4RQhRtqMizdA5MKTLNHPKm2VnZ2P79u0Wl/VXPymldgLcXz9JtltfW1sbZsyYQcGUG9W1ivf0UouSOg6tXdYV3chEoaeHgdqmhyutCbp5pz0KptSDfldEqTiOQ2hoqMWXPUv6xMybNw+TJk1CU1NTT8G2atUq7N69Gy+88AKio6MlG7fBYEBDQwMAID4+Hh9++CF+/fVXdHZ2YsqUKbjtttvQ2Ngo2eMRzyY2c0rSra8JIbJR25I+W4wCcExk5lRSBIO/ijbN8hQ8z0tSP7mzdgLkqZ8kez8dNWqU1VpKQvqzV2TWFACMSVXvrKmBuGPWFAVShBA1ME8Hr6qqAgD85z//Acdx+OCDDzBr1iyLr+rqagDA4sWLMWvWLHz//fcD3v9nn32GMWPGICAgALGxsQgODsZll12G4uJinHHGGfjzzz+xatUqfPbZZ8jKysJbb73lum+WeAzRcIpmTgFw3wlFWtJHiImtflPHGznoDCL9pmJp1pTaubp2AuStnyRb1nfffffhqquuwu7du2mKvIeSst+UwQgcqLAOp4L8GIaq9IVT7llTFEYRQtTEfLYtKOhUcc0Yw6+//mrzNtu2bQMALFmypN/7fvPNN3HHHXcgJiYGN9xwAyIiInDo0CF8/fXX2LBhA/bu3YukpCTk5ubi8ssvx8MPP4zbbrsN//rXv/DGG29gypQpzn+DxCNdmcah1QAYmWnHYQFAPO18RQhRkGB/hrNGGHG0lkP5CQ4CMwVVGdRvSvVcWTsB8tdPkoVTixcvRkVFBebOnYs77rgDc+fORVJSEnhefHaMrW0QiXc4UsOhS2+d6I9KFqA5+Sfj7iV9apw1RYEUcVZJdYtTjbIJGYy6ujr89ttvAIAJEyYAADZt2mTz+PT0dJSWlqK8vBzJyckD3v/KlSuRkpKC3bt3IyIioufyb775BhdffDHefffdnt1uoqKi8Pbbb+Pmm29Gbm4uTj/9dBgMBie+O+LJ5sTTIj5CPJGnLOkDgIgg4OwcI87OAXQGoKyeQ3Etj9Qo2qlPzVxdOwHy10+ShVMAMGbMGERGRmLFihVYsWKFzeM4jqPCz8vZ2qVvbIo6E313zpqiQIoQogZbtmxBbW0tLrjgAmg0mp7LS0pK8Ne//hXt7e248MIL7S6YHFFZWYn58+dbFFYAcPbZZwMAjh8/bnWbyZMnY8eOHXjnnXckHw8halXfCoQFmnbnI4Soj58WGBbPMCzeKPdQiB3krJ0A+esnycKp//73v7j44othMBgQHR2NtLQ0BAcHS3X3RITAGApbgBAfIFgLhGgBjUoaHywYb8SQGIa95TxK601BVXggQ8rJRJ9mTVmiQIoQojaHDx/Gddddh/j4eEyYMAHh4eEoLS3Fn3/+ia6uLuTk5ODtt992yWPn5ORgw4YN2LlzJyZPngzANO39pZdeAsdxGDlypM3b3nDDDS4ZEyFSkrLVgi2MAe/84oMOHZAQwZAaaarT0qIFhAZYHkv9pghxL1v9poi6yVk7AfLXT5KFU8uWLQNjDO+99x6uueYacJw6QhI16zAAd++2nGkUqAGuSuOwOFXZ086D/IApQwVMGSqgqQPYX87DVwvI8WfjbKHjyllTFEoRQtTqtNNOw2233Ybt27dj586daGxsRFBQEMaNG4fFixfjtttuQ0BAwMB3NAgrV67E+eefj6lTpyI7OxsRERE4evQoampqMGbMGAqgCLFDUwd6dlWuOMGh4gSAImDqUCMWjKdZGMRzeNKSPqJuctZOgPz1k2Th1MGDBzFjxgxce+21Ut0lGUCryMrIDqNrdo1x5Rm68EDgzGzPXc7n6KwpCqQIIZ5gxIgRWL16tST3VVJS4tDxZ511Fg4ePIgXX3wRe/fuRWNjI8aNG4fzzz8fN99886C2cCbE25SfED/RmSJT3xpCCPF0ctZOgPz1k2ThVHR0NKKjo6W6O2IHsXAKMC3zUzN3LulTyvRwCqQIIURa6enpyMvLk3sYhKhWeYP42c6UKHWeUCTEU6hpSR81Q1cfOesnydZ+LVq0CL/++iu6urqkuksygDa9+OUhWlpS6Q5SzZqiYIoQQgghSlMmEk4F+zFE9FkBRf2miJrRkj5ClEOycOrpp59Geno6LrzwQhQXF0t1t6QfrQbxadUhku7B6F7eNmuKgilCCJHeiRMn0NHh3Gt8R0cHTpw4IdGICFEXvRGoarIOp1KimCz9QQkhA9NTKzjiJLnrJ8lijAULFkCj0WDDhg0YPnw40tPTkZSUBJ63zr84jsOGDRukemivNSKUw8MjgFa9aYlfq8E0myrGX+6ReT5X9JoixKyysgVJSaFyD4MQ1YqJicGSJUuc2tY4NzcXa9asgcFgYw098UrrjgswwnR2l+dM/00O5DAyzLMSm8pGDgKz/p5SaUkfIYr19kYtDAKQEcOQESsgPYYhkFbVEQfIXT9JFk5t2rSp5/+NRiOKi4ttzqCinfykEevPYba/63+W7tiu2N2UMGuKEEKIazDGwJjzTZuluA/iWd4sYujqk8+clwCPC6ds9puKpOcE8RxqXNJnq99UR7dptiMDh9oWYFuxBhwYTh8m4LyxNKWK2Efu+kmycOrYsWNS3RXxUBsLeAyNZTanhLtzSZ8zqNcUIeqgxqKTSGfz5s24/vrrnbo9IX2JlduS9ciwkztOGpY3WH9XPMeQ1Cecon5ThChDSZ0pmOqNgUNEkHyBMjVDVyc56yfJwqm0tDSp7op4oOpmDhsKtNhQAIQHMoxNFTAmRUBcmPtfMJ0pcOwJpgghhMivqKgIRUVFTt0HzfQmfQkiZYun/ZkwBpSdsP6mEsIZfDQyDIgQMqDiWvGYPCOWluISx8hZP6m4dTZRk31lp14wmzo4/HJIg18OaXDlND1GJrkvoHLHmTeaNUUIIfLauHGj3EMgHkrsY567Z065WlMH0NYl0gydlvQRD+Jps6uPioRTwf4MMSEyDIaoltz106DDqRMnTsDf3x+BgYN/Ynd0dKCrqwuRkZGDvg/iWlJMHRcYsK/c+gXTR8MwNNZU6KhhSR/NmiKEEHWYOXOm3EMgHkqsjQbvYTOnykSW9AGmnfoIIfKx1W+qtROoa7V+IcqIETxuZidxLbnrp0GHU3J3cifqUd7AoanD+pVxeIIAPx/3jYNmTRFCCCHEGf+awkNgphlU7OR/Qz1sHUK5yJI+AEjps1Mf9ZsiRBmO1tla0keBMlGXQb+dyt3JnaiH2KwpABiTaipyaNYUIYQQQtQgOdDzpyGI7dQX7McQ4VmroIgX87QlfcW14q9L1G+KqI1T53poJxwyEKMA5FdYh1P+PgzD4tTRa8reYIpmTRFCCCFEzfRG03b0fdnaaZkQ4h62lvQB4v2mwgMZIm3fxOVopz4yGE6FU7QTjnyqmrvwwTGGEB8gWAuE+HAI1gLJAUCMv3J+psW1HNp11uPJSRag9aAdX+wJpgghhBBClKyykYPArOu21CiagUGIEp1oh2j7lKE0a4qo0KDDKbk7uXu7VgPwaXnvmUem/782ncNV6dKEU1I0Q++9S19vY1Pct6TPHbOm7EGzpgghhBDiDClqs/6ILekDrHfqo35TRK08bUmf2KwpgPpNEXUadDgldyd3V/jzzz+xfv167NixAzt27EBlZSUAZfbFatWLXx7ixgbjA+k2AAXHrV8wQ/wZ0mOU9zMdLJo1RVyhsrIFSUmhcg+DEEKIFykX2amP5xiSIj2nbiPEkxy11W8qhmZOEfXxsP1FnLNixQp8++23cg/DLm02NjgMUdBvtLCKR7fB+gVzTIoAnvOuWVOEEEIIIUrGGFAmslNfQjiDjwe1YiBEbWz1m2JMfOZUTAhDSICrR0WI9BQUZchv2rRpGDNmDCZPnozJkycjPT0dOp1O7mGJarUVTvkop9/UQLv0uZo7poLbO2uKlvQRQohyNDY2IiIiQu5hEKIo7TpAL1JfpkTRrCniGTxtSV9dK9Am0ttX7n5T1Azdc7m6fqJwqpeHHnpI7iHYrc0gXigES/QbdbanQWc3cLjK+sUyOpghMVz5RQ7NmiKEEM/0zTff4JJLLsGXX36JhQsXyj0cQhQj2B949CI96lo4lJ/gUNbAobyBR2oU9ZsiRIls95uiJX1Eeu6onyicUqnZsRzOiObQqjct8Ws1mPpQpSjkhMCBSh5Gkd1exqQawblhSZ87lvPRrCniKUqqW5AeT/2tiHd4/fXXcckll/RbWG3btg1ffPEF7rrrLqSmprpvcETR2vQMLx4ytSbgOYAHB54DZsVymBatnJnrzuA5IC6MIS6MYdIQADDKPSRCiA3FIuEUB8/q7UuUwx31E4VTKsVxHPw1gL8GiJF7MCL22tilb0wKJfmEEELks3PnTqxZs6bfY6ZOnYrc3Fz4+fnhmWeecdPIiNLpBGBrQ+9LTB8AhwYD0+AZ4RQhnkqtS/ps9ZsSGHCsTrxHXCCtqiMu4I76STxBIMQJLZ1AiciLZVKEgOgQmjVFCCFEPoIgIDR04JmCS5Yswbp169wwIqIWtuYiUCxFCHG3qiYOXXrrV5+MWJo1RVzDHfUThVMS0ul0aGlpsfjyRvvLeTCRUo1mTRFCCJFbRkYGdu3aNeBxo0ePxrFjx9wwIu+mltopJsQPgo3PfLyb0iln+4FKgfpNEaIMR2vFX3jk7jdFzdA9lzvqJ8mW9V1//fWYPn06rr/++n6Pe//99/Hrr7/i3XffleqhFeO5557Dk08+KfcwnOZs8bNXZJc+Dgyj3RBOqXHWVEOVaY1AVEKUXccTQoij4kJ9kRk7+CUN2ip/HJVwPHJatGgRXn75ZVx11VWIj4+3eVxzczP0er0bR+ad1FQ7yR1OEUIGx9OW9AFAXav1Cw/PMaRF08wpKaVG+iPOifqpIcQXcE+m73LuqJ8kmzn1/vvvY/PmzQMe9/vvv+ODDz6Q6mEV5ZFHHkFzc3PPV3l5udxDcru6VuB4o/Wf1ZAYhtAA951xc5QSdudrqGroCaoIIYS4xgMPPIDg4GDMmDED27Zts3ncF198gVGjRrlxZN5JTbUTzwHx/kCsHxDtB0T6AhE+gD+tQyCEuNnFk4x44PxuXDLZgPFpRoQGMCRHMvhRR2niIu6on9z+59vd3Q2NRuPuh3ULPz8/+Pn5yT0MWZXW22iEnqrsWVP2ctWsKbHLaCYVIYOn1rOkxPUCAgLwyy+/YMGCBTjjjDMwffp0XH755Rg5ciRiY2Nx/PhxvP/++1i7di3Wrl0r93A9nppqp1h/Dh9O9cwaVkloSR8h9gkLBManCRifBjBmhM4g94iIJ3NH/eTWcIoxhl27diEmRon7yxEpTBoiIDOuG/nlPPaW86hq4qHhGXKSXBtOuWM5n7tRSEUqK1uQlDRw40FCiGPi4+OxY8cOvPnmm3jttdeQm5sLjjMtkWCMITAwECtXrsRll10m80gJcb3WLuDQcR4pUQyxoczmMkWlzn4npD/ecrKK4wB/H7lHQTydq+snp8Kp2bNnW/z7+++/t7rMzGAwoLi4GNXV1bj66qudeVjiQlI02wwPBKZnC5ieLaC2BTjexCPAV/1FjVw79FFIRQgh0uN5Hrm5ucjNzUVRURHy8/PR0tKCmJgYnHHGGXbtSEOIJzhay+PbXaaPBH5a09KglCiG0zKMCAmQeXCEeKn++k0pFTVD9w6urJ+cCqc2bdrU8/8cx6G6uhrV1dU2j/fx8cGCBQuwcuVKZx7W63UaGK7fbkSoDxCsBUJ8OARrgWlRHCZEKqsrZ2woEBtKs6bEONpfikIqQghx3ksvvYRRo0Zh1KhRSEpKAgBkZmYiMzNT5pERIo/yhlO1o87AobiWQ3EtMDHdKOOoCCGEKIk76ienwinzFoGMMWRkZGDRokV48cUXRY/19fVFdHQ0fHyUO9/wu+++w4oVK3r+3d1tmkU0derUnssef/xxzJ8/3+1j661Zz1DRCaDTfIlpV4YYPygunDLzlllT7kAhFSGEDN6KFSvQ0tICjuMQHh6OnJwcjBo1CqNHj+4puiIiIuQeJiFuU3bCunYM8WcIl2E1FPWbIlLyliV9hLiDO+qnQYdTs2fPxnnnnYcHHngAADBz5kxMmjQJaWlpTg1ITnV1ddi+fbvV5b0vq6urc+eQRLXY2JkxxAt3Z1DarClnGqE7qqGqgQIqQghxUFNTE8rKypCfn4/9+/cjPz8fW7duxXvvvQedTgeO45CQkNBTcNk66UaIO0nRdkFMtwGobrIOp1KiGLheF6v9JCMhhBDnuKN+GnScsWnTJqSnp/f8+5dffsGQIUMGe3eKsGTJEixZssTp+8nLy0NeXh6MRtdMh27pZqKXh/goc9aUEjkSTClp1lRfNIuKEEIcl5qaitTUVJx//vk9lxmNRhw5cgT5+fn49ttv8emnn2L9+vUUTrmJq2snIq6ykYPArOvH1EjX77JMCBGnxn5TxDu4un4adDjl6+uL9nY6iyLG3CCspaUFYWFhkt9/i148nAp2cuaUq87Kuepsm9KmfkvdCN0RFFIRQsjg6fV6bNq0CevWrcO6detQWFiIuLg4nHvuuXIPzWu4unYi4nr3m+otJUq81iRELTxxSV+XHthyhMfQWNPGBRpe7hERbyd1/TToOCMzMxMbNmywmDHV1taGsrIyu26fmpo62If2eka9ARMigFY90GYAWg1AuwEIUW47L8m5azmfK2ZNSbGkb6D7ppCKEEL6V1JS0lNMbdy4ETqdDlOnTsU111yDc889F+PHj5d7iIS4XPkJ60+3Go4hMcL94ZTSTjoSojTH6jj8XKDFzwWAr4YhLZphaKyAsamC7Dtr0k593sOV9dOgw6mbb74ZS5cuxezZs3su+/LLL/Hll18OeFuO42AwGAb70F5vXASHcREai8uMjEGuRX3/26OBVgOMSRUQH2ZZzHhLjwI5Z02JoZCKEELE3XvvvVi3bh0OHz6MxMREnHPOOXj//fcxd+5cp7Y/Jp6voJnhwb0CeAA8Z/riANw/nMe0aPW1VmBMfOZUfDiDT68y01tqOUKU7mjtqTC528jhSA2HIzU8MuP1CAmg2Y7EtdxRPw06nLrrrruQnJyMb7/9FhUVFdi4cSNiY2MxfPhwSQZGHKPh5CmKuvTAjqM8DAKHXws1iAsVMDrFlOBHuGi5NM2acvzxKKQihBCTVatWwd/fHzfccAOuvPJKjBo1CtHR0XIPi6iAkQHdIq2YjCr9TNjYAbTpRPpN0ZI+onJqXtLXX7+po3XWz9cgP4bYUHrOEtdzR/3kVJeiiy++GBdffDEAgOd5nHfeeXj33XclGRhxr8H2mzp43BRMmdW08Kg5wENvNGLuKGU1NXVVMKW0WVNiKKRSr8rKFiQl0WwOJaFGpeq2ZMkS5OfnY+3atXjnnXcAADExMT3bIPf+Cg4Olnm0REkEG5//ePVNmgIAlDeIN6yhflOEKE9bF1DTbP2cHRIjqPY1iKiLO+onJ1ton7Js2TLqz+CF9pWJFzZjUgSXTAOnfgTOoZCKEOLtep9EKy4uxv79+3HgwAHk5+fjp59+wptvvgm9Xg+O45Camopjx47JOFqiJLb2r1NrT2KbzdBl2KmP6jtC+nesTvyVJiOWwmTiHu6onyQNp4h3aesCimtFehWECYgLYyhplWFQNihh1pS7l/T1h0IqQggBhg4diqFDh2LhwoU9lxkMBhw6dAj79u3DgQMH5BscURy5Zk65ajflshPWAw/xZwjvtSKK+k0RtfHUJX1in7kAICPG/WFyX9QM3fu4qn6SLJwi3ie/gofArF8oadaUelBIRQjxVoWFhfj+++9RVVWF4OBgDB06FGeddRbi4+N7pqUT0lu0HzA/gYMAU1DFTv432k/ukTmu2wBUN1nXcClRDDK1MSWE9ENs5lRYAEMUrT4nbubK+knScIoxho8//hjffvstjhw5gtbWVjBmfZqJ4zgUFxdL+dCKkpeXh7y8PBiNyuq5JLW9Npb0jU4R0Cx/iN9D7ibogLJmTYmhkIoQ4k0eeughvPTSSxAEAT4+PjAYDGCMged5zJ8/Hy+++CKysrLkHqZXUUPtlBbE4e5sz0huKhs50ROMqTIs6SOE9K+pA2hos36+ZsQKFCYTt3J1/STZMvnu7m7MmzcP1157Lb788kvs27cPx44dQ0lJSc9XaWkpSkpKPL5/Q25uLgoKCrBz5065h2KXwUwXP9EGlJ+w/vNJi3LNLn1KnDWlhkbojmqoalB8kEZcw1XBLCFK8+mnn+LFF1/E/fffj9LSUuh0Ouj1ehQVFeHNN9/E0aNHMX78eKxfv17uoXoVtdVOamez35QMzdCVWOMRdVLzkr7+HK2lflNEfu6onyQLp1566SVs2LABCxYswJEjR3D11VeD4zjodDocPHgQy5cvR1BQEB544AEIAp2VGSyBMZS1MzR2MxhsNT9wg33lNhqhp0q/pM+ZokUJs6bUiEIqQoin+uc//4nLLrsMf//735GSkgLAtONwRkYGbrrpJuzevRuXXXYZFi9ejPr6eplHS4hriJ1g1HAMiRGnakvqN0WI+/TXb+qogvtNEe/hjvpJsnDq008/RWRkJNauXYuhQ4eC50137ePjg+zsbDzxxBP47rvv8NJLL1l0eieOadUDN+4UcNkWAef/KuCi34y4aqsR/6l034sTY+LhFM8xjEpWzoukI8GUo9TaCN1RFFIRQjzNnj17cNFFF9m8XqvV4l//+hdSUlLw+uuvu3FkhLgHY0CZyMyphHAGH40MAyKE2MQYcFSk31R0MEOYAiaKUTN07+GO+kmycKqoqAhTpkxBUJAp9TWHU717B5x55pk444wzsHr1aqke1uu06C1nS3UagTodYHDjJKqaZg61LdZ/OplxDEESNwV111RvmjXVPwqoiJp46rR+Io3m5makpqb2ewzP87jpppvw/fffu2lUhLhPYzvQrhNvhk6IWnnqe39DG9DSKd5vihB3ckf9JFk4pdFoEBYW1vNvc0hVV1dncVxSUhIKCwuleliv0zecMgtx476Le20t6XPRLn2DQbOmpEezqAghnoAxBh8fnwGPGzVqlEdv3kK8V5nIkj4ASKV+U4QoTrHNflMUThH3ckf9JFk4lZSUhIqKip5/Z2ZmAgC2bdtmcdy+ffsQHEx7Xg5Wi43e5cHawW3V4GgzdMHGkj4fDcOIRGlfJGnWlDJRSEUIUbsVK1bghRdewHfffYeSkhLRY4KCgtDc3OzegRHSx2A2rRmIj4YhJVKAhrcMo1KiTtVxSjnZSIg36L/flPjH9SExNNORuJ+r6yfJ5ttMnToVX3/9NXQ6Hfz8/HD++efjnnvuwdKlS+Hv74+kpCS89dZbOHjwIC644AKpHtbrNNuaOTVwiCmJsgYOzR3WQdjwBAFVXcooZJQya8rTmQOqqIQomUfi+SorW5CUFCr3MAhx2Msvv4zNmzdj//79qK2tRVdXF+Lj4zFz5kw88MADGD16tOjt9Ho98vLysHbtWhw6dAiCICAxMRHTp0/HihUrkJSUNOgxLVmyBPn5+XjqqafQ0dEBjuMQGBiIESNGYNSoUcjJyUFOTg7a29tpAxfikXKSGHKSDDAYgaomDmUNHGpbOYQFyD0yQgbHU5f0CQw4Vmf9uSs+TJC8lQpRDiXWToB76ifJwqlLLrkE69atw48//ogLLrgAmZmZWLp0KV555RXMnz8fgGkqWFBQEF544QWpHtbrjAjjcccwDq16oM0AtBqAVj1DlJt60e0rs71Ln5QGO2vK0WDKlbOmvGV2EYVUhBBbnn32WbS3t2PMmDE9xdSBAwewZs0a/Pvf/8ZXX32FBQsWWNzmxIkTmDdvHv78808kJCRgzpw5AEy9Ld977z1cf/31ThVYvTdlOXr0KPbv34/8/Hzk5+djx44d+Pjjj6HX6wEAHDe4WcnEM53QMVR0AhoO4ABwHKABkBoE+GvU97ei1Zj6TFGvKUKUqaaZQ0e3WL8pes56MiXWToB76ifJwqn58+ejqqrK4rKXXnoJkydPxjfffIPGxkZkZWXhrrvuwrBhw6R6WK+TFszjwiTJVmM6xCgA+RXWjx3gwzAsnqFCGROnXIZmTfWPQipCSF/ffvstJk6cCH9/f4vLV69ejdzcXNx4442oqKiAVmsqRxhjWLRoEf78808sW7YMjz32WM91gKkYCg11fhZhY2MjIiIikJGRgYyMDIvdZwwGAw4dOoR9+/bhwIEDTj8W8Rx/nGBYWWj9ofDNSTyGUscKh1G/KUIGWtIn/gE/I0YZs3pppz7XUGrtBLi+fnJ5G+3LL78cl19+uasfRlHy8vKQl5dnsVOhEjnax6CoRjy9z0kWUNEuXTLlCbOmvBmFVIQQszPOOEP08ttvvx0vv/wyiouLUVBQgDFjxgAAPv/8c2zcuBGLFy/G8uXLrW6XkZHh9Ji++eYbXHLJJfjyyy+xcOFCq+u1Wi1GjRqFUaNGOf1YxH5qqJ1sfRyU55Sh61C/KaImnrqkDxDvN8VzDOnUb8qjKbF2AtxTP0n2fnrvvfdixYoVUt2dquXm5qKgoAA7d+6UeyiSEmuEDph26ZOKUs+iOTpryluW9PWHGqcTQvpj3vHF1/fUmde3334bAHDnnXe67HFff/11XHLJJaKFldm2bdtw//33o6yszGXjIJbUUDsJNj4P8upb0UcIUTijAByrt35xSYpg8HdTr2GiPHLVToB76ifJZk698cYbFtO6iGfpNgAHK63DqdAABvi3yTAiSzRrSrloJhUhpK81a9agsLAQw4YN61nqr9frsXnzZmi1WkyZMgX79u3D559/jtraWiQlJeGiiy7C2LFjnX7snTt3Ys2aNf0eM3XqVOTm5sLX1xfPPvus049JPIPNmVMUThFCJGYUgNkjjThay6OkjkO30fRCQ/2mvJectRPgnvpJsnAqOTmZdrVxg7pWnSyP29wJRIcwHG+yrMBGJwuSFWVKnTXlKEdnC+kriwAAPkmZrhiOYlBIRYj3evHFF3HgwAG0t7fj4MGDOHDgABITE/HJJ59Ao9EAMPVE6OrqQlxcHF555RU8+uijFnXF8uXLcffdd+OVV15xaiyCINjVe2HJkiV47733KJwiPWzOnHLvMDyCp9R8RF5qX9LXX78pXy0wPUvA9CwBRgGoPMGhuI5DVjyFU95CSbUT4J76SbJwauHChfjwww/R2tqKkJAQqe6WKERMCHD7HAPqWoB95RrsK+fR0MZhbKoAxzpXSc/Vs6bc1QidQipCiJIxxtDSYvl66OfnBz+/gfez/uGHH7Bhw4aef6elpeHDDz/ExIkTey5rbGwEADQ0NOCRRx7B7bffjvvuuw9hYWH49ttvceedd2LVqlXIzMxEbm7uoL+PjIwM7Nq1C2eddVa/x40ePRrHjh0b9OMQzzM5ksMTORwYAMYAI2NgACJc1BPY0d6gUqB+U4Qoj4YHUqMZUqOVE0xRM3T7CYIwqPpJSbUT4J76SbKTPU8++SRSU1Nx/vnnY/fu3VLdLXGRwRY8MaHA2TlGLD1Hj9vP1kOnkWZJn7uaoCuNOZAa6DJPRD2piBr1d5ZTyRJCfJEdEzjor5RwPzQ1NSEsLMzi67nnnrPr8X/66ScwxtDY2Ihff/0Vw4YNw8yZM/HMM8/0HGM+02cwGHDeeechLy8PGRkZiIqKwvXXX48XX3wRAOx+TFsWLVqEl19+GdXV1f0e19zc3LMlMiEAkBDAYXoMhzNjOMyI5XBWHI/ZcTwCtepY1/f7YR7f7TGdYGxsNwVshBBCbEuP8HeqfooN9kFhYeGg6icl1U6Ae+onycKpiy66CH5+fvj9998xadIkJCcn4/TTT8fs2bOtvs4++2ypHpbIhOOAxAgGTh31WA9Xz5qSKmzRVxZRSEUIUZTw8HA0NzdbfD3yyCMO38eZZ56J//3vf5g4cSIef/zxngbYwcHBPcddd911VrddsmQJAKCyshJFRYN/fXzggQcQHByMGTNmYNu2bTaP++KLL2jHPuJR9pbx2FqkwWfbtXhpnS9e+M4H/7dL4/Zx0JI+IgW1L+kj3iM7+//Zu+/4NurzD+Cfk2zLe9vxTByPLMgmm5BBEkgISYAApawQKG0JZZdRStlQZgkQaKFAgABtSX+MlJE9IYtMyHScbTvx3rZsSd/fH8Ymik62JJ90d9Ln/Xr5BTmd7r4eOj167vk+395dip+0EDsBvomfFJvWt2bNmvb/F0KgqKgIRUVFsvtKestoaESLTeBfx2yICgaigiREBQORQUC3UCA62Pc/U6VKvwO1asoVgTLVD+B0PyKtkyTJpV4DrggODsbVV1+Nbdu2YcmSJRg2bBh69OjR/nhWVpbDc8LDw5GcnIySkhKUlJQgN9ez62JYWBjWrl2L6dOnY8yYMTj//PPxq1/9Cv369UNycjKKioqwcOFCfPzxx/j44489/RaJNKXZApyqto8Va5sk1JsZkxOpQa+V2OQ+g8GgSPykZuwE+CZ+Uiw5xb4M3lfdDLx7pK0G+5da7Jt6SrimB4OLzmitasqdyqiWwkMBkaACmKRyprCwBunpyiQGiLQgMTERAFBaWgoAiImJQc+ePXHkyJH2HgpnstlsqKqqAmB/p9ATKSkp2LJlC9588028+uqrmDdvXvuNMyEEwsPD8eKLL+Lqq6/u0nmItKKwUoJNOMaK3RN+aZzLflNERNqmZuwEeD9+Uiw5dWbWjryjukW+OUCUm79FNRpsOuOrqil3E1NaFEhVVEBrkooJKiL/tXbtWgBATk5O+7YZM2Zg/vz5WLNmDaZMmWK3/6ZNm9Dc3IywsDD07t27y+c3GAyYN28e5s2bh/z8fOzZswc1NTWIi4vDuHHjFKsSI9KC4+XyNzEzE9h4ivSHU/rUxWbo6lE7dgK8Gz9x9VsdqXWSnIoM9vFAoMzdNS33HPDVCn2eCJReVAD7URHp2XfffYdvv/3WbkljAGhpacFrr72GDz/8EGFhYXZ31+666y6EhITg9ddft+tnUFZWhrvuugtAa08FV1YIdEdeXh569OiBHTt24NZbb2ViivzOiXLHkN9oEEiL9W1ySsuxH5GvdDSlz2LlYgWBTE+xE6B8/ORx5dQHH3zQpRPfcMMNXXp+IKpudlY55Z0pfVYbYJCguabnWqya8uaUvo6eH0hVVACn+hHpSX5+Pm666SYkJiZi6NChSEhIQFlZGX788UcUFxcjNDQUCxcuRGZmZvtzsrKy8Oabb+KWW27BBRdcgFGjRiEmJgbff/89ysvLMWTIEDz33HOKjfHEiRP46KOPsGjRIuzbt0+x4xJpiRDAiQrHYC4tViDI9/3QiagDy38y4seTBmQn25CTLJCdZEMMC8UChh5iJ8B78ZPHyak5c+Z41NhcCAFJkvw6ObVgwQIsWLAAVqtV0ePWOFmR0d1pfa5as8+IPYUS+mfaMCDThoSuT1Ntp+Um6FqumjpbIPWiApikos6x1F87xo0bhz/96U9Yu3Ytdu/ejbKyMoSEhCArKwuzZ8/GHXfcIduYc+7cucjOzsZf//pXbN68GY2NjcjOzsYf/vAH3HfffYiI6FoT2draWnz66adYtGgR1q1bByEEhBBITEyEzWaT7dlA3uet2ImAinrINj4/c0of+02RXvj7+/zhUgk1jRJ2HjNi57HWbZnxNvx2okXdgZFPaDV2AnwTP3mc1vjLX/7ikJwqKCjAokWLEB4ejilTprR3jD927BiWLVuG+vp6XHfddXZzJP1R2xzMmpoaxMTEKHbci9ONyA0zoLYFqLUAdZbWqX6pYYqdop0QwO4TBpTXSVi5x4CVe4CMeBuG9LAhOblW+RN6iRarppQWaFVUAJNURHrQs2dPPP300x49d/z48Rg/frxiY7Farfj222/x4YcfYsmSJWhqampv3Dlz5kxce+21uOiiizBp0iSsW7dOsfOS67wVOylpW4XA7ioBSWrti2GQWr+uzJQQbFC2zFzJ/qByU/oAIDOec4eItKTBDJyqcryWRHnhsx5pk5ZiJ8D38ZPHyanHHnvM7t/5+fkYPnw4rrvuOrzyyiuIj4+3e7yyshJ33XUXlixZYjcXklwXbJCQaJKQaDdd1L1gyNVgp7BSQnmd/bFPVhgQHQokJ7t1SgdarprSs0CrogKYpFLa0VM1yEphrx3yH1u3bsWHH36If//73ygrK4MQAkajERdddBGuvfZazJo1S5G7iRQYdlcJfHLcMaFzRYbG+h+cRW5KHwBkJthkt3sL+00Rddxv6kipBCHz2S4n2bev1Y6wGXpgUCt+UmxC2EMPPYS4uDi89957MBodJ7DHxcXhnXfeQa9evfDQQw/hv//9r1KnJi/YfVz+Lltqkn4CC0+qpnwxpc+bDc0DsYoKYJKKiOw99dRT+Oijj3Dw4EGInzvLjhgxAtdeey2uvvpqJCUlqTxC0iNnHw+11pvzbHIr9UWHCcT69+wo8kP+P6VP/vNXdpJ2klPk39SOnxRLTrUtXSiXmGo/WVAQRo4ciWXLlil1WvICmwB2n3S8OJqCBDKTnDS+cpG/VU2pPaXPGSapmKQiCmRtrQdSUlLw+9//Htdcc43ftxQg77M5mQWn5aWvmy3A6WqZflPx7DdFpDWHSxyvJlGhAolRKgyGApLa8ZNiyanGxkYUFxd3ut+pU6fQ1NSk1GnJC46USKhrcgxk+qXburSqiy8TU1qtmvK1QJzqBzBJRUStC7CcOnUKS5cuRVJSEuLi4hxaDhC5w9ny7gq3m1LUyQoJNuE4wO4+ntJHRB2raQRKax1fq9nJNs1XZ5J/UTN+Uuxmz4ABA7B+/XqsWLHC6T4rV67EunXrMGDAAKVOS25wtd/UrhPyfxbdErVZvaQn3pzS19E51TivFpQXl2u2uo2IvGfz5s2YN28eEhIS8N133+G2225DamoqZs6cif/85z+8SUYecTqtz6ejcI/zflO+bYbOflPUVf4wpa+jflNyVVMAkJ3MhQvId9SOnxRLTj300EOw2WyYPn065s6di6VLl2L//v3Yv38/li5diptvvhmXXHIJhBB48MEHlTotKazFCuwtdPyziDAJpMV7voSpP1ZN6S3pEagJKsB/klT+WN1H5A3Dhg3Da6+9hqKiInzxxReYPXs2jEYjlixZgmuuuQbdunXDnDlzsGzZMthsrCAh19ySLWHJWAO+ON+Az8434L9jDPh0tMFh9WotkVupz2gQSIvlB14iLTlcKn8dYb8p8iW14yfFklMzZszAG2+8AYPBgIULF2LatGk455xzcM4552DatGl47733IEkSXnvtNcyYMUOp05LC8k9JaGpxvDj26GaGQctNFcglgVxFBfhPkoqIXBMUFIRLL70U//73v3Hq1Cm8/fbbGDt2LOrq6vDBBx9g6tSpSE9Px913342tW7eqPVzSuCCDBJNRQliQhIggCVHBEmJCtJuYEkK+GXparGhv08B+U0TqEwIokKmciosQiNPQgrJcqS9wqBU/KdZzCgB+97vfYdq0aXjnnXewYcMGFBUVAQBSU1MxduxY3HTTTcjKylLylKSwXcflm0rlpro2JVAOq6ZaaSkpFKi9qNqwJxVR4ImOjsbNN9+Mm2++GSdOnMCiRYvw4YcfYv/+/Zg/fz5effVVtYdIBMD1NgydqagHGpplmqH7eEofUVf5+5S+inqgukG+3xSR2nwZPymanAKA7t274/HHH1f6sAGvvkXghvVNCDXYEBkkIToYiAwCzouXcE6MMnftmlqAA8WOx4qLEEiKsSpyDtKOQF3R70xMUhEFpszMTDz00EN46KGHsH37dnz44Yf417/+hdOnT2t6ihaRO47LTOkDfN8Mnf2miDrmrN9UDvtNkcZ4O35SPDl1psrKSgBAbGwsg70uqmwW+LGqLZj45UIVEQSXklOu3IXbW2iAxSY3pa/J41Ui/LFqyt8wScUkFVEgGzJkCIYMGYKXXnoJS5cuxaJFi9QeEpEiTshM6QOAzHh+4CXSEvabIj3yRvykeBehL7/8ElOmTEFkZCQSExORmJiIqKgoTJkyBV988YXSpwsY1c3ygUSkgunF3U5W6cvpwpQ+T3iSmPIlvU/pc0YPY/Q29qOijnRUkk/6ZzAYMHXqVHz00UdqD4VIEXIr9UWHCcT8PEOK/aZID/xhSl9HhJCvnEqOtiEyVIUBEblJyfhJseSUEAJz587FZZddhhUrVqChoQExMTGIiYlBQ0MDVqxYgcsvvxxz5syBEP59x2bBggXo168fhg0bptgxnSWnooKUqUirbQIKTjseKz7KgrhIz7L2vizjZtWUMgK9YTrApulERGrwRuwU6Ebn2XBeTyu6Rdsg/Vx17+spfUTU8c2tkhoJ9Wa5flPa+rzMZujkC4olp+bPn4+FCxciNTUVb775JqqqqlBRUYGKigpUV1fj73//O1JTU/Hhhx9i/vz5Sp1Wk+bNm4e9e/cq2rneaXIqWJnj/3TCAAHHC6OnVVO+nM7nS4GStAj0BBXAJBURkS95I3YKdIN72DBrqBV/mGLBwzNbMGdsC8bksd8UkZYcLpEvNMhhM3QKQIolp9566y2Eh4dj/fr1+O1vf4vo6Oj2x6KionDrrbdi/fr1CAsLw1tvvaXUaQNGqFFCryggLRSICkJ7GilKoWl9u5xN6Uvx7ZQ+T3hSNeVLek30sIqqFZNURESkd6HBQG43wZX6iDTmcKnjZzAJAlmJfK1S4FGsY9GRI0cwZcoU9OzZ0+k+PXv2xIUXXohly5YpddqAMSEtCOlGY/u/bUKg3gKEGzt40s86a4ZeXgecrHC8MKbEtSAyzP0Lox6qpjilz3UthYcCull6GzZNJyIKbO8ctmF7hYBBQusXgJgQ4LFzXQjGNIb9pkgP/L3flE0AR2SaoafFCYRxFh0FIMWSU0lJSQgJ6fxVFBwcjMTERKVOG7AMkqTYlD4tNEL3NDHly6qpQK6e4Yp+v1A7SVVYWIP09OjOdyQiIkUVNwL5dfbbEhT+AOnK6spEpB8d9ZsqqpTQ1CLTbyqJVVMUmBSb1nfZZZdh1apVqKysdLpPRUUFVq1ahVmzZil1WlLAwWLHPwODJNCzW4vbx9JDbwFfVk3527Q4f/t+uoLT/YiIAotNZkEfSZl1afySHmJCIjWdlFlREwCykrTVb4rN0MlXFEtOPfXUU8jOzsbEiROxatUqh8dXr16NyZMnIycnB88884xSpyUFVDY4XhhT4y0IDdF21l7rvab8FRNU9pig0g5/L/8nInUFGxzjpQaLCgMhCgCB8J4uSUB6nA2De1hxUX8LrhvdgjunNCOLlVMUoBSb1jdz5kyEhIRg27ZtmDx5MuLj49GjRw8AwPHjx1Fe3voBbuTIkZg5c6bdcyVJwsqVK5UaCrlp3qQWNJglNDQDjc1AQ7OEJjSpPSxNYQLCHvtQ2SsvLmcvKiIiP5doctzWYAUaLALhQcqUUCVEhfjN1L7eSeGsniKPHSht8PsE1YgcG0bkaKtKikhNiiWn1qxZ0/7/QgiUl5e3J6TOtHHjRodtEmuiVRUVCkSFnpmhFzha67tbgWyETv6ACSoiIv+WaAJMBiDBBCSGAAkmCYmm1qbGelDT2DrWWP/+vE9ERDql6Gp9RPQLf5/+xuopR0xQERH5rxlpEmalS7q5qSoEUFoL7C00YF+RAYWVBozKteKSQVZkRUX4ZMU+Vk9RVwRC9RQR/UKx5FTbFD4iChxMUDligso/dbTaDhEFBqNMzykte2t1EE5U2LeX3VtkwLSBVjZyJ/KRo7X1uo8hymub2RSdfEKx5BSRL++M+bIZutf7TdVVAJHx3j0H+RQTVKQ1iWGmLgXHFeFhCo6GiHwhIUrgRIX9tuoGCcVVEtLifDcXkdVTRKRXaRFhXYqf4k0m1Co4Hn/ncXLqiSee6HQfSZIQERGBjIwMjBkzBunp6Z6eLuDdsr4R35+2wiABRql1mcXuEcALg4wdPs9fmmrqjdtT+nScoGL1lDwmqIiIyBNKNUXvl2bDzmOOceK+IgPS4nw3tQ9ggoo8x6l9RIHD4+TUY4895tace4PBgCuuuAILFixAQgI/sLmr0SrQYLXfFtOizlj0SvPN0HWcoCJ5TFDZy01mcElE5Cu53QSCDAIWm328vq9IwoXnqDQoIiIiJzxOTt1www2dJqeEEGhoaMDhw4exc+dOfPrpp9i/fz82btyIsDBOEXCHRWaVUaMf9Avw5Up9nvDJlL6z/63DBBWrp4iIyN8lRZlQWmtWexguCwlqTVDtL7YPGE9VG1BRD8T7uA0Oq6eIXNNiBZotQIRJ7ZEQ+ZbHyamFCxe6tf+JEycwd+5crFq1Cm+88QbuvfdeT08dkOSWKTY4bnJbixUwGgCd9fjUtC6v0scEFZHbvFnyL5oi8Y+tRqTECqTEtH4NzBQIN/HCSUTa1jfNhv3FjhHj/iIDRufZfDq1j8hTep/a11lT9J3HDThdLaG0RkJJjYTKemBQDxuuGGZ1+hwif+SzhuiZmZlYvHgxsrKysHjxYian3GQRjtkpJSqnPvvBiB9PGBAWAoSbgPAQgbgIgWF9u35sb/FlM3QiosJKCScqDHaNhd9e04i3bgpFTjclbhMQEXlHnzQbpG0CAvZB497C1uSUr7F6isjRmn1GlNXav0ZLa3gDjAKPT6PqmJgYnH/++di/f78vT+tzCxYsQL9+/TBs2DDFjjkpLQgXpUiY1E3CxGQJ45MlDI7r+kWrsVmCgISGZglltRKOlxtwpEyBAWuMJvtNnT2lz9XHNKzLVWNEGnSqyvFaa5CAjHgGjkRK8Ubs5E1mq0Bhg8DuKoGVp22oa1F29Tullm2PMAHdEx3HdqxMQv3PMxT1vsw9kd4lRTm+RktqJcjUJhD5NZ9VTrWJiYlBQ4N/3zGZN28e5s2bh5qaGsTExChzzH4mHDytfGlng8xiMKZgXgkBH/Sb6oxOp/eR9xUW1iA9PVrtYQSMU9WOSaiMeAmmYCaniJTijdjJGzaWCby434Zai/32VwZL6KfRYfdLs+FYmf39aAEJB4oNGJLF6inSB71P7etIcrTAviL7bc0WCdWNQKx/fstEsnw+H+HIkSNITEz09WnJiYZmxw9XoR4kpxhktFK8ckiHFVSsniJ/YrXJl9ZnJ3M6H1EgCjXCITEFAGUa7pPeJ00+AbWviNcxIi1Iipb/7MWpfRRofPqutGXLFmzevBkjRozw5WmpAw0ywZQpxDd30bS+Up9XuZN0YoKKSDVV9UZYhWNwmMPkFFFASnSyelaZWbtV5wmRQLdox9ju0GkJzT8n2nw9tc9fK2CInOlo4YFkmWl9AFDC5BQFGK9H101NTdi7dy9eeOEFTJ06FUII/O53v/P2ackFVhtgtihTOeUrbIZOeqP69FDqEkOL/Aeo7CQmp4gCUaKTVlBlMm0SukqpvlMA0DfNMbZrsUooKFHvwy8TVOQuf52pkRglIEG+7xRRIPG455TRaHT7OUIIPPDAA5gyZYqnpyUFNToJpPyt55QnzdA9SSh4tVpIh/2nWgoPITg9V+1hEHXJaZl+UwCQk8yAkSgQhQVJCDcCDWe1AS3X8LQ+AOibbsOa/Y6x+95CA/qmcbl6IjWFBAGxEUDlWcVVnNZHgcbj5JRwY/mAsLAwjBkzBnfeeScuueQST09JCpNrhg4ApmDfN8cMKJ5O09NhgorIF7x5971YZqW+sBCBxCgGjESB6uLU1td/ounnrxAJqWEqD6oTabEC0WECNY32164DxQZYbVYYDa1T+zqaeuQNbI5O1Co5WqCy3v71WVLTumKfxJCDAoTHyakjR450uo8kSQgPD0d8fDwMBk6B0JoGs/yVLjTEvyqn/IrOElSsniK9k1upLyVGQGKkSBSwfperv5hWklpX7dtUYF891dAs4Xi5hJ5JjP1IH/x11b7kKIEDxfbbmlok1JmBqFB1xkTkax4np3r06KHkOEgFziunGKBoms4SVER61WCWUC+TxE+J4TWSKFAlRZlQWqvxOXxO9JVJTgGtq/b1TFJvah+rpyhQHK2td7r4gLMV+0pqJESFMu6gwKC/Wz8Bake5FXurBQ7UCByqFThcJ1Da1LULVUOzk8opjSanPGmG7hf9pnSOPxvSq2CLfACZEqvNayQR+R8lm6JnJQnZGG9fkQFt3Tp8vWofEbVKdpKcYt8pCiQeV06Rb920rgFVZ1U6Teom4f6+nl+wnDdE937PqUMlAXqHzNN+U3LH0VH1FKf3kR7JTekDWDlFRPpkNAC9U23Yddy+eqqyXsLpaknVxDurp8gd/ji1LynKeeUUUaBg5ZROWGWuV8YuXquU6jnFYEIlSiW6iEiWXHLKIAmndzeJiLSub5r9DcjYcIHRuVaEBPG6RqQmUzAQE+b4OmRyigIJK6d0wiJTzGToanKqxXFbkEEgyLEdAXVA1WlrOqqgYvUU6Y1ccioxSiCY10gi0qm8FIGMOBt6pdrQN038vMCD/T5qrNoHsHqK3OOP1VPJ0QLVZ62oWVrL5BQFDlZO6YQ3KqcaZSqnQjTab8oTvuo35TJvVTqxgkrzvPp3RV5htcn3eejGKX1EpGOmIOB3F1owsZ8NqbGOiSm1+VuygehsHSV+5Zqi15sl1OtzDQYitzE5pRNemdYn03Mq1Af9pihwsTl64MpN1tcHjqo6I2yCK/URkfqUbIpORNrlrG0Ap/ZRoOC0Pp1YMDoUJyrNsArAJlqTVZnhXbtQySWnTG72m/IVT1bq8wXNJFs4vY8ClLfushss8sdNZXKKiADk1woUNwKlZoFyM1DWDCSagFtz/OO+r1pT+wBO7yPX+dvUvmQnTdFLayT0TFI3/iivbWainLyOySmduDgjGAeDZZpEdUFDs2NyS26JYaVpdaU+XU7pO/scOklQUdcVFtYgPT1a7WH4rVNVTlbqU3E1KyLSjjfybdhz1n2zrAjg1hx1xkNE+ic3rQ9g3ykKHP5xe4dkldfKlEb9TAigUWb+ssmPek4FJJ30n9JMxRmRE3LN0MNDBKJCVRgMEWlOosnxGlHOvjCK8adqGCJXhYUAUaFcsY8CFyunAlSzBbDK9FMxhfhHzylPmqH7DVZQEXXZkCwbkqIEiqslnK6W0NQiya5qRUSBKcHkuK3WAjRZBUK72hRU7nxRIR3edPQGNaf2EblKj1P7jtbWIysqQvaxtDiBmkaBpCiB5OjWLy7GQoGCyalAJQGTzrGgsVlCQ3PrFL8GMxAT7l5yKpB7Arhc/aOTaiZfY+8p0rKB3W0Y2L31/4UAqhqAZgszU+7Ytm0bli9fji1btmDLli0oLCwEAAjhPMguKirCM888g2+//RYnTpyA0WhEbm4uLrvsMtx3332Iiory1fCJnEqKMiHR1Cj7WLkZSNfX52Q79ebWFf2CjGqPhL2nKDBdP8ai9hBIZYEcPzE5FaBMQcD4vo6JqKM+vivnCl80Q/dqvyk16KR6igkq0qKz72ZKEhAXAQC8c+mOJ598El988YXL++fn52PMmDEoLS1FVlYWpk+fjqamJnz//fd44oknsHjxYnz//feIiYnx4qiJXJNwVl/gyKDWbU06LECvqAP2FRmwr8iAY2USrh1tQZ80Xu+IiNQQyPETk1NE/konCapAUV5cjoTUBLWHQeQzo0aNwoABAzBs2DAMGzYMWVlZMJudN+V54IEHUFpaittuuw2vvvoqjMbW0o3q6mpcfPHF2LRpE15++WU8/vjjvvoWiJwaFCfh+YESEk2tU/zCvDCVz9tqm4D31wfhVLV9C9q9RQb0SbMCUH9qH6unyBV6nNpH5Ewgx09MTnnBggULsGDBAlitVrWHEpB80W9KNw29dZCgYvUUkX964IEH3Np/3bp1AIBHHnmkPbACgJiYGNx///24/PLLsXXrVkXHSNqht9gpLkRCnM5XVY8wAfVmx6TagWIDbMIKg/7ybUREuhfI8RNX6/OCefPmYe/evbr5I/ClQyUBdvdLC/2mtDAGIi/gXVL/YjLJdJg+S0ICqw/9FWOnziVEKZsNM0hA3zTHeYj1ZgnHy7WTmeK1nvwRFxsgpfhT/MTklA5UNwu89KMZHxyx4aOjNnxyzIb/HLfhUC37ASjB7/pN6ZBuKtGIyGumTJkCoLXXwpnVM9XV1Xj++ecBAHPnzlVlbET+Si45BQD7Cn/5iOBsVTFfYoKKOsPpnxSo/Cl+4rQ+HahqFnhtr2Oj8tvzgNwo5e5saTGD74tm6O7SZSKF0/uIqIuEEKipsb8mm0wml+7YueLZZ5/Ftm3b8MYbb+Drr7/G0KFD0dTUhO+++w6hoaFYtGgRJkyYoMi5iKhVz2QBU5CA+azVSPcVGXDxACsk7RRQERHpks1mY/zkIiandMDiZOUXlr1pnNam0+kgQUWkNi1UCHhDZGhQl6YERYcFoaqqymGll0cffRSPPfZYF0fXKiUlBWvWrME111yDZcuW4ejRo+2PXX755Rg6dKgi5yGiXwQZgN6pNuw+YbTbXlEvoaRGQrcY7VTpszk6BTKLDRACCDZ2vi8pJyYiuEvxU0SoEQcOHGD85CImp3TAKuQDAx0uDON1vmiGrmsaT1Cxekp9R0/VICslWu1hqGblHiMOl0pIiRFIiRFIjRVIjhYI4bslYmNj7QIewLU+B67avXs3LrnkEhiNRnzxxRe44IILUF9fj8WLF+Ohhx7CmjVr8P3336N3796KnZOIgL5pArtPOG7fW/RLckrtVfuIXOEvq/aZW4D9xQaU1EgorZFQWiuhvA647DwrBvdwUrVAmtW7d29s3rzZbhvjJ3kMt3XA6uSmVVdWUflmlxGNLUB4CBAWIhAeArQYg5AWb3H5GP5w9yog+01pPEFFpKZjZRKOlRlwrOyXbZGhAg9Ob1FvUBohSRKio72TuGxpacHs2bNRVFSErVu3YsiQIQBaE2J33nknrFYr7r33XvzlL3/Bv//9b6+MgUgPEqJCUF7r2OqhK/JSbDBKAlbhOLVvQl9tfRBm9RT5k6O19bIV280W4NMtjh/TS2pYmaBHBoOB8ZOLODNMB6xO4oKuVE7tLTJg+1EjNhw0YvlPQfhiexB+PBLq+QFd4A8r9bncb0prU/p0RJc9vcgvCAGcqna8sHaL1s60Fn+1adMm5Ofno2fPnu2B1ZmuvPJKAL8sl0yktqQox7veQgjUtgiYnd1V1KjQYCA72XHMRZUGVOk/dCPSnchQIDTY8TVZyuQUncXf4idWTulAvzgD9lweiQOnG2BDayWVTQARXfjtNZgdt5lCtHV3TIvN0P2Gxqun/HV6X3lxORJSlVvKtbCwBunpgTsFT2kNZgkNzY6BX4qGeq74q5MnTwKAQ0+GNm3bKysrfTYmos4UNggsOiZQZhYoMwNlZsBsAx49x4AxSWqPzj19023IP+14z3p/kQEjc1vjQ61M7WP1FHXEH6b2SRKQHC1wvNw+JmHlFJ3N3+InVk7pgEGSEBEsITJYQnSwhLgQCQkmCaEelk5ZbXBYlQWQz9DrCftNuYnVXeQjucnKB4neCDyDLfLN0FNi9X1t1IOUlBQAwIEDB1BbW+vw+NatWwEAWVlZvhwWUYdaBLDytMCuKqCwsTUxBQBlZv1dM/qmyt+g3FfEjwpEakiSqdqurAdarCoMhjTL3+InvuMEoEYnrQpMOk9OucvdflN+OaVPw2Pl9D7yNbkpfQArp3xh1KhRSE5ORn19PW6//XaYzb+U9xYVFeHuu+8GAMyePVutIRI5SHSygFOZsi2hHHRl5ShnosKAzHjHBNWRUslp3KgmvVfGkHf5Q2VdcpRj7CEgoayW1VP0C3+Ln5icCkANTpNT2prWRz6i4QQVkS/JJaeMkpC9e0md++qrrzBy5Mj2r+bm1jefM7d99dVXAIDQ0FD84x//QFBQED744APk5ORg1qxZuOiii9CnTx/8+OOPGDJkCB588EE1vyUiOxFBQKhMJF0u0zpBD/qmOcaBNiHhwKlfvkm55s1qYYKK/IGzqbLJTmIPTu3zf4EcP7HnVABqMMtf1EJD+AGMtMVfe0+RNsklp5KiBYJ4G8cjpaWlDksnA7DbVlpa2v7/s2bNwpYtW/Diiy9i3bp1+PrrrxESEoK8vDxcddVVuOuuuxAWFuaTsRO5QpIkJJqAk43220t1OK0PaO07tewnx+37Cg0Y1J03MIl8ydmNMTZF93+BHD8xORWAnFdO6TOY8oTXpvTplYYbpDNBRb5gsUK2VL4bp/R5bM6cOZgzZ45bzxk8eDA++ugj7wyIyAsyfi7eSTABSSYJCSagp3aKi9ySFAUkRgmHa2H+KQktViDYqNLAOsDm6OSM3hujx4QBIUECzWf1CS7htD6/F8jxE5NTAUhuNSrAvYbo7gYCh0rc29/dlfo00wxdz1PkNJygIvK2qnojbMLx2pjK5BQRdeCJ/hrM2HRB3zQb1h+w/56arRIOl0jondp6PdTKqn1E/kySgKQogcJK+9iElVPkzzhZIQA5b4jOku2Ap9Hkmt9XrpHqpBb5u6tcqY+ItMgbTdEBoJ9M3ylA26v26bk6hqgjcn2nyusAi0of2cprNbg6AvkV7b7TkNc46zkVSNP6qAMaTVD5C3enlJJvnKriSn1EROnxApGhjte9fUUG2DR8OWSCiuToZcqnO03RbUJCOaf2kZ/itD4d2HDKghd+NKPFYoNBAowSYJCA23IN6BEhf3HqKLMt13PKaBAI8q/KdKe81m+KSR2vYu8p8ia5ZuiRJoHIUBUGQ0SkEoPUOrVv6+FfgsLIUIE+qTY0W4DQ4NZtnNpH5H1JUU6aotcC3WJ8PBgiH2BySgfKzQK7KhzrNxutnh1PrueUKVhA0mkSXjP9pvyJRvtPMUFFgPJ3yIWQT05xSh8RdSQpyoTSWrPaw1Bc3zQbjpYa0CfNhn5pNqTHCxh0ECOyOTr5G7nKKQAoqZEAMEYh/8PklA5YnVx7PA0U5CqntNRvyt1m6OQlGk1QESmtwSyhUSZpzyl9RKRlCVEhXukBk9dNoNdFLYofl0gNel61LzYCCDYKtFjPWrGPTdHJT7HnlA44S04ZPbwuyTVEd2elPne5u1KflgT8lD4Nfl9sjk5KC7LIr/vO5BQRBSJXK+mzouSvnWrSaxKCSI5BAhJlpvaVsucU+Skmp3TAJuQ/IHn6y5NriG4KCYwPYWxG7QENJqiIlCQ3pQ/gtD4iIiLyDXeaopfVSrBqZ9ILkWI4rU8H4k0GDE0woK7ZBptoraSyAQj1oIG5EPLT+rxZOeVN7DcVmNh7ipQkt1KfURKydyuJiOQ0WgXKzUCpubVXqEUAF6fyHrAa2HuKzqbnqX1yTdGtNgmV9UBilAoDIvIiJqd0YHJ6ECanB+Hg6a6/0ZotrUuQns2dnlOB8oYf8FP6zqTB/lNMULUqLKxBenq02sPQtVPVjh8gk6IFgvi5kohc8Nw+G1aetv8AGRMMXJyq0oB8SKur9jFBRf6io6bovIlG/oahd4CR6zcFaGdaH5uha1ggJOEo4FisQFmt43ZO6SMiV0XJ3OqtbgGabd6/jiREhXj9HESknqQOV+wj8i9MTgWYBpkVqQD9TutzB/tNKUBjCSq9Nkfn36J2CAFMH2zF8GwrMuNtCDG2Xgs7aobOD4NEdKZEk/z2crNvx+ErLVa1R+AavU7jIu/QayVdfAQQEiTQLdqGczOsmNjPgl+NbMGgHmw6Rf6H0/oCjM0GJEQKNDQDTc2AQGuyyhQAySlSiAan+FHgUPrDRl5cBBD3S4BnE0BlPWDiuyMRuSihg+RUaphvx+ItNY3A/iID9hUZcKxMwh8vaUHYz3l6rU7tI9Kbo7X1DqtgGg3An2e2wMBCKQoADL8DTGaCwN0XtwBo/RDW1AzkVzYizOSd7PuhEu/dpfBmM3T2m9IP9p7Sttxkfd25NkhAQqTaoyAiPUkySQBklns3CwD6/kR5vFzC17uMOFlhP9ni4CkDBnbXfuUGe0+RP2BiigIFk1MBzCAB4SYgJkL7wQVpjMaqp5igIiIitaSHAbMzJCSagESThAQTkGQC4v1gBnBosHBITAHAviIJA7urMCAPMEFFbfS8ah9RIGByijTDm83Q2ePHCzSWoCIiIvK1pCgTADNuzVWvtCEhKgTltU5WvOmipKjWdhDldfbf38FTBlisVgQZW//NqX1ERNRVbIhOdBZO6XODhn4Gem2OTkREpFWSBPRNc6ywb7ZIOFyqn7lGrJYhItI+Jqe8YMGCBejXrx+GDRumyPEaLQLVzQINFgGzVaDFJmAVAkL4vom5VsqivdlvitykoQQVkTvObjpKROpROnYi5fSTSU4BwL4ifowg/dHKZxlnWIFIgYzvKl4wb9487N27F1u3blXkeH/7yYyBn9Vh1gYbLl1vwyXrbJi61gYbF9hzCaf0BQ5WTxER6ZPSsRMpJyNBINLkGHTuKzLYxaJaT/izeoqISNuYnNIBq5MklNZXbvDmSn3ewil9HtLQz0MvCSomTfUpIcoPOhwTkd/x5rXJIAF9ZKqn6pokFFZoPBg9CxNUBGi/espVVhugwkQaIq9hQ3QdkEtOGQBIkr4CAvJzbJBOXqb0h4q3VgchyACkxAikxAqkxAgkRQsEGxU9DRGR7vVNs+GHI44Xx71FBmQmWNv/zcboRN5R2wgcK5dQUtP6VVojoaxOwt0XtyCWOVfyE0xO6YBFZqq/0cO81P4iCaZgIDwECDcJhGukCMCbK/WRD2kkQdVSeAjB6blqD4M0zGIFTpRLEJBwuPSX7YN7WHHFMKvzJxIRBaDsZIEQo0Cz1T4A3VdkwEX99XXN7J0U7jeVMxQ4Dpca8OkWx4/upTUSYsNZPkX+gckpHZCtnPIgOWW1AYu+D3bY3j/LhhG9Gz0YmTrcaYbulalTGprCRkSeqawzQsDxQpoS458BXnRo8M9L3nsmNtzxvYOIAkewEchLEdhTaH/dLKuVUFoDJEWrNDDyO4dKGpCb7P1SoAOlDZqd5nm0tt6hh1tytHx8UlIjIS/FP2MXLYgPD+lS/BRpYrrFHfxp6cCk9CB0C5NQWtcCm2hNVnlSOdXYLL89JIgXNEA/vYo0j9VTPldYWIP0dH4ycIfUIh+Q+mtyioi8q9EqsKlMoMwMlDUD5WagzCwwI13CxG7+0eK1b7oNewodv5d9RQYkRf9S5q+HqX2sntI2XyWo9CQxSkCCcLixVlLr2zYv5bXN7L9JXsPklA5cmBaEC9OCcPC0a2XT5bXyWagGJ8kpUzA/jJHCmKAijTtVLR/MpcTyekhE7muxAc/uc7x+DIz13RgSokKcxoBK6J1ig0ESsAnHqX0X9JHpQaFxTFBpjx4XU/KVYCMQGwFUnpX3La1hD2LyH/5xK4dc0mCWv3iZgvUXUJAOcPojadipKsfrYVSoQITnldtEFMCigoBgmTCr3Hu5Ip8LCwF6Jjkm4E5UGFCrn+4QRO30lpyUm9pXUiNxxT7yG0xOBRBnlVOhIa5d0dy5gLtz58OdZuje6jfl8pQ+Jlzco4GfF6dr0tmEkK+c4pQ+IvJEUpQJkiQhUSa5XWr2r+tK3zT5G5r7iu0/UpzdL0ertNpziEhOcpTj9aSpRUJdkwqDIfICJqcCSEOzs8op/wqciIg6Ut8koalFJjnVyZQ+9lggoo4kyCSnys2+H4c39XGWnJLpRUXkjrNvbAf6FD+5vm1Jzpqi+7jvFJG38J0kgDhriB7KaX3kTayecsorq0lSp4Is8nf0WTlFRF2RZPrlA2JUENAzAsiK8K8PjbHhQHqcY9x4uERCU4sKA1IAq6cCm56m9jlbsY99p8hfsCF6AGHllDxO6fMBDTRIZ3N0fVPyw0Oxs2boTE4RURfM6SnhhqzW6X0mT5ZVVoC3m6IDrdVThZX297etQkL+KQP6Z+pr1T4iPUmSmdYHtPadIvIHrJwKIHI9p4wGgSCj78fiCW/1myIfYXKPNOK0THIqyCCQ6CToIyJyRWqYhPRwSbXElK/0S5O/Vu4r0u/3zeopdQX6FD5XmYKBmHD5puhE/oDJqQDSKLNanylYQFLxeuZOM3TyAyonqLQ6vc9f5SZrM9g/VeX41pccLWDkOyIRUaeSowXiI+w/IIcFC4TpvC0fE1SBS1dT+2RupJWy5xT5CU7r04HvTltQYRY4XS1glACjBEQGAefGunchkqucMnmh35Rf3v1g1Q+RX2ixAOV1jts7a4ZOREStJKl11b6fCg3ol2ZDnzQbshLlE/yc2ked6ehzw6GSBs3e6FJLcrRA/mn7bfVmCfVmIEJmUQYiPWFySgfm72nGllKr3bbcSOCN89ybjyeXnAplvym1hxB4VO4/xd5Tga2yzggBmZX62G+KiPyEL/pOTTrXiosHWFWtvveG3knhuqqiIf92tLYeWVH2i7g4XbGvRkLPJMYypG+cxKADNpnrjMGDYECuIbopxLWLmJ7eqNlvSgc4vY9UIrXI34FlcoqIyHXBRvhdYooCm14+68hN6wM4tY/8A5NTOmCRyU6522tTCKDR7LhdL5VT7jRDVxyn9HkHf66kglMertSXEKXzZipERCo5u/JD69h7ynf8shWIlzmrnCplU3TyA0xO6YBs5ZSbx2i2tC7zezZv9JxyldrN0Fk9owEqJqi08vtnpZ9vySWnosMEwtmngYi6ICmKFxF/wgQVaVVYCBAVyhX7yD8xOaUDVpnklLuVU3L9pgDXp/UREalFqQ8JQgCnZZJTnNJHRN4ghEBNi8DRel5jiDzly+oqvUztk6ueYnKK/AEbouvA30aGot4CHC1vglW0Jqsi3OuFLttvCtDPtD5XsQpFh1RskO5PzdELC2uQnh6t9jA0ra7JgKYWJqeIyHuWFduw9JRAuRkoawaabYAE4KsLDAjypGGoh3zRFN0dely1j83RvYtT+lwj1xQ9OVrgcIn9frVNEhqbWyuriPSKySkd6BXTmomKsHge1DTI9JsCAJPCySlvvNGw31QAYIKKfCDI4qQZeiyTU0SkjPJm4Mdq+20CQEUzkByqypBUIQQbppM+HSht0Py0zo6aondPYExD+sXkVIBwXjmlXs8pNWml3xCdQcUEFQWGlBiBSwZacKpawqlqCaerJVhsElJiAvM6SETKS3DSeqrc7P/JqQYzcOCUAfsKDWi2AnPGWtQeUpexeso7WDXVNUnRAgZJID6yNVGVFC2QHC2QEMnEFOkbk1MBojEAek5xSp8fUClBxeqpwBAXAYzK+yURZbUBFXVAQpSKgyIiv5JkktBaK2Wv1Az09f1wfGJvoYSNh4w4VibB9vPiOxIE6pqAyDMScnqc2gcwQUXa0z1B4C+zWhDkZpsXIq1jcipA9M+0IS22BQ3NrVVUDc1AcW0Lwk3qVAyovVKfSzilj8ivGQ1AEtt0EZGCEpz0eylvFmjtPuXDsfio71R1o4QjpfZrLAlI2F9swHk9WZlKXXeopAG5yb6baqf1qX1GLmlGforJqQARYQIiTG138lr/e7S2yaXn+tvdIk7p0zhWT5HGJESxuygRuSbRBHQPb53el2SSkBDSuq1/rP82YOqTasNXOx237yv0n+QUq6eUwyl97pNrik7kj5icIk1TtRk6qYcJKiIi0qHwIAn/HB5Yc23iIoDUWBuKq+zLOQpKJJhbAFPwL9v0OrWPiIi8j0WBpBg174Qo3m+KU/rUF0C/A/ZL8z7ecSQi8p6+aY4VUhabhPzT/lMxpuVpXqQ8Vso554vpwhSYmJzyM7xYdIxT+nRGhQQV/0a0hR8G9K2xsRF/+ctf0KtXL4SGhiItLQ1z585FYWGh2kMjIgX1S5NfYGdfET9q0C84pY/INYEaP3Fanw48tLUJFiFQ12SDUWrNKJ4TA0zops83fF00Qycioi5pamrCxIkTsWnTJqSmpmLmzJk4evQo3nvvPfzvf//Dpk2bkJ2drfYwiRSTFGVCaa1Z7WHY8VVT9G4xAnERApX19pVSB4oNsNqsdg2c9Ty1j72n1OPrpuhEagnk+Emf2Y0A89mxFnx6xIJvigX+VyTwZZHAriq1R+V9qvWbCqDpZLrA6ikiXXrqqaewadMmjBo1CgcPHsS///1vbN68GS+99BJKS0sxd+5ctYdIRAqRJKBvquPUvqYWCUdL/WdqH8CK3kCipUSkqwldIV/ESDoSyPETk1M6YJO5yBj9632+S9ivJwAwQaU7Wrq7WdtgwF+XBGPh+iB8u9uInccNOF0tweofi0hpUnNzM15//XUAwIIFCxAZGdn+2D333IMBAwZg7dq12LZtm1pDJCKF9U2Xv6hyah8BnNLnDZX1wN5CCWv2GfDpFiMWrAjC6ys4MUrPAj1+4ruFDlhkklOGLian9FpO3RVMNugcK9rIQ0ZLOOrMEg6dNmDDQSMWbwnCa8uDsbeQb4He8t1336G6uho5OTkYPHiww+OzZ88GACxZssTXQyMiL+meIBAe4hi07i0yOFRz6H2RClZPkRas2WfExxuDsWJPEHYdN6K4yoCSagktVrVHRp4K9PiJqVWNE0J0uXKqpAZ4a3UwwkKA8BCB8BDAZghH30wzUuI6vnppqZyVCHUVQGS8z07XUngIwem5PjsfecepavkLZkpM56VTCVEhSg8nIOzatQsAMGTIENnH27bv3r3bZ2MiIu8yGoDeqTbsOGa0217TKKGoSkJ6HOcbBSo9V00dKG3QbDIyOdrxNSUgoaxWQmosX296FOjxE28ba5xVADEhQFQwEGoAgqXWxJQ7yakGs4SmFgmV9RIKKw3IP21AQbEJ9U3K/fpdfdPRfDN0VueQjqnWp03jTlU7XuuCjQIJUSoMJkAcP34cAJCRkSH7eNv2Y8eO+WxMRL7UYBE4Xi+wvUJg2SkbPj5mw+ZydT4s+jLJ3s/Z1D4/rFTVasLCn+k5yeUNSTLJKQAoqWH/F70K9PiJlVMaF2SQsOuy1k9QB097dkFucLJIS6hM6bVWuPoh29V+U5zS50f8tHqqvLgcCakJXj9PIDpV5RikJUeLLk+P1gubAJrMTV06RlNTE2xCoKbG/tpsMplgMpkc9q+rqwMAhIfLf3iLiGid0lNbW9ulcRFpkU0IzP7O5tCWYWoqMCLBvy88OckCwUaBFqv997mvWMKkc+331fOqfW24eh/50tHaerspsXKVUwCTU0rqavxkbmpCi8XG+MlF/ncbgxw0NMtfoEzB2k1OEXXIxxVuTG6qQ4m70s0WoKLe8RqYEhM417+pl0zHe2+9iRAjEBZi9Ojr3bfeQFJSMmJiYuy+nn32WbW/PSLNMUgSEmSKlUrN/n/dCQkCcrs5fp+nqw0or1NhQKQ6f6h20moCMiYMCAlyfL2VMjmliKnTpuPdf7zhcexkEBYsfPctGCTB+MlFrJwKAI3OKqeCuVSVHU7p0xcfV1CRPlXWGWW3pwRQL4a777gdf3/jdfzr449w7fU3uP38NatXYeP332HPnj2IirKfCyl31w9A++oyDQ3yAX19fWu1xNnHI/IXCSbgtNl+W7lZfl9/0zfNJrtC3/4iA8b08r/Yk9VTpBZJApKiBAor7ZNRpbVMTinhmaefRN++fXHHXfdgkExz8s689fc3ERkRiU8++QQWi8XuMcZP8lg5FQAazIFdOcWqFz/mw4Qi/470SWqWr74KpMqp0NBQPPP003js0T+jsbHRrefabDY8dP99uO+Bh5Ceno7o6Gi7L2fBVffu3QEAJ0+elH28bXuPHj3cGg+RXiSZHGOvMhWTU77sO9U71QYJ8qv2nU3vq/YRqU1ual95HWDxvzywz/Xo0QO/n/cH/OnBP0KcveRoJ6qqqvDXZ57ECy88j/DwcMZPLmJyKgDI9ZwyGgSC5AsKvMbVZuhK95siosDlfKW+wElOAcA111yDpMQkvP7afLee9+9PPkZZeRnuvesOt543cOBAAMD27dtlH2/bPmDAALeOS6QXCTKfO+otgNnq/9eeCBPQI9Hx+zxeJqGua+1bNIvN0eV5Y0qfWtMEtVodJ5ecsgkJ5ayeUsQjDz+E3bt2YtnSb9163vN/fQaDBg/BRRdd5NbzAj1+YnIqAMj1nDIFC0gKXbP8YS45p/TpGKunqANyyamYcIEw3xURaILBYMBLL72IF597FqWlpS49p6mpCY/+5WE88/TTCAsLc+t8Y8aMQUxMDAoKCrBz506HxxcvXgwAuPTSS906LpHWJUW1ZqVGJ0r4fa6ER84xYP4QAz4aacBXFxhgcme5ZR2TW7VPQMKBYv/96MEEFfnC2YsIJEXJJ7xL/bNfts/FxsbiwT89gocfvB9Wq9Wl5xw7dgx/f+N1vPjC85Dc/MAd6PGT/75DUDu5nlMm9psif8IEFckQQj45lepi1ZQvp8H4woQJEzDm/LF49uknXdr/jQWvISE+Addee63b5woJCcHtt98OAJg3b157jwQAePnll7F7926MGzcOQ4cOdfvYRHowIFbCZRkGjE2S0DdaQlKoBGOgLBEKoE+aY5wZYhSy1fyc2uef/OLm9Vm0WD2VxBX7vO6O23+PxqZGfPj+Qpf2f+yRh3HZ5bMx2IM+VYEeP7EhegCQCwRCXeg3pcULcBtXp/QxkRBA2CCdzlLbaECzxTE46xZgU/rO9OILz2Po0KGYd/sdyMnNdbpfeXk5nn/2afz3v/+FweDZfaw///nPWLFiBb7//nvk5eVh7NixOHbsGDZv3oykpCS8++67nn4bRKRx8RFASowNtU0S+qTZ0C/NhuxkgWAft5TwNTZHJ1+LiwCCDAIWm328w+SUckJCQvDXZ5/FnXfdhSuv/hUiIpwn1Hds344vPv8/7N+/3+PzBXL8xMqpACA7rS9Emx/OXO03pShO6fMfPvpdMumpD0EW+SkWqbGBWznar18//Pra6/HInx/qcL+/PvMURo4ajQsvvNDjc4WGhmL16tV45JFHEB4ejs8//xzHjh3DnDlzsH37dmRnZ3t8bCJyn6+rQW8434IHprfgsqFW9E71/8QU+Y4/VmV5yiDJV0+VMjmlqNmzZyMjIxOvzf+b032EEPjTg3/Ebbff0d7Y3BOBHD/pvnKqsbERzz77LP71r3/h+PHjiI+Px8UXX4wnn3wS6enpLh9n7dq1WLNmDbZs2YItW7agrKwMPXr0wNGjR703eBccqbXhylUNMEqAsAkYJMAoATf2lDA+ufPcohBAo8zqMK5UThGRb5UXlyMhNUHtYWiCEr07iqvkr5GB1gz9bE89+Tjy8vKwaeNGjBw1yuHxI4cP459v/R1btmzp8rnCwsLwxBNP4IknnujysYhIX6LdaFWXFRXh0EtHr1g95d/JowOlDZrrL5YUJVBcZb+trFaC1QYYWYqiCEmS8PJLL2Lq1Km46ebfoFu3bg77LP32G/y4exc+/+z/uny+QI2fdP3n2tTUhIkTJ+LJJ59EXV0dZs6ciczMTLz33nsYPHgwDh8+7PKx7rzzTjz22GP4+uuvUVZW5sVRu6fZKlDWJHC6UaDEDJxqAgobgUbX+rGh2QJYhVxDdN9WDri6Up+SWN0SoFg9RT+T6zcVbBSIj1RhMBqSmpqKO+++Fw89cJ/s0sh/eeRPuPpXv0b//v1VGB0Rkf5pLXlB/uXsRK7cin1WIaHCP/K9mnH++edjwoWT8MyTjzs8ZrFY8PBD9+Ohh/+CmJgYFUbnH3SdnHrqqaewadMmjBo1CgcPHsS///1vbN68GS+99BJKS0sxd+5cl481ZcoUPPXUU1i6dCn27NnjxVG7x9mKw65WRsv1mwK0O63PFa72m6IAxgQVQT451S26tQI10D30wB9x5HABvvj8M7vtW7dswdf/W4KnnwqsO3VERER6JZecAji1zxteeO6v+OD993DgrJ5SH76/EE1NTfjDvN+pNDL/oNvkVHNzM15//XUAwIIFCxAZ+cut8HvuuQcDBgzA2rVrsW3bNpeO9/zzz+Phhx/GlClTEB+vnabKzpJTrn64kus3BSg3rU/3ZbvsN+W/+LsNaM0WoLLe8fqXEqvfxLySIiMj8fjjj+ORhx9ES0sLgNZeCQ89cB/uuOset6bFExEpwd9W7QvU6indfzZwgdambXLFPt/p3bs3bpwzF39++MH2bfX19Xji8b/gr88+i5AQ/1rp2dd0m5z67rvvUF1djZycHNllGmfPng0AWLJkia+HpiiLs8opV5NTMv2mAMCkwZ5TSjZDZ0ULAfBJgkprf2uqLCpwltxk9QPyilr5+tJA7zd1pptvvhlBQUF45+23AABf/W8J8g8ewJ8evF/lkRGRt/i6KTqRtwRCEsxV8RGAUZJpil7L5JQ3PPH4o1i7ehU2bFgPAHj1lZfRvXuP9vwDeU63DdF37doFABgyZIjs423bd+/e7bMxeUNsiIQZ3YNgFUBVowU20VpNlWBy7WLjvHIqcFerIiL/J7XIJ8hcTU4Fwge4oKAgPP/cc7j55ptx1a+uwZ//9AAee+wxREVFqT00Ir9wpE5ga4VAmRkoM//832bgtSEGl+M40rdAa47OhJE6jAYgMUrg9FmVUt6snCqvbQ6IWElOcnIy7v3jA/jTA3/Ef/77OV5+8Xl8++23kCRe17tKt8mp48ePAwAyMjJkH2/bfuzYMZ+NyRt6Rhnw6qjW5U4Onu74gl9e69hgqtHDnlNKvpEq2Qxd0X5TnPYVGOoqgEjvTtVtKTyE4PRcr56D3CPXbwrgtL6zTZ8+Hb379MWUieNgs9lwyy23qD0kIr9xoFbgn4cdrzllZiDBpMKANMDcAuSflrC30ICMeIHRefY3S/1p1T7yb2qv2ne0tt5uKmxStMDpsz5yldZIsAnX28GQ6/547934x9/fwPSLJ2PipMkYM2aM2kPyC7pNTtXV1QEAwsPlLwoREa0v1traWp+NyWw2w2z+ZR5ddXU1AKCmRpnkTF1txwmjepnkVKRRwsAUAxpagEazhMZmoLYZEM21aJBZpamNub7RpTG1NHaexLI0uRZk2MydH0u0uDYuYXEyn/FMVieZO/I/1aeAiDivnsLVv83OuPI66IylydUlE+S1NHZtxre5vuuVmQ1hLi5J6kTfRBsiDRJOVUsoqZZQVishMgywNrWgvqnz55vQ8d3AmjBLl8bXfpyf3x/kVs3zhbalkUeNGoXFixcjODhYlXFQ4PJ27AQANQ1du564ywSgvM6M8BaBULMNCSYgPgRINEmINwFBTRLqVLzDLhcvetvO4wbsKzKgql5CTjcbzkm1ITNeoF4mTG+o86/qm8ww4FCZMjGC1rnyuUBJSsQbXdHVWKWr6vHL+aODDLA2GREb3pqoSowSSIgUqK21IchLl5vOYiU5/hI/hYeH4+mnnsLvfvc7/Pe/i1UZgz/SbXJKi5599lk8/rjj0pKZmZkqjKZj36o9ACI/40I61CV1ChzjeBefv1mBMWjVkgfUHoG88vJy1ZYeHjZsGCwWZYJFInfpKXZSystqD4CIyE+oGT/ddNNNuOmmm1Q5t7/SbXKqbXW+hgb5DH19fWu1ji97Zzz00EO455572v9dVVWFHj164Pjx46q9aPSqpqYGmZmZOHHiBKKjo9Uejm7w5+Y5/uw8x5+d56qrq9G9e3dNrRJL5EuMnZTDa7Hn+LPzHH92nuPPznOMn/yTbpNT3bt3BwCcPHlS9vG27T169PDZmEwmE0wmxyYCMTExvOB4KDo6mj87D/Dn5jn+7DzHn53nDAbdLp5L1CWMnZTHa7Hn+LPzHH92nuPPznOMn/yLbn+bAwcOBABs375d9vG27QMGDPDZmIiIiIiIiIiIyD26TU6NGTMGMTExKCgowM6dOx0eX7y4tTHZpZde6uORERERERERERGRq3SbnAoJCcHtt98OAJg3b157jykAePnll7F7926MGzcOQ4cObd/++uuvo0+fPnjooYd8MkaTyYRHH31UtlydOsafnWf4c/Mcf3ae48/Oc/zZEdnja8Jz/Nl5jj87z/Fn5zn+7DzHn51/koRa6y8qoKmpCePHj8fmzZuRmpqKsWPH4tixY9i8eTOSkpKwadMmZGdnt+//2GOP4fHHH8eNN96IhQsX2h3rn//8J/75z38CAFpaWrB9+3aEhIRg8ODB7fu88cYbGDJkiE++NyIiIiIiIiKiQKDbhugAEBoaitWrV+PZZ5/Fxx9/jM8//xzx8fGYM2cOnnzySWRkZLh8rJMnT2LzZvsF1Jubm+221dTUKDZ2IiIiIiIiIiLSeeUUERERERERERHpm257ThERERERERERkf4xOUVERERERERERKphcoqIiIiIiIiIiFTD5BQREREREREREamGySkiIiIiIiIiIlINk1NERERERERERKQaJqeIiIiIiIiIiEg1TE4REREREREREZFqmJwiIiIiIiIiIiLVMDlFRERERERERESqYXKKiIiIiIiIiIhUw+QUERERERERERGphskpIiIiIiIiIiJSDZNTRERERERERESkGianiIiIiIiIiIhINUxOERERERERERGRapicIiIiIiIiIiIi1TA5RUREREREREREqmFyioiIiIiIiIiIVMPkFBERERERERERqYbJKSIiIiIiIiIiUg2TU0REREREREREpBomp4iIiIiIiIiISDVMThERERERERERkWqYnCIiIiIiIiIiItUwOUVERERERERERKphcoqIiIiIiIiIiFTD5BQREREREREREamGySkiIiIiIiIiIlINk1NERERERERERKQaJqeIiIiIiIiIiEg1TE4REREREREREZFqmJwiIiIiIiIiIiLVMDlFRERERERERESqYXKKiIiIiHRrzpw5kCSp/Wv8+PFqD4mIiIjcxOQUERERERERERGphskpIiIiL7vtttuQmZmJ6OhopKen46677kJzc7PawyIiIiLSJMZOgYfJKSIiIi+7/fbbsX//ftTU1GDXrl3YtWsXnnnmGbWHRURERKRJjJ0CD5NTRKS4rKws9vwgOkO/fv0QEREBABBCwGAwID8/X+VRERGRVjB2IrLH2CnwMDnlY1VVVXjllVcwbdo0ZGRkICwsDJGRkcjJycH06dMxf/581NbW+nRMa9asgSRJePHFF53uI0kSpk+fDgCYPXs2jEYjNmzYILvvhg0bYDQaMXv2bLf2dVVlZSXCwsIgSRI+/PBDl59HpEVtrz9JkvD222/L7nPm608Lnn32WVx55ZXIzs6GJEnIysrqcP+Kigrcd999yM3NRWhoKJKSkjBhwgSsX7/eYV+bzYa//e1v6NOnD0JDQ5GZmYl7770X9fX1XvpufOevf/0rIiMjkZycjF27duGuu+5Se0hEumCxWPDaa69h6NChiIiIQFxcHCZMmIDFixerNibGTkTq0WPsdOaiDWd+RUZGdvi8hoaG9njr9ttvl92HsRP5DUE+88knn4iYmBgBoMOvHTt2+HRcq1evFgDECy+84HQfAOKSSy4RQghRUlIikpOTRU5Ojqirq7Pbr76+XuTk5Ijk5GRRWlrq1r6ueu2114QkSaJnz55i/Pjxbnyn5Cs9evQQ48aNU3sYutD2+gMg0tLSRENDg8M+Z77+tACAiI+PF5MmTRJxcXGiR48eTvc9evSoyMrKEomJieKBBx4Q77zzjnj55ZfFnDlzxCeffOKw/x133CEAiMsuu0y89dZb4u677xZBQUFiwoQJwmq1evG78szVV1/d4fV89erVDs/Zu3evePjhh8WJEyd8P2AinamrqxMTJkxw+hr7zW9+I2644Qa7bb54/2HsREpj7OQ6vcZOY8eOFR9++KHd17/+9a8On3fvvfeKyMhIAUDMmzdPdh/GTuQvmJzykYULF3aalNJLckoIIT777DMBQNx22212+91+++0CgPj888892tcVgwYNEhMnThTz588XkiSJgoICt55P3scAy3Vtr7/zzjtPABDPPPOMwz5aC7DOfM2dc845HSanzj//fJGRkSGKioo6Pe5PP/0kJEkSl19+ud32V199VQAQH330kcdj9paamhpRWlrq9Ku5uVn2ef/5z3/4AZHIBTfeeGOncVN4eLjmk1NCMHaijjF2cp0eYycA4sYbb3TrOdu2bRNGo1G89NJLTpNTjJ3InzA55QPFxcUiIiLCLnCSJEn89re/FWvXrhUHDx4UmzZtEs8995zIzs7WRXJKCCGuv/56IUmSWLFiRftxJEkSN9xwg8Pz3dm3I9u2bRMAxPvvvy9KS0tFcHCwePjhh2X3NZvN4rnnnhMDBw4UYWFhIjo6WgwdOlS89tprbu/36KOPCgDiyJEjDuc5O5h47733BACxYsUK8fjjj4vu3buL0NBQMXz4cLFx40YhhBBr1qwRY8aMEeHh4SIlJUU88cQTbv0czqbkOUtLS8Vtt90mMjIyRHBwsMjIyBC33XabKCsrc9j3+PHj4sorrxTR0dEiKipKTJ8+XRw6dEg2wGpqahJPP/206NevnzCZTCImJkZMnz5dbN++3eXv09XfqavfQ9vPbeXKleKFF14Q2dnZIiQkROTl5YmFCxd6fH53tL3+nn/+eTF06FARExPjME6tBVhn6ig5tXbtWgFAvPrqq0IIIZqbm0V9fb3TYz388MMCgFi3bp3d9sbGRhEeHi6mTp3q0phc+T2p8To900cffSTS0tIUOx6RP9q9e7dDIiopKUl88MEHYvfu3eLjjz8WqampDvtoNTklBGOnNoydGDsFWuzUlpwym82itra20/0tFosYMmSIuOSSS8SRI0ecJqcYO5E/YXLKB55++mmHwGn+/Pmy+3b24c0b2i7wjz/+uNMMttwFvrKyUmRkZIju3buLwsJC0bNnT5GRkSGqqqoczuHOvh257bbbRGRkZHuZ+2WXXSYyMjIcSlbNZrMYP368ACCmTJkiXnjhBfHaa6+JW2+9VUyYMMHt/TwJsM477zwxePBg8dJLL4lnn31WJCYmiqioKPHZZ5+J+Ph48eCDD4o33nij/fwffvihWz+LMyl1zqqqKpGXlyckSRI333yzWLBggbjllluEJEmiT58+oqampn3fyspKkZWVJYxGo5g3b55YsGCBuOqqq0RmZqZITEy0+5k0NzeL8ePHi5CQEHHzzTeLN954Qzz77LMiOztbhIWFia1bt3b6Pbr6u3Lne2j7uY0YMUIMGDBAPPfcc+KVV14RvXv3FgDEhg0b3D6/u878gLN8+XIBQNx99912+3Q1wLJarR3eoTr7y50S8I6SUw888ED7Hf7p06cLo9EoAIi8vDzZv/cpU6YIg8EgmpqaHB4bPXq0SExM7HQ8rv6efPk6raqqEu+9956orKwUNptN7Nq1S/Tt21fcdNNNbh+LKJDcf//9DvHT2R/A2hIvaiWnGDsxdmLsxNjJldgJgIiIiGiPhZKSksTtt9/u9PX8wgsviPDwcHHkyJEOk1OMncifMDnlA5MmTbILmtLS0oTFYlF7WO3OnLfd0ZfcBX7p0qUCgEhMTBSSJIlly5Y5PY87+8ppbGwUsbGxdiWxn3/+uQAgvv76a7t9n3vuOQFAPPTQQw7HOfPNw9X9PAmwBg8eLMxmc/v2L774QgAQQUFBdgGF2WwWKSkpYuTIkR1+/x1R6px/+tOfBACxYMECu+2vv/66ACD+/Oc/t2976KGHBADx7rvv2u175513Onw4ePnllwUA8e2339rtW11dLTIzM136IOHq78qd76Ht5zZo0CC7n9vJkydFSEiI+NWvfuX2+d119t33yZMnC5PJJI4ePdq+T1cDrLagxtUvub9zZzpKTs2aNas9ABs9erRYtGiRePfdd8U555wj+7dz7rnniuTkZNljXXnllQKA3e9Jjqu/J1++Tqurq8WFF14o4uLiREREhOjZs6e49957HXrJEJG9cePG2V2bcnNzZfcbNGiQaskpxk7O92PsxNiJsdMvhg8fLl544QXx2Wefiffff7+971L//v0dKqkOHz4swsPDxV//+le7scglpxg7kT9hcsoH+vXrZ3fxmjZtmtpDstN2gb/11lvF8uXLZb86usDfeuut7c/vjDv7nu2jjz4SAMSqVavatzU3N4ukpCQxe/Zsu30HDBgg4uLiRGNjY4fHdHU/TwKst956y26/iooKAUCMGTPG4RgzZswQCQkJHY6hI0qds2/fviIpKUm0tLTYbW9paRFJSUninHPOsdu3W7duDonWoqIihwBryJAhok+fPrJ3mubOnSuMRqNsM8szufq7cud7cPZzE6L1zX7o0KFun99dZwdY27dvF5Ikieuvv759n64GWI2NjU5f23Jf7nyPHSWnLrzwQgFAZGdn2wUxFRUVIjY2VqSkpNgFPdnZ2SIzM1P2WNdff70AICorKzscj6u/JzVep0Tknj59+tjFT5MnT5bd77LLLlMtOcXYyTnGToydGDt1rG12zVNPPWW3fcqUKeLcc89t773UUXKKsRP5kyAQ/SwvLw+TJk1y+3mjRo3CW2+9hVGjRim679neeecdJCUlISMjA4cOHWrfPmXKFHz66acoKytDYmIiACA/Px+DBg1CaGhoh8d0dT9PZGdn2/07Li4OANCzZ0+HfePi4lBeXq76OY8cOYLzzjsPQUH2l4agoCD06tUL27dvb992+PBhDBs2DEaj0W7f1NRUxMbG2m3bt28fGhsbkZSU5HTsZWVlyMzMdPq4q78rd76HNmf/3AAgISEBx44dc/v8XTV48GBcc801+Oijj3DfffdhwIABdo+bzWbcfvvtWLlyJUpLS5Gamoo//OEP+MMf/uD0mKGhoR69trsqLCwMAHDNNdcgJCSkfXtcXBxmzJiBDz74AAcOHEDfvn0BAOHh4SgpKZE9VlNTU/s+HXH396TG65SIXCOEUHsInWLspCzGTr9g7OQ6vcZOf/zjH/H444/jq6++wsMPPwwAWLRoEZYvX45169YhODi402MwdiJ/wuSUD6SlpWHv3r3t/965cydsNhsMBoOKo9KXI0eOYPXq1RBCoFevXrL7LFq0CHfddZdXzi9JktPHLBaL7PazA4/OtitBjXO6QgiB/v374+WXX3a6T0fBl7c5+/mo9cHoqaeewuLFi/HAAw/gm2++sXvMYrEgJSUFy5YtQ3Z2Nnbv3o2LLroI3bp1w1VXXSV7PKvVitLSUpfPn5SUpMjfTEZGBgAgJSXF4bHU1FQAQGVlZfu2tmul2WyGyWSy27+wsBCJiYl2SS4laPU1Q0RAt27dcODAgfZ/HzlyRHY/Z9sDHWMn12j1fYCxk3v0GDsFBwcjLS0NZWVlAFqTaPfccw+mTZuGlJSU9oRyYWEhAKC6uhqHDh1CYmJiezKTsRP5EyanfGDChAlYsWJF+7+Liorw5ptvYt68eQ77trS0oKWlpdMMd6B57733IITA22+/7XBnCQD+/Oc/4913320PsHr16oX9+/fLXqjP5Op+8fHxAICKigpkZWW1b29qakJxcTFyc3M9+r60Jjs7GwcOHIDFYrG7e2axWHDw4EG7OyXZ2dnIz8+H1Wq1ezMqLi5GVVWV3XHz8vJQWlqKiRMnepyUdfV35c734I3zK6Fnz574/e9/j/nz52PNmjV2j0VERODJJ59s//egQYMwY8YMbNiwwWmAdeLECdm7Wc4cOXLE7u/cU8OHD8ff//53nDx50uGxtm3Jycnt24YNG4Zly5Zhy5YtGDt2bPv2pqYm7Ny5ExdccEGn5/Tl74mIvGvEiBFYt25d+78PHTqE9evX210ftm/fjp07d6owOu1j7OQbjJ26fn4l6DF2ampqwsmTJzFy5EgAQGNjI0pLS/HVV1/hq6++cth/0aJFWLRoEV544QXcd999ABg7kX9h6Y4PzJ07FxEREXbb/vCHP+C2227D+vXrcejQIWzduhXz589H//79cfDgQZVGqk02mw0LFy5E//79ccstt2D27NkOX9dccw1+/PFHbN26FQBw7bXXorKyEk899ZTD8c68o+Pqfm13HM9MMgLA3/72N9hsNkW+z7O1tLRg//79OH78uFeOL2fWrFkoLS3FP//5T7vtb7/9NkpLS3HZZZe1b5s5cyZOnz6NDz74wG7f5557zuG4N9xwA06dOuX07t/p06c7HZurvyt3vgd3uHp+pX5vf/7znxEdHY3777+/w/1aWlqwfv16hxL2M6WkpGD58uUuf8lVOnli1qxZiIqKwqJFi1BXV9e+vbi4GJ9//jl69epl9+Hk6quvhiRJeOWVV+yO8/bbb6OhoQHXXnttp+d09fdERNp33XXXOWy74oorsGjRIvz444/417/+henTp6swMu1j7MTYCWDs5IyvYydn09oeeeQRWCwWXHrppQBak2iffvqpw9cbb7wBALj44ovx6aefYsaMGe3HYOxE/oSVUz6QkpKCV199FTfffHP7NiEE3nzzTbz55psqjkwfli1bhhMnTtj9/M52xRVX4LHHHsM777yDYcOG4c4778SSJUvw1FNPYevWrZgyZQpCQ0OxZ88eHDhwoD1QcnW/SZMmoXfv3vjLX/6C8vJy9OzZExs2bMCmTZvaezUorbCwEH379sW4ceMc7gB5y/33349PP/0U8+bNw/bt2zF48GDs2LED77zzDnr37m33Zn///ffj448/xm9+8xts27YN55xzDtasWYONGzc6/EzuvPNOLF++HH/84x+xatUqTJw4EdHR0Th+/DhWrlyJ0NBQrF69usOxufq7cud7cIer51fq95aYmIg//vGPeOSRRzrc7/bbb0dUVBRuuOEGp/so3Tfhww8/bO8pUVpaiubm5vaApkePHrj++usBtPYZePHFF/Hb3/4WI0eOxNy5c9Hc3Iw333wTzc3NeO211+yO279/f8ybNw+vv/46Lr/8ckybNg379u3Dq6++inHjxuHXv/51p2Nz9fdERNo3YMAAXHfddVi0aFH7ttLS0vZrTJugoCCn08QCFWMnxk5tx2Ds5MjXsdNTTz2FTZs2YcKECejevTvq6urw9ddfY/Xq1RgxYkR776vg4GDMnj3b4flHjx4FAOTk5Dg8ztiJ/Ipv+68Htg8//FBER0d3uhTpjh07fDqus1e8kIMOVrxoW7nhvffe6/Rc7uzbZvbs2QKA2L17d4f79erVS8TExLSvXNLY2Cieeuop0a9fP2EymURMTIw477zzHJbJdXW/AwcOiIsuukiEhYWJmJgYceWVV4qTJ086XXFm9erVDmMEYLecc5sbb7xRnP1ybFuZw5VVh5Q6pxBClJSUiN///vciPT1dBAUFifT0dHHbbbeJ0tJSh32PHTsmrrjiChEVFSWioqLE9OnTxaFDhxx+JkK0rvgyf/58cd5554nw8HARHh4ucnNzxa9//WuxdOnSTr9HIVz/Xbn6PXT0cxs3bpzDKnSunN+d35sQHb/+6uvrRWpqqtPX39133y369+8v+7vxprOXdz/zS+77/u9//ytGjBghwsPDRWRkpJg8ebLYsGGD7LEtFot48cUXRa9evURISIhIS0sTd999t8Myyx1x5fek5GuGiLyntrZWXHDBBU6vObNmzRLXXnutaqv1MXZi7CQEY6c2jJ3kff7552LKlCkiLS1NmEwmER4eLgYOHCiefvppl1b562i1PiEYO5H/kIRgrZ4vVVZW4r333sOyZcuwe/duVFRUwGg0olu3bujXrx8mT56MuXPnIioqSu2hEpGG3XXXXVi5ciVWrVqlakNUIiJvs1gsWLBgAd5//33s378fwcHBOOecc3DzzTdj7ty5uOmmm/D++++37+/Lqhki0g/GTkTa5rfJqW3btmH58uXYsmULtmzZ0r7KQWff7sKFC/HGG29g7969CAkJwciRI/HnP/8Zo0eP9sWwiYg6dccdd2DVqlVYvXo1gysiIiKiTjB2ItI+v01OzZo1C1988YXD9o6+3bvuugvz589HWFgYpkyZgqamJqxcuRJCCCxevBizZs3y4oiJiDp37NgxZGVlwWQy2a2oM3bsWIelk4mIiIgCHWMnIn3w2+TUc889h/r6egwbNgzDhg1DVlYWzGaz0+TUihUrMHnyZCQkJGDjxo3Iy8sDAGzcuBHjx49HeHg4jhw5IrsULxERERERERERecZvk1NnCw0N7TA5NW3aNHzzzTf429/+hrvuusvusTvvvBOvvvoqXnzxRdx7770+GC0RERERERERUWAwqD0ALWhsbMSqVasAQHb5zrZtS5Ys8em4iIiIiIiIiIj8HZNTAA4cOACz2YykpCRkZGQ4PD5kyBAAwO7du309NCIiIiIiIiIiv8bkFIDjx48DgGxiCgAiIiIQGxuLyspK1NbW+nJoRERERERERER+LajzXfxfXV0dACA8PNzpPhEREaiqqkJtbS2ioqJk9zGbzTCbze3/ttlsqKioQEJCAiRJUnbQRESke0II1NbWIi0tDQaDOveLamtrEd0/DSc27HN6k4bIWxg7ERGRu7QQP+Xn56PX5CFoOlAGk8mkyhj8DZNTCnr22Wfx+OOPqz0MIiLSmRMnTqiWGIoemA4cq0Pm8N4QRfWqjIECF2MnIiLylJrxU68xA4DSJoQO6AZxoEqVMfgbrtYH4Msvv8TMmTMxePBgbN++Xfb5cXFxqKqqQk1NjcuVU9XV1ejevTtOnDiB6OjoLn8P1c0VXT6GnlQ1V3r1+P+r2olHij932N4jOB6Lc+YhSDJ69fy+UtJYrPYQiDQjOSxVkeP0iMxR5Dg1NTXIzMxEVVUVYmJiFDmmO4qKipCemQH0iwX2VmLXjl0YMGCAz8dBgcvbsRMQePGTq7wdZ53pjZJVeLt8ncP24eE98Y8eN/psHFrC+Ez7lIoZuqrZZsGU/BdRbWtq3xYuhWBG7CA8kDKty8ePDYnr8jFcFRMSr8hx1I6f1q9fjwsmjAN6xwL5VagsqUBsbKzPx+FvWDkFoHv37gCAkydPyj5eX1+PqqoqxMXFOU1MAYDJZJIt6YuOjlYkwBLNli4fQy8qm8sRFRrpteO3CCveLt4IKSLY4bE7MqYiToWLnBJONRQ5bIuIilBhJETaVI+a9v9PCU/z+DjRkcp8aG6j1vSl9GF5QGIokBIO1LRg4MThEGVNnT+RSCHejp2AwIqf3GFtbvHJeSot9fikebtszHVf9nREhXsv3tOaM+M0xmfaV4+aLsUKSpqefh7+VbEFoyNzMSt2MCZF9UOEUZmpZFa0IC4kQZFjdSY6RP/xkxACF0y/EMiKAlLDgFMNiBuUCXGUvam7iskpAL1794bJZEJpaSkKCwuRnp5u93hbNRXvJvuPUy3VCDE4/vlnm5IwPWagCiNyn1wiitR3vPaEw7buUZkqjIQ6c+ZrSCvBpy/99NNPwKkGYGS31g09o4DvTmH58uWYPHmyuoMjIq+qbC732bmON1cgxhiGepvZbvsFkb0wJLyHz8ahFsZrpITfJY7HbUkT0S1Y2eQOue8///kPYLYC3SMASQJyo4EfynDs2DH06OH/1zRv4mp9AMLCwjBx4kQAwKeffurw+OLFiwEAl156qU/HRd6TGRKPr3LvxMsZV6NnSGL79juSJ8EoafNlcaqhyO6LtOF47Qm7r472Ie0KxNdW//HnAekRQPjPifpgA9AzClMuvwRWq1XdwRGR3xgYnolleffisdQZ6Bb0ywfrO5MnqTgq7wrE9xR/pZXfYWpIrFcTU75MWOuZ2WzGr266FsiJBow/f2aMDgGSQ5E1sq+6g/MDrJz62T333INvvvkGTz31FC655BLk5eUBADZu3Ih//OMfiI2Nxc0336zyKAODry6ORsmAS2MHYWpMfyyp2oWlNT9havS5Pjl3Z7TyRkjyOks0VTc0oKDkFFqsVgzqngVTcLDd81hJpW2BUFG1cuVKoLoZOOesPhMZkcCJegQNSILYwz49RKQMkyEI1yaMwhVx5+GTis04ZC7BgHD/ei9k7Ebk/0IHdAOMEpAabv9ATjSwsQTbt2/HkCFD1BmcH/DbhuhfffUVnnzyyfZ/b9myBUIIjBgxon3bI488gksuuaT933fddRfmz5+P8PBwTJ48Gc3NzVi+fDmEEFi8eDFmzZrl1hhqamoQExOD6upqNkR3QyBm7hnQaJsrVU8tVgt2Hz+GzQX52FdU2L74QoTJhDljJ6Bvuv1KIkxQ6c+ZiaqsyDxFjqn0+4QrbDYbjLGhQLew1n4JZzvVAOTXoKGyFmFhYT4ZE1Ebb7wmAiV+clUgxlnewvgtcPjrzaqzebv3lJIN0X0dP1VVVSEuOR44J761X+fZ8quBmhbYyhtV6yWqd35bOVVaWorNmzc7bD9zW2lpqd1jr7zyCgYNGoTXX38dy5cvR0hICCZNmoRHHnkEo0eP9vqYKTAxsNEmVxJSQggcKS3B5oJ8bD9yGI0tzQ771JvNeHPlUlw9cgzG9OrjcHwmqfTjzNeqUskpNXz88cdAsw3IdNKEuFsYcKwO4QNSIPKrfTs4IiKNY9xGFJjiBmUCUSFAgpNG9FlRwPen8c0332DatK6vohiItNlcRwFz5syBEKLDrzlz5sg+74cffkB9fT0qKyvxzTffuJ2YWrBgAfr164dhw4Yp9N0EjkC7m8cAR1s66x3VpqKuFt/u2oEnPv8UL3+zBN8d3C+bmGpjEwKfbNyAz7dtge2sYlX2oyJfampqwvW/mdPavNPo5K6eJAF5McCRWoebOO5Ys2YNJEnq9OuJJ55of85jjz3W4b4PPvigx+MhbWPsRFrGHlLE331gO3bsGHCiHsiLbo2T5Pzcu/OSq2Z2qXdnIMdPfls5paZ58+Zh3rx57eWGRHL4Jqc+d5NCO44dwfr9e3HwVLFH51vx026U1dbghvPHIyTI/vLLSiryhbD+3YAgA5DSyXS9eBMQF4LkoT0hjtd5dK6UlBTceOONso9ZrVYsWrQIADB27FiHx8eMGYPc3FyH7UOHDvVoLKR9jJ18I9BuAnYF4zQKRJXN5V6f2qdHWSP7At1CWyunOpIRAZyoQ1D/RIi9lR6dK5DjJyanSDMYMJEvdKVKqeD0KY8TU212HjuKqvqvcOvEyYgOC3d4nEkq8pby8nLgaC3QP975Xb8z5cYAW0pw6NAh2UCnM3369MHChQtlH/vmm2+waNEiZGZmYvz48Q6P33LLLbLVzURE3sSEFHXkVEOR5npPNdlasKJmLz6v2oHfJY3HeRFZag/J72zfvh0oaQJGJ3e+s0FqrU4/UI36+npERES4fb5Ajp/8dlof0Zn2NhbBbLOoPYx2DH58y9Xpep0ZkeNan6Hk6BgMy85x+vjRslK89PWXKK5yfkeFU/1IaYmDewAxIUCCTBNPOZHBQGo48sb0V3wsbXf9rr32WjYNJfIzW+uPwCpsag/DZZyyR3pjEzZsqivAgycXY+T+p3H3yX9hbd0BfFa1XZHjs2DgF0IIDJ00GsiMAEJdrOtJDgNCjYgckKr4ePw9fmLlFPm9eqsZc46+C5MUhNuSJ+CK2KEIMfBP3595kthptlgcptqdLSM+AamxcbJJpbCQEAzNysaI3F7ISkyCJEnom5aBj79fD4vNMUivbmhEY7PzPlUAq6hIOQUFBUBhPTDchbt+Z8qOBr4/jY0bN2LUqFGKjKW+vh5ffPEFAOD6669X5JhE1DlffOA81FSCa4+8jZ6mRNyRPAlTo8+FQdLevXAmoshTWqiesggb7jjxMSqtDXbbv6n+EY+kXopQQ7BKI/M/33zzDVDXAgx0Y5VBSQJ6xQA7ynH69Gl069ZNkbEEQvzET+ikCd4MmBZVbESltR4A8Jeiz/FW6VrcljwRs2IHI1gyeu28zjAg8g5PElJWmw37ik5i86F87Ck8gccuv0p2ql0bSZIwIicPn2/bAgAwSBL6pWdgRE4vnJuZiWCj/SV1eE4e4iMi8daaFWgwm+0eu2HsOGQnu/ZmxSQVdVXumP5ASnhrNZQ7TEageyRGTx0PW2WTInfp/u///g/19fUYPHgw+vXrJ7vPqlWrsHPnTjQ1NSEjIwNTp07VTb8EokD2WskKCAgcNpfirhOf4E1TCu7oNgmTo/qpfpef8Zc+MObpXIghCNNiBuCjik1222ttTVhVuw/TYgZ0+RzsPQVYLBZcctVMoGdUa79Od8SagHgTUs7LgTjhWe/OswVC/MTkFPm1WmsT/lm2zm7byZZK/Knwv+gRkoDhET19Oh4GRsrpyrS3wopybC7Ix9bDBahtamzf/sPhAkw8p+MpTMOyc7HtSAGGZefivOycDpNZAJCbkop7XfzrugAA9XFJREFUp87AmyuXoqy2BgAwY8gwDMnKdnvcDNjIE5s3bwZKm4DRHt656xEJFNbjs88+w+WXX97l8bSVpHd01+/DDz+0+/cjjzyCK664AgsXLkRkZGSXx0AUaHxRNbW/qRhf1/xot+2A+RTuPvEvrO71RyQHR3t9DGdj3KUfempnoIXqqZmxgx2SUwDwedUORZJTBAQPSAJsorXJuSdyo4HNJdi/fz/69OnT5fEEQvzE5BT5tQ/Kv0eVtdFh+4iIbJ8npqjruhK41DY24ocjBdhckI+TFfJB+uaC/E6TUzHh4Xjg0svcOne3mBjcN20G3lq1DN1iYzH53K4FDUxSkTtGXjoe6B4BhHpYKRrUujTyFXN+hepJZXYPmUwmmEwmlw9VXFyMlStXwmg04pprrnF4PDc3Fy+++CKmTp2KHj16oLKyEuvWrcP999+P//73v7Barfjss888+z6IyKtePb1Cdvs18cN9nphiUko/nMV2x2tPMM7pwKCwTGSFJODoGYnn7JAknBeepdg5Ar566mgtkBPd2uTcExGtvTv7ThyC6v2n7B5i/CSPySlSnbfu5gkhsKX+iOxjdyRP8so5O8JAyTNdSUi1WK346cRxbC7Ix97CE7AJ0eH+hZUVOFlRjox45d+II0ND8YeLpsEgGRSb2sDAjVwxrt8IrK3f09oM3VPNYYgrMSAmJsZu86OPPorHHnvM5cN88sknsFqtuPjii5GSkuLw+HXXXWf374iICPz617/GhAkT0L9/f3z++efYtGkTRo4c6dG3QUTeUW81o6C51GF7qBSM3yaO98kYGGfpj56qpc6mdvWUJEmYGTsYH5RvxPSYAZgVOxj9wzJUnz7rT+JCo1GZEt61+CkxFH3MyYyfXMTklBcsWLAACxYsgNVqVXsoAU2SJCzMmouVtfswv2QF9jcVAwBGR+RyOp+GdTVQEULgWFkpNhfkY9uRw2hoNnf+pDNsLsj3SnIKgENPqo6YW1pgCu68PxCrqMhXYmNjcfToUbtt7tz1A1wrSZeTmpqKm266CS+++CK+/fZbzQdX5D7GTt7jiyl9EUYTvsq9E0uqduG1kpU40VIBALg+YRSSgqO8dl7GV/rkaqzHm3AduynhfPw2abxXe+gGfPWUAnr37t3aYuEMjJ/kMTnlBfPmzcO8efNQU1PjkCUl35IkCZOi+2FiVB8sq9mLV0tW4M5uvq+aoo4pceessr4eWw7nY0tBPk5XV7v9/NjwCAzPycWInLwuj6Wr9hWdxAfr1+DmcRciN8W1ZWiZpCJvkyQJ0dGeT83Zt28fduzYgcjISMyaNcvt5+fltb42i4uLPR4DaRdjJ/0Lkoy4LG4IpscOxP9VbsP75d/jlsQLvHY+Jqb0R8+VUnLUrp6KMLqX4CB1GAwGxk8uYnKKVOWLu3kAYJAMuDjmXEyJ7ufzJY0ZPMlTIkAxt7Rg1/Gj2FyQj4PFReh40p6jYKMRg3r0xIicPPRKSYXBoP5y18WVlXhnzUo0tbTgteXf4NrRYzHcjYQZk1SkVW1NOi+//HKEh3e8kICcyspKAK2l6kSkXcGSEVfHD8dVccO8NsWIsZX+eBr3sXpKfayeUlcgxU9MTlFAYWJKPd64W3a0rAQfbFjr9vNyu6VgRE4vDM7KQmhwF+aRO1FQdbz9/3Niu7v8vJrGBry5cimaWloAAFabDR9sWIuy2lpMHTjYrSCfwRxpiRACH3/8MQD3S9Lbnt/WyHPIkCGKjo3In/nqJqAc9r4hwP+qpc6mdvUU+bdAi5+YnCIir/F2QJKXkoa4iAhU1td3um9iVDRG5ORiWHYeEqO80//izKTUmdtcSVA1Wyz4x8rlqKivc3js613bUVZbg2tGj0Ww0fW+AqyiIq1Yv349jh07hvT0dEycOFF2n9LSUvznP//BDTfcgKgzXqN1dXW47777sHnzZqSkpODyyy/31bCJSIN4408flIwBecONAlWgxU9MTpFq1Lyb5wuBGjz58g6ZQZIwLDsXy37cJft4aHAwhmRlY0ROHrKTu3n1Lq5cYurMx1xJUMVFRuBYueNqRwCw5fAhVNTX4TcTJiHCFOrW2JikIrW1NfL89a9/7XT6bH19PW6//XY8+OCDGDZsGFJTU1FaWort27ejvLwcsbGxWLx4sUcl7USByN/jLNImf6+UkhMI1VOc2qeOQIufmJwioi5ROgix2WzYX1yEzQX5ODcjE8Oyczvcf0ROnl1ySpIk9E1Lx/CcPAzI7IGQIO9e5jpKSp29X0cJqpCgIMwddyG+3L4VK37aLbvPodOn8NLXS/D7Cy9CkgeNFZmkIjWYzWYsXrwYgONSx2dKSEjAAw88gE2bNuHgwYP4/vvvYTQa0bNnT8yZMwd333030tPTfTVsItKgQL3xpxfeTEyxesp9QgjYIGD0cVsTUkYgxk9MTpEqvHE3r8baiCDJiHCD8j2E3OXvwZM3go/iykpsLjiILYcLUNPYAKC1B1NnyaluMbHISkqGuaUFI3LycF52DmLDfdPwz9XE1Jn7d5SgMkgSZg0djsSoaPxn03ewCccW7yU11Xjp6y9x68TJyE7u5vaYASapyLdMJhMqKio63S8qKgp//etffTAiIuqqk82VSA6KQoiBHyXId9VSWk5Qaal66pi5HF9W78DnVTtwT7eLcEnMAEWOy+op3wrE+InvKOQ35peswFdVu3Fr0gX4dfxIhBqCVRmHPyamvBV01DU14YcjBdhckI8T5WUOj+efKkZ5XS0SIjvuEXXbhRchLCTEZ81X3U1Knf3czqb4nd+rDxIiIvHO2pXtzdHPVGduwqtLv8b151+AoT1zPB6LloM8IiLynDen9NmEDbcd/xA11kbMS5qIWXFDECy53g/RU/4YX+ldIE7h0yqLsOLTyh/wedUObG841r7986rtiiWniLyNNX7kF4pbqvFJxWaUW+vw7KmvMfHgC/ig/HuYbY4f7Mk1x2tPtH8pyWK1Ytfxo3hr1XI8/OnHWLxlo2xiqs2WgkOdHjPcZPJJYqqg6niXElNnHqczfdMzcPfUSxHnZNlXi82K99atxtIfd0LIVFi5yhu/YyIi8l/LavZiX1MxCluq8Kei/8PU/L/hi6odsAqb2kMjH1IidqhtbFTlvN6iZgLVCAPeK9tgl5gCgPW1+Si3OC624yn2siNvYnLKCxYsWIB+/fph2LBhag9Fk7xxUft76Wq0CGv7v0sttXiyeAmeOfWV4ufqiN7v6nkrISWEwPHyMny6+Xv8+dNP8PbqFdh94hists4D2S0F+V1KvihFiaSUu8dLj4vHfdNmIjMh0ek+S7b/gI83rnfpZ9kRJqmISE2MnfTBKmx4tWSF3bZjzeW47+R/8GXVTq+dV+/xlT9RKl7YcfQIHv2/f+OHIwUKjIokScLM2MEO262w4X/V8gsHEWkNk1NeMG/ePOzduxdbt25VeygBobC5Ep9W/uCw3QAJNySM9tk49Bg4nZmM8kZioqqhHit+2o1nvvw/PP+/z7F2/17UmZtcfn50WDgGdu+BFqu18529RKlqKWfH7kxMeDjuuugSDMjs4XSfjfkH8caKb9HQbO7ymJikIiI1MHZSjjcrG76u3o1882mH7enBsZw65OeUig9sNhu+3L4V76xdiWaLBR99tw4nKzr+m7WddQNOy3GKmp8H5JJTAPB55Q5Fz8PqKfIW9pwi3ftf9W67qqk2M2IHIceUrMKItM3bb+jNFgt2Hz+GzQX52F9c6HbVU7DRiAGZPTAiNw+9U9NhdLJsqrd5KyEld57OelCZgoNxy/gL8dm2LVi99yfZfQ4UF+Hlr5fg95Mu6rRHlyvYj4qIiM62vGav7PZ5SRO91hxdjzf//I1SsWNDsxnvr1uDPYW/HK/FasXbq5fjj5fMQmRoqN3+hRXl+Gb3DhgNRtx0wQRFxuDPMkLiMCy8J7Y2HAEABEtGjIvsjZmxgyGE8FlvViJPMTlFPuWNTPutiRfg3LB0zD+9HDsaWxMKRhhwe9JExc/ljNYDJ1/dYbIJgae/+C/K62rdfm52cjeMyMnDkKxshIWou+KirxJTZ56vswSVwWDAFcNGIjEqGou3bJRN+p2qrsKLX32J306cjKykridmuaofERGd6ZXMX2FazQC8WrKivYKqe0g8ZsUN8cr5tB5f+Tsl48fiqkq8tXo5SmtqHB4rr6vDu2tXYd7ki2E0GHCyohzf7NqBXcePAgAkABcPGITU2Di7sWk1PlFz5b5ZsYPRLCyYFTsY02IGID7IOytYc+U+8gYmp0j3JEnCmMhcjI7Iwfq6g5hfsgK9TCnoYXLep8ffqVXubJAk9EvPwPoD+1zaPyEyEsNz8jA8Ow9J0dFeHl3nfJ2UOvvcnSWoAGBcn35IiIzEu2tXodlicXi8tqkRa/btwRwFklNtmKQiItIHb0+3MUgGXBxzLiZH98NX1bvxWskK3J58oU9W6yPfUTqO3HX8KD5YvxZmi/OFipKioyGEwPf5B/Dx9+vtHhMAvt29k9VTLrgy7jxcFc/efaRPTE6R35AkCRdE9cbYyF5oEr5bpU8rd/W0Mv9+RE5eh8kpU1AwBmf1xIicPOR0S4FBAyXGaialzuRqgurcjO64Z+qleHPFUlQ3Ntg91iMhCb8ePdYr42OSioiIAMAoGTAjdhCmxfSHBO+8j2slvgokSseSNiHwza7t+GaX855HRoMBV44YjfN79QEAnJOeiWCj0aHf6PYjBZg6cDBSYmLtxqvVmESt6ilO3SM9Y3KKfMZXzfMkSUKY5JtpYWoGTr5MRtmEQP6pIhRXVWJ833M73LdHYhK6RcfgdE11+zYJQK/UNIzIycPA7lkwBQd7ecSu00piqo2rCaqM+ATcd8lM/H3lUhRWVgAA4iMi8dsLJyMkyLuXdiapiIi0R40mxUGsmPIbSseVjc3N+GDDGvx4wnmcFR0WhlvGT0J2crf2bTHh4RjTqw/W7Ntjt68AsHT3Dtw4ltVTWsGpfaQ0JqeIdMTX1VGnq6uwuSAfWw8fQmV9PYwGA87rmevQsPJMkiRheG4elmz/Ad2iYzA8Nw/Ds3MRFxHpw5F3TmtJqTO1ja2zJFVcRATunjod761djYKSU/j9hRchOizcF0MEoO07lkREpF+smvIdb8SWp6ur8Nbq5ThdXe10n6zEJNwyYRJiwx17Ik06dwA2HNgPi82+euqHI4dx8YAh6BYT075Ny7GImr2niPSIySkiD/kqcPJ1QqrBbMa2IwXYfPgQjpaW2D1mtdmw7UgBxvU9p8NjjMrthd4paeiRmKS58mItJ6XO5koVVWhwCG6dOBkl1dVIjYvrcF9vYBUVERGR/ngrvvzxxHG8v341mlqct9gYldsLV40cg2CjfOVdbHgERvfqjXX77VeHFEJg6e4duGHseLvtWk5Q+TtWT5GSmJwin1Cj1NybvJmYUqN3lNVmw97Ck9hSkI8fTxyDxWZzuu/mgvxOk1PRYeE+reBxlZ4SU21cSVAZDQZVElNnYpKKiEg9/hRnsWrK+7wRa9qEwLLdO/HVzm1wXE+4lUGSMHv4KIzt3bfTm5eTzx2I7w/ud4hJtx4pwMUDByM5OsbJM7WF1VNErmNyinSnydaCUIN2ehYpQa1m5icryrG5IB8/HD6E2qYml55zvLwMxVWVdsv5ap0ek1JncrUPVWesNhveWbMSI3N7YUD3HgqMzBGTVERE/qHJ1gIBgTCDb/p4kvd5K95samnGhxvWYdfxo073iQoNxc3jJyG3W4pLx4yLiMCovN4Oi+y0Vk/txPXnj7Pbzuop19RamyBBQqTRpNgxWT1FSmFyirxOybt5+xqLcf3Rt3FTwvm4IWE0oozOex95i9J39HydmKppbMAPhwuwuSC/vZG2O6JCw1BWW6uL5JTek1Jn6mqCSgiBf23agN0njuHHE8dwxfCRnTa37womqYiI9G1h+Xf4oPx7/DZpHH4VNxwmH9wYZNWUd3gz1iytqcY/Vi3Hqeoqp/t0T0jEbyZMcrv/6JT+A7Ex/4Bj9dThQ7h4wCAksXrKJRZhxXd1h/BZ1XasqNmLe7tdhJsSz1dtPETOMDnlBQsWLMCCBQtgPWsJVOq610pWoNraiFdKlmNh+QbckngBrosfhQgFs/8d0WtiqsVqwY8njmNLQT72Fp6ETTgruJYXZDCgf2YPjMjNQ9+0DBgNBi+NVDn+lJhq05UE1bKfdmFj/kEArSveLN6yCaU1Nbhi2EgYvPj75J1MInIFYyfPeWNKX621Cf8sW4dqayOeKv4f/lm6HrclT8AVsUMRYuDHB73wdpxZVV+P57/6Ao3NzU73GZGTh6tHjvFoJeG4iEjZ6imbEPiW1VOdsgkbnjv1Db6s3okyS1379i+qdiienGL1FClB+58wdWjevHnYu3cvtm7dqvZQ/MpPjYVYXvtLY8QqayNePL0Ulxx6BS2CwawzG/MP4k//+Rjvrl2Fn06ecCsxlZWUjKtHjsEzV12Lm8dfiHMzums+MVVQddwvE1NtPPneth0pwJLtPzhsX7t/L95avRzmDpqWKuF47QnVpq4SkT4wdtKW98o2oNra2P7vU5Zq/KXoczxYuNhr52TVlLJ88b4bGxGB83rmyD7W2l9qJK4bc4FHiak2k88dKBt7bj18CKU1NR4f19fU+Ps2SAb81Fhol5gCgD1NRchvOu3z8RB1RtufMkn3lLybN79kuez2S2IGIliSX+1DSXqtmooJD+vwjtbZ4iIiMKX/QDwyazbumzYDY3v3RbjJN5VpXeHvSakzuft9Hi5xHoD8dPIE/vbt/1BVX9/VYXWKSSoiImV5o2qqytKA98o3yD52TfwIxc9HyvL1e+0Vw0YiJ7mb3bZIUyhunzIV4/ue2+VVm+MjIzEyt5fDdpsQWPbjToftjDPszYodLLv986odip/LnxZmIHUwOUW6cKipBGtqDzhsjzCE4ObEsSqMSD/6pKZ3unJeSFAQhmfn4g9TpuLxK36FGUOGoVtMrG8GqAAtJqUOVhTjYEWx147vzvc8e/gozBo63OnjJyvK8eLXX+BkhW+CCiapiIi066vqXaizmR22nx+Zh2ERPb1yTlZNdZ1a761BRiNuHn8hYsNbY82M+ATcP30meqUo12Ppov7y1VObC/JRVlur2Hm8TY2/84tj+sMkOVaufVm1EzbhfHVuIjUwOUW6kBuajH9n/w6jI3Lttt+QMAbxQRFeP78Wq6ZsQuDgqSI0Wywd7mcwGDA8W77kOi8lFdeNuQDPXPVr3DB2PHqnpsPQxTtcvqTFaqmzk1JaSFBJkoRJ5w7AzeMuRLBRvsqwqqEBf/vmf9hz0neBLRNURETa8+v4kXinxxz0D0u3235X8mSVRkSdUfv9NDosHLeMn4SRub1wz9RLER8Zpejx4yOjMCInz2E7q6c6F2UMxaTofu3/7hYUjd8kXoB3subAICmfCmD1FHUFOxqS1yh9cRoS3gPv97wZW+qPYP7p5djbVOSTqimt3c0rranG5oJD2Ho4H+V1dbhx7HgMy87t8DkjcnphxZ4fAQBJUdEYkZOHYTm5SFA4ePAVrSWk2jhLRB2sKEav+FSvnNOdJumDs3oiNiIC/1i1DHVNTQ6Pmy0t+PuqZbhq+CiM7dNP5gjK46p+RESe8daHQEmScEFUb4yN7IVVtfvwSskKpAbHYGC4d67TWouz9ERLSZispGRkJSV77fgXDRiETYcOOvRO3XToIC4aMMghptVqc3Q1Vu6bHXceQiQjZsYOwciIbBi9kJQiUgKTU6Q7wyN64qPsW1HUXIUYY5jaw3GbJ4FEY3Mzth89jM0F+Q79gzYfyu80OZUaF4fpg4aiV2oaeiYld3n+v5r0lpg683EtJKh6JiXjvmkz8ebKb3G6utrhcSEE/r35e5TW1mDW0OFeXcnvTExSERFpiyRJuDC6HyZE9UGtzDQ/Uo+vklLNFgs++2EzJp87QPFqKHclREZhZG4vfJ9v3+bDJgSW7t6JX49mmw9nzo/Mw/mRjpVnRFrDtCnpVlpIrNfPoebdPJvNhr2FJ/De2lX4038+wicbN8g2tj5QXIhKF5pZXzxwMLKTu+k2MaXFKXxtXJ26p4UpfgCQGBWFe6fO6LAfxKq9P+Gfa1Z6fSW/s7EfFRGRthgkg9duBrJqyn2+eo+sqKvFy98swfoD+/DW6hWdtpHwhSn9B8m2n9h06CAq6hx7T2k1nvD3v3tO7SNPsXKKvMIfLkreeONw5U2yuLISmwsOYsvhAtQ0NnS6v0DrcrpT+g9UYITao9WEVBt3E05aqaAKN5lw26SL8K9N32HToYOy++w+cQzzl36F3104pdOm+kpjJZWygpIiYMyK9fj5NqMROMnGqURa4Q9xFrnHl4mWg8VFeHftKtSZW1sAnKwoxycb1+OG88erepMzMaq199TGs+KW1Ng41JnNqld3kf8JTouCIcnz5LylwvUV04nJKSJNqGtqwg9HCrC5IB8nysvcfv6ek8f9Mjnlb4kpX3AnQRVkNOLa0WORFBWNJTt+kN3neHkZXvjqS/z+wilIi4tXcqgu0WrPCCIi6hp/rx5Rii+TUkIIrNm3B5/9sNmht9PWwwXIjE/ExHP6+2w8ci4aMAibC/JhEwIZ8QmYOnAw+mf2cLqgj1bjCDV6T/lSZXM54kIS1B4G6QyTU0QyfFU1dfBUEdbs3YOfTh53CAI6YzQYcG5GJkbk9EK/9AylhqkJWk9KAV1LTHmzegpwL0ElSVJrI9GoKCzasA4Wm9Vhn8r6Orz8zRLcPP5C9E3z/d8aq6iIiCjQ+HpKWrPFgn9t+g5bCvKd7rPsx10YldcbYSEhPhyZvcSoaFwyeChSY+LQP7O7bttVEJEjJqdIcUqUmgsh/P7NZu2+Pfh0y0a3n9c9IREjcvIwtGcOIkNDvTAydWk9MaVUtZSWElQAcF7PHMRFROCtVctRb3ZsfNvU0oJ31qzE41dcjQiTOn93TFIRESk/pc9ss8Bk8O1HAlZNdczXianK+jq8tXpFh9X7qbFxuHXCJFUTU20u6j/Irf1ZPaUOVk+Ru5icIs0RQuDGo+9gQFgGbk4ci7igCJ+e3xdVU3VNTfh82xaXnx8TFo5hObkYkZOH1Ng4pYenCVpPSgHKT+PTWoIqJzkF902bgTdXLkNJjeNKfteOvkC1xNSZmKQiIlLGYXMpfnX4H5ibeD6ujx+FCKNJ7SEFNDUaeB86VYx/rl2JuqYmp/sM7J6F68+/AKHB6iemSHn5TacRaQxFanCM2kOhAMfklBcsWLAACxYsgNXqOD3G3ylxN29N3QFsrC/AxvoCLKrYiBsTxmBu4livrRRzJl/dyfvu4H60dPL3EWw0YmD3LIzIyUPv1DQYDP65uKYeklKA9/pLaS1BlRQdg3umXop/rlmBQ6dPtW+fOXQYBmf19MYQPcYkFZH/COTYyR1KV029VrISldZ6vHR6Kd4r24Bbk8bh2viRCDUEK3qeM7FqypEaSSkhBNYd2If/btnotLWEBOCSwUOdrpKnJ6yesldmqcWSql34omoH9jQV4TeJF+D+lKmKn4fVU+QO//y0q7J58+Zh79692Lp1q9pD0R0hBOafXt7+73pbM94oXY3xB57DzgZ9JDHOdnbAYbFasXb/Xqf75ySn4Nejx+KZq67FnAsmoG96BhNTKvN243NvH9/dn3NkaCjmTZ6KYdm5AIDReb0x6ZwB3hiaIrS6VDQRuY6xk+8dbDqFr6p3t/+7wlqPv576GlPz/wazzaLiyAKLGu9hLVYrPv5+PT7d/L3TxFRocDB+e+EUXDxgsO4TU/QLIQRuP/4Rzt//Vzxz6ivsaWpNFn9ZtRNWwVV5SV2snCJNWVm7r/0ieaYIgwl9Q71XXQL47k6e0WDAdWPGYtWen7C/uLB9e3ZSMq4/fzySoqN9Mg416SUpBWhzRT5PuFtBFWw04obzx6FPWjrO65mj+R5wrKIiInLP/JIVEHBMTEyI6uO1HlSsmvqFWjdWqurr8c81K3C0rNTpPt1iYnDrhMnoFhPru4H5AKunWhfCCZIMsMI+EXXaUoPN9YcxOjJX8XOyeopcxeQUKaarpeZCCLxaskL2sd8njYdJhyXmcoGHJEnol56JfumZKKyswOq9P+GHw4cwddAQv09M6SkpBfg2MeXt6X2A+wkqSZIwIifPiyNSHpNUROSvlJzSd9RchmU1exy2m6Qg/C5pvGLnIUdqVvsWlJzCO2tWoqax0ek+/TO744bzx2ui8bmn8k8V41R1Fcb27uvwmFYTVL40K3awXdVkm8+rdnglOUXkKianSDMkScJz6VfitZIVWF77y7S31OAYzI4bpuLIvCc9Lh7XjbkAM4cM88uV987ExJRr59RagspVewtPoqaxASNzeyl+bE8wSUVE5FyWKREf97wVr5xeji0NR9q3Xxc/CsnB3rlRFuhVU2pPQd9wcD8+3fw9rDbnU7emDRyCiwfqcxqfEAL5p4rx9a7tOHT6FIKNRgzI7IGY8HC1h+YSX1ZPnR+ZhwRjJMqtdXbb19YeQIuwIlgy+mQcRGdjcoo0pW9YKt7ocT1+aizE/JLlWFN7ALclTfTqEse+rJpyJirM+83e1cKklPvn11uCqrCyAu+uXYmmlhaU1dbikkFDNDMNkHdIiYjkDYvoiUU9f4ON9QV45fRyHDCfwm+SLlB7WH5JzcSUxWrFp1s24ruD+53uYwoKxo1jx2NA9x4+HJlyTlaU49PNG1FQ8stCLi1WK1b8tBtXDB/psH+gxwZBkhGXxg7EwvLvAAAjIrIxM3YwLo4+12uJKU7tI1cwOUWKUHr1mHPD0vF2jznY1XDCq72mAv0unjfpLSkFqJ+YaqOnBFV1QwP+vnIpmlpaAADf7t6BstoaXDvmAgQbtXHnjVVURKR3SsdZbSRJwujIXIyKyMHx5nIkBEV65TyBGm+pXS0FtCZpDp12Ht8kRUfj1gmTkRob58NRKSvIYMDhMxJTbTYc3IfJ/QcgOozVU2e7Mu48xBsjMCN2ENJD9Pu7J//in0uAkd8YGJ6JEC9WTXmLFoIRNTEx1XW+GE9Xf0/mlhb8fdUyVNbX223/4UgBXl/2Neqamrp0fKUdrz0R8K9NIiI5kiShhylR7WH4DS2934SFhODWCZMRGuzYu/WcjEz88ZKZmkpMeRKbpMTGYUhWtsP2tuopOVr5/ailV2gKfp88waeJKW8l2cl/MDlFAStQ7+J5U0HVcSamFKT1BNXuE8dworxM/rglp/HS11+ipKba4+N7i5Y+NBARdUbvH+gCLd7S4vtLt5hY3Dh2As6ccH9R/0H47cQpCA8xqTaus7XFJJ7EJhcPHAy5hgLrD+xDTWNDF0fmO4H2eiE6E5NT1GV6D5qUpsWgxNv0mpQCtJuY8iVPf3fDsnNx7eixThunltbW4MWvv8Sh046l9lrAJBURESlF6+8p/TO745JBQxESFISbx1+IS4ecp6nG512NI1Nj4zA4q6fD9harFSv3/Cj7HC3/vogCEZNTFJB8eVeixWrFP1Ytw45jR2DrYIUUvdJrUgrQR2LKV2P09Pc4Kq835k2+GGHB8ktON5jNeH3Z19h6+FBXhudVDE6JiLwjEKpAtJ6UOtOUAYPwpxlXYHAPxySOmuRiEI+qpwYMlt2+/sA+1DY2un08tQTC64ZIDpNTFHC8ecGXC062HSnAjyeO4501K/H4Z59i9d6f0Njc7LUx+Iqeq6UAfSSm2mg9QdU7NR33TLsUCZHyjXQtNhveX78G3+zaASFEF0boPXr6cEFEgUOp6nStXnv1TivvG6eqKl26AWqQJCRGRflgRK5TMpZMi4uXTbw1WyxYuYe9p4i0jskp6pKuBE3/rdyGJ4q+xOmWGgVHpC1CCKze+1P7v8vravHfrZvwyOJPUFqjz+/bH5JSekpMtdF6gio1Ng73TpuBHolJTvf5auc2LPpuHSxWq6fD8zomqYjI3wghcP3Rf+Ll00tRbfVd9Yg/V39o6b1ic0E+/rrkcyzZsU3tobjNG/HkxQPlq6fWHdiH2iZWTxFpGZNTpAqzzYJXS1bgw4qNuPDgC3im+H8os9R6/by+vtAfPFWEwsoKh+0JkVGau3PlCj0npQB9VUvJ0XqCKjosHHdedAkG9chyus/mgnwsWPEtGsxmD0fnG1r64EFE1BUravdic/1hvFm6BhMOPI/XSlai1qqt1VT1QkvvDVabDYu3bMSHG9bCYrNi+U+7sP3oYbWH5TJXYg1P4pH0uHjZOKTZYsEq9p5yidlmwdLqn7CnkQky8i0mp8hjXamaWlz5A4paqgAAZmHBe+XfYcKBF/Bh+fcKjc6RtxNTcm9sq/b8JLMnMKHfuZA01ISyM3qvlgL0n5hqo/UEVUhQEOaOuxCTzunvdJ/8U8V46esvUVar/epBBqxEpBYlpvTZhA3zT69o/3etrQmvlqzAxIPPY09jYZeP74y/VX1oKSkFALVNjViw/Bus2bfHbvui79ahsEL7CxV5O6ac6qT31Nr9e1HXJJ+Y1dLvt40vX0dCCGxvOIa/FH2OMQeewe0nPsLC8g0+Oz8RwOQUqcBsa8GbpasdtjeJFnQLjlFhRN5xqqoSewod3+iiQsMwtGeOCiNynz8kpQD/SUy10XqCyiBJmHXeCPxq5BinKwGdrqnGi199icMlp7syRJ/Q2ocSIiJXfVvzEw6YHVdMDTOEINfUTYUR6Y/Wrv8nysvw/P++wMFTjrFAs8WCt1av0HR1sruxhUfVU/EJGNi9h8P2ZosFq/bKV08Ful8feQtXH/47PqnY3D79d1nNHtRbtfu3RP6HySnyuX9XbsVpi2PFRL/QNEyO6ueVc6pRNbX6rLtZbcb16Ydgo9Gr41GCPySlAP9LTPlaV/4Ozu/dF7+78CKEBgfLPl5nbsKrS7/WzTQEJqmISE+EEHi1ZKXsY7clTYTJEOSV8/pL1ZQWr/lbDx/Cy98sQWV9ndN9BnbPgsnJ+24gmTpwiOz2tftYPSWnf1i6w7YGWzOW18h/niHyBianvGDBggXo168fhg0bpvZQvKYrpeZjI/NwacxASLCvqLgjeZKuprp1pK6pCVsK8h22BxuNOL93XxVG5Dp/qZYC/Dsx5cvvrSt/D/3SM3D31EsRFxEh+7jFZsW7a1dh1/GjHp/D17QYvBLpXSDETu5QYkqfJEl4KeMqjI/qbbc9IzgOV8QN7fLx/ZUWk1JWmw3/t3Uz3l+/Bi1OFhUJNhpx49jxuHzYCBgN2vyI58v4MiM+AQMyHaunzJYWu8WKqNXMWPlk3udVO3w8Egpk2rxy6dy8efOwd+9ebN26Ve2haFJPUxJezvwVvsq9E9OiW/vS9A9Lx8SoPl45nxpVUxsO7JMNHobn5CEyNNSr4/GUPyWlAP9OTLXRS4IqPS4e902bicyERNnHsxKT0Dctw+PjE5H+MXbyjnPC0vF2jzn4T/bvMToiFwDwh+QLESx5p4Jb71VTWktKAa03PN9Y8W2H09HiIiJxz9RLMSw714cjc09X4ghPnzvVycp9a/fvQb2Z1VNn6heail4yU31PtlTCbGvx+vmJAMA79bxELsgL7Yb53X+N3zcVo9lm8UrVlBpBUovVirX798o+NqHfuT4ejWuYlNKvgxXF6BWf6pNzFVQdR05sd4+eGxMejrsuugTvr1+D3SeOtW9PiIzErRMnIySIb0dERIAyVVNnGxzeHe/3vBnb6o9iYHim4sfXOy0mJACgsKIcb61egfI65yta56WkYu64iYgKDfPhyNyjVpyZmZCI/pnd8eMJ+/M3tbRg9d49mD6YFYRtJEnCzNjBeOH0t4g2hGJazADMjB2MoeE9/GZmC2kfK6fIbUoHTX1CUzFAp4GSXDCz7UgBapsaHbafk56JlJhYH4zKdayW8g96qaAyBQfjlvEXYkLf1iRtWHAIfn/hRYgOC1dqeKRRpaWluO+++9C7d2+EhYUhPj4eQ4YMwR//+EfZ/ZcsWYJx48YhOjoa0dHRGD9+PL766isfj5rI/wyNyEIQq6baaXEKX5vtRw/jpW+WdJiYGt/3HNw+eSoTUx1w1ntqzb6fnDaO1+LfhC9eX7NiB+O1zGvxfZ+H8WT6ZTgvIouJKRUFYuzE5BT5LTWCJCGE07Lriedop2rK35JSgPYSU/klZcgvKfPZ+fSSoDIYDLhi+EhcOWI0bpkwCSmxcQqOjLRo27Zt6Nu3L1566SUEBwdj5syZGDlyJCoqKvC3v/3NYf9XXnkFM2bMwPfff48xY8Zg4sSJ2LJlC6ZPn47XX39dhe+AiDqjt8SUlpNSNpsNX2zbgnfXrkKzxSK7T5DBiOvGXIDZw0dptr8UoGxiytNjdU9IxLkZjjfBm1padNXv0heSg6Nxccy5XlssgVwXqLET//LIL/kiSJILag4UF6GostJhe3pcPHqlpHl9TK7wt6QUoM3E1Jn/n5cs32tJz7oyxQ9oXbWS/F9paSkuvvhiNDY24osvvsCMGTPsHt+yZYvdvw8cOID77rsPJpMJq1evxqhRowAABw8exOjRo3H33Xfj4osvRm6udvuqEHWFN6b0kT2tJqUAoMFsxnvrVmNf0Umn+8SGh+M3EyajR2KSD0fmPi3Fm1MHDsFPJ3/5vfdOTcO0gUOQ0y3F6XOO155A9yhtzew41VCElHBtfJ4g7wnk2Em7qXbSJAZNHXNWNTWh37mql8X6Y7UUoO3ElK/5+mfhi78ni9WKH44UQAjh9XOR8h599FGUlZXhhRdecAiuAGD48OF2/54/fz6sVit+97vftQdXANCrVy88/PDDsFgsmD9/vtfHTUSu00vVlJarpQCguLISz3/1RYeJqZzkbrh/+qyATUx5etweiUk4Jz0TfVLTcffU6fjDlGkdJqbaaPnvhfxXIMdOTE6R31Graqq4qhJ7Cx0DiuiwMAztmeP1MXXEH5NSgH4SU/46vQ/w7t+WEAKfbNyAhetW4z+bv4fVZvPauUh5jY2NWLRoESIiInDTTTe59Jy23gizZ892eKxt25IlS5QbJBH5Pa0npQCgsbkZf1v6P5TV1jjdZ2zvvvjDlGma79Oo1Zjz5vEX4vYpU5GT3HlSSsv0kgwmzwR67MRpfeQyT6qmqq2NeOn0Uvwm8QJkhsR7YVT21Lxgr977k+z2C/r0Q7DRO81HO6PVAEEJeklMnfm4r6b3+XIFP6DrU/ycWfrjTmwuyAcArD+wD+V1tbjpgokICwlR/FykvB9++AG1tbU4//zzERYWhm+++QbLly9HU1MTevXqhauuugppab9MT6iqqsLx463XrMGDHZf/zszMRGJiIo4dO4aamhpER0f77Hsh8oWuVqcvLPsOJ1sq8NvE8UgKjlJoVB3T+gdlrSel2oSFhGDG4PPwr03fOTwWZDDgqhGjMbpXHxVG5h4tx52ergqsxel95L8CPXZicoq86t2y9fikYjM+rdiKK+LOw21JE5AWEqv2sLpELtCpbWrE1sOHHLYHG404v1dfXwzLjpaDg67SWlIKUHcqnzN6T1D9cLgA/9uxzW7b3sKTeOXb/+F3F05BXESkYuci1wghUFNjf1ffZDLBZDLJ7r93714AQHJyMmbNmoUvvvjC7vE//elPeOedd3DNNdcAQHtwFRcXh4iICNljZmRkoKysDMeOHUP//v279P0Q+ZNaaxMWlK5ElbUR/67YiusTRuGWxAsQHyT/WvJ3eklKnen83n1xoqIc3x3c374tOiwcv5kwCT2TklUcmWt8FXt664aYnrD3lL7YbDaX46dAj52YnCKvqbTU4/3y1jtAFtjw78ot+L+qbbgy7jw8knqp4ksZq3n3bsOB/WixWh22D8/JQ2RoqE/HwsSUb7mTmPJ1c3S9JqhqGhvw0ffrZB8rrKzAC199id9fOAWZCf7XaN5b4qIjEdUtwePnN9ZJqKo6gpiYGLvtjz76KB577DHZ51T+vDjEl19+CaPRiAULFuDKK69EQ0MDXn/9dbz44ou48cYb0bdvXwwaNOj/2bvv8LbK6w/g36tpecrylHe8kjh7khBCBmFkkjIKJRTCKIWmjLJpyx7lB4SywmopI0ChzAAhAzKBkJC9nOE4drynLMtLtsb9/WHixLlXtiVd6Q6dz/PkKXkt6Z6kjnV07nnPi9bWVgBAeLjnLSsnE6+WFs9HqxMiR/52Tb3b+BOsrg4AgJ114F8Nm/GhZSseNC/ApbHjhAiRQ4pdU3IsSp3usomTUd1kwfH6OgxKSMSN02chpo+fiVKh5NwToO4pAKjqsuKr5j0YHJaMGVHS7+ITSmJcDPRJvneiNke14ciRIwPOn0I9d6LiFBkQX5Kmtxp+QJu7q9eag3WhymEVvDAVLHxJj8vtxubDhbyPn1EwPNAh9VB6YiD3wtTpz6ECVd+iDeFYfO4MvLN5A2/R19bRjn+u/gbXnTsDI9Iz/boWGTij0YjS0tJea566poDuO4UA4HQ68eSTT+JPf/pTz9eeffZZnDhxAp988gmeffZZfPDBBwGJmZBQ0OzqwH8afuSst7m7kKaLFSEicci9MAV0d9zfMH0WNhTux9wx40UbC+ENpeefUhWM7qkWlx2rbQewwrobv7SVgAWLKRG5IVWcEsLgwYOxbdu2Xmue8qdQz51oIDoJiEZnK5Zbfub92u2J5wt+PTHv3qlVKvz5gtmYnJsPjerUP6lhaelIjjEG/PpKPYXvdFIsTBHPhPh+HJWRhTsumodog4H3611OJ97c8D02HuKf9UaExzAMoqOje/3qqzgVGXlq6yXfUM+Ta5s2ber1+Pb2do+v2dbWBgCIigrOPB1C5OA/DT+gxW3nrJ8dkYOzIrIDck0pdU3JYeC5N2LCw7Fw/FlUmArydd0si9rmZo9fV9L32EAtLn0Lf638DNvajoNF96nJW9qKUePw/PdEuFQq1YDzp1DPnag4RQKCBYv5MaOhOeNbbFZUAYYbUgW9VrASpL7elFJjTVg05Vw8dtmVmD1qDCL1YZhZEPg9vUovSgHSLUz5M2cq2DOqxPg7FOJ7MzM+AXfPWQCzkf/OP8uy+PSXrfhk25aeO01EOjIzu7vawsPDkZDAPfY8KysLAFBXVwcAyMjo7rhramrqSaTOVFFR0eu1CVECf7f0zY8ZjTnR3JzjjiThbwZKiZyKUnZHF97auA7HamvEDkUwSslB3SyLXaXH8Y+vPsfSVV/B7ujq/0kSEejPQBfx/FxhweJr696AXjeUhXruRMUp0i9fkqZ4TRSeSP0N1ubfhcuM46H+9Vvt1sTzhA5PUqIN4Zg7ehwev/xK5CcHbitVKHRLAcosTAn5Gt6Qa4HKFBmFO2fPxxCz56L2psOFeHPD9+h0OPy+HhHOyVNjOjo60NnZyfm6xWIBcOqun9Fo7Emydu/ezXl8eXk5GhoakJmZKfnTZggJptywRLyYcRW+zr0N50cVAACmReZjTHhgPohIqWtKDmqbm/Hcyq+w+0QJ3tr4PZo8fICUEynkoP7G4Ha7sbOkGP/46nP8Z9N6VFub0N7ZiU0eRnUAodc9Nd84CgwYzvqX1l1gWVaEiJQv1HMnKk6RgErXmfCPtEuxJu8veNA8HwUGYfdGS6Frio9WrQHDcH+Y+yuUilJKLkwF4rUGQq4FKoNOh1tmXYiz8wZ7fMyBijL8c/U3sLbLP+lXioyMDIwaNQosy/a0n5/u5NrpRx/PnTsXAPDpp59yHn9ybf78+YEIlxDZGxJmxquZv8fnOUtwX/IcscMJKLkUCQ5WlOO5lStQ02wFALTY7fjXhu/gcDnFDcwPSslDTzQ24O3NG1Btbeq1vv7gflnd7ArkZ6FkbQzOjsjptaYCg2RtDGeuMBFGqOdOVJwiQZGpj8c1cWcL+pqhdudOKclAf6RalAKCX0wKBLkWqNQqFX43+RxcPG6Cx8dUWBrx3MqvUGHxb4sMEc69994LALj77rtRXX3qe2/Pnj1YunQpAODmm2/uWb/99tuhVqvx+uuvY+vWrT3rRUVFePLJJ6HRaHD77bcHKXpCAs/fLX18RhjSkBeWJPjrAqGXe/mKZVms2bcHr69bg44ztomVNTbgo59/kmXniZJy0UEJiby7HNo6Oz0edATIpzAqlIXG7iLI0DAz/po8Fz8OfgBvZV2HSLXnmZPEP6GcO1FxivQpEEmT3Ij9JhQq3VJAaBamxCh4ybVAxTAMzh8+CtdPmwmNin9QrLW9Df9c9Q0OVoRW8ihVV111Fa699lrs378fBQUFmDt3LmbOnIlJkybBYrHgD3/4Ay6//PKexw8ePBjPPvssOjs7MXXqVMyZMwcLFy7EqFGj0NjYiOeffx65ubki/okIIaRvnQ4H3tq0Dl/v3gFP5aeDleWw9jHAWIqkmIv6G9PsUWN519f10z0l9meDMwWyaHxBzHCszL0dX+Xehuviz0GCVvpDteUulHMnjdgBEOKLULhzJ8UkIJBCsTB1+uvnJcYH9BpSUGwtQ44xw+/XGZuVDWN4BN7c8B1a7dwTqjqdDryxfi0unzgZU4cU+H094p+3334bU6ZMwRtvvIGNGzeCYRiMHTsWf/zjH3HttddyHv+Xv/wFubm5ePbZZ/HDDz8AAMaPH497770X8+bNC3b4hASM3G4ASiX3klph4HT1Nhve3PAdZ6vY6dLj4vGH6bMQGxERxMj8o9ScNC/ZjLxkM4pqeuegrZ12/HDkEGYNHylSZNIRrtIhPyxZ7DBCTqjmTgwrx55SmbDZbIiJiUFzc7MgA8iauywCROUdKSZOwUyOxEqAlJoEeBLKhamTxChO5ZsCN7S/L0IUqACgocWG19at6fPo5wtGjMKCsZ63AvrqtzlXC/I6Qr9P8Jk+fToKkxsQNc73/787ii0wfGdFcXGxgJERwhWIfxNi5E8DIcUcqy9UnOpbYWUF3tm8Ae1d3CHGJ03IzsXvJp8DnUY+/QFyyEn9ySuO1lThpTXfctYjw8Lw6CVXQK/VenxuRlS6z9cNhORwYWf7BkJWZJ4grxOM/MlkMiF8cT70Zt+7xZp/LMO56mH4/PPPBYxMuWhbH/FIbklTsDhcTjy3cgU2FB5AR5ewwwBDaQvfSVSYCv61ThLr716o7/H4qGjcNXuBx5MxGQCZcdxjeAkhhHhHKoUpKWJZFt8d2IvX1q3xWJhSMQwunTAJ15wzjQpTEpOfnILcJG5nUKvdjh+PHhIhIkJCFxWniCA+tvyCInttwK8jha6pHceLUdpQj8+2b8WDn/4Xn2/fCktri1/XCsWiFECFKSlcU+4FqnC9Hn+adRHOyuHeiVs4fiJGZWYJch1CCBGSrzcAT3Q24G+Vn6Oyy/O2MRI8nQ4H3t68ASt2bvc44DxCr8eS82djRsHwgJzkHCihlJd6mj31/YF96HJ6PllRal18VEQmckfFqQBYtmwZCgoKMGGC8FtJgsWbpOlEZyMerlqBucdexJ3lH+F4Z30AIxMXy7JYX3ig5/d2hwPrCw/gkc//h6om37YNhNKb/0lHLdVUmJIQuReoNGo1rp5yLuaNHtezdk7+EMwsGCHI6xNCAk8JuVMwvFy3Dv9r2o7zi5bikaoVqHF43tYsFCl94JVSMaChpQXPr/oau0qPe3xMaqwJ985biMFm6W+3Op3cclN/481PNiMnkXvCZYu9e/YUISQ4qDgVAEuWLEFhYSG2b98udihBsax+PVxwgwWLr5v3YnbRP3FvxSeoFjhhkkLX1OGqSt4hlymxJpiNsYEOSxGkXJSSArEKY3IvUDEMg4tGjcG1U6djZHomLj/rbFndoSYk1IVa7uSLInstvmreCwBwsC58YNmK844+h2drVoscWeg5Ul2JZ1Z+ico+bkyOy8rGXXMWIC5SXqebya0wJQSGYah7ihAJoOIU8UtJZz1WWHf3WnODxTfNe+Fi3YJdRyo/aE/vmjrdTB9btUMtAZBDYUoKXVNUoPLdhOxc/GHGLKhV9PZGCJEmX7f0vVy3Dix6bx3rYp1oc3sewO0vqeRfUsGyLNYf3I9XvluN9k7+v3eGYbBw3EQsPneGrOZLAaGXl55usDkF2QmJnPUWewd+OnpYhIikzcW6saX1GO6t+ATLG7eIHQ5RCMreCYc3SdMrdevhBneP/WWx45Gmk2cnkac7INVNTThUVcFZjzaEY2xWdqDDkj0qTJG+CJkQD7RQXNNshZsOrCWEyMChjmqssu3nrOsYDW5OmB78gEQgdoeKw+XCez9uwuc7tnmcLxWu0+NP512IWcNHyq57V+6FKX/j76t76rsDe6l76ldF9lo8W7Ma0488g2tL38IX1l34r+UXj/8mCPEGFaeIz1iWRbwmEjqm910hLaPGLfHTBbuOVO7abTjE3zU1bUgBNGp1kKORFypMeS/UuqeA4CbGFZZGPPvNCry9aX2fCSchhEiBUW3AZcbxUJ+Rul9lOgvJ2piAXFMq+ZdUqFUqdHg4jQ8AUmJjcc/cizE0NS2IUREhDUlJRRZP95StowNbiqh7CgCeqlmJNxs2ocZ5anxLUWctCu3Sz/WJ9FFxiviMYRg8YJ6L9fn34PemydAy3QWaK2MnwqwzCnKNYCdGnu58tHR04JfiY5x1rVqNKflDfLqW3O9QDRQVpnxHBarAsLa34fV1a9HpdGD3iRK8vPZbtNg7An5dQgjxdUufWWfEP9Iuxeq8v2BBzGgwYGBgtPhjwjSBIySeqBgG106dgcRobjFwTOYg3DV7ARKio0WIzH9KyUmF6J6aM2oM79e+278PDhd1Ty008v/9fGndFZDrkdBCxSnSiy9JU5I2Gg+lLMC6vLuxyDQJf1Rge/kPRw7B6XZx1ifl5iMyLEyEiOSBClPypdQCVafDgdfXrYW1va1nraS+DktXfoWaZmvArksIIULI0sdjafoVWJl7O55IvQTxmsAM25Za15RUPvgbdDrcNGMWwrRaAAADYP7Y8bh+2kzof12TG6UUpoQyNCUNWfEJnPXmjnZsOXqkz+dK5fs0kM6PHoZwlY6z/k3zXjhZ7mclQrxBxSkiGLPOiEdSLkaSVpi7RlLpmnK4nNh8pJD3a9OHDg9kSLJ11FJNhSmBiBmjEgtU7/+0GRUWbhG+obUFS7/9CkdrpPWBjBCiHL52TfHJC0vCAuNowV6PDFyyMRbXnDMd4To9bj7vQlw4YrTs5kudRIUprv5mTzlc8inABOKzVLhKhwuih/Vai1NHYm7MSHS4HYJfj4QWn4+QeO+99wQL4pprrhHstQgR2vbjxWi12znrw9MykBTj25wHJScDcihKAfIoTJ1UVNeAvMR4Ua591FKNfJNZlGsXW8uQY8wQ9DWnDhmKw9WV6Ojq4nyto6sLy75bjavOnoqzcvIEvS4hhMiF1LqmpGhkRiYeSf4twnV6sUPxmVJzUSFyh4LUNGTGJeBEY32vdWt7O34uOoJzhxR4fG5ZSzkyotL9ur7ULTSOxarm/ZgVXYCLjWNwTmRez3gXQvzhc3Fq8eLFgt0loOKUNAh5R89fUumaYlkWGwr5B6HPHEZdU2eiwpQyKalAlZ+cgrvmLMDr369BQ2sL5+sutxvLf9yEhhYb5owaK9u74YQQohTB3CpVUl+H5BgjDDrutqUzUWFKuRiGwezRY/D6urWn1gCMycpGXrI4+ZCvatqrkByeIuhrTorIxs9D/oYoNY02IcLyuTgFAKNGjcLFF1/s8/O//PJL7Nu3z58QiAJJ6Y7d4apKVFubOOtppjjkJcnrzSnQqDAVWGJ2T4lN6AJVcowRd81dgDfXf4eS+jrex6zauxsNLTZcdfa50NJpnIQQP0npBmBfpJSDBRPLsvjx6GF8sm0Lhqam4Y8zL4BKoTcnQqEwJUTeMCw1HRlx8ShvbMDYQTm4aORomI2xA3qu0run1IyKClMkIPwqTo0ePRoPP/ywz88vLS2l4hQRXV935NZ76poqGO5zR4USkwIqTAVHqG7vA4QvUEWFGXDrBXPw/k+bsKu0hPcx248Xw9Lahj/MmEUHHxBCiEI5XC58sm0LthR1D7s+WFGOb/fsxLwx40WOTHhKzEEDhWEYXDFpCvRaLZJjjGKH45dAdE8REgg+D0SPjo5GeHi4Xxc3GAyIlumRq0ozkDt6R+w12N9REdA4pHTHrqrJgkNV3D9vtCEcY7OyRYhImuRSmCL+E/v/a6GTap1Gg8XnzsQFI0Z5vmZdDZau+gr1tmZBr00IIZ6wLIvna9fieGd9/w8WkJRysJMCvaXP2t6Gl9as7ClMnbR63x7sPsF/40KuqDDlvcz4BJ8LU6Fwch8hQvO5OGW1WvHKK6/4dfFXX30VTU3cLVNEmv5RvRKXFC/DLSeW41CH8B9SxUiK+nrj2HCIv2tq2tACaGibDwDxixXekHvX1Eli/znE/v9c6ORaxTBYMHYCrjp7qsctHPU2G5779isU19YIem1CSGjwdkvf+pbDeK1+A2YX/RP3VnyCsi5LgCILbSX1dXjmmxUet3cv/3ET6m22IEcVGKFYmArFP3NfpFh8JuRMPheniHIMJGna3laCn9qOAQC+bynEguKXcGvZByiy1wY6PFHYOtqxvbiYs67TaHBO/hCfX1cpb5RHLdWiFym8IXZBR2hi/3nE/v8+EP+Ozs4bjD/NughhWi3v19s6O/Hy2m+x4zj35wIhhAjFzbrxYt133f8NFl9Yd+HCo0vx98rP0ezqCNh1Q+2D65ajh/Hi6m9g62j3+JiZBSMQFxUVxKgCQym5pxxR9xQh3qHiFBmQl+q+56ytth3AGht/d5G3pNY19cORQ3C6XZz1s3LyEKEP7dkzYhcmvCV2IUepxP4+CESyPSQlFXfNXgBTRCTv151uN975YQNW79sNlmUFvz4hRHm87ZpaayvEIXvvn69OuLGp5SjCGL9GxRIATpcLH2/9CR/+/COcbjfvY/QaLf4wfRbmjRkn+6HoVJgSn5QKVMH8vOVi+f99EdIXKk6Rfm1tLcbWtuOc9Ri1AdfGTfH79aV2t87Nsth67ChnnQEwfejw4AckIWIXJLyl5MKUkv9sAxWIpNscG4u75y5AZlyCx8d8s3snbv/y/9DldAh+fUJI6HKd1jV1plsSZ0Cv4u/s9JfU8rCThP5Qb+tox8trv8UPRw55fExCVDTunrMAozKzBL22GKgwRX8HwdbkbMMHjT/j8uJX8X8134odDpEhwYtTq1evRnY2DYuWi4Hc0atwNCFCpeOs3xh/rmyPEe0r4VExDO6ZezFmjxqDyNO6pIanZyApJsbna8r9DZIKU9Ij9p9RCt8Tgfh3FW0Ix+0XzcWojEyPjznWUE53BQkhgupknZgckQMt03uuZZo2FpcZx4kUlTKcaKjHM998ieI6z+MoClLTcM/ci2GOjQ1iZIEh95xTDhwuF344XIgXVn8Dl4cuvJOU3j213nYIt5xYjilH/oFHqr/Cno5yfGXdCyfL3YVCSF8EL061tbXhxIkTQr8sEdFlseOxPv9e3BQ/DQam+65drDoCV5sm+/3aUr1bF20Ix9zR4/DYZVfiqsnnIDnGiJkFI8QOSzRSKEJ4Q+yiTSiRwvdGIJJwnUaDG6adx/vvPj4yCu9d9SQMWr3g1yWEKIe3W/rCVTo8lLIA6/LuxhWxE6H5NU1fkjgTOlVgtvRJNQ8T0tZjR/HPVd/A2u55vtQFI0bh5pkXIFwv/5/rVJjqTei/D4fLiU2HC/Ho5//Dx9u24FhtDX4pLhL0GnKz2nYA37cUwnFaMarR1YofW0P774V4b8DvdA899NCAHnfokOdWWSJfJk0E7km+CNfHn4N/1W+GWReDSLU838C9uXuh02hwdv4QTM4bHMCIpE0KxQdvhFphqqiuAXmJ8aLGcNRSjXyTWdQYiq1lyDFmCPqaKpUKl0w4CwnR0fhk2xa4WRYGnQ43z7oQ8RFGQa9FCCEnmXVGPJH6G9yUMA3/tWzDQuMYsUMKOiE6TVxuN77YsQ0bDx30+BidRoOrp5yLsVnK2PVBhanAamix4Z+rvkHzGYP01+zbg4k5eVCrPPd9lLWUIyMqPdAhDkhNexWSw1MEe72FxjH4wrqLs/6ldTemR/l+kBQJPQMuTj3xxBMwGo2I6WdbU3sfdyWItHh7Rw8A4jSRuN88R5Dry+luHePnQEy5JgtUmJIHKlB1C0SBCgCmDh6KuMhIvPPDRtw4/TwkxxgFv0agGWMjkZji+/dIs9WFdliFC4gQ0q8MnQn3Jc8O2OvLKQ/zVou9A29tXIdjtTUeHxMXGYWbZsxCqikuiJEFjlxzTTkxRUYhXK/nFKcaWluw/fgxTMrNFykycZ0VkY0kTTRqnbZe69/bCtHisst2DAwAJCTEIiLF6PPz2RgL0CpcPEo34G19OTk5WLhwIUpKSvr8tWzZskDGSxRCrIRISnu+peyopZoKU8RrUvieCVRyXpCajscuvQL5ycLdaSSEKJcvNwCJMMobG/DMNyv6LEwNMafi3nkXU2EqRAj196NiGMwexd/JuHrfnpCdPaVmVLj4jA7PMYYMPJA8F2qGzl8jAzfgzqnJkydjy5Yt/T6OYRg6YpsQGZNCgcFbVJiSRvcUoOwOqjAt92AIQgiRIyl3TfnzAd7lduPfG79HU5vnVoXzho3AgrET+tyCJSdUmAqu0ZmDYDbGotra1Gu9ocUW0t1TC41jsKp5Py42jsbFxjHI0oufkxL5GfBP5dtvvx1/+tOf+n3ctGnTsGHDBr+CIoEn5h29UOuaklPSIMfCFDmFinSnyOnfHSGEEGGoVSr8/pzpUPGMY9Cq1Vg8dQZ+M/4sKkyFICG7py4aOZr3a2tCuHsqLywJ6/Lvxu1J51NhivhswD+Zx40bh9tuu63fx8XHx2PatGl+BUWUS8p36kKdXAtTVJCRHql8L1HSTggRg9S39Ck9F8tNSsblE3ufKG2KiMRdcxZgfHaOSFEJj97jxDMmcxDv/Mn6FhuOViv731df/J3RS4gybhsQ0o/+7lKs3rsbu0tL0N7VGaSIpEUqxQRvUWGKSyp/J1L5nhIqeS+urcGqvbtQb7P1/2BCCCGiOmfwUJz960nL+clm3DtvIdIUMl+KiE+lUuEiD7Onyi39F6el1D1FiJQMeOYUCR272k+AZVlk6uMQp45UfBW81W7Hyj07waK7VXdQQhIK0tIwOmMQkvo5nbI/crirJZUigrekUoQh0ibU7Kkfjx7G9uPHsHLPLmTFJ8A2MRwXD5+BhMhYQV6fEBJ6LM42rLUdRJwmAiZ1BOI0kTBpIhClClN87hVoDMPg8rPOhtkYi3OHFChmGx+RjmGp6bzrDpczyJEQohx+F6fKy8tx7bXXYv369ULEQ4Kgv3bzpTVr8Et7CQAgXKVDhs6ECeGD8FDKgmCEF3SHqipwcoS/m2VRXFeD4roa6DUav4tTUibXohRAhSk5EHsoupA6HQ7sLSvt+X1pQz3++u1LePWnj7Hzzo/oQyQhxCfFnXV4sOoLzvqL6b/DnJiRIkSkLFq1GjMKhosdBlEoTwVPt5sOBiPEV34Xp9rb27Fp0yYhYiESUdZl6fnvdncXDttrEK+J8vt1pTrj4FBlBe/60BT+OyJKQIUpQgZuf3kZupzcO6Hzhk2jwhQhxGeNzjbedZM6IsiREEK8xTd0HwBcbN8D0QkhnlGPK+nF7nagxtnMWc/QmUSIRhh97et2sywKq7jFqfjIKCRGR/t1Xalu6aPCFCHe2V5yjHf9spGzghwJIUTqvBmGbnHxF6fiNJFChUMICRCVx84pKk4R4isqTpFeyk/rmjpdpk6ZQyTLGxvQardz1gtS0xXZESHnwpTcVFc1oLqKimliEmLeFMuyiA4zQK/R9lrPi8/ACHOe369PCAldjc5W3nWThjqnCJE6FcPwflZwyaw4FcidLW7WjSZnG4531sPJugJ2HaIcNBA9AJYtW4Zly5bB5ZLfP8IyD3f8MhRanCr0sKWvIC0tyJEEntwLU9Q1RcTAMAwWTTkXl591NvaVn8CO48dQWFmBS0fOUmQBmxCxyDl38lUTz7Y+BgyM6nARoiGEeEvNMHCyvWdMudnQnjn1tXUPltVvQJOzDVZXO9y/TvbdnH8fzDqjuMERyaPiVAAsWbIES5Ysgc1mQ4zMBmpPjMjGB4NuwomuRpR3NaKsy4ITnY0YpI8XO7SAKKzkbvnTqNTIT07x63WltKVP7kUpQH6FKeqYUh6dRoPxg3IwflAOWu12/GbQQrFDIkRR5Jw7+eq2xFn4rWkCGp1tsDhb0ehsQ5u7E2omtDc2ZESl9zmSoT9utxt1tmaUNTag3NIIt9uNy886W8AIpSHHmCGpfDMUqVQq4IxOKbl1Tgmtk3WiuLOOs25xtcMMY/ADIrJCxSnSS5Q6DBMjBmFixCCxQxFEX8lNW6cdpQ31nPXc5GToNMr4p0GFqeCjwpTyRYaFITbcv5l0hBBi1ITDqKEuKSF9sWMbfjhyqNchFnqNFpdOnOxxgDUhvuIrJId6cSrWw4EOFg/bmAk5XWjfmiFBI8WT+g5VVYLlab0dlqqMU/qoMEVCmRDzpgghhMiLVq3mnK7a6XSg3sY97IcQf6l5hqKH+rY+TzPzmlztQY6EyJEgxSm+D/iESJ3HeVOp/s2bkkKLtRIKU3LE1zVFnVTKkxGljAI2IYQoTbqJfwxFWSO9FxPhqVTyH4guNJOHmXkWnhl7hJzJ771LycnJeO2114SIhQSBN0ccK5mbZXGIZ95UXGQUEqPlO+tCSUUpuXVNSakIVVTXgLxEZc6JI2Qg3nvvPcFe65prrhHstQghgZUex//eV97YiAnZuUGOhigdf+dUiBenNJGYHJEDkyYCsepwxKojYNJEYIJCRsYondj5k9/FqZiYGPzxj3/092UIEVxf86YqLY1osds56wWpabI9gYsKU4QQ0m3x4sWC/Syn4hQZKLoBKL7YiAhE6PVo6+zstV5uobyCCE/168wphmGgZhioVCqoVWqRoxJXlDoM7w26UewwiI/Ezp+UMfWZEC8d5OmaAuS7pY8KU+KSUteUFOSbzKJe3995U263Gw6XC3qtlvM12tInH6NGjcLFF1/s8/O//PJL7Nu3T8CICCGBxjAM0uPicbiqstd6eWMD3CxLQ9GJoB5ceBlUKhV9XxFFETN/Eqw4VVtbiyNHjmDw4MFISkrqWS8uLsbf/vY3HDhwABkZGXjooYcwadIkoS5LZECKw9D55k1pVCrkJ6eIEI1/qDAlLipMKU9RbQ3eWL8WI9IzMX5QDgpS03hb94m0jR49Gg8//LDPzy8tLaXiFCEiyYhK77MDvi/pJm5xyu5woLHFhgQZj24g0qNRh3aXFFEmMfMnwYpTTz/9NF566SUcOnSopzhls9lwzjnnoK6uDizLorCwEJs2bcKePXuQl5cn1KUJ4egroWnv7ERJfR1nPScpmbdTQsqoMCUP1VUNMKfQDCi52HH8GLqcTuwsKcbOkmJE6PUYm5WN+WPGA1FiR0cGIjo6GuHh/ENZB8pgMCA6OlqgiAghwZLhae6UpZGKU4QQ0gex8yfBilMbN25EQUEB8vPze9beeecd1NbW4qqrrsLDDz+MlStX4s4778TSpUvx+uuvC3VpIpBna1aj2mFFpi4OGbo4ZOhMyNLHI04TKXZogjpcXcl7wmRBqn/bdYK5pU9JRSk5o64p5XG4nNh9oqTXWltnJ3aXluAvMy8XKSriLavV6vdrvPrqq3j11Vf9D4YQHqubD+DTph2I00TCpIlAnCYCJnUELowejgi1XuzwZC09Lo53vayxAWOzsoMcDSGEyIfY+ZNgxanKykpMnjy519rKlSuh0WjwwgsvID4+HnfccQfeffddbNq0SajLEgFtaDmMos7aXmsjDWn4LGeJSBEFxsEK/q6qYX7OmwoWJRam5Ng1RYUpafJ33tSBinLYHQ7O+tisbGrfJ4QI5qi9Bptaj3DWp0cNQQSoOOWPuMgoGHQ6dHR19Vovb1Te+3aOMUO0eaeEECI0wYZotLS09GoBc7lc+PnnnzFu3DjEx59qrx0yZAgqKrjzfoi43Kwb5V0Wznqmjv/uk1y5WRaHqrjff6aISCTFGIMfkJeoMEVIYO04fox3fXx2TpAjIYQoWaOrlbOmAgOj2iBCNMrCMAzSTdytfeWNjbyd84QQQqRBsM6plJQUHD58uOf3P/74I1pbWzF9+vRej3M6ndDpdEJdlgikztkCO8vtFsjwszglxjD0vuZNVVoaYevo4KwXpKb5dWxmMO5aUWFKOqhrSpnaOzt5OyvjI6MwLXucCBGRQLLb7fjwww9RWFgIlUqF4cOH48orr6QchQSFxdnGWYtVR/QcTU/8kxEXh6M1vXPQ9q5OWNpaERdJwwMJIcRXgcyfBHsHnDx5Mvbt24cXXngB+/fvx9///ncwDIP58+f3etyhQ4eQmpoq1GWJF5q6Gj1+rYynawpQXudUQnQ0rp82E2fl5CEq7NTdSX/nTQXSUUs1FaYkxNfCFBW0pG/PiRI43W7O+vjsHL+K16RbY2MjEhMTwTAMcnNzeR/zyCOPgGEYj7/uv/9+QWLZt28f8vPzceONN+L555/Hc889h+uuuw4FBQUoKioS5BoktPSVY/Fp5ClOmTQRQoUT8tI8DEUvU+DWPkKkptPtQGlnA3a1n8A6WyE+adqBN+o38e7SIf0LpfxJsM6pBx54AJ9//jnuuusuAADLspgxYwbOPvvsnseUlpaisLAQN9xwg1CXJQJxsC7k6ZNQ1tWITtbZs56hM4kYlfDCtDqMzcrG2KxsuFkWlZZGFFZWYLA5RezQeCmxKEVIoPg7b2pHSTHv+vhs/kSAeOeuu+5CQ8PAPhhOmTKFNwEbN06YDrY//vGP0Ov12LBhAyZOnIi2tja8//77uPvuu3Hbbbdh1apVglyHEE8StVFI08bC4mpDu7t7NlIcFad6yYhK77Mbvs/nejqxr7EBYzIH+RMWIT3aOzvR5XTCxbrhdrvhcrvBMIwsRoUE0o72E1hc+hZnPVsfj6kixCN3oZQ/CVacGjZsGH788Ue8+OKLaGhowLhx43DPPff0esyaNWswatQoLFy4UKjLEoFMiczFt3l3wM26UedsQVmXBSe6GpEXliR2aAGjYhikx8Uj3UMCM1CB2tKn5MJUqHVNEemztrWhqIb7by7dFIeJaSNEiEhZ1q1bh3fffRc33XQT3nzzzX4ff+ONN2Lx4sU+X6+wsBAFBQW8X+vq6sK2bdvwv//9D9OmTQPQfezxHXfcge+//x4bNmzw+bqEDNQL6b/r+e8OdxcszjY4WW7nJvFNfFQ0wrRazgEX5Y3edbgR0pflP23C/vLenwPiIqPw6KVXiBSRNJjU/IX2Jmd7kCORv1DLnwTd2D527Fi8++67WLlyJR577DFERfXe0/3HP/4Ru3fvxty5c4W8LBGQilEhWRuDiRGDcHnseETLbDCnr3fYpIYKU9JDhSll21FSDL4xudQ15b+Ojg788Y9/REFBAe6+++6gXHP06NG4++670drKHTqt0Wig1WpRV1fH+VpdXR0MBnm97xH5M6h0SNXFIlOvrFEKYlIxDNJM3L/PcksDDUUnguGbEeemIjNiNeG8600u7nZm4lko5k+CdU4RQoRBhSkiZ/kmsyjXDcSWPgbAuEHZfr0uAR599FEcP34cmzZtglarDco1H3vsMTz55JP473//i2eeeQaLFi3q+ZpKpcKCBQtw//33w2KxYPz48Whvb8eHH36IHTt20OgBQhQiIy4ex2preq212u2wtrchNiJSpKiIkqhV3OKUi2d2ZaiJ9dA5xXcQBPEsFPMnwYtTpaWl2Lx5M6qrq9HZ2cn7GIZh8OCDDwp9aSIxYpzUF2xCbulTclEKkHdhSqiuqeqqBphT/NtGSoRXbW1ChYW71SPfnIKRSUNEiEg59u3bh6VLl+K6667D1KlTUVpaOqDnrV+/Hnv27IHdbkdaWhpmz57t1byE+++/H1dffTXuuusu/P73v8ebb76JV155BSNGdG/RfOONN7B48WI89NBDYBimp5Pisssuwz//+U+v/5yEEOnxNLahvLGRilNEEGoV97AUt5s68/QqDSJUerS5e9cCqHNq4EI1fxKsOGW32/GHP/wBH374IQD02TJLxSlCeqPClHTJdTtfUV0D8hKpEDYQ248f410fP4i29J2OZVnYbLZea3q9Hnq9nvfxbrcbN954I4xGI5555hmvrrV8+fJev3/wwQdx6aWX4p133kFk5MA+VKalpeHjjz/GzTffjFtvvRXjxo3DLbfcgsceewwmkwlfffUVioqKcPjwYQDdszOzs6lTjhCl8FScKmtswMiMzCBHQ5SIb1sfdU51e9A8HzpGDZMmErHqcMRqImBS82/3Uzq320350wAJVpy677778MEHHyAxMRGLFi1Cdnb2gP8CCBGCXOdNKb0wRYiUsSyLnTxb+jQqNUZnZgU/oABJjo5Cjh/FyupqO36xWhETE9Nr/eGHH8YjjzzC+5yXX34Z27dvx9tvv424uIHN0snNzcVzzz2H2bNnIzMzE01NTdi8eTPuvfdefPbZZ3C5XPjiiy+8in3GjBnYu3cvXnzxRTz22GP46KOP8H//939YvHgx8vLykJeX59XrEUKCx58T+xKjoqHTaNDldEKtUsFsjEV6XBwGJSQKHKW4cowZATuch/SNd1ufDGdO1bRXITlc2JPLL40V5nQ4sWWYjDD5kT85IitxZPsRyp8GSLDi1Mcff4z4+Hjs2bMHycnJQr0sEUhTV2ifTlJaX4dUkwlatXA7WSkRGBjqmiKB5s+8qeP1tWjkGfo4Ij0Dg+Ny/AlLcYxGI6et3NNdv7KyMvz973/HtGnTvDo15uqrr+71+4iICFx11VWYMWMGRowYgS+//BJbt27FpEmTvIpdrVbjzjvvxFVXXYV7770XN9xwA958800sW7YMY8aM8eq1CDlTqOdYUqVSqXDt1OkwhkcgJdYErVotdkhEYfiKU27qnCJnGDx4MLZt29ZrjfInfoKd1tfa2opzzz2XClNEcjq6uvD8qq9x73+X47Xv12DToYOoP6O1kgQGFaaI1O04zu2aAoDxg6gwdSaGYRAdHd3rl6fkasmSJejq6sLrr78uyLXNZjOuu+46AMDq1au9eq7T6UTjr8fHJycn47333sPmzZvR0dGBiRMn4pZbbkFTU5MgcRJCpGVURhYy4xOoMEUCggaik4FQqVSUPw2QYMWp4cOHc/ZSEnmo6rKixWUX9DWlNAz9cHUl3CwLh8uFg5Xl+OSXn/HoF//DD0cOiR2aorf0UWEq+K9NvONyu7Gr9Dhn3aDToSAtXYSIlOObb75BeHg4br75ZkyfPr3n15VXXgkAqKys7Fmrqanp59W6nWwfr64e2M/N//3vfxg5ciQMBgMSExMRGRmJK664AsXFxZgyZQp27tyJF154Af/73/+Qn5+PN99807c/LCFeanV1wsG6xA6DEOInFcMdiM4CcPcxe5mQvoR6/iTYHqe77roLixYtwu7du6lFXmbuqvgYO9pLEauOQIbOhExdHMaEZ+DquMlihzZgfc0jKKzk/1pOYpLP16MtfX2Tc2GKhI7Cygq08ZwqOyZzEHKMWcEPSGGsVis2bdrE+zW73d7zNbt9YDdHTt6di4jgP6L6dK+99hr+/Oc/IyEhATfccANiY2Nx+PBhfPHFF1i3bh327t2L1NRULFmyBFdeeSXuv/9+3HLLLfj3v/+NV155BRMnThzgn5IQ791X+QnW2g4iRm2ASR2BOE0ksvUJeDL1ErFDI4R4ga9zCui++aWibj3io1DOnwQrTl1++eWoqKjA+eefjz//+c84//zzkZqaCpWHf7QZGb7PCCHCOvHrrIQmVxuaOtqwt6Mcza52WRWnPGFZFocqKzjrxvAImI2xIkSkfHIvTFFnk7z4M29qB88gdAAYn01b+vzl6cTe0tJSDBo0CDk5OTh2jP+URE+vd3KQ59ixY/t9/HPPPYf09HTs3r0bsbGnftZ/+eWXuOSSS/Cf//yn59TguLg4/Otf/8JNN92EJUuW4Oyzz4bT6RxwbIR4y+LsPk692dWBZlcHSroa0OoWtoOdEBJ4fKf1Ab/OneqnOFXWUo6MKOrSJr2Fev4k2LY+ABg5ciRMJhMef/xxnHvuucjJycGgQYM4v+ioZulod3eh3tnCWc/QDexkAKmrarLA2t7OWS9ITQPD04obTEre0idXVJgKLeOysjEyPROa026iGMMjkJtkFjGq0FVfX49ly5ahpaX3e1JraytuueUWbNu2DcnJybjkkv67SyorKzFu3LheiRUAnHfeeQCAqiru1vMJEybgl19+wRtvvOHHn4KQ/p0sTp3OpO7/jjYhRFo8dk7J8MQ+Il9Kyp8E65z65ptvcMkll8DpdCI+Ph6ZmZmIjIwU6uVJgJR3WXjXlVKcKuTpmgKAYam+36mgLX2eyb1rivgn3ySvos7IjEyMzMhEe2cn9pwowfaSYmTFJyArmjp7xdDW1oY///nPuP/++zFhwgSYzWbU19dj165daGxshNFoxKefforw8PB+X2vYsGFYt24dtm/fjgkTJgDovnu4dOlSMAyDgoICj8+94YYbBPszEcLH4uKeEGrSUM7sSUZUep/jGwgRi0rFf6Pb7aaZUyR4lJQ/CVacevjhh8GyLN5++21cc801onelkIE54eH44wydyefXDPYw9L4SloM886ZUDIN8c0ogQwpJci9MBbNrqrqqAeaU+KBdj/QtXK/H2flDcHb+EI/t1CTw4uLicN9992Hr1q04evQotmzZArVajUGDBmHx4sX4y1/+gtTU1AG91nPPPYc5c+Zg0qRJGDx4MGJjY3H8+HHU1tZi5MiRVIAionGwLlhdHZx1k4Y6pwiRm75mToW6FpcdH1l+QZOrDRZnG5pc7WhytuH2lIVYlHCu2OEpipLyJ8GKU4cOHcK5556La6+9VqiXJEEwNMyMR8wLcKKrEWVdFpzoakR5lwWZevl3TnV0deF4XS1nPScpGQadToSIlIsKU0QM/syb8oRurARWVlaWxwJgVFQUnn76aUGuM2PGDBw6dAjPPvss9u7di6amJowePRpz5szBTTfd5PEIZ0K81eThJp8nbtaNOxMvQKOrFRZnGxqdbbC42vy6KUj6x7IsGlpaUG5pQHljA8obGzE8PR3Thw4XOzRB5BgzqLNfBB5nTtG2PrhYN56pXcVZP2ansSa+CJX8SbDiVHx8POLjqRNAivpKnNJ1Jiw6Y/C5m3WDgfw/oB2truI9yrUgNc3n1xTqjV9J86bkXpgi5HQ0nFQ5srKysGzZMrHDIKQXvUqLWxJniB1GSHGzLP7+yYewdfTuWNNrNYopThFxUOeUZ9HqMKihggu9/y7qnTaRIiIDJWb+JNhA9MsuuwybN28e8JGGRLpUjEo23QPebukDgAI/5k0R5aGuKUIIIUS5VAyD2HDuTK/yRu+63gg5k9rD5yUXzZyCilHBqObOOGp0UHGKeCZYceqJJ55AVlYWFixYgOJi/uO5CQkWlmV5h6Ebw8ORYozleQbxhdy7pqgwRXyRHE4z66TOYrGgneekVm+0t7fDYuE/NIQQIi/pcdxxFZa2VrTSTXXiB0+dU27qnAIAxGq4xakGnlPiiXSInT8JVpyaN28e1Go11q1bhyFDhiAvLw/Tp0/HzJkzOb9OHkVISKBUW5tgbece1Tw0Nc3nrjDa0teb3AtTYgtGYUzJ/x8FYt4UbelTjoSEBNx6661+vcaSJUuQmJgoUESEEDGlx/GPHim3KPd9kgSeytO2Ppo5BQCIVXcf9GBgtEjVGjE8LBX5YXSDT8rEzp8Emzm1cePGnv92uVwoLi722EElly1jxHvBPqnPE76uKYC29AlFCUUP6poKPSzL4lBVBfKSU6BVq8UOhwQQy7KCnLxIpzcSIg0ZUel9jnLo9/meilONjRia4vssUhLaaOZU35ZlLEKYSguD6tRBVFmReSJGRPojdv4kWHGqpKREqJciZED6SlIKeeZNqRgGQ8wDO0aTeEaFKSJXZY0NePX7NQjX6TE6MwsTs3ORnZQMFd0wUaQff/wR119/vV/PJ4QoQ7IxFmqVilM0KG+kfID4Lt0Uh4XjJkKtUkGlUkGtUkHNMDBFcmechaJYTYTYIRAfiJk/CVacyszMFOqlCPGL3dGF4rpaznp2YhIMOh3PM/pHx/N2U0JhioSuHce7u3nbuzqxpegIthQdQWxEBG6eeQEmZ44e0GvQvCn5OHbsGI4dO+bXa1CnN+lLX6chE2nRqtVIMcai3NL7/zMqThF/JBtjkUyzbInCiJk/CVacIkQqjlRX8bbTSmFLn1LmTckZdU3Jny/zptxuN3aWcreat3d2ISE6RoiwiIRs2LBB7BAIIRKTHhfPKU41tLagvbMT4Xq9SFERQoh0iJ0/+VycslgsCAsLQ3g4dwr/QLW3t8Nut8NkMvn8GsR37zb+hA63Axk6EzJ1ccjQxSFKHSZ2WH7zPG+KZgr4QwldU1IrTFVXNcCcwj8HQ27yTWaxQ+jTkZoq2Do6OOujMrOg09B9GqWZNm2a2CEQwmuFdTd0jAZxmkiY1BGI00QgRm2AihHsjCLiQXpcPFB0hLNebmnEYDN1xRJCiNj5k88ZeUJCAhYvXoy33nrL54svWbIEy5cvh9Pp9Pk1SN/6ajn/0LINxzvre62dG5mPt7Ku8+lawRyG7mneFMuyvMWpGEM4UmN9K4LSlj5lFKZIaDu5pe9MEwbl0Cl9hJCgebTqK7S47b3WLo4ZjefSrxApotCRborjXS9vbFBEcSrHmEE5KyFE1ny+TSP2JHfiHxfrRnmXhbNukvnguppmK5raWjnrBalpos8OkeuWPqUUpqTWNUWCp8vpxN6yUs56VJgB+V58IKF5U4QQf3S5nZzCFCD/3EsuUk0m3gMwaO4UIYRIg197GegkHPmqddjgYF2c9QydvLdYulkWozKycKS6EnaHo2ddCvOm5IgKU0RqfJk3daCirNfPg5PGDcr2eAw0IYQIzeJq4103aehkr4HIiErv86Tm/mjVGpiNsahs6n1z9sw5VIQQQsThV3GKTsKRrzIP2/0ydPwtz3KRGmvCH2bMgsvtxvG6WhRWVuBwVQUGp/jW8UDt0YTI3/bj/O9TE7JzaUsfISRoLE7+4lScmjqngiU9Lp5TnKqzNaOjq8vnE50JUYKa9qqAd4g7WRfqHM0AgEQtHUZDuHwuTok9yZ34p97ZAjVUcKH3qXZyKE4N5K6ZWqVCXrIZeclmXDxuQhCiUh7qmgoOJQ1Fl6K2TjvvHLqE6GhkxNHfOyEkeBqd3LEDAG3rC6Z0Uxy28qxXWhqRmyztgz0IkaPFJW+hymFFk6sNzS47WLC4NmEG/p2zROzQiAT5XJwSe5J7IOzcuRPfffcdfvnlF/zyyy+orKwEoMy5WPONo3FRzAhUdTWhrMuCsq5GnOhqRLY+wafXC+YwdDmS27wpKkwRpdh9ohQut5uzPn5QjleduzRvihByur4OnPFkQsQgfJt7ByzONjS6Wrv/19mKXH1SACIkfNI93JQoa2yg4hTxWlNbK77Y8QvcrBsutxtuNwuX242Zw4bTSJFflXQ1oMph7bXW4LCJEwyRPDo/+zSPP/44VqxYIXYYQaNl1MjUxyNTT90DfEJ1S59SClNEeXyZN7WDtvQRQiQiTKVFXhgVosSUGmsCwzCcG8/lFsp9iPfsDgd2lR7nrI/JGiRCNNJkUkdwi1POFnGCIZJHk2BPM3nyZDz44IP46quvUF1dDb1eL3ZIhASVkgpT1DVFLK2tOFZbw1nPjEtAYjTNOghlTU1NYodACBGBXqtFEs/P//JGGopOvOfpUBW+ju1QFasJ56xR55R8BTp/ouLUae677z489thjmD9/PpKTk8UOh/Dw55QW0jcqTBGl2VlSzLs+PjvHq9ehLX3K8uWXXyI+Ph5ffvml2KEQQrwkRMcr37zB2mYrOnlOdSWkLyqG/6O0m6Xi1EkmngMfGpxUnJKjYORPVJxSMF/mIZBuQm7pk9u8KRJ8gSymKano6K3tJdwtfQzDYNygbNrSF8JefvllXHrppVi4cKHHx2zduhV33303yspCc3s3IUrGN3eKBVDRJP+82Zft78R31DnVvwJDCqZE5GJ+zChcE3c2Hk27Ek9mLFLkTGelC0b+RDOniCKwLOvVcGPSm5IKGNQ1FXz5psAPkfU24a5ssqCKp/V4sDkF0QZuizkJHdu3b8fy5cv7fMykSZOwZMkS6PV6PPnkk0GKjBASDCeLUwzDICk6Bulx8ciIi4cpIkrkyIjcqFX8nz3cbiq8nHR9/FRcHz+15/dZkXkiRkP8EYz8iYpTxG9in9TX6XDg0S8+QW5SMgpS01CQmkYfPr1AhSmiRH0NQiehze12Izo6ut/HLV68GG+//TYVpwhRmIy4eNw5ez5SY03Qa7Vih0NkzNO2PuqcIkoUjPyJilMC6uzsRGdnZ8/vbTbaTyskT/OmjtZUw9bRjl2lx3tOzEg3xeGSCZOQ58OxwKG0pY8KU0SJ3CyLHTzzprRqNUZlZHq1pY/mTSlPdnY2du3ahRkzZvT5uBEjRqCkpCRIUYUuyp1IsOk0GmQn0qmJxH8et/XRzCmiQMHInwQrTl1//fU455xzcP311/f5uHfeeQebN2/Gf/7zH6EuLRn/+Mc/8Oijj4odRr9crBtqD5V+OSqs5Batyi2NCKO7YX1SUmGKkNMdr61BU1sbZ31EeibCtDoRIhJfcoTRr+2XmqgOFAkYj5guu+wyPP/881i0aFGfh580NzfDQQOSA04uudPpaKYnIQSgmVOhIDMmAWaT7welNUQo5yZXMPInwSoU77zzDn788cd+H/fTTz/h3XffFeqykvLAAw+gubm551d5uTRPlltU8iamHn4aV5f8C3+t/Ayv12/EDy1HxQ7LJyzLorCygrMeFWZAqilOhIjkQWmFKSV0TSnhzxAo3s6b4uuaAoAJXp7SR5TpnnvuQWRkJM4991xs3brV4+M+/fRTDB8+PIiRhSa55E7+qne04PrS/+Du8o/xj+qVeKN+Iz5p2oETnfSznxC5UnmYd+umYd9EgYKRPwV9W19XVxfUanWwLxsUer0eer1e7DD6VdLZAIurDTXOZmxr694GNyNqCKZG5YscmffqbM1obG3hrBekpnl8w+iLkFv6SHBItahTWdt9Zz01iYqkwXbxuInIjE/EjpJjOFpTDZZlEa7XY2hKGp3SR2AwGLBp0ybMmzcPU6ZMwTnnnIMrr7wSBQUFSExMRFVVFd555x18+OGH+PDDD8UOV/Hkkjv5q85pww+t3P7Dp1IvRaaee3oc8SwjKt3jqAdCgklFnVMkhAQjfwpqcYplWezatQsJCQnBvCw5TYvLDouLu90lU+fbB+hgDUP3lITwdU0B3cUpsUl13pTSuqYIOZNBp8PkvHxMzstHc3s7dpYUw82y0Hh5Y4TmTSlXcnIyfvnlF7z22mt46aWXsGTJkp4TX1mWRXh4OJ577jlcccUVIkdKlMLi5OZeABCnjghyJIQQoagYBgzDgD2jU8pNxSmiUIHOn/wqTs2cObPX71evXs1ZO8npdKK4uBg1NTX4/e9/789lyQB4modQ1mXhXc/QmQIZTsAc5Jk3xTAMhqSkihCN9CmtMCX1rikivpjwcMwcNkLsMIgEqVQqLFmyBEuWLMGxY8dw4MAB2Gw2JCQkYMqUKQM6kYaQgWp0tvKumzRUnCJEztSMCk7W1WuNOqeIkgUyf/KrOLVx48ae/2YYBjU1NaipqfH4eK1Wi3nz5uG5557z57LED2UeilYZPnZOianL6cQxnu+3QfEJiNCHef16St/SR4UpIkfezpvqC23pIwCwdOlSDB8+HMOHD0dqaveNjNzcXOTm5oocGVEyvq51AIjTRAY5EtIflmV7OgEI6Y9KxQBn1KJo5hRRomDkT34Vp04eEciyLLKzs3HZZZfh2Wef5X2sTqdDfHw8tBI+QW3lypV4/PHHe37f1dUFAJg0aVLP2oMPPoi5c+cGPTahpGiNuMp0Fsq6LDjR2YgqhxUuuH3e1hcMnrb0Ha2pgtPt4qwPTRX/A6jUtvQprTClVNVVDTCn0OwRQgLp8ccfh81mA8MwMBqNGDZsGIYPH44RI0b0JF2xsbFih0kURs9okKmLQ6OzFa3uzp51E23rEw3LsrC2t6G8sRFljQ0otzSgvLEBf5x5ATLj5TuCJMeYofgbrlLCd2IfdU4RJQpG/uRzcWrmzJmYPXs27rnnHgDAtGnTMH78eGRmZvoVkJjq6+uxbds2zvrpa/X19cEMSXCjwtMxKvxU8cbBulDVZUWqziheUD4qrJDuvCkSWFLumqItfcpA86aUy2q1oqysDAcOHMD+/ftx4MAB/Pzzz3j77bfR2dkJhmFgNpt7Ei5PN90I8caiuMlYFDcZANDpdsLiaoPF2YZwlU7kyEJXUU01Xlr7LWe93NIo6+IUCS41wy1OuVkqThHlCUb+5HNxauPGjcjKyur5/aZNmzBo0CBfX04SFi9ejMWLF/v9OsuWLcOyZcvgcnG7eqRGy6iRqZf2MHQ+LMuikGfeVFRYGNLjvO88UfIdJqV1TUm5MBWK8k1msUMYENrSR06XkZGBjIwMzJkzp2fN5XKhqKgIBw4cwIoVK/Dxxx/ju+++o+JUkMgld/I009MbepUGZlUMzNoYASIivko18c9bLW+kPIMMHN+JfS43besjyhTo/Mnn4pROp0NbG//++VB3ckCYzWZDTAwlHoFQZ7OhobWFsz40JQ0qmhPQQ2mFKamjrilhCTlvipC+OBwObNy4EatWrcKqVatw5MgRJCUl4aKLLhI7tJBBuRPxRkZUusexDwMVoQ9DXGQkGlt7D6un4hTxhlrF/dxB2/pIqBA6f/K5OJWbm4t169b16phqbW1FWdnAOlAyMuhDB+mfp8SDr2sKAApo3lQPJRam5Ng1VVnbiNQkcWe6FdU1IC9R2bOsvt2zCzlJSchLMvPexfTHOlshnq75FqMM3duiRxnSkRKeBZ1KujMUSf9KS0t7kqkNGzags7MTkyZNwjXXXIOLLroIY8aMETtEQkiApcfFc4pTVU0WOF0uaNRqkaIicqKibX0kxAQyf/K5OHXTTTfhjjvuwMyZM3vWPvvsM3z22Wf9PpdhGDidTl8vTQgKK7nzphiGwZCUVK9fS4lb+qgwFXxCdU3RUHTv1TY349u9uwAAMYZwjBuUjQnZuUgzxYFhGK+39J05b2pPezlKuxpR2tWIFc17AAD6kn9h/6gXMCgsSZA/AwmeO++8E6tWrcLRo0eRkpKCCy+8EO+88w7OP/98v44/JoTIT7opHntOlPZac7rdqGm2Is0k3cOCiHTQQHQSKoKRP/lcnLrtttuQlpaGFStWoKKiAhs2bEBiYiKGDBkiSGCEeNLldOJYLbc7KTM+AZFhYSJEJC1KLEyR0OPNlr4dJcd6/ru5ox3rCw9gfeEBXDt1OiZk+3+87d4ObqemXqVFpp4G5srRCy+8gLCwMNxwww246qqrMHz4cMTHU0GYkFDkaU5pWWMDFafIgEQbDOhyOqFWqaBSMVAzKsRGRIodFiGCC0b+5HNxCgAuueQSXHLJJQC6h8HNnj0b//nPfwQJjPhOiGGdUlZUUw0Hz8DUYRI4pU8qW/qURupdU0Q8LMti+/FizrpGpcIwAbb5ulg39nVwOzUnRObytvIT6Vu8eDEOHDiADz/8EG+99RYAICEhoecY5NN/RUbSBwxClCw9jr8AVd7YAOQNDnI0RI7uuGie2CEIpqa9ik4rJh4FI3/yqzh1uocffpjmM4SQYJzUF4x5U0rb0qfErik5FKZoELp4TjTUo6HFxlkvSE1HuF7v95a+4s46tLk7OY+bGJnnXaBEMk6/iVZcXIz9+/fj4MGDOHDgAL7//nu89tprcDgc3VtCMzJQUlIiYrSEkECKCjMgNiICTWcc8kRD0UkwlLWU02nCRDaCkT8JWpwi0rbWdhBqqJCpi0O6LhZ6mQ7z5Zs3FakP89iaHSqUWJgipD/bjx/jXRdiOx8AqBkVLjWOw96OchzrrOtZp+KUMuTk5CAnJwcLFy7sWXM6nTh8+DD27duHgwcPihccUYxOtwMAZJt3KV26KZ5TnKpsssDldvPOE5KDHGOG4m7AEkKkI1D5k2DFKSJ9z9asQumvW/4YMEjWRuP86GF40Dxf5MgGrt7WjHqeLomhqalQMdyjXEOFUgtTodo1FepD0Qc6b8rldmNX6XHOephWi+HpwtyJzNEn4um0ywAALS479nVUYE97GSZF5gvy+kQ8R44cwerVq1FdXY3IyEjk5ORgxowZSE5O7mlLJ+R0vo5N+KZ5H+6v/BQRKj1M6gjEaSIQp4nEg+b5SNXFChxl6MiISvfYZe+N9Lh47Cs/0WvN4XKhptmK1FiT369PCCFKEsj8SdDiFMuy+OCDD7BixQoUFRWhpaUFLMtyHscwDIqLuTNClGLZsmVYtmwZXDxzkcTiZF2odFh7fs+CRbWjGa0u7nYVKatqaoJGpYLzjFMwpLClT6x5U1SYkr7K2kakJtFgVaEdqa5Ei93OWR+dOQhatUbwVvkodRimROZiSmQu4rV0qpuc3XfffVi6dCncbje0Wi2cTidYloVKpcLcuXPx7LPPIj+fCpDBJMXcSSgWZ3dXTpu7E23uTpQ7LACAh8wLxAyL/KqvuVNUnCKEkFMCnT8J1qva1dWFCy64ANdeey0+++wz7Nu3DyUlJSgtLe35deLECZSWlip+fsOSJUtQWFiI7du3ix1Kj2pHMxwsN+HL0EnzTdfTnbBRmVn4vyt/jz/OvABTBw9FXGQUGABDU8Qfhk5CT6jPmso3mUW9Pt8gdACYkJ3j0+vRENDQ8PHHH+PZZ5/F3XffjRMnTqCzsxMOhwPHjh3Da6+9huPHj2PMmDH47rvvxA41pEgxdxJKo6uVd92kiQhyJIRPhoexEDR3ihBCTglG/iRYcWrp0qVYt24d5s2bh6KiIvz+978HwzDo7OzEoUOH8MgjjyAiIgL33HMP3Gd0vZDAK+uy8K5n6rzv5gjGMPS+6LVajEjPwBWTpuCRS36LRy+9ApFhYaLGJBbqmiKhqtPhwN6yUs56tCEceUniFs2ItL3xxhu44oor8PTTTyP91+2fKpUK2dnZ+MMf/oDdu3fjiiuuwOWXX46GBvpZRPx3snPqdBEqHcJoBpUkRBvCEW0I56xTcYoQQk4JRv4kWHHq448/hslkwocffoicnByofh0gqNVqMXjwYDz00ENYuXIlli5d2mvSOwmOEx7mJEi1c2qgGIaBKTLK6+cpYUsfFabEFepdU4Ey0HlT+yvK0OV0ctbHDcqGSqWi02+IR3v27MHFF1/s8esajQb//ve/kZ6ejpdffjmIkRGlsji5nVOxauqakpIMnq19FU0WuqFOCCG/Ckb+JFhx6tixY5g4cSIiIrrfbE8Wp06fHTB16lRMmTIFr776qlCXJQN0iXEsVubejlczrsb9yXPwO9NZmBKRi0x96A5dljOlFqbIKXIp0ollR4BP6SPK1dzcjIyMvougKpUKf/jDH7B69eogRUWUbG7MKNwQNxULjWNwbmQ+hoWlYHBYsthhkdPwnfjc5XSi1tYsQjRETuptzTheV4tjNdU4Ul2JwsoKHKmuFDssQgQXjPxJsIHoarUaMTExPb8/WaSqr69HcvKpN+DU1FR8/fXXQl2WnMHTSTJhKi3yw5KRL4NkSIiTV5RMyYUpKsiQgWi121FYWcFZT4qOQbrJt8HzNG8qdLAsC622/+1Uw4cPV/ThLSR4fhM7VuwQSD/STZ7nTpmNdKIi8ezr3Ts5JwdHGwx46reLRIqIkMAIRv4kWOdUamoqKipOfVjIze2+e71169Zej9u3bx8iIyOFuiwhXhN6S18wUWFKGmhLn7h2lx6Hm+ck2PHZuWAYhrb0kX49/vjjeOaZZ7By5UqUlpbyPiYiIgLNzdQ1QUgo4OucAoDyRnq/J31Tq7gfp120HZQoVKDzJ8GKU5MmTcKBAwfQ2dkJAJgzZw4A4I477sDq1auxf/9+3HrrrTh06BDOOussoS5LgkzsYehSJMa8KUKUaKDzpraX8N+NGT/It1P6+OxpL8PbDT9id/sJdLodgr1uqHn++edxySWXIC8vDzExMdDr9cjMzMQ111yD/fv3e3zeO++8g4kTJyIyMhImkwlz5szBli1bBIlp8eLFqKmpwWOPPYb58+cjJycHUVFRmDhxIq6//nosXboUq1evRkVFBc2bIT08daYTcQl1M8IYHo4onsN1yi3yuXFGxKFiGM6a2829gUbIQEkxdwKCkz8Jtq3v0ksvxapVq7B27VrMnz8fubm5uOOOO/DPf/4Tc+fOBdDdChYREYFnnnlGqMsSEjKoa0oafO2aqqxtRGqSb1vOhFBU14C8RPnPmGtsbcHxulrOelZCIhKiowW7zmrbAbzV8AMAQMuoMSQsGaMM6bg3eTYMKp1g11G6p556Cm1tbRg5ciRGjBgBADh48CCWL1+Ojz76CJ9//jnmzZvX6zl33HEHXnzxRRgMBlxwwQWw2+347rvvsHbtWnz66adYuHChXzGdfijL8ePHsX//fhw4cAAHDhzAL7/8gg8++AAOR3dBkuH50EEIUR6GYZAeF8/ZMl5haYSbZXkLEFKXY8yQ9W4BueDtnGLpxgbxnRRzJyA4+ZNgxam5c+eiurp3B8nSpUsxYcIEfPnll2hqakJ+fj5uu+025OXlCXVZojB886YcLic++2UrhqakId+cAoPO9w+Gcn2TpsJUaKquaoA5Rf4FJSHtOM7fNTXh164pX+6i882b2tt+6meRg3Vhf0clKrqa8JB5gdevH8pWrFiBcePGIeyMjoRXX30VS5YswY033oiKigpoNN3pyPfff48XX3wRcXFx+Pnnn3vyhZ9//hnTp0/Hddddh+nTp8NoNPoVV1NTE2JjY5GdnY3s7Oxep884nU4cPnwY+/btw8GDB/26DiFEPtJN3cWphKhopMfFIT0uvnsWFcsCMixOkeDgK05R1y3xh1RzJyDw+ZNgxSlPrrzySlx55ZWBvoykLFu2DMuWLet1UiHx3bGaGvx49DB+PHoYKoZBTlIyClLSMCE7F8YIcY9iDsaWPiUXpuSGZk2Ji2VZbOc5pU/FMBiblS3YdRysCwc6uCftjDSkUSeNl6ZMmcK7/qc//QnPP/88iouLUVhYiJEjRwLobmUHgL///e+9bmRNnjwZN998M1566SW89dZbuOuuu3yO6csvv8Sll16Kzz77jPdOokajwfDhwzF8+HCfr0G8R7kTEduMguE4b/gIhOv0YodCZIRmThGhSTF3AoKTPwk2c+rOO+/E448/LtTLydqSJUtQWFiI7du3ix2KIpzeYu1mWRTVVGPFru1oam8TMargUHphirqmyEkDmTdV2WRBTbOVsz4kJRVRBoNgsRy118LOcudMjQrv7sqK1Ym3PVNJTp74ovu1G7ajowPr168HAFx22WWcx59c8/fE35dffhmXXnppny3uW7duxd13342yMnl228oR5U5EbJFhYVSYIl5TMdyP0yyoe4oEhli5ExCc/Emw4tQrr7yCffv2CfVyJATxbekDgMJK7nqEXo9MDyereCK3LX1UmJIW6prqLd9kDvo1TzTU8879mJDdfTqsUFv6jnfWQQXudUYbBjawnfRv+fLlOHLkCPLy8nru8h05cgSdnZ1ISEhAWloa5zljx44FAL9zje3bt2PRor6P+J40aRI2bNiA119/3a9rEUIIUTa1ir+j2sVzqjAh/hAzdwKCkz8Jtq0vLS2NKsQSdWvZB2h3dyFDZ0KGLg4Zujjk6hORqffu7r8YJ/U1tLSg1sY9inJIShpUPG20RB7kVpgi0jAlfwhGpGdgV2kJdhw/htKGeug0GoxMzxT0OvONozEzaigOdFRiT0c59raXYV9HBUYYuG/6ZGCeffZZHDx4EG1tbTh06BAOHjyIlJQU/Pe//4VarQaAnrtsfMkV0H00sdFoRFNTE1paWhAVFeVTLG63G9EDGJ6/ePFivP3223jqqad8ug4hALCjrRS1ThtM6gjEaSJg0kTAqA6HhlGLHRohRAB82/qAXzun1PTvnPhOSrkTEJz8SbDi1MKFC/Hee+/5/YcmvvN0zPHWtmJYXR291s6PKsCrmb8PRlh+4euaAoBhqeJ/SAzkvCmld02RgaOh6L1FG8IxfegwTB86DPW2ZlQ0WaD/tcVZSBFqPc6KzMZZkcLNspI7lmVhs9l6ren1euj1/W+DWbNmDdatW9fz+8zMTLz33nsYN25cz1praysAIDw83OPrREREwGq1+pVrZGdnY9euXZgxY0afjxsxYgRKSkp8ugYhJ31k2YYVzXt6rUWpwrCr4GFxAiIkhBVbywY0RsAbfNv6ADqxj5zidrt9yp+klDsBwcmfBGs9efTRR5GRkYE5c+Zg9+7dQr0s8VOzq4NTmAKADJnMTPFUnBqa4l1xSk5b+pRemJJj1xRt6QssXxPFhOgYjMkcBMC3LX2hJDE8DjnGDJ9/pUQmwWq1IiYmptevf/zjHwO6/vfffw+WZdHU1ITNmzcjLy8P06ZNw5NPPhngPznXZZddhueffx41NTV9Pq65ubnnSGQS2jzd/BsIi4s7HzNW4/lDBCFEXjx1TtFQdGVIj0r2K3+KN8TiyJEjPuVPUsqdgODkT4J1Tl188cXQ6/X46aefMH78eJjNZmRkZHCOQAQAhmF6VQFJ4JR5SKgyvNzSF2h886YcLieO1nC7k9Lj4gUdfiwlVJhStsraRqQmSevfXijjmzfVn1Aehm40GlFaWtprbSBdU2e+xtSpU/Htt99i8uTJePDBB3HBBRdgwoQJiIyMBAC0t7d7fH5bW/cHfX/u/N1zzz344IMPcO655+K9997DpEmTeB/36aef0ol9xG+NTm5xyqQW96RhpcmISvc4t5SQQFN5mDnldtPMKdJt8ODB2LZtW681b/InKeROQHDyJ8GKUxs3buz5b5ZlUVVVhaoq/hlFdBR38JR1WXjXM3SmIEfiveLaWnQ5nZx1pW7pU3phSq6oa4qQbgzDDGjWwEBotVpcccUV2LlzJ77++mtMmDABGRndHXQVFRW8z2lra4PVakVsbKxfCZbBYMCmTZswb948TJkyBeeccw6uvPJKFBQUIDExEVVVVXjnnXfw4Ycf4sMPP/T5OoQAgIWnOBWniRQhEuKPTocjIFvIAy3HmCGr3QNypPa0rY86p8ivVCqVIPmTmLkTEJz8SbDiFM1lkCYDo8X48CyUd1lQ6zy119XbbX1iDEP3tKWvINW77Tv0piwNod41RQKHtvTJU3x89yy1+vp6AN13FvV6Perr61FZWYnU1NRej9+1axcAYOTIkX5fOzk5Gb/88gtee+01vPTSS1iyZEnPjTOWZREeHo7nnnsOV1xxhd/XIqGLZVk0ulo56yYNdU5JWavdjrLGepQ1NqC8sRHljQ3odDrw9BVX0w12wuHpgCa3TGdO1bRX+dRZToJDzNwJCHz+JFhxKjNT2NOSiDBmRg/FzOihAIAOdxfKuyw40dWIFG2MyJH1r7CSWwEO1+mRFZ8gQjSBpfSuKbkWpqTSNaXkoehCDyYl8rFp0yYAQE5ODoDuO3IzZ87EqlWr8Mknn+COO+7o9fhPP/0UADB//nxBrq9SqbBkyRIsWbIERUVFOHjwIGw2G2JjYzFt2jTBusRIaPsm93ZYnG1odLbC4ur+36Fh9MFPyr47sBfrDu7nrDe1tcIUSYc+kd5o5hQJJrFzJyCw+ZNgA9GJ9BlUOuSHJeP86GGSOsKYb06ApbUFNc1WzvqQlFSPdyjkSumFKUKkiO4KBt5PP/2E1atXdx+nfRqHw4GXX34Zy5cvh8Fg6HV37c477wQAPPHEEygqKupZ//nnn/HGG2/AaDTihhtuEDzWvLw8ZGZmYvfu3bjpppuoMEUEwTAMsvUJGB+RhQtjhuN3prPw58TzcN6vNw2JNKXH8d8MKmukfI1wqT1009HMKeILOeVOgPD5k8+dU++9955fF77mmmv8ej5RtoM8XVMAUODlvKlAbOkLxLwpJZNr1xSRhrc3b0BUWBjGD8pBZnwCZ0uFkFv6LM42hKm0CFfpBHvNUFZUVITrrrsO8fHxGDduHOLi4tDQ0ID9+/ejuroaYWFheOedd5Cefur/w1mzZuH222/Hiy++iNGjR+P8889HV1cXvvvuO7Asi7fffhtGo1GwGMvLy/HBBx/g/fffx6FDhwR7XUKIfKWb+ItT5Y2NGP3rCbGEnOTpprlLptv6iLjkkDsBgcuffC5OLV682Kd91yzLgmEYRRenli1bhmXLlsHlcokdimx5njcl/jB0MnByLkxJZUtfKLO2tWFXSTFYABsPHURCdDTGD8rBWTl5iI8SvrPllbp1+NCyDflhSRhlSMeo8HSMMqQjV58IhmFC+qQ+X0ybNg1//etfsWnTJuzbtw8NDQ3Q6XTIysrCZZddhttuuw25ubmc573wwgsYPXo0XnnlFXz33XfQ6XSYNWsWHnzwQZx99tl+x9XS0oJPPvkE77//PjZv3gyWZcGyLOLj4+F2u9HU1OT3NYj3KHciUpEQHY0wrRb2M45CL7fIN6chgUPb+oiQpJo7AcHJn3wuTj300EOc4lRxcTHef/99hIeH44ILLkBWVhYA4MSJE1i7di3a2tpw9dVX9+yRVKqTezBtNhtiYoIz26mpSzkfpB0uF45Ucwewp5viEG0IFyEiQoRTWduI1CRxihxFdQ3IS/R/dlW+ySxANP3Pm9pZ2l2YOqneZsOqvbsRptXivGHCDHY83d6OcrjgxiF7NQ7Zq/FR0y+I10Riy+C/Cn6tUDBo0CA8+eSTPj138eLFWLx4sWCxuFwurF69GsuXL8fXX38Nu93eM7jz4osvxqJFi3DhhRdi1qxZ2Lx5s2DXJQMnRu40EErKr8jAqBgGaaY4HKut6bVe1tjQc5OdkJOoOEWEJKXcCQh+/uRzceqRRx7p9fuioiJMnDgRV199NV544QWYTKZeX29qasIdd9yBr7/+Glu3bvX1skQEgTypj2/e1PG6GnQ5nZx1KZzSJ/SWPiXPm6KuKWEpeSi6J9uPF3PWGADjsrpvcPi6pY9v3lSn24lDdu6/79GGDPogImPbt2/H8uXL8fHHH6OhofuDpVqtxoUXXohFixZh4cKFiIigk9MIkbuMqHTenNJX6aZ4TnGq1W6Htb0dsfQzg5xG5WnmFEszp4h8iZU/CXZa3wMPPIDY2Fi8/fbbUKu5w7ZjY2Px1ltvIT8/Hw888AA+++wzoS5NFOZghTDzpoh45FyYItJQY21ChYVbJMxLToExAG+Gh+xVcLDc7USjwoWbaUWC54knnsAHH3yAo0ePgv31A8JZZ52FRYsW4YorrkBCgvJOfSWECCc9jr/DubyxgYpTpJfM+ERcP20mVAwDtUoFFaOCWqVCijFW7NAI8ZrY+ZNgxamNGzfiggsu4C1M9VxMo8GkSZOwdu1aoS5LFIhv3pRBp0NWQqII0ZBQI8WuqVDE1zUFABOyA7MtfG8H/x33UQYqTsnRydEDycnJuOWWW/C73/1O8SMFCCHC8XRiX7mlASMzMoMcDZGy2IgIxEZkix0GIYIQO38SrDjV0dGB6ur+tzzV1NTAbrcLdVnSh4MdlYhWG2DWxkDDeC4aSomltRU1zVbO+hBzqsc93XwCsaWPDAx1TZGB6GveFMuy2FHCLU5pVOqek5KE3NIHAFMi8nB/8hzsbS/H3o5yVDmsYMBguCEVAGgYugyxLIuamhqsWbMGCQkJiI2N5YwcIIQQPknRMdBpNJwxE+WN8stxcowZlBcTQgZMzPxJsOLUyJEj8cMPP+D777/HrFmzeB+zbt06bN68GRMnThTqsqQPt5Z9iHKHBRqokKqLRaYuDtOiBuOaOGEm9vuLbzaA51P6xO9eEHrelBLJvTBFXVPSUFJfh8bWFs768PR0GHS6gFwzNywRuWGnujPrHDYc7axFlDosINcjgbVt2za89957+Pjjj/HTTz9hy5YtuO2223DRRRdh0aJFWLBgAcLC6P9bElgPVn6BVncnTJoIxKkjYdJEIEefgAkRg8QOjfRDpVIhLdaE4/V1vdbLGilPIIQol9j508BbUfrxwAMPwO12Y968ebj++uuxZs0aHD58GIcPH8aaNWtwww03YO7cuWBZFvfff79QlyUeOFgXqhxWAIATbpzoasTm1qM4zDPwty+BHIbOZ3TmIFw7dTomZOci8rRvfJo3RYj8i38Dtf34Md71CYO4R+cGSqI2GudE5gXtekRYEyZMwMsvv4yqqiqsWLECl112GdRqNb7++mv87ne/Q1JSEhYvXoy1a9fCTScqkQDZ0HIY3zTvxXuNW/DPurV4sOoLvN3wo9hhkQHi29pn62hHc3u7CNEQQkjgiZ0/CdY5tWDBArz66qu488478c477+Ddd9/t9XWWZaHX6/Hyyy9jwYIFQl2WeFDV1QQXuN8wGRLfmhIZFoYJ2bmYkJ0LN8uivLEBZQ31iAkPH/BryKV1WWkn9YVK4YQElsvtxu7SEs66QadDQVp3B6WvW/pI6NFoNJg/fz7mz58Pm82GTz75BMuXL8cPP/yA9957D8uXL0diYiKuvPJKXHXVVWKHSxSEZVlYXG2cdZMmUoRoiC/6mjsVE+55azohhMidWPmTYMUpALj55psxZ84cvPXWW/jxxx9RVdXddWM2mzF16lRcd911yMrKEvKSBEBTF7fFuKzLwvvYTIkXp06nYhhkxicgM178U5VoS1/flFCYCuaWvsraRqQmyeffotD6mjd1qKoCrZ3cuYRjMgdB28eBGwPhad4UCQ3R0dG44YYbcMMNN6C8vBzvv/8+li9fjsOHD+PFF1/ESy+9JHaIRGL48quBanHbeU8ANWnopDe58FicamzE8DQqThFCQkMw8ydBi1MAkJGRgUcffVTolyVeOuEhocrQSWMYLN+8KUII8XRK3/gAndI3EDQMXXnS09PxwAMP4IEHHsCuXbuwfPlyfPTRR6itrQXDMGKHRxTA4uR2TQFAHBWnAiYjKl3Q/DI5xgitWg2Hq3eRUY5D0QkhRAiBzp8EL06drqmpCQBgNBop2QuyGVFDYFSHo6zLgrKuRpzoakRZV6Pkt/X5Sy5b+pSEuqZCS77JHLDX7nQ4sL/8BGfdGB6B3KTu69KWPiK0sWPHYuzYsVi6dCnWrFmD999/X+yQiAJ0sk5k6xJgcbXC6uroWTepqTglF2qVCqmxJpQ21PdaL7fIP+8hhBB/BSJ/Erw49dVXX+GVV17Bli1b0NHR/WZsMBhw9tlnY8mSJbj44ouFviThkaqLRaou1q/XCPYwdCI/SihMyU11VQPMKfxbDeRub1kp59huABg/KBsqusFBAkylUmH27NmYPXu22KEQBRgclow1+XcC6D6kxupsR6OrFcmaGJEjI95Ij4vnFKea2trQYu9AVJhBpKiIlDS1teGtTevgdrvhcrvhZlm43G5cNHI0JubQwSpE+YTMnwQrTrEsixtuuAHvvvsuWJYF0N0xBQBWqxXff/891q1bh9///vd4++23Fd1JtWzZMixbtgwuF3fWAJHflj6aN6Vs1DUVXH3Nm9pR4mlLn/+n9NG8KUKkTcm5k5ZRI0EbhQRtlNihEC/1NXeKTpImAOBm3Sitr+Ost3V2ihANIfKmEuqFXnzxRbzzzjswm8147bXXYLVaYbFYYLFY0NzcjNdffx1msxnLly/Hiy++KNRlJWnJkiUoLCzE9u3bxQ4lpMhpS58STuqjrikipJaODhyuquSsJ8cYkRrbPSsvEFv6XqvbgL9WfoaPLb/gsL0aLlb4Y3EJIf2j3IlIUbqJfxyG3OZO9XVjiPhHxfB/nHZTPkGI1wTrnHrzzTcRHh6OH374AYMGDer1taioKNx00004//zzMWLECLz55pu44447hLo0kTmX242immrkJCX7fRoXCQ6lFKZCsWuqqK4BeYnS2xa4q/Q43L923Z5uQnZuQDttV9sOoNBehU+adgAAIlQ6zIwaiufTrwRAw9AJISSUmY2x0KhUcLp7FxrKZFacIoGjVvHnKC43N6chhPRNsOJUSUkJLrjgAk5h6nSDBg3Ceeedh7Vr1wp1WaIAxXU1eOW7VdBpNMhPTsGw1DQUpKUjLlL89nfa0keIcPq6c7vd45a+wJ3S1+HuwhF7Ta+1NncX7/HvhBBCQo9GrYY51oRWewfSTfFIj4tHRlw80uPoxgXp5rFzyj2wzqmylnI67IWQXwlWnEpISIBOp+v3cVqtFvHx0rtrT4KDb95UYWUFAKDL6cSBijIcqCgDtgF3zp6P7MSkAb2unLb0yZ1SuqbEVlnbiNQkSm4BoN5m453XkJ2Y1FOk9idx8zRv6mBHFVzgJo+jw2n7AyGhrqkr9DprCb+/XDQPOk1ADzgnMqZW8RenaEwAId4TbObUb37zG6xfvx5NTU0eH2OxWLB+/XosXLhQqMuGvEAlT8E8qa+krpazplWrkRmfELQYyMAoqTAl5y19Svr/AQCKavk7FMdlZQf0uofs/D/nhoXR8HRCCCHdqDBF+uKpONXY2hrkSIRDJ7YTsQhWnHriiSeQnZ2NmTNnYv369Zyvb9iwAeeffz5ycnLw1FNPCXVZogB8R8dHhoV5/GFPCFEWnVqDcYNyMHf0WFw/bSYemP8b/OO3izBuUOC29AGA84y7mhqoMFifjCRtdECvSwgJTSc6G/B5006xw1A02h5Fgk2rViNCr+es7zh+DA0tNhEiIkS+BLsVcPHFF0On02Hnzp04//zzYTKZkJmZCQAoKytDY2N3l8KkSZNw8cUX93ouwzBYt26dUKGElFhdHKd7ysW6Ueewocph/fVXM6odVtwQPxXpOpNIkXoWHxWNckvvP0Or3Q632w0VFagIUbzx2TkBnS3lyZjwDPzeNBlDDSkoCEtBrj4RehXdISeE8OdXvnKyLrzV8CNervseLtaNAkMKhoSZBXltXySHp1BnBAlZxdYyQU8vZBgGI9Mz8fOxo73W3SyLb/fswjVTpwt2rWCqaa/yOBaBkEARLAvfuHFjz3+zLIvGxsaegtTpfv75Z85aIE9iCkUbWw7j5rLlnPXpUYMHXJwKZuJiNsZi94mSXmsOlwuNrS1IiI4JSgwktMh5Sx8RzujwDJovRQgJqIMdlfhr5ecoPG0b8d8qP8f/sm+B2sMg5WCgAlVoodmsgXXhyNHYVlzEOXV4+/FjOH/EKJiNsX0+X6pD0alARYJN0NP6iDSYtUbe9SpHc3AD4ZERlc4Ziu7pB3a11Trg4lSOMUNWb7x5ifEoqlPW3CDiPRqKLn1NXY2I1dH/R4SEIn+7pxqdrbji+OvoZHuPL9jXUYH3Grfguvhz/A3RL1SgIqFK6O6p+KhonJ03GD8ePdxrnQWwcs9O3Dh9lmDXCjYqUJFgEqw4dXILHxFfiofiVHWXNahxDFSy0ci7Xt3chJEQ9/sq32TGUQv/sGZCxFRd1QBzim8nnxbVNSAv0bfnHrVUI9/k23YUoZNBQggJNH8KVHGaSFwXdw5eb9jI+do/a9diVnSB6OMWlFig4rsRSkigXTRyDLYVF8HhcvVa33OiFOWNDUiP6zvvkmr3FCHBRMM1FChGbUCESoc2d1ev9UqH55MUxZQYHQO1SgWXu/dw4hqrNOMVCnVPETJw/iRtdNcPiDPE+ZX0NoTTzypCfLEkcSZW2/aj9LQCFwMGl8WOR6w6QsTITlFigYqQ/gh9w8wYEYGpg4difeEBzte+3r0Df5p1kWDXCrZQzqPM4cl+5U+x+lg0o03AiJTN5+LUY4891u9jGIZBREQE0tLSMGXKFKSmpvp6OeIFhmFg1hpxrLOu13r7GcUqqVCrVEiMjkH1GcWoaqtVnIAIIYQQQn7lT/dUmEqLJ1MvxaKSNwEAOfpEPJV6CcaGS2vHARWo+nastgYl9bVo6eiA7ddfXS4n7p6zQOzQiIScP2IUfjx6mHMSeWFlBYrrapCTmNzn86XcPRXKBSoSPD4Xpx555BGvBpmrVCpceumlWLZsGeLiaH5HoN2SMAMu1o0UrRFmnRFJmmhJn0KVHGPkFKdqm610Yh8RHA1DJ96iuVOEEH9MjBiE35smw6gOxx8Tpks6HyP89paVYgNPR4zD5YJWrRYhIiIEobunosIMmDF0ONbs38P52te7duD2C+fK+iAwKlCRQPP53fGaa67p9x8Xy7Job2/H8ePHsWfPHnzyySc4fPgwfv75ZxgMBl8vTQZggXG02CF4Rcon9gVy7hRt7SM0FJ2f2+1GY2sr1CoVTJGRYodDCAlx/g5HfyhF+h021D3lWXQY/+eWlo4Oyb9HyenAIDEIXaA6b/gIbD5SiI6u3jtWjtXW4HB1JYampPX5fCl3TwFUoCKB5XNx6p133vHq8eXl5bj++uuxfv16vPrqq7jrrrt8vTQJkkAlKXRiHyHCEGsoeiC43W58u3c3aputqLVZUddsg9Ptwoyhw3HpxElBjaXFZcexzjqMCafh7YSQ0KKUApXQQ9GjPNxUb7FLvzhFgitcp8esYSPx9e4dnK99s2snhphTZd09BVCBigRO0PZLpaen49NPP0V0dDQ+/fTTYF02JChhu0lfJ/YRQqTFn05CTwVklUqFn44ewu4TJahqaoLT3X3aTa3N6vO1BuqIvQav1m3ArWUf4Lyjz2LsoUfx2+OvweKkAZaEkFOUkG8NBH3o5Io2hPOu2zragxyJ8olxSrbQN7enDx2GqLAwzvqJxnocqOj/WnTaJAlVQR3mExMTg3POOQeHDx8O5mWDbtmyZSgoKMCECRPEDkU2Tp7Ydyaln9gHQFLdK0pH86akLSnGyFmrbbb2/HegkrU97WX4Z91arLYdQFmXpWf9sD34CTIhoUouuRMVqEJTtIfOKVtHR5AjCQ1iFKiEpNdqccGI0b3WwvV6LBw3EYPNyjggTAkdlkR6gj5pOiYmBu3tyr7LsGTJEhQWFmL79u1ihyIbJ0/sOxOd2EdI6OArTllaWzmn3viiryRqaJiZd73Qfuo5/syaIYT0j3Kn7lmt9Y4WscPoQQWqU6g4FXzBLlAJ3T11zuAhMIZHIEyrxZxRY/HoJVdg1vCR0GkGNlVHDt1TVKAiQgt6caqkpATx8dQpQriSPXRNuN3u4AdzhnwT/4dXQoRAHV3d+H4GsADqbM0BvW5+WDLUPG+HhzrkfeeWEBIYgeieOtHZgGtK/42rS/+FTrf/BXmhyLlAJeRQ6Uh9GO+coBaJF6fkNotV7h1Tp9OqNbhx+nl45JIrMGf0WBh0OrFDCggqUBEhBbU49csvv2Dbtm0466yzgnlZIhN8Q9FPntg3UEKetkGIHFRXKee0x6QY/sMPak7b2hcIYSotsvUJnPVDtK2PEBJgTtaFN+s3Ye6xF7G17TiOd9bjtfoNYofVi5wLVEJRqVSI1Os56za7sneDiE3u3VNZCYmI5Jk9NVBy6J4CqEBFhBPw4pTdbkdhYSGeffZZzJ49GyzL4uabbw70ZYkHblb8LiSA/25WXyf2EeIv6k7iKqrzvbAViISRb1sf0HvuVKAMDTNDy6gxLCwFl8eOx0Pm+Xgi9TcBvy4hRJ6E6J6qddhwafGreLZ2NTrZU91Sb9RvxBF7jd+vLyQqUPEPRadtfcKRSteU3LrNCFGSgW165aFWq71+DsuyuO+++3DBBRf4elnihZ9aj2FbWzEqu6yoclhR7bCi3d2FX4Y+KHZovPo6sW8kMoMbTJDlJcb7VSggRE6KrWW8XY6xEZHQqtVwuFy91mubA7utDwAeNM/H02mXQct4fm9r6moMmWHIhJDAi9NEQAXuVjEn3Phr5Wf4X/YtUDNBn8DhUXJ4Skh3SEQZDMAZ5/RIfVufEhy1VIf0eI2ylnJBt6gGSk17FRWxid98Lk6xLDvgxxoMBkyZMgW333475s6d6+sliZd+bC3Cvxs2c9ZbXHZEqQfWYhrMRCQxOgbhOj0SoqKRbDTCbIyF2RiL9Dj6MEhIKFAxDJJijKiw9O5yC0bnlFHDf0w4IYR4EquL8+uwBA2jxpOpl+CS4mVwoXdne72zBZUOKzJ0Jn/DFJTcClQZUemCbY2izqnAkUrX1EmebqKRvlGBivjL5+JUSUlJv49hGAbh4eEwmUxQqaRz5ydUpGj557dUO6yIUicHOZr+qVUq/N+VV/MOnJSCfJNZcm+eRDkqaxuRmkSF2KToGE5xqs7WDLfbDZVKJZs7iISQ0OBvgarAkIIb46fijYZNAAAGDK42TcKdSRciUs2dcSQFcitQCSWaZ3ZQp9OBTocDeq1WhIj6pqTtaUrunhrI94+cch8qUBF/+FycysxU9jYrueFLjlK0Rt7HVjmsyA+TXnEKgGQLU0TexJg31VlqBQDos4wBv1Z1VQPMKco4BZVv7pTD5YKlrQ3xUVF+vTYlTIQQKfpz4nlYYzsANaPGU6mXYGy49HPsUCxQRfF0TgFAi71DksUp4p9Ad09ZWluxat8uHCgvw0O/+a2iTvOjfIv4itqZFMzssTgV+PktYqI2XEIGTmqzzjyd2BeMrX0D4U+HBCFEmfydRRem0uLfmddhRc6tsihMnRRqHz6jDQbeddra55+B7kpQyu4FW0c7Ptm2BY998T/8XHQULXY71hfu7/d5cjm576RQK14TYVBxSsFOdk4ZmO5j0qdG5uGK2AkYpFNGh4XS5CXS/y9EXpR2Yh8hhIglUx8HvcrnDQ2iCaUClefiVHuQIwldwS5QCb010tLaikc+/x82HS6E031qztz6gwfQarcLei1C5Eh+74JkwGLUBmwb8nfEqsMluV1OyCGVhBBlSIyOAQPgzCM3am3K7vgkhMibv7On5EzqW/yEyjejwzxs66POKZ8ppRtqoEyRkchOTMLhqspe651OB747sBe/GX9Wn8+X0+wpgLb3Ee9R55SCMQwDkyZCkoUpuVLqMEYirJPzprwlxmwssXi6G6nTaGCK5M6WqrFaAxwRIYQQX4XCB9AoT51TdipOBZPcu6fmjxnPu775cCGs7W2CXksKpFy4JtJDxSnSr1BIOIhyiV3w8bVQ5a3qKmnNjvIH39ypWpu1578D3XHZ7OrAttbjeLvhR9xb8T88WrUioNcjhCiDv7On5E7p+WK4Xg8Vzw1fKc6cUtJJfVIg5N9nZnwCRqZzZ8s5XC6s2ben3+fLcdcJFajIQFFxishCp8MBN3vmRh/PaCg6IQMnvaHoRs5aq90elHkMd5T/F+MPPYarS/+Fp2pW4gvrbqy2Hej1mFDdukMI6V+gClQsy+J/lu1YWrMmIK8vFCUXqFQMwzt3imZO+cafDii5bwecN2Yc+Pa1bCk6gsbWlqDHEwxUoCIDQcUpIjlNbW3YeuwovtyxDa99vwYPf/YR7vrwXTS2KPOH9eloKLr8BatTSsk8DUWvE2DuVH/JUYKGu6WwwdmKeofyf/4QQqTpRGcDrin9N/5W9TneaNiEnW2lYofUJykWqISa0xNl6J7jGhVmQGqsCUNT0pARlyDIaxNpE7J7KiXWhHGDcjjrLrcbq/bu7vf5cuyeImQgaCA6kZzS+jq8/9Nmznq1tQkJ0dEiRERI8FTWNiI1ST5bQ45aqgWfxZYczd3WB3Sf2JedmCTotc40NIz/z3LIXoUE7eCAXpsQogxCDUd3si681fAjXq77Hp2sEwDAgsVfqz7HVzm3yfJ0P7m77YI50Gs0UKno/r4/hOh8CkT+EUxzR4/FrtLjnJ0h24qLcP7wkR5v1MlZTXsVsiLzxA6DSBj9ZFUQOc464LuTlWw08j62urkpwNEMjJzfCEON2POmiG+SPPwMqG22BvzaBQb+O/6FdnlvISCEyE+1o7lXYeqk4531eK1+g0hRDYwUu6eEYNDpqDAVwoTsnkqIjsGk3HzOOsuyWLlnV7/Pp+4pokT005VITmJ0DNQ8b/x0WheROrG39MltKLqnJC9SH4bshESMzszChSNG45pzpuGeuRfjolFjAh5Tti4BWkbd83sVGOToE2FQaQN+bUKIcghxwzBdZ8Ltiefzfu3Nhk2o7rL6fY1AUmqBSupCaRi63GdPXTRyDDQ8n3l2lR5HhYVusJLQQ8WpENLq6kSRvRabWo5ge1uJ2OF4pFapkMizrafa6l3nFA1FJ1IhdtFKbhiGwZ1zFuDG6bMwf+x4TMzJQ2Z8AsK0uoBfW6fSYEnCTDyWshCfZN+CPQWPYHXeX3Bt3JSAX1tpdu7ciaeffhqXXHIJ0tLSwDAMGJ6Trk565JFHeh7D9+v+++8PYvSESMN18VNQENa7yGPWxmBZxtUw64ziBOUFKRWohJo7Rfwj94KSkMU/U2Qkzhk8lPdr3+ze2e/zqXtKmUI5f6LN6iHgutL/YF97OWzuUyddTY8ajAkRg0SMqm/JMUZOMaq22Qq32634duq8xHjJnZ5GlK+orkFWA/nLWsoD9kFjSeLMgLxuqHn88cexYsUKr583ZcoU5ObmctbHjRsnRFiEBI0Qs6c0jBpPpV6KS4uXwQ0WV5sm4c6kCxGp1gsUZeAlh6fQSV0kYMSYPVVsLRPsJvgFI0ZhS9ERdDl7b989UFGGkvo6DEpIFOQ6RD5COX+i4lQIaHXZexWmAKC6y7tTr4KdWJiNsdh9ond3l8PlQmNrqySGouebzLK/86N0cp43Jbeh6ITwmTx5MkaOHIkJEyZgwoQJyMrKQmdnZ7/Pu/HGG7F48eLAB0hIEAhRoBpmSMFfzXMx3JCKseGZAkUWXFSgIkDguqbkPBw92hCOaUMK8N2BfZyvfbN7B269YE6fzw/kzToijlDOn6g4FQDLli3DsmXL4HK5xA4FAJCqi8Wejt5tn1UOqzjBDJDZGMu7Tif2EakK5a17cksKa9qrJLXVRKnuu+8+sUMgMiK13Elqrok7W+wQ/EYFKqIkQnZPzRo+Ej8cOQS7w9Fr/Uh1FY5WVyHfTDlLKAnl/EnZ+6NEsmTJEhQWFmL79u1ihwIAMGuNnLUWtx0tLjv3wSKQ44l9hEiV3IaiE0IIIL3cSUhyPE05UOjGAAkUOe9oiNCH4bxhI3i/9vXuHWBZts/n0+wpohTUORUCUrTc4eIAUO2wIkqdHORoBubkiX0ut7vXOp3YR+Sqs9QKfZZR7DAkR8g7j0QZ1q9fjz179sButyMtLQ2zZ8+W1bwEQkjfxOygyohK9/uDfKvdjpaODtjs7bB1dMDW0YHYiAiMzcoWKErfSfmkPjkXjzwRMoeZPnQ4Nh46iLYztm+V1NfhYGU5hqdRrkT6poT8iYpTIWBImBlzokfArDMiRdv9y6w1IlPCd/JOnth35lB0X07sk/IbtSc0FF1elLKlT25D0UlwsSwLm83Wa02v10OvF3Yw8/Lly3v9/sEHH8Sll16Kd955B5GRkYJei5BgEWL2lJLIeYvfsyu/RGNra6+1YanpkihOhTq5jRk4nUGnw/nDR+HLnb9wvvbN7p0oSE2Hqo8T22j2lHS53W7KnwaIilMhYELEIEmfzOeJ2SjtE/toKLp0yXkY+kk0FJ3LzbJobm+DMTwCDMNQIuaFGJ3Rr+00prByWK1WxMT07sR9+OGH8cgjj/gZXbfc3Fw899xzmD17NjIzM9HU1ITNmzfj3nvvxWeffQaXy4UvvvhCkGsRokR1DhuqHc0YFS6Pn4tyLVBFGcI5xSlbR7tI0ciDkvNlIbunzh1SgPWFB3p9P8VHRmFmwXBBXp94L86Q4Ff+FKWLwZEjRyh/GiAqTimMku7MJcfEApDuiX2EkFMCcbeyssmCfWUnUNts7f5la0aX04knLvsdjBERgl6rPx3uLhyx1yBGbcAgfUJQry0VRqMRpaWlvdaEvOt39dVX9/p9REQErrrqKsyYMQMjRozAl19+ia1bt2LSpEmCXZOQYApUjsayLD5t2oGna75FhFqPb3P/gki1sHfkA0WOBaroMANnzdbRIUIkhI+cu6d0Gg0uGjka/9u2BcbwcFw0aiwm5+ZDPcCb8nTTTpoGDx6Mbdu29Vqj/Imf+O0nRDaCPcSyrxP7CJEKKW7pU8pQ9EpLI1bu2YkdJcUotzSiy+kEANQ0WwN+bSfrwr/qN+Mv5R/hoqJ/YnThI7j8+Gv4yMJttw8VDMMgOjq61y+hW9L5mM1mXHfddQCA1atXB/x6hASS0MPRT3Q24JrSf+OvVZ/D5raj2tGM52vXCHqNQAt2funvh/coA7c41WLvgLufodVEuYQcIXJ23mBcMWkKHr7ktzgnf8iAC1NEulQqFeVPA0Tf7USyzHRiHyEhLSnGyLteK0Bxqr879Wqo8K+GzfimeS+KO+vgRveHjkK7vO7wK0VeXh4AoLpauVtDCPHWEXsN5h57EVvbjvdaf9+yFbvaT4gUlW/kdIpfNE9xys2yaD9jkHWwSXXGqhhb+sS4plB//xq1GlMHD4VW7dsGJzq5j5xObvkTFaeIJPDdxUr49cS+M3l7Yp9cTwKT4mBqc4r0YjqTlOdNSbHL6kxiDOL3lNAlxfCfNFrb3BzIcAB0dwkVhHG3BRyyV/d7pDMRXlNT902JiCBv5yQkEITqnsrXJ2FMODfHYcHir5Wfo9PtFOQ6wSKXAlW0IZx3neZOSYuS51wRMlByy5+oOEUk6+SJfWeS0rY+ue5pJ/Ig5UJbMIRpdTCGcz8E1NqsQbn+UAP3g1KzqwPVjsAXx8gpLMv2DPIcO3asyNEQIh0Mw+CJlN9Az3A7LIaGmdHJOkSIyj9yKFDxdU4BNHeKT6gViKTSvUbdUwSQZ/5ExSkiaXxb+06e2EeI2OTQCSV3fFv7hNjWNxBDeTqnANraFwj19fVYtmwZWlpaeq23trbilltuwbZt25CcnIxLLrlEpAgJEZZQ3VOZ+njcljir5/fJmhi8kXEN/pl+JaLV/EUUqQtGgcqfuVNRPAPRAeqckqJQK46R0KO0/IlO6yOS1j0UnU7sI8Rb1VUNQd+GGYgTcpJijDhS3bsYZG1vR0dXFww6XUBPpikIS4EGKuSGJWJomBlDw1JQEJaCYYbUgFxPaVauXInHH3+85/ddXV0A0Ou0mAcffBBz585FW1sb/vznP+P+++/HhAkTYDabUV9fj127dqGxsRFGoxGffvopwnk66QgJddfHn4NVzfsxOjwddyZdiCh1mNgh+U3Kp/h52tbXYqfOKdLdPRWMkSJuloWKYTx+nU7uk69Qzp+oOBUiOt0OHLRXoarLiirHqV9Xmybh3KjBYofnUXKM5xP7qDhFzhTq2+CUyNNQ9DpbMzLjEwJ67Wx9PPYUPAq9it4qfVFfX885OhlAr7X6+noAQFxcHO677z5s3boVR48exZYtW6BWqzFo0CAsXrwYf/nLX5CaSkVBoiyxujg0dfn/vqVh1Pgo+2bF/aySaoFKitv6pLKd7HRS6VoKxI0zMVVYGvH17h0YFJ+Ii0aNETscEgChnD8p612MeFTnbMEVx1/nrI8Lz5J0ccpsNEKrViMpxgizMRbJRiPMMbHITkwSO7SgyEuMF2VANemfr1v6Okut0GcZBY1FyZI9DkW3Brw4pWJU0DO0+91XixcvxuLFiwf02KioKDz99NOBDYgQBVNaYeokKRaodBoNwrRa2B29Z3rRzClhFNU1SPJQIG8EonuqptmKlbt3YveJ7h0lx2trce6QAoTr9R6fQ91T8hTK+RNl3QrEN8cgSRMNBtzWz2qH1avXDuQcAL4fnokxRiy96lrcP/83uHbqdFw4YjRGZmQiMsy7lvVAttcq6W4MkR4xusEkdWJftJF3vUaAuVNS+8BDCAk9Qs2eUrJA5Z5+zZ3i6Z6imVOn+Ns1JXQeIkYXl5DdbOsO7seTKz7rKUwBQIejC98f3CfYNQiRAipOhQidSoNETRRnvdIhnZPv+KgYBioVfZsSEqpiwsMRptVy1mub6cQ8QogyUIFKfqLDuPNbaOYUCZTsxCSwLMtZ33joYL9FUTq5j8gJfeoPISlaI2etuos+4BFlCGaHkVxO6auukv+WUIZheLungnViHyGEKEmX2yl2CD4Jxgl+3uCbO0Xb+vx3escUdU+dMighEcPTuJ1+XU4n1u7fK8g1CJECKk6FkBSdsdfvEzVRiNdEihMMIUSRApH8JfHMnapvscHldgOgu4KEEPkLdPdUvaMFt5Z9gAcqPwvodQJJSgUqvm19bXZ7z/tSKJPKIHQ+Uo6tP/PGjOdd//HIITS1tfb5XMqTiFwoc3oi4XVj/Ln4XexZMOuMSNJEK3Z4ptLQUHQS6vhO7HO53WhoaeEtXBFCCOnGsiw+te7E09UrYXPbAQALjKMxTcKH4fRFKgPS+TqnWHRv7TOGRwQ1Fime1EdOEWo4epopDmOzBmFXaUmvdafbjVV7d+Oqs6f6fQ1CxEadUyFkuCEVZ0VmI0NnCsnCFA1FJ1Lh7bbAUBmK7omnAhRt7SOEKInQ3VNVXVZcW/oW/lr5WU9hCgAerPoCra5OQa8VTEJ2UPk6FD3awJ05BQAtIb61T+jOpEDkInLunpozehwYhnvA1dZjR1Fv63tUC3VPETmg4hSRFDrulEidXOZNyZHHE/t4OqcAoNZmDVwwZ2h1dWJHWymWN27BXys/w8T992J32/GgXZ8QQrylZlQ40FHJWa92NOP52jUiRCQcsbf48XVOATR3yh9SuikmNKG625JjjJiYnctZd7Msvt27S5BrECImKk4Rr4mdEJxE+/rJSWJ0FsmFEoaiJ0RFQ8Vzp1CIE/sGsj3kl7YSjDn0CH5X8gYeq/4anzTtwO6249jdVtLvcwkhxBtCdk8laaNxX/Js3q+tbN4Hm4sKKb6KCqPiVLBQ91Rvc0aPhZrnJPMdx4tR1WTp87nUPUWkjopTRBYaWmzYfvwYvtq1HW+u/w6PfvE/3PPf9+CmAhUhkiN00qdRqxEfFc1ZrwnStr4cfQLv+t620qBcnxASWoQsUP02dgLOisjutTYvZhS+zbsD0Wr+Agvpn6dtfe1d8t0u6S85F3yCQajuqbjIKJydx50ZxwJYuWenINcgRCyhN3goRMTq4tDUpZxuku3Hj2HlHm67amNrCxKilT8QmYaiS4OYW/oqaxuRmhTY05ykLCkmBnVnzFOobbaCZVne+QtCitNEIkkTjVqnrdf6nnbqnCKESBvDMHgi5TeYd+xFmDQReDRlIWZEDRE7LEEINRw9Iyrd646SaIMBi86eiiiDAdGGcESHGRBlMPB2tASSUoah95fjFtU1IC8xXtBrHrVUB31mrFDD0S8cORpbjx2Fw+Xqtb637ARONNQjM57/phrQ3T1FY1SIVFHnFJGF5JhY3vVqqzW4gfSBhqITb9DsKu/wzZ3q6OpCi717C0WgW9WHGrj/vve1lcLNUvcmIUR4QnZPZenj8XrmNfg29y+KKUyJTa1SYXLeYAxPy0BGXDyMERFBL0xJCXVNBZcxPALnDing/do3u6l7ishX6P4UJbJiNhp516utTV69TiBP7CPioHlTgSOlbr0UYywSo2MwIj0Ds4aPxKKzz8VdcxYgXKcPyvWHhvWetZcblowLjaPRQjNbCCEycE5kHiLVwfl5SYhciFFUE6rb7fzhoxCm1XLWD1VV4FhtTZ/PpdlTRKpoW1+Ic7Fu1DtbkKiJgoqRRq2Sr706IToGapWKMwS9ptm74hQhoai6qgHmFGHb4QPFU8v7xJw8TMzJEyGibudHFyBeE4mCsBQMDkvGiJgRosVCCAkNShvRQAifgd4IC8TWPjmLDAvDjILhWLV3N+drX+/agTsumhvwsQeECI2KUyFmW+txfNK0HVWOZlQ7rKhxNMMJNzbn3wezzih2eB6pVSokRsdwOqWktK2PKBttwwttIwxpGGFIEzsMQgghAeDL3CnSTe5b+uQ8e2pmwQhsOlTIGcRfXFeDQ1WVKEj1nLfQ7CkiRdJolSFBU+2wYkXzHmxvL0GFowlOdHciVTms4gY2AHxb+2qbrZI6sS+Qb250t4jIaQujnJJVIQbqEkJIIAg5e4ooi1KGoXsjUOMG5JSznM6g0+H84SN5v/bN7h1gWTbIERHiHypOhRhP3VHeFqeSw1P6f5DAzEbuUHSHy4XG1pagx0KkQU7FGkIIIcQXwSpQfW8rxHe2g0G5llDEyEfJKXIt6kiBUMXFc4cUICrMwFkva2zAvrITfT6XugWJ1FBxKsSkaI2861WOZt51KRHqxD4aik68FagtfXLYKiiloej9oSSLEEK8V+9owa1lH+CWsuX4W+UXsDjbxA6JhAgp5RhyHY6u12px4cjRnPXMuAREhoX5/fqEBBMVpwJg2bJlKCgowIQJE8QOhSNJEw0G3OF41TLd1gd4f2IfIYQQQqRFyrmTFASie4plWXzStAMXFT2P1bYDAIAmVxueqv5G8GspHcuy6OjqQm2zFa12u9jhKJqUClpSMSV/CGIjIgF07zS5acb5uHvuAuQkJff7XLqxR6SEBqIHwJIlS7BkyRLYbDbExMSIFgffKS86lQZZujioGBVStDFI0Rph1hoxNjxTpCgHjk7sI8R3SjixjxCiXFLJnULJtrbj+GvlZ5z1Fc17sMA4GudGDRYhKvF4OxS9sbUFb29aD1tHB2wdHXC6XQCAKyefg3PyhwQqTMlQ4pY+uQ5H16rVuHTCWXC63Bg7KBsqOqWPyBQVp0LQ2vy7xA6hX3wJglxO7Ms3mQP2hp2XGE93jIJMalvvKmsbkZpEA3JPYlkWDpcLOg29nRFClI3vpqM/JkXm4PzoYbxzph6s+hKr8v6CcJVOsOspjVatRmlDPWe9paNdhGjkx598tqiugQ4KOsPozEE+P5dO7iNSQdk8kRWz0cgpTp08sU+lol2qoYSGoUtfIO5AHqwoR2WTBbXN1l9/NWNoaiqun3aeoNchhJBQ8LB5AX5uPYZW96mj6I1qA+5IPB8GRitiZAOXHJ4iyqmrkfowMAzDORHN1tER8GuLfVKfErumTpJr9xQhSkCf5oms0Il9RGmk1pnFR0rdel/v3oGvdm3HtuIilDbUo8PRhdpm/w90EOODDSGEeEvo2VNJ2mjclzyn5/fzYkZhdd6d+E3sWDC0NahPKpUKUTwDp4NRnCLSyk2UgGZPESmgziniMzHuVPV1Yl9C9MBnVOQYM0S/60QI8V5SdAwqLL275upszdQ92Y8ITaRfH2ojNdECRkMI8YfQ2/t+Gzsev7Qdx7yYUZgZPVSw15Ujb+dORYUZOMUo2tbXP6kXlqh7ipwUrTX6lT+Fq8MFjEb5KJMnskIn9pFgkkNXkzeqq6SdDA5EMs/PAIfLBUtb99HndOePEEK8o2JUeD79ypAvTPki2sD94GlT+Gl9St7Sd7pQ+XOejnIoIjYqThFZOXli35mkdmJfIO+20ABImjcVCn9+T52NSTFG3vXaZmvggiGEEIkRensf8U20wcBZs1HnVNBIvQPLW4Ha1cGyLA5VVuCVtavQ3tXZ/xMIEQkVp4hk8Z0acfLEvjNJ7cQ+QkhgJHnYvltDxSlCCCFBFsVTnOpyOtHpcATsmmKOpRCim0hOBSUxuqeE/v/3WG0NXli9Esu+X43D1ZVYf3B/n4+n7ikiJipOEdnh29p38sQ+QoSitC19YhE6sUuIjgHfiF7qnCKEhBrqnjolOTxFsNfiuznqSXQYtzgF0FD0YJJTsSuYupxOvPr9aryw+hsU19X0rG8oPIgWO31/Emmi4pTC9ZW4tLo6UWSvxaaWI/ivZRv+a9kWxMh8J9SJfTR0kEiFHAphUkn+dBoNTJFRnHUhTuwjhBDiWYvLjnoHnY58Or6ZUwBgs9PWPqWQa/eUTqMBy3LXO50OfLd/b5/Ppe4pIhY6rS9E/bnsA6yxHei1lqI14nems0SKaOCSY2KhUamQGBOD5JhYmI2xMBuNiPRw94ooSyjMWwqk6qoGmFPkPbcsOcbIKUbX2qx+v25Ne5Wgd98JISTQhD65z5PvbYV4pGoFhoSZ8a/Ma8EwfD2soYdvWx+gzM6pUBwQLnfzxozDoaoKzvrmw4cws2AEjBERIkRFiGfUORWijDzHWtY6bHCyLhGi8c6I9AwsXbQYf11wKa6fNhOzR43B6MxBMOh0YofWCw1Fly85dDKFcpEuKYY7d6rVbkfrryck0R0/QkgoCeT2vnpHC24t+wC3lC1HrdOGTa1H8E1z310XoYRvIDqgzOKUEALVhR3o7m65dk9lxidgVEYmZ93pdmH1vt19PpdyKSIGKk6FqBStkbPmgtvrdm0xugw0ajXviX2EEGXx+sQ+AbqnCCGEdNveVoKLip7H6jM67R+v/gYWZ5tIUUmLp+JUS4CKU2INQ6euKfmaN3o876zOLUVH0NBiC3o8hPSFPuGHqBQt/4lXVQ5rcAPphzdDKQkh0iR0UuuxOEVzpwghISoQ3VP5YcnQqbgTQJpcbfhHzUrBryclA80/w3V63humtg6aORVs1D3Fzxwbi/HZOZx1N8vi273UPUWkhYpTIcqsM/KuS604RUiokMNWQqkMRefb1gfQiX2EECKkGLUBD5kX8H6t3tGCTrczyBH1TYxufoZhEMUz85S29XFJJYfwh1wLVHNGjYWKZ07c9uPHUGNt8vv1CREKFadCVLYuATfET8WD5vl4LeP3+DLnVvwy5O+YFzNK7NCCik7sk5dgzFmSQ5HoJF//Pqqr5J0gRurDEK7Xc9apOEUICWWB6J66KHo4ZkUV9PzeqDbgmdTL8XbW9dDzdFWFIr6tfS125RSn5LSlTwkFsEBIiI7BpNx8zjrLsli5Z1efz6XuKRJMVJwKUQnaKNyfPAfXxJ2NWdEFGGZIQawmgk5fERgNRSdEeAzDIJlnax9t6yOEEGExDIOHUxYgUqXH3JiRWJX3F/wmdizli6fhK05R55RyybV7avaoMdDwbEHdfaIE5Y1U1CPSQMUpQggJhOau7l8kIPi29jW0tsDh8m+bSU17lV/PJ4QQMQWieypZG4Nv8/6CF9J/h3hNlOCvL1UDnTsVxdc51dEOlmWFDinohCrEUEeT+GIjInHO4KG8X/tmz84+n0vdUyRYqDgVAgJ5xLDUKCERIOKR05a+UOHxxL5oI2eNZVnU27pPnqFEihASqgKR95k9HKRDgOiwcM6a0+1Gh0PYG1RindQnN8EohMm1e+qCEaOg03C34x6sKMfxulq/X58Qf1FxivhNjAGUAFBva8au0uNYuWcn3tq4Dk98+SmeW/mVKLGQwAvGvCnSP1+TPjqxjxBCSKCJkZPybesD5L+1T06zpsjARBvCMX3oMN6vfbN7R5/PpZt+JBhokiGRvIyodN4fiF/v3oFdpSW91rRqNdxuN1Q8e6o9yTFmBPRuVL7JTG/wZEA6S63QZxm9ek5lbSNSk7y/S15d1QBzinznliXTiX2EEOJRrC4OTV10UycYzMZYjMrIQrTBgGiDAVGGcESHGRBj4HZUkeAoqmsI+GzWo5bqgM6W5VNsLfP7MKdZw0bih8OHOJ19R2uqcaS6EoPNqX69PiH+oOIUka3kmFgAvYtTDpcLja0tSIgOjfbzvMR42scvENrSJy9xkVHQqFRwut291mttVnECIoQQojiebpCeLt+cgnyzOLsI5IDyVGkJ1+tx3vAR+GY3d87U17t2IH9OiscDD8paygc8i40QX9C2PiJbZmMs73q11RrcQAg5Ew1CDziVSoWkGCPiIqNQkJqGGQXDceXkczCzYITYoRFCiCQEc+Zoi8uOByu/wAeNPwftmiRwqON/YOQ6e2rG0OGIDAvjrJc21ONABc02I+KhzikiW2ajkXe9urkJI5EZ3GBIQNG8KcLn3nkLofZiCy8hhBDhfW8rxCNVK1DrtCFCpcPMqKEw64xih6UoNAzde8HY2icWf7f36bVaXDB8FD7fsY3ztW9278SwtAyoqHuKiICKUyHMzbrxbfN+VDmsqHZYUeVoRpXDitnRI/CnxBlih9evhOgYqFUquM7Y1lNjbRIpIkJIMPVXmPI1gapprxLtoAdCCBFSIGdPNThb8FjV11hl29+z1ubuwkPVX+LNjGs9bg0i0iZkN1AobOkTY/aUEKYOGYr1hfthbW/vtR4bEQl7VxfC9XqRIiOhjG45hzAGDP5W9TmerV2N9y1bsb7lEA7bq1HcWSd2aAOiVqmQyDNbSorb+uT4phVKAjpvysstfr7E4mtnWXWVb0ljsE/sozvGhBDiu0Bt7ztqr+1VmDppY8sRfNO8NyDXHAihby5Ql4h8Bas4JsftfVq1BheNHNPz+8HmFNw1ZwFuPu+CfgtTdHIfCRQqToUwhmFg1ho561UOa9Bj6Y+nxIBva19tsxXuM7qp+uPvyRdiUmrLMiGEEEKk6+zIXFxqHMf7taW1a+BkXUGOiBDijcl5gzE2Kxu3XTAHt14wB4MSEsUOiYQ4Kk6FCE93zVK03M4jX4pTYm2B4RuKfvLEPqIMNG+KEEII8U+guqfuT56DeE1kr7UpEblYPugP0DDqgFyTBI4St/RR95RnapUK10+b6dNpk9Q9RQKBilMhLkXLLe7UOmyyuduVHEMn9hH/CL6lj07qI6RHR0cHHnroIeTn5yMsLAwpKSm4/vrrUVlZKXZohBABGDXheMi8oPu/1QY8k3o53s66Huk6k8iRKQdtbSck9IRq/kQD0UNcyq/b+hgwSNREwayNQYrWiA63A1Fq6d/xohP7CCFEmux2O2bOnImtW7fCbDbj4osvRmlpKd5++21888032Lp1K7Kzs8UOk5CQEajh6BdFD8cDyXOwwDga8ZoowV9fDsoaG3Cwogy2jg7YOjrQ0tEOW0cH7pq7AFFhBrHDGxAxOn+URozh6P6e3OcPOrkvMEI5f6LiVIj7rWk85hlHIUkTDb1Kft8OcjqxL99kpjd+EjCVtY1ITfJ+20Z1VQPMKd7PLfP1iOZgJW4sy9JJUSJ74oknsHXrVkyePBlr165FZGT31p/nn38ed911F66//nps3LhR3CAJIX5jGAbXx08VO4yAyohK73MbU1lDPVbu2cVZt3V0yKY4JSSpbOk7ydecRS7ELFAR4YVy/kTb+kJcvCYKGTqTLAtTgLAn9sn5h7qS33ADKaCn9PlBqnGJydO2hvbOThysKMe6g/vw4ZYf8M9VX+P+j95HWWN3YuzrTISa9iqfYyVAV1cXXnnlFQDAsmXLehIrALjzzjsxcuRIbNq0CTt37hQrREJCUqBmT0lNsGehRhn4C1C2jvagxkHEF2o3omn2lLBCPX+i4hSRjUCf2Eekh4ahk/6UWxrx2ro1+GLHL9hSdATFdbVo7bSjttkqdmgh7aeffkJzczNycnIwZswYztcvu+wyAMDXX38d7NAICXmhUqAKpmhDOO96S0dHkCPxTSgUVKTWzSW0QMwmc7vd2FZchB8OFwr+2oRfqOdP8myXIeQ03Sf2lfRaO3liXwJPVxUhAUPD0IMuKYb/33gNFadEtXfvXgDA2LFjeb9+cn3fvn1Bi4kQQgIl2mPnlDyKU0RYYsyeEpKbZbH3RClW7tmJmmYrwrRajMnKRmRYGO/jafaUcEI9f6LOKSKYYLdQ91zXSCf2EYmjolXAxBjCEabVctapc0pcZWXdd3DT0tJ4v35y/cSJE0GLiRByihjdU9vbSlDcWRf06wqlrw/fnuZK+VucCsZJfUJ3TSm9Q2mgxOhGE+L7paS+Ds988yXe2rSu50af3eHA9weVWQyRmlDPn6g4RWTPHGPkXa9uluZQdCINSpzr5Os2yOoq+SaSDMMgKdrIWa9tbg5+MBLlZt3otHf69Rqd9k64WTdsNluvX52d/K/b2toKAAgP59/qEhERAQBoaWnxKy5CiPS1uOx4qOpLXFXyJv5W+TncrPLGLug0Gt4bJS12mjklJVQ46x8DoMLCzSc3HTqI5nbP389KnT3Vabf7+fxOOFwOyp8GiIpTIUSpMwZOnth3Jl9O7KOh6NIR6vOm5FA88zXJE/puIt/WvvoWG+cUz1A1e+5FeOuN/0ADLfTqMJ9+/fu1t5CQkICYmJhev/7xj3+I/ccjhPgoGHnhOlshZhf9E/+1bAMA7Gw/0fPfSsM3d4q29YU2OXZPZSUkYkQ69/OQw+XCmv17/HptuZk99yL8+7X/+Jw7wcng7X+/CxVUlD8NEBWniOwJeWIfIUS6PCVcSTyHIrjcbjT8eldJqXfzBuovt90Jq7UZH334kU/P37h+I37eshVffP4Fmpube/164IEHeJ9z8nSZdg93Wdva2gAAUVFRPsVECJG+L5p24eay5ah12nqtP1u7BtVd1oBfP9jjJvjmTkm9OBWKW/rkEKPY5o0eB4Zn/aejh2Fp9dyxo7R866kn/oEvP1+BPbv3+PT8N1//FyIjI/Df//6X8qcBouIU6cXFulHtaMau9hNodkn7DfV0Zp65U3RiH/EkIF1JNFdKNMk82/oA/+dO1bRX+fV8qQgLC8NTTz6FRx56DB1eflByu9144L6/4u777kJqaiqio6N7/dLr9bzPy8jovutaUVHB+/WT65mZmV7FQwgRViC7py6MGY40LTc/a3N34uHqFWBZNmDXDpS+5k7xFafkclofCRw5dk+lmuIwNiubs+5yu7Fq726/XltOMjMzccuSm/HX+/7m9c8rq9WKp5/8Pzz7zHMIDw+n/GmAqDhFcLCjElcdfxMzjjyD4QcfxLlHnsYVx1/H7nbpDVrzlBSYjUaoGAbJMUaMzszC7FFj8PtzpkF+aQ8hxFueTuyjoein/O53v0NCQjxeeWmZV8/7+L8fo6GhEXfdcbdXzxs1ahQAYNeuXbxfP7k+cuRIr16XECK8QBWowlU6PJF6CWfdwGgxOSIHrMKyNL6h6K2ddp+3mAd6GLoYRROpCIXuKX+/f+aMHgcVw+2f2lZc1OdcT6V1Tz34t4ewb+9+rF291qvnPfOPZzF6zChceOGFXj0v1PMnKk4RMGCwvb0EFY4mOHHqDbTKIZ+BwjMKhuP5RYvx94WX4cbpszB39DiMzcrmnUUlNhqK3r9Qnzflj1Acih4fFc2bQNVQcaqHSqXC0ueex3P/txT19fUDeo7dbsfDDz6Kp558CgYPx6R7MmXKFMTExKC4uBh79uzhfP3TTz8FAMyfP9+r1yWEyMuUyFxcYhx36vcRuViZdweuiz8HKkZ6OZo/+GZOAaHTPRUKBR9fybEQmBQTg7Ny8jjrbpbFt3t2ihCROIxGI+7/23342wN/h8vlGtBzTpwow+uvvoHnnl0Khic/7Uuo50/KelcgPknRGnnXfZkHEOz9/SeFaXXQqNWiXFtKlDYUPRDkMGhcTqSQjGrUasRHRXPWa23yKbAHw4wZMzDlnLPxjyf/b0CPf/WV1xAXZ8KiRYu8vpZOp8Of//xnAMCSJUt6ZiQAwPPPP499+/Zh2rRpGDdunKeXIOT/27vz+BjP/X/8r8k2I/si1iyWUktRS+2RiFhraYMkFLFUj1M0fvS0QdVW22nFj1ZPq5TScijloJbyKanaaq32UFSIfU1EZJHEvL9/ODM1ZiJxZyaz5PV8PPzhuu6557qvTOZ+5brv+7qoFFny8b7xlbqhproC5lTtg6XVhiLYzd9i72VNph7rA4DM3LIxOEW2p6R3T3Vt1Njkhf4jF1JwxcSKfjqOdvfUWyMTkJOTixVffV2s7adMmoJXe7+Cxo0bP/N7lfX8xMEpgo9zObg7uRmVX82/W/qNsQH2vGIfORZHHkgz91XESj6+RmU3Mu7a5ZwmlvTRh3OxdPFSnPvz3FO3u3PnDv4560N89OFcOCm8A/W9995DixYtsG/fPtSqVQuxsbFo2bIlxo0bh8DAQHz55ZeK9ktE9sXXxR1bnktAtF/TZ76LoKRK86JpYXdO2eKk6PZ4J4+5lfbFNXvsc39PL7SpXcdk3eYydPeUm5sbZs+ajWlTphsMFply7Ogx/Gf9RsyaMVvx+5Xl/MTBKYJKpTJ591RZHZwisghOmG4Wha7YZ2LeqZy8PF6xfkK9evXQf0A/TJo4+anbzZ4xBy1btUCHDh0Uv5dGo8GuXbswadIkuLu7Y8OGDUhNTcXgwYNx9OhR1KhhPNkqEVmPJe+ecqRH+Aqb/9SrkDun7uWYXnWLyh57nBy9S8MX4Wri6ZTfLl3EhVs3C32do9091adPHwQFBeHj//+TQrcREUx4dyLeHPV3/cTmSpTl/ORi7QaUVE5ODmbNmoV///vfuHjxIvz9/dGlSxdMnz4dVatWLfZ+kpOTsXv3bvzyyy/45ZdfcPv2bYSGhuLChQuWa7wNaeZeDZVdfVDF1ReVXX1RxdUX1dR8RIyoWGxs4OnKjTuoWtFyf2TYooom7pwCHs075V3OHRczLz11laWy5INpM1CrVi0c2H8QLVu1MKo/n3IeixctwS+//FLi9ypXrhymTZuGadOmlXhfRES2zNvEhOiAsjunLDkZuiUGSGzhEX8lzt68zSkxiuBdzh3hdetj5+8njOo2HTuM0Z26WaFVpU+lUiFpbhK6du2KIa8PRsWKFY222b51O3478Ts2rP9Pid+vrOYnu76MkZubi8jISEyfPh33799Hr169EBwcjKVLl6Jx48ZISUkp9r4SEhIwZcoUbNmyBbdv2+cXbElMr/oqvqw2FB9UjcbICpF41a8JGrvb5uNtjvAHJidFL5wlJ0N35MfkzMGeJ0UvbHDqaSvKFMf17Ksler0tqly5MhL+v7cw/p0JJh97fP+9KYjtF4MGDRpYoXVEZE2WvHvK0RV25xTv4KXH2ePdU1H1G0Lj6mpUfvraVZy5XnhOcrS7p9q2bYv2Hdpj5vRZRnUFBQWYOP49jH8vET6FrCJNRbPrwakPPvgABw4cQKtWrXDmzBmsXr0aBw8exNy5j1YjGjp0aLH31alTJ3zwwQfYvn07/vvf/1qw1dbF0OH4eAWISpstXDE19Vgf8GjeKTI2/t0JOJ+Sgv9s2GhQfuiXw9iyeQtmTJ9ppZYRkbVZKys+0OYjT1tglfc2B2cnJ3iqNUblfKyPbEFJBqg8NRpE1jN9wWrz0cNlan7PD+d8iOXLVuD0H6cNyld89TVycx9g9JtvWalljsFuB6fy8vLwySePnvlcuHAhPD099XVjx45Fw4YNkZycjCNHijdZ2z//+U9MnDgRnTp1gr+/Y64iQsXHSdHJVvBur+Jxd1ObXCmppHdOOSpPT09MnToNkya8j/z8fACP5koY/84EvDVm9DM9Fk9EVFK/ZJ1Hjz8X4IvbP1m7KcXyLPNO2dKE6Hykz5g12m+Pk6O3r/cCPNRqo/KUWzdx8srlQl/naHdPPf/884gfMgjvTXhfX5aVlYVpU6Zj9qzZcHMzXmSMis9uB6f27t2LjIwM1KxZ0+QyjX369AEAbNq0qbSbRlZ0814Gfk29gG2/HsPS5B8xa+N3+GavfQQdsiwO8tgec4czU4/28c6pwg0bNgwuLi5Y8sWjVV++37wFZ8+cwYTEiVZuGRFZW2ndPZX5MBfvX92A184vwvm821h460ece1D4JMtKlO6KfcaDU5k2NDhFZVtJ7p4q5+aGji80Mlm36dhhaMvQ3VPTpkxH8q5k/LxnLwBgwbyPERISoh9/IOXsdnDq119/BQA0adLEZL2u/MQJ48nbyLJKMwQ86YtdO/HF7p3YfPwIjlxIwZX0NFy8Y5tXdDjvlDFLzjdlMTY2GbqOXfZlMRW6Yp+38aN9aVn38eB/dwaRIRcXF/xzzj8xc/pMpKWl4b3xkzBlylR4eXlZu2lEVAbsv38OXc/Ow6q0g/qyfHmI966sh1a0VmyZct7lysHFyRn+Hp4ILR+IBsEhqBdkG3Ol2uPdOqWFd08VT7s69UwOwF5Ou4NfUy8U+jpHu3uqQoUKGPePsZjw7kRcv34dSR/NQ9LcJKhUKms3ze7Z7Wp9Fy8++uMkKCjIZL2uPDU1tdTaRNZX2dcX1+6mG5TdyMiAVquFk5PdjsUSlZprV2+jchX7nLessEnRb97LQHBAea7YZ0L37t3xfJ066BTZGVqtFq+//rq1m0RENsLPLQDpeZa70OHu5IZbBZlG5b7O7sjS5sHL2Xj+JlvXv3U7DGobUaI/Ui25Up+52fsjfWXRubsXFU9f4ubigs4NG+Pbg/sMyp1UqjJ3p/o/xr2Dzz9bhO5deiAyKhJt2rSxdpMcgt0OTt2/fx8A4O7ubrLew8MDAJCZaXzSs5QHDx7gwYMH+v9n/G+uk3v37pll//fyzLOfzLz7ZtnP02TlZFl0/wHwx6XMK8blbu7QPiiAv4cnKvn4oJKPHyr4+OJ+ZjZcnJyf6T1y7+eaq7mFysuyzF03oR7eOHfLMoFSm2u5yUrlwUOL7Rv5FroKW/AM+1XYBqX9ovRnVZD97HcaKf0s57op+z3LdjZ+TMLXRQPtgwL4lCuHCt6+qODtgwo+PnDTqpCd+Wj7LDz7d1NmgfF35j2tmb7X/3d+sNZkorqlkVu1aoW1a9fC1cRqPESWZOnsBJgvP5VFlsyMNeCHfuom+DrtAADA38kDiZW7IcqrHpBVgEyY770tkUsLy6IlvVfXUvnTEplTSV6wVZbK5E/ze1YqnvOrWOrvaypDFVfjyiH4wfkI0rOzoALwYmh1dGrQCIFePvqsZcofmWcQ7FUV9zSOkZ/c3d0x44MZGDFiBNat/c4qbXBEdjs4ZYtmzZqFqVOnGpUHB/NKfWm7A+CstRtBZCZK49KFUnzdwaI3KTV3AKRYuxHP6M6dO1Zbevill15CQYH9rpBF9o3ZiXRuARiHVdZuBpVRtpRj7MlO7MVOfG2197dmfhoyZAiGDBlilfd2VHY7OKVbnS872/TyrFlZj66QlObcGePHj8fYsWP1/7979y5CQ0Nx8eJFq/3S2Kt79+4hODgYly5dgre3t7WbYzfYb8qx75Rj3ymXkZGBkJAQrhJLZRazk/nwu1g59p1y7Dvl2HfKMT85JrsdnAoJefSs7OXLppeu1JWHhoaWWpvUajXUJpbY9PHx4ReOQt7e3uw7BdhvyrHvlGPfKcc58aisYnYyP34XK8e+U459pxz7TjnmJ8ditz/NRo0eLWV59OhRk/W68oYNG5Zam4iIiIiIiIiI6NnY7eBUmzZt4OPjg3PnzuH48eNG9WvXrgUA9OjRo5RbRkRERERERERExWW3g1Nubm4YNWoUAGDkyJH6OaYAICkpCSdOnEB4eDiaNm2qL//kk09Qp04djB8/vlTaqFarMXnyZJO3q9PTse+UYb8px75Tjn2nHPuOyBB/J5Rj3ynHvlOOfacc+0459p1jUom11l80g9zcXERERODgwYOoXLkywsLCkJqaioMHDyIwMBAHDhxAjRo19NtPmTIFU6dORXx8PJYtW2awr8WLF2Px4sUAgPz8fBw9ehRubm5o3LixfptPP/0UTZo0KZVjIyIiIiIiIiIqC+x2QnQA0Gg02LVrF2bNmoWVK1diw4YN8Pf3x+DBgzF9+nQEBQUVe1+XL1/GwYOGi4jm5eUZlN27d89sbSciIiIiIiIiIju/c4qIiIiIiIiIiOyb3c45RURERERERERE9o+DU8WUk5OD999/H7Vr14ZGo0GVKlUwdOhQXLly5Zn3lZ6ejoSEBISGhkKtViM0NBRjxozB3bt3zd9wG2COvrt79y5WrlyJfv36oXr16nBzc4OXlxdatGiB+fPnIz8/34JHYD3m/Nw97uzZsyhXrhxUKhWioqLM1FrbYu6+u3DhAkaMGIHq1atDrVajfPnyaNWqFT788EMzt9z6zNl3O3bswMsvv4zAwEC4uroiICAAnTp1wvr16y3Qcus6cuQIZs+ejejoaAQFBUGlUkGlUineX1k7V5BjYn5SjvlJOeYn5ZiflGN+Uob5ifSEipSTkyMtW7YUAFK5cmWJiYmR5s2bCwAJDAyUc+fOFXtft27dkueee04ASI0aNSQmJkbq168vAKR27dpy584dCx5J6TNX302cOFEAiEqlksaNG0tsbKxERkaKWq0WANK2bVvJysqy8NGULnN+7p4UEREhKpVKAEiHDh3M2GrbYO6+27Jli7i7u4tKpZKmTZtKXFycdOzYUSpVqiQ1a9a00FFYhzn7bt68efrf29atW0tsbKy0bt1a/9mbMGGCBY+k9PXq1UsAGP1ToqydK8gxMT8px/ykHPOTcsxPyjE/Kcf8RDocnCoG3Ym9VatWkpmZqS+fO3euAJDw8PBi7+u1114TABIdHS35+fn68tGjRwsAiY+PN2PLrc9cfTdz5kx55513JDU11aD8zJkzEhISIgBk/Pjx5my61Znzc/e4xYsXCwB54403HDZcmbPvTp06JRqNRgIDA2Xv3r0GdQ8fPpRDhw6Zq9k2wVx9d/PmTVGr1eLq6iq7d+82qEtOTha1Wi0qlapEfyTYmtmzZ8ukSZNk48aNcu3aNf0ff0qUtXMFOSbmJ+WYn5RjflKO+Uk55iflmJ9Ih4NTRXjw4IH4+PgIADl69KhRfcOGDQWAHD58uMh9Xb16VZycnMTNzU2uX79uUJebmyuBgYHi7OwsN27cMFv7rcmcffc0K1euFABSrVq1Eu3Hlliq765fvy5+fn7SsWNH2bVrl0OGK3P3XdeuXQWAfP/99+Zuqs0xZ99t2rRJAEjnzp1N1vfs2VMAyOrVq0vcblulNFyVtXMFOSbmJ+WYn5RjflKO+Uk55ifzYn4quzjnVBH27t2LjIwM1KxZE40bNzaq79OnDwBg06ZNRe5r27Zt0Gq1CAsLQ8WKFQ3q1Go1evTogYcPH2LLli3mabyVmbPvnqZRo0YAgKtXr5ZoP7bEUn2XkJCAnJwcfPrpp2Zppy0yZ99dunQJ27dvR40aNdCtWzezt9XWmLPv1Gp1sd4zICDg2RpZBpS1cwU5JuYn5ZiflGN+Uo75STnmJ9tQ1s4VjoiDU0X49ddfAQBNmjQxWa8rP3HiRKnuyx6U1vGmpKQAACpVqlSi/dgSS/Tdli1bsHr1akyYMAHPPfdcyRtpo8zZd7t374ZWq0Xr1q1RUFCANWvWICEhAaNGjcJnn32G9PR08zXcBpiz75o3bw5fX1/8+OOPSE5ONqj76aefsH37dtSqVQthYWElbLXjKWvnCnJMzE/KMT8px/ykHPOTcsxPtqGsnSsckYu1G2DrLl68CAAICgoyWa8rT01NLdV92YPSOt758+cDAHr16lWi/dgSc/ddVlYW3nzzTTz//PN49913zdNIG2XOvjt58iQAwNPTE2FhYThw4IBB/cSJE7F27Vq0b9++JE22GebsOx8fHyxZsgT9+/dH+/bt0bp1awQFBeHy5cvYt28f2rRpg+XLl8PNzc18B+Agytq5ghwT85NyzE/KMT8px/ykHPOTbShr5wpHxDuninD//n0AgLu7u8l6Dw8PAEBmZmap7sselMbxfvbZZ9i5cyd8fX2RmJioeD+2xtx999577yE1NRWfffaZw5/MzNl3uit7ixcvxh9//IGVK1ciLS0Np0+fxoABA5CWloZXX321xEtT2wpzf+6io6OxdetWBAQEYO/evVi9ejX27t0LLy8vdOrUCVWrVjVPwx1MWTtXkGNiflKO+Uk55iflmJ+UY36yDWXtXOGIODhFdmvPnj1ISEiASqXCl19+iSpVqli7STbp8OHDWLBgAQYNGoSIiAhrN8euaLVaAEBBQQE+//xz9OvXD35+fqhduzZWrFiBl156CRkZGQ49B0VJzJ07F1FRUWjXrh1OnDiB+/fv48SJE4iMjMT777+P6OhoazeRiKjMYX4qHuYn5ZifSob5icoqDk4VwdPTEwCQnZ1tsj4rKwsA4OXlVar7sgeWPN7ff/8dvXr1Ql5eHubPn49XX31VeUNtkLn6rqCgAMOHD4evry8++ugj8zbSRlnid9bT0xN9+/Y1qh8yZAgAGM0JYK/M2Xe7d+/G22+/jRdffBHffvstGjRoAA8PDzRo0ABr167Fiy++iO+//x5bt2413wE4iLJ2riDHxPykHPOTcsxPyjE/Kcf8ZBvK2rnCEXHOqSKEhIQAAC5fvmyyXlceGhpaqvuyB5Y63vPnz6NTp05IT0/HlClTMHr06JI11AaZq+8uX76M48ePo1KlSkbh4O7duwCAI0eO6K8I7t69W3mjbYQ5P3e6bUJCQqBSqYzqq1WrBgC4efOmkqbaHHP23YoVKwAAr776KpycDK+DODs7Izo6GsePH8dPP/2Erl27lqTZDqesnSvIMTE/Kcf8pBzzk3LMT8oxP9mGsnaucEQcnCqCbpndo0ePmqzXlTds2LBU92UPLHG8165dQ8eOHXHt2jUkJCRg8uTJJW+oDTJ3312/fh3Xr183WXf37l2HuXIFmLfvdMsBF7aqTFpaGoC/rtTYO3P2nS4A+Pj4mKzXlTvaij3mUNbOFeSYmJ+UY35SjvlJOeYn5ZifbENZO1c4JKGnevDggfj4+AgAOXbsmFF9w4YNBYAcPny4yH1dvXpVnJycxM3NTW7cuGFQl5ubK4GBgeLs7GxUZ6/M2XciImlpadKgQQMBIEOGDBGtVmvmFtsOc/edKbt27RIA0qFDhxK01PaYs+/y8/MlICBAVCqV/PHHH0b1w4cPFwAydOhQczTd6szZd4MGDRIAMmjQIJP1AwYMEAAya9askjbbZqnValFymi1r5wpyTMxPyjE/Kcf8pBzzk3LMT+bF/FR2cXCqGCZOnCgApHXr1nL//n19+dy5cwWAhIeHG2z/8ccfy/PPPy+JiYlG+3rttdcEgPTu3Vvy8/P15W+99ZYAkPj4eEsdhlWYq++ysrKkVatWAkBiYmKkoKCgNJpvVeb83JniqOFKxLx9N2PGDH0/ZWRk6Mt37Nghrq6uolKp5ODBgxY7ltJmrr777rvvBIA4OzvLpk2bDOo2bNggTk5O4uTkZDK0OoqiwhXPFeTomJ+UY35SjvlJOeYn5ZifzIf5qezi4FQx5OTkSIsWLQSAVK5cWWJiYvT/DwwMlHPnzhlsP3ny5EI//Ldu3ZKaNWsKAKlZs6bExsbKCy+8IACkVq1acufOnVI6qtJhrr4bM2aM/ou6f//+Eh8fb/KfIzHn584URw5X5uy7vLw8iYqKEgBSsWJF6dWrl7Rp00acnZ0FgMyYMaOUjqp0mKvvtFqt9O3bVwAIAGnWrJn07dtXmjVrpi9ztL7bvHmztGjRQv9PpVIJAIOyzZs367fnuYIcHfOTcsxPyjE/Kcf8pBzzk3LMT6TDwaliys7OlkmTJknNmjXFzc1NKlWqJIMHD5ZLly4ZbVvUSe7OnTsyevRoCQ4OFjc3NwkODpa33npL0tPTLXsQVmKOvouPj9d/IT/tn6Mx5+fuSY4crkTM23d5eXkyZ84cqV+/vmg0GvH29pbIyEijK1qOwlx9p9VqZcmSJdKuXTvx9fUVFxcXKV++vHTr1k22bt1aCkdSupYuXVrkd9TSpUv12/NcQWUB85NyzE/KMT8px/ykHPOTMsxPpKMSEQEREREREREREZEVOBW9CRERERERERERkWVwcIqIiIiIiIiIiKyGg1NERERERERERGQ1HJwiIiIiIiIiIiKr4eAUERERERERERFZDQeniIiIiIiIiIjIajg4RUREREREREREVsPBKSIiIiIiIiIishoOThERERERERERkdVwcIrsUlpaGqZMmYJmzZrBz88P5cqVQ/Xq1REfH4/9+/dbu3kWsXv3bqhUKgwePNjaTXE4q1atQtOmTeHu7g6VSoVq1apZu0nFNmXKFKhUKixbtszaTSEiIhvH/ETmxPxERObkYu0GED2r//u//0Pfvn2Rnp6OgIAAhIWFwd3dHadOncLy5cuxfPlyJCQkICkpCU5OHH+lpzt06BAGDBgAjUaDTp06wdfXF+XLl7d2s/QiIiKQnJyM8+fP21XoIyIi28L8RObE/ERE5sbBKbIrhw4dQrdu3ZCfn49p06YhMTERrq6u+vqff/4Z/fr1w/z58+Hs7Iy5c+dasbXm1bx5c5w6dQo+Pj7WbopD2bRpE7RaLT7++GMMHTrU2s15ZqNGjUJcXBwqV65s7aYQEZGNYn5ifjI35iciMjdeFiG7ISKIj49HXl4eJk+ejEmTJhkEKwBo27YtfvjhB2g0GsybNw8HDhywUmvNz93dHXXq1OFJ1MwuX74MAKhRo4aVW6JM+fLlUadOHYZuIiIyifmJ+ckSmJ+IyNw4OEV2Y+vWrTh16hSqVKmCCRMmFLpd3bp1MXLkSIgIkpKSDOoiIiKgUqlw4cIFrFy5Ei1btoSXlxd8fX3122RlZSExMRHVqlWDRqPBc889h+nTpyM/Px/VqlWDSqUy2KeIYNWqVYiLi0Pt2rXh4eEBLy8vNG/eHJ9++im0Wq1RGx9/zv23335Dz5494efnBw8PD4SHh2Pfvn1GrylqzoRt27ahZ8+eqFixItRqNYKDg9G9e3esW7fuKb36l2XLlkGlUmHKlCk4d+4cYmJiUL58eXh7e6Nr1644efIkAKCgoAAzZ85E7dq19f2zcOFCk/v8/vvvMXToUNStWxfe3t7w8PBAo0aNMHPmTDx48MDka7Zs2YKOHTuiatWqUKvVqFKlCtq2bYupU6cabCci+Oabb9C2bVtUrFgRGo0GwcHBiIqKKrQ9po536dKlAID27dtDpVIZzD8wePBgqFQq7N69G9u3b0f79u3h6+sLlUqFu3fvAgD27NmDUaNGoWHDhvr5O+rUqYPExET9NqacOnUKw4YNQ7Vq1aBWq1GhQgW0adMGH330EQoKCnDhwgWoVCokJycDAKpXr65v3+OfwafNmXDnzh384x//QK1ataDRaODv748uXbrghx9+MNkm3XwRDx8+xJw5c1C7dm39Z+ndd98t9GdGRES2i/mJ+elxzE+PMD8R2SAhshNvvvmmAJCEhIQitz169KgAEB8fH3n48KG+PDw8XADIG2+8IU5OThIWFiZxcXHSpk0bERHJzc2Vli1bCgDx9/eX3r17S/fu3cXd3V1eeeUVCQ0NlSd/bXJycgSABAQESFhYmMTGxkpUVJS4u7sLAImPjzdq3+TJkwWAjBw5Utzd3aVBgwYSGxsrjRo1EgCi0Wjkt99+M3jNrl27Ct3f2LFjBYA4OTlJmzZtpF+/fhIeHi6+vr7SqFGjIvtLRGTp0qUCQAYNGiT+/v5St25diY2NlQYNGggACQwMlGvXrkmvXr3Ex8dHXnnlFencubO4ubkJAFm0aJHRPitWrCje3t7SunVriYmJkc6dO4ufn58AkMjISCkoKDDY/pNPPhEA4uzsLO3atZN+/fpJx44dJSgoyKjf3377bQEgarVaOnbsKP369ZP27dtLYGCghIaGFnm8e/bskfj4eKlZs6YAkM6dO0t8fLzEx8fLnj17REQkPj5eAMjw4cNFpVLJSy+9JHFxcfLSSy/J3bt3RUSkRYsWotFopHnz5tK7d295+eWXpXLlygJA6tevL5mZmUbvvWbNGlGr1QJA389dunSR4OBgASDp6ely69YtiY+Pl4oVKwoA6d27t759j38GdJ+lpUuXGrzH5cuXpUaNGgJAQkJCJDY2ViIjI8XZ2VkASFJSklG7AEhoaKjExMSIp6endO/eXbp37y4+Pj4CQF577bUi+5WIiGwL8xPz0+OYnx5hfiKyPRycIrvRpk0bASArVqwoctv8/Hz9Sf/PP//Ul+vClUajkd27dxu9bvr06QJAmjdvLunp6fry8+fP6098T57k8/PzZf369ZKXl2dQfvPmTWnWrJkAkOTkZIM63QkRgMyfP9+gbsyYMQJABg4caFBeWLhasWKFAJAqVarIsWPHDOqys7Plhx9+MNlHT9KFKwCSmJgoWq1WRES0Wq0MHjxYAEi9evXkhRdekJs3b+pft3PnTv1J+UkbNmyQ7Oxsg7J79+5J9+7dBYB89dVXBnUhISGiUqnk0KFDBuVarVZ27dql/39OTo6o1Wrx8vKSlJQUg23z8/Plp59+KtYxi/wVoB7f/5N1AOTf//63yddv2bJFH7R0cnNz5Y033hAAMnXqVIO6M2fOiEajERcXF/nmm2+MjnP79u2Sm5urL9N9Zs+fP2/y/QsLV7o+7t+/vzx48EBfvmfPHnF3dxdnZ2ejz4vuWOvWrSvXrl3Tl6ekpIivr6/R7xMREdk+5ifmJx3mp78wPxHZHg5Okd2oU6eOAJBt27YVa3vdFZMDBw7oy3QnqpEjR5p8TdWqVQWA/srP47744guT4eppduzYIQBk7NixBuW6E6LuiuPjbt++bTKsFBau6tat+9STf3HpwlWNGjWMguKvv/6qP/adO3cavbZx48ZPDQBPOnv2rACQ6Ohog/Jy5cqJn59fka+/ceOGAJAXX3yxWO/3NMUJVy+//PIz7zc7O1tcXFykSZMmBuV///vfBYCMGDGiWPtREq7OnTsnAMTT01Pu3Llj9BrdleLXX3/doFz3M96xY4fRa0aNGmUyxBERkW1jfmJ+0mF++gvzE5Ht4Wp9VCb17NnTqCw1NRVXrlxBpUqV0LZtW6P62NhYDB8+vNB9Hj9+HD/88ANSU1ORnZ0NEUFmZiYA4OzZsyZf06lTJ6OygIAA+Pv749q1a0Uex9WrV3Hq1Cn4+voiJiamyO2LIyIiwmiiVN1kl66uroiIiDB6TY0aNXDs2DFcu3bNaLnes2fPYsuWLfjzzz+RlZUFrVYLEdHXPa5p06b4+eefMWzYMIwdOxb169c32cYKFSogKCgIx48fR2JiIt544w2LTshp6vPyuCtXrmDTpk34448/cO/ePf08GW5ubkbHuHPnTgDA3/72N8s0Fo9WXQKALl26wN/f36h+4MCBSEpKwp49e4zqXF1d0b59e6Py2rVrA0CxPpdEROSYmJ8Kx/xkjPmJ+YnoWXBwiuxGQEAAAODWrVtFbltQUID09HQAj1bjeFJISIhRme6kERwcbHKfuok/n5ykMS8vD4MHD8aqVasKbY8uZD0pKCio0PdKS0srdH86ly5dAvAo3Dw50ahSVatWNSrz9PQEAFSqVAnOzs6F1j8+4aOI4O2338a8efP0YepJT/bLwoUL8corr+DLL7/El19+iYoVKyI8PBzR0dHo06ePwXt/9dVXiIuLw5w5czBnzhyEhoYiPDwccXFx6Nq167Mf+FOY+rzoJCUlITExEfn5+cXal+5nVrNmTbO0zZSrV68CgFHQ1dGVX7lyxaiusJ+xl5cXAHBSTyIiO8P8ZIz5ifnJFOYnIuvian1kNxo1agQAOHz4cJHb/v7778jLy4OPjw+qV69uVK/RaMzWrqSkJKxatQoNGjTA1q1bcePGDeTl5UFEcPr0aQAoNFw4Odner+DT2vQs7V29ejWSkpIQFBSEtWvX4sqVK/p+0Z2gn+yXhg0b4uTJk1i/fj2GDx8Ob29vrFmzBnFxcQgLC0NeXp5+28jISPz555/45ptvMHDgQGi1WixfvhzdunVDnz59nvGon66wz8uBAwcwbtw4uLu7Y9myZbhw4QJyc3Mhjx6Zttllq58WxG3xM0lERMoxP5UO5idjzE9E9Cz4W0R2o1u3bgCAtWvXFnmVZeXKlQAe3fZd3JOF7kSouzLzpMzMTJNL265fvx4AsGrVKnTp0gUVKlTQ39adkpJSrPdWSneVMiUlpdAAZy26fvnXv/6F3r17o0qVKsXqF41Gg1deeQWLFi3CmTNn8Pvvv6Nhw4bYv38/Fi9ebLCtt7c3+vfvj+XLl+PixYvYv38/goKCsG7dOmzZssVyB/c/umOcMWMG4uPjERoaCrVaDQDIycnB9evXjV6j+5mdO3fOYu2qUqUKgEePWphy4cIFAKav8hIRkWNhfjLG/MT8ZArzE5F1cXCK7EbXrl1Rp04dXLlyBbNnzy50u9OnT+OTTz6BSqXC2LFji73/0NBQVK1aFdevX8e+ffuM6r/99luTr9Pd/m7qFvM1a9YU+/2VqFKlCurWrYu7d+8W2j5rMVe/1K9fHyNHjgTw6Iru07Rs2RIDBw4s1rbm8LRj/Pbbb00G3qioKADAokWLivUebm5uAB49alFcujk/tm3bZvIPgq+//hoAEBYWVux9EhGRfWJ+Msb8ZIj56RHmJyLr4uAU2Q0nJycsX74cbm5umDx5MmbOnGl0wtm3bx86duyInJwcjBkzBi1btnym9xgxYgQAYNy4ccjIyNCXp6amYtq0aSZfo5vo8LPPPjMoX7t2LZYvX/5M769EYmIiAGDs2LE4ceKEQV1ubi527Nhh8TaYouuXRYsWGYSMPXv24MMPPzTaPjs7GwsWLDAKA1qtFtu2bQPw11WzixcvYtmyZcjOzjbYNjc3F7t27TLY1pJ0x7hkyRKDq9EnT57Eu+++a/I1Y8aMgUajwRdffIHVq1cb1IkIduzYYTAvge4qnu4Rh+KoUaMGXn75ZWRmZiIhIcGgbfv378e//vUvODs760MrERE5LuYn05if/sL89AjzE5GVlc6igETms2PHDvHz8xMAUr58eenZs6fExsZKo0aN9Eu5jh49Wh4+fGj02qKWlc3NzZWWLVsKAAkICJA+ffpIjx49xMPDQ3r27CkhISHi6upq8Jrk5GRxdnYWANK0aVPp16+fNGvWTADI22+/LQAkPDzc4DWmlq99XGhoqNGSy4UthSwiMnr0aAEgzs7O0rZtW+nXr59ERESIr6+vNGrUqLCuNKBbCnny5Mkm62FieWYdU8sJnz59Wjw8PASA1KtXT+Li4iQsLExUKpW+Xx7fX3p6ugAQV1dXadmypcTFxUl0dLQEBwcLAKlWrZrcvn1bRESOHTsmAMTd3V3atWsn/fv3l169eklgYKAAkGbNmklubm6xjrs4SyGbqhN5tGx1pUqVBIBUr15dYmJiJCoqSlxdXaVv374mf44iIqtWrRJXV1eDvunatav+WNPT0/Xbrlu3TgCIt7e39OnTR4YNGybDhg3T1xf2Wbp8+bJUr15d389xcXHSoUMH/Wd17ty5Ru162s+4qM8HERHZNuaneKPtmZ+Yn5ifiGwH75wiuxMVFYWzZ8/i/fffR3BwMHbv3o0NGzYgPT0dAwcOxL59+7BgwQJFExOq1Wrs2LED77zzDjw8PLBx40b897//xbhx47B69WrcuHFDv+qNTrt27fDzzz8jMjISKSkp2Lx5M9zc3LBu3bpSu7KyYMEC/Oc//0FUVBROnjyJdevW4c8//0Tbtm0xefLkUmnDk2rXro3Dhw+jR48euH37NjZu3Ij79+/j888/N3nlz9PTEwsXLkSPHj1w69YtbNy4ET/++CP8/PwwdepUHDlyRN/3NWvWxNy5cxEREYGLFy/iu+++w88//4zQ0FDMmzcPycnJ+rkLLCkgIACHDh1C//79kZeXh40bN+LKlSuYPn36U1cfiouLw+HDhzFgwABkZGRg3bp1OHLkCEJCQjB37lz96j0AEB0djXnz5iEoKAibNm3CkiVLsGTJkiLbVrVqVRw6dAjjxo2Di4sLvvvuOxw5cgQdOnTA9u3bn+mRDSIisn/MT8aYn5ifnsT8RGQ9KhEbmwWQyEYdOHAArVq1QpcuXbB161ZrN4eIiIjI5jE/ERFRcfDOKaInHDt2DFqt1qAsJSUFf/vb3wAAAwYMsEaziIiIiGwW8xMREZUE75wiekKdOnWQkZGBBg0aICAgABcvXsSRI0fw4MED9OzZExs2bIBKpbJ2M4mIiIhsBvMTERGVBAeniJ6wcOFCrFmzBqdPn0ZaWho0Gg3q1auHAQMGYMSIEXBxcbF2E4mIiIhsCvMTERGVBAeniIiIiIiIiIjIajjnFBERERERERERWQ0Hp4iIiIiIiIiIyGo4OEVERERERERERFbDwSkiIiIiIiIiIrIaDk4REREREREREZHVcHCKiIiIiIiIiIishoNTRERERERERERkNRycIiIiIiIiIiIiq/l/19kRgaK2Aq8AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAJqCAYAAADdbVq5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3Qb55W3nzsAexElUpQoqku2mmW5KG6xYydOcxKnZ9P7xunZlHWq05zsppfd5MtmvVlv2qZvmlPsVLe425FlWZZsFapSItXYGzD3+2NAEwBBEgBRZoD7nIMjYeoLEDN3fu9toqoYhmEYhmEYhmEYucUp9gAMwzAMwzAMwzBKERNbhmEYhmEYhmEYecDElmEYhmEYhmEYRh4wsWUYhmEYhmEYhpEHTGwZhmEYhmEYhmHkARNbhmEYhmEYhmEYecDElmEYhmH4HBH5hIho7PXtYo/HMAzDSA8TW4ZhGDlERBaIyB0icrOI3C0ilxd7TIZhGIYxjtmpwhIu9gAMwzBKjGPAJaoaFZGVwI+BJxR5TIZhGIYxjtmpAmKeLcPIEhFZHAvpWV7ssRj+QVWjqhqNvW0CthZxOIZhlDBmh4xsMDtVWExsASKyWUS+LyIPiUi3iIyJSJ+IbBGRT4pIvQ/GeHPshvoPScvPjy3vSLHPR2LrXpvBeTLexyg94n5vT0pavktEXleA8/+LiOwVkV4R6RKRn4nI0rj1IRH5Qux67ROR/xORlnyPK11EZIWI3A7cBPyi2OMxSo/Yvf/PItIvIidF5EcisiTP5zQ7ZBQMH9ihl4nIbTE7FEmxfiY79e3Y82R/3Ott+R53upidKhwmtjw2A68EzgBa8MIr64FNwMeAm0XEDyGXjwBvSlr2ptjyBETEia07AVyVzsGz2ccoaY4DXxQRKcK5vwecpaqNwHJgP/CjuPUfBJ4HnA8sjtunIIjIXSleXxlfr6p7VfXi2Pi+XqhxGWXDE4BbgKcAdXgz0y8F7hCR1jyf2+yQUUiKaYdOAt8A3j3F+pnsFMB3VLU+7vWNfA02FdPZKrNThcPElsdW4H3AC4CnAk8GXgLcG1t/bmxdsfk5cHYsvhYRaQBeBPxPim2fAbQDrwEuEpEz0jj+tPuISL2IfFFE9sS8CdtF5JI01nWIyKvijrM8Nlu1OG79NSLy19jMz0MicqaIvDw2g9UjIt/KRPBmc0wRaRaR74rIkdjrOyIyL279QhH5dWzfR4FnJp2zNvYd7BWREyJyo4isnmaM031nM42lQ0Q+LBMz29tE5KJ0jp0B/4UnZF6e4X6zRlV3qGpP7K0ALrAmbpOrgM+p6p7Ydu8Hnikiy1Idb6bvI9Pfi6pekOL1ntixquJO3Qv05+yLMQyP9Xiz0c8B3snEb2wx8C95PrfZoTQxOxR4O3STqv4Q2DPF+pnsVMak8RvO6Pc0la0yO1VgVLXsX3ierHcAt+PNpkUBTXp9qchjvBm4Bvg34F9iy64Cfgm8CuhI2v4XwK9j/38Q+Foa55h2H7wEytuAFXg3ltXA6jTWdQCvijvO8th3ujhu/WPAOqAC+D6wG7gOb9Z2KdAFvDKD7yvjYwI3AjcAc2Ov3wK/jVv/59h3NAdYGPu9KLA8tv5/gd8AC4BK4JPADqBiijFO953NNJYOYBewAQgBXwEeS+fYGf7e/jF2rqrY8l3A6zI4zjeAU9O8PjjNvq8AemLf8Rjwztjyptiys5K27wGem+l3nevfIHAxcCvw19hv5PJi3jvsVRov4BNM2KNDQGXcuvfFrTsJOHkaw/h9wexQet9XxsfE7FCq31vR7FBs/8uAyBTrUtqp2Lpv412PJ4BHgS8A9TOca6bfsNmpAL6KPgA/vIDvMllcJb+uL/IYx286ZwCH8QTifcCzSTJywKLYRf/82Pt3xS74mmmOP+0+QGvse9iQYt8p18XWdzCzkbs6bv2zYuvnxy37CfCVDL6vjI4Z+/wKnBa3fk1sWRveTKsCq+LWPy22bDle+KkCS+PWO3g34Ysz+c5mGssUn29DbP2cmf4eGf7eQsA24P2x5Y8bOWAV3s36Nryb9eY8/fYXAh8BLou9XxL7fCuSttsX/ztL9/eZr9+gveyVyxeJYuvnSevOJ9FeteZpDOP3BbND6X1fGR0Ts0NT/d6KaoeYRmzFbZNgp2LLzsUTvU7su7kH+OE0x0jnN2x2KoCvsg8jFJF24NVxi74KPB24BE+EjeOL70pVt+E9VH4U78K8McVmb8SbSflN7P33gRq8mP6pmGmf5bF/H02x73Tr0qUz7v+DQFRVu5OWNeTxmOOJ5Xvj1u+OWzeeF7Qvbn38titi/24VkVMicgrv+6yIO3Y8y2P/pvrOZhrLOPGfbyD2b8MMx84I9aoVXQ18WESak1afAl6gqpfgzW5/Zbbnm2IMR/BCSX4TC2Hpi62ak7RpE144RDLLY//O9H3k4zdoGCWH2aG8HdPsUAr8YIdmIoWdQlXvV9Wjquqq6sPAe4AXJ4XwxbM89u9035nZqQDiCwFRZOJvGsdV9T2q+kdVvR1vFsmPXIdn5K7XidKdwOPJxW/Ee/A8KCJHgO14M0NvTnWwNPfpiP17WopDTLcOvIfjurj3i6bYrpgciP27PG7Zyrh1h2L/Xxa3Pn7bceN3mqo2xb1q1Yv5TqZjfPssxjIT0x07Y1T193j5ix9LWn5cVY/H3o7ghd8mICLflMRKTMmvD6c5jDDeb2iRqp7CS0Q+J+48K4FGUpev7Yj9m5PvwzB8wHkiUhH3/olx/+/B66GTb8wO5R6zQ1PgEzs0E4/bqSnWu+NDmmJ9R+xfs1UlhomtxMTHZvFKzj5DRP4L8GtH7R/ied/+LcW6Z+IJyIuAs+JezwEuEJGN2eyjql3Az4BviJdYLCKyWkRWT7cudvz7gZfHEj/n4xloX6Gqh4E/AF8SkSYRmQt8Cfi9qnaq6kG8kIbPi0ijiCwg7qYf+w5+gPcdtAPEjvMCSdE6YIbvc9qxpPFZZvp7ZMM/4z3wzE9eISIh4N+Bz6YYy1s0sRJT8utfUxzPEZF3SKyqmngJ7P8PzxDtiG12HfAB8UrXNgKfA25S1Y4UY8jH92EYxaQd+ImIPFtE3g58PG7dz1TVnWK/XGJ2KMeYHZqRgtmh8WOKSDVe7hsiUh17STp2SrzS8U2x/5+G9/39WlWHU53PbFXpUvZiK/bjji/V+Wm8kIjX48UA+w5VHVbVP6nqyRSr3wz8Mua+PhL3ugm4k9Sziunu8wZgC17J4T7gV3hxyjOtuwZvtqkTz1Akl0bNGPFmqn4/2+Mk8Sq8se/Eu1mewquINc4rgCq8Wb3bSAwzBa9c8U68VgF9wEN4VS11ivNN953NNJaZmO7YGX9/qvog3sNVY/xyERHgeuA3qpoqlChbngVsE5EB4G680Iinqup4r5PP4iVu34s32xvC+86mYtrvwzACxm48EfIbvJLN49flIby8kbxjdsjsUBoE3Q69GhjCq/wZiv1/iAnP4kx26i3Antj6PwB34T1bTofZqhJEVKe6/soHEanDE1kvBprxQpE+hjfDNj5j+B1VfV1RBmgYPkVEvg4cVdVPFXsshlHKiMgniLNHeJXOrsVLwh/DeyB8v6ruS7W/YZQqZocMv+NrsRVznV4NXIhXyeU2Vb0saRsBPgS8Fa8Sz73Au1R1S0EHaxhlhohchjdbd0ds0QlVfWHRBmQYhmGUFWaHjCCQdnO+IrEBz017F141nVR8EC/2+mo8N/d7gT+JyBmx6jCGYeQBVb2ZWCy7YRiGYRQas0NGEPC7Z8sZT/QVkZ8BLfGerVji4lG8hsPXxpbV4SUo/qeqXlPwQRuGYRiGYRiGYeDzAhlpVFS6CC9R8idx+wzgJc5fkcehGYZhGIZhGIZhTIuvxVYarMWrLvRY0vJHYusMwzAMwzAMwzCKgt9ztmZiLtCf3FAROAnUikilqo4m7yQiV+F1Gqeuru7ctWsz02XRQnQwMR5ncMzlyDCMul5HwCoHltam3vbYKJyM+4vPq4Rmi+bOGVHXv2HHhaSuKpTVfvfff/8xVZ3UI2a2iEgj4ZqeiqVPZXT3r6dqmGkECLNTwWEs6cvePwhj7kQH29Mmdbjy6I9AZ1zHpboQLKrJzxiN8qO6Ijt/Sh7tVIVUzR0NtZ7F2P6/lJWdCrrYygpVvQ6vKSqbN2/W++67L6P9Tw5OalBuzILeUeX7e8Y4Z47LqvrJ19+JEeVld04Ys5oQ/N/FDl4hykRu7HT58s4JQfCk+cI1G4LuwE2f432T5haMPHDh6qas9hORvJTlDi04twcgcuRuRCSUYgLKCBhmp/yFqnJDxwjbe5RDQ8ol84UnL0htW152R5QTcbfir53n0F472V491qe8/f4J27a4Bq4/P7uJHMNI5vQFU8xKz0C+7FR48aWjOnySaPdWRKQulvZTFgRdbJ0E6lM8XMwFBlN5tQx/cXxEedMdw+ztV967RlKKrbmVnsAaiv2Fh6Ke92pe1eTjra4XLp0Pi2uhvQZWpjheKWCiyhhHRBZLzXwqT38xEXWR5jMiQGn+8A2jCKgqX3x4jB/snRBG8yrhyQtSb7+ohgSxdXgI2lM89y6qgUvmw6Iaob0GlqQQZIZRCohIg1Q3U3naC4meeASiY/2UkZ0KutjagdfVezVeh/Nx1sbWGT7mxIhyVUxoARwaTL2diGeIdvVDpeMZqL7IFGKrQfjIhtK5fk1UGTMRmrf2gDNnFSIO4dZzGd31C0SkVlWnuKIMw8iEE6Pw+4ORhGWHh6YOqW6vEbb1KDUhb9Jvqi3rwsJHN5gnyyh9Qgs290pFHRKqJNR8BqOP/QwRWaCqR4s9tkIQdLF1B9ALvAT4NICI1AJXEgu/MPzL13aMsqd/wgwdGlKGo0p1aLJYunqtQ10YWqrASRE+WAqYsDIyRUQ2OfXtOI3LvPfhKkLz1oGODVBGs4aGkU/c0VG+eo7DR7a6HBzylh0amnr7164Q3rBSaKogZbi7YZQTItI+Hn0BIE6I8IJzcfsOHaFM7JSvxVZMOD0r9rYdaBSRF8fe/05VB0Xks8BHReQkE02NHeBrBR+wkRGvW6rs6oFtPd77gSg4U1x2K0ooHLBQourEAAyPCi0NSqWvr3QjW5yGpVvCbecnPNCFWh6fNWxV1a4iDs8wAk933wgAbTXCV89x+MQ2l7OahCfMm9omtVSVjr3KB9PZwOYGq2hVaoTmrTvozFmByESOozNnFREvd2utqpZ8JJrfH8FagZ8mLRt/vwKvefFn8cTVh4Bm4D7gaTO5JkXkSuDK1atX53K8Rpp0941QGxb+ZaPDNQ+5VDrwyTMcKqdSWwGk0J6qgRHY0+Wwu0vY3eVwcsD7LsOOsnqBsnaRy5o2l4bqgg7LyBOVq56rhKpwalsTlosTItx6Du5A51EymDUUkecD1wJrgMPA11T1y0nbCN699q1AC3Av8C5V3TKLj2JMgdmp4jIutMZprBC+fLaF/aVLNjbweN+oCa4SQkQ2etEXy5OXU9F2AZHuLY9QBnZKVMu7lLNVeSo8yQZsKKo4QFWK8MEgUKzwv7Eo7Dsm7D7qCazOU4LOcM9a0OjyzqdHpt3GmJlZVCO8X1U3z/b8IhKS2tZIxbJn4FQ1Tlqvqozu+gU60LlGVR9N43hPBG4DrsdrEn8+8DHgalX9atx2HxpfzkQkwXnAGap6ZLafy0iN2anCk2ynjOnJhx000TU7ZlGNMCd2CiA0Z7mGFzwBpy51NZnRvb8jPP8sRh77+YwPgEG2U373bBklRioDVhMQkeWXnKrOU8Lvt4bYf0yIuJl9d2vapp5ciboQKp8q+YGmYunlEXfoeEqhBfGzhg/uJL1Zw48Bf1PVf4y9/4OINAEfE5FvqOqoiFQDHwQ+o6pfj53nTrwIg3cA18zqQxmGDxiKKP+zc5gXLhFClm+VkkLZwvHzmOgKJpWrn6c4FVMKLYBw24WMHfgrIiI6s/cnsHbKHq2MvNM/pvzL1lH2nhieeWOfcLxvdNLLL1RVKHu6nBmFliNKbVVis821i1J3Ou0bgs/cUMGP7wrx4H6HIf98XCMJEamJdG0hvODcabdz6heBKlWnvSid8IWzgD8mLfsDXhuNC2PvLwIa8WYUAYj1SbkBuCK90RuGf4m4ynvuHuK/9ijXbnMZjpZ35A/4wxb6zQYbMyMiTqTzbsJtF0y7nVM9F6emmYplT0+nDftZBNROmWfLyCsDEeUdd4/w4EmXrSfgM2c6NFT4Z7bQbzfw+Lyr1kblotMm33/m1cG8OuXEwOTvsbkhwqLmCO3NYyycGyHkwIn+EPu7Kujpq2LxvNQPDzs6HYbHhIcOhnjooCfUlrUo62J5Xs31Of+oRpaE2y4YRBwkPHPyXXhR2rOG1UDyxTD+fh1wC15LjSjwWNJ2jwAvTWvwhuFTVJVP/n2Yu0947+88Du/f4vKpjQ5zKv1js/KJ3+xhMubpCg4VS58adYe6carmzLhteMETGN1zAyJSparTxe8G1k6Z2DLyxmBEeWdMaAE82gcfeNDls5scGgssuPxqREYjsbyrrvG8qwln8+J5bkqxBbBqgcuJPSHqa6K0x8RV27wINZWTn6ebG6I0N0SBYfb3e8uWN9QlbLOjM9HJ7aqwt1vY2+3wuwehtdFlbZtXZGPxPJ2yaqSRf6I9u6k86x/Bmfn27dTPQ44/iA50fkpEnhm36jpVjW+PsQt4QtLu58X+nRf7dy7Qn9RAHrzm8rUiUmmN5I2g8tiJEe46lnj/HFOoKNH4H7/axHQw0eV/IsceonLjq6Bi5rwxYR7OvNOIHjr2ZRE5P25VydipshVbVuUp/ygwFk0UCxUO5DNFy+8GxFU4fFK8ioFHHfYdF6JThAMeOiEMjUJNkj3p6BtgRbvDinZoqHHJJq2go28A8ESXq3C0Z/qDdPU6dPXCrTtD1FUpa9pc1ra5rF5gZeULjoSQNITW45uH6wB+r6rTxap/E/imiLwJ+BmeAXtvbF064R1GHjA7VTjmVgr/do5XHXfvAMyvgk9vdKgNB39mye92MVtMdPkXHTz6gFTUnpPu9uKJsltV9e3TbBZYO1W2j0mqegNww+bNm99U7LGUKoNDo4+Xdn+oB9Y0wL+e6VCXI+MVFANyvB92H3XY1eWwp0sYHkvv8yued2l9uz4ujsZprM3NfWX8uO+9oo6DJ4Qdhx12dApdvVNP5w6MCA90hHigI0TYUd79zDGasit6ZPiH64FNwH/gNYQfBD6A169wvHrTSaBeREJJs4ZzgUHzauUes1OFYbxw0/xq4ctnO3xph8trVjg0B6xfVlBsYq4x0VU2BNZOla3YMvLLuPGqCQufPtPh+j3Ka5dLVkIr6AbkVw+E2dOVXiyKoLQ1KS1No7S3jFFZF6GjL88DBPb3D0AlPH1jHU/f6AnEnZ0Ojxx22HdMcDX1362xBubU5H98Rn6JGaV3iMhHgcXAXrzYd4C7Yv/uAELAamBn3O5rY+sMI3AkV8itCwsfO8P/vbSCbhfzgYmu0ibIdsrElpFzko1XTUh4+2kzi6ygGo/RCOw/Lqxq1ZQhfata3WnF1tw6ZVWrS2PjEIvmRahOkXdVKOLDCy86zcsZGxqFR494Hq9HOx1GIhMfcu2iqcMYf3J3iJpKWNvmsmK+Evb/80vZo6on8WYGEZG3AXeo6riBugPoBV4CfDq2TS1wJd4so2EEiqD00gqqbZwOVTh4Qth+2OHUAGxc4rK+PTe2z0RXaRNEO2Viy8gJo1FlxIXh4eyMQpCMyXje1a6jXmGL/bG8q3c8bYyFcyYbi9WtmlCrtKbSE1erWpWquoGchQTmknjRVVMJm5a6bFoKETfKvm5hR8zrtbYt9dgHR+ChAw6KcPfuEFVhZfUCr8DGmoUutVWF/DTGTIjIBcDFwBa8srkvB54RWwaAqg6LyGeBj4rISSaaRTp4YRyGEQgGIsp1jwzzsqVC2GfVfoJkCzPFVW9i8uGDDtsPOfQMTXz3Dx0M8bQzIly6Nnf20ERXaRFkO2Viy5g1Y65y9f2jdA5E+UwWlQb9blxUY3lXXQ67jzrs6U6dd7X7qKQUW21zvRLqS+a51DYM0twQzaqoRTGIzxVb3lBH2IFVC5RVC6I8a1NysZ8Jdh7xhNY4IxHh4UPCw4ccBK+s/NpFXpGNloa8fgQjPcbwyuJ+Ai/R+Dbgiar6UNJ2n8UzWh8CmoH7gKep6tHCDdUwsmfMVd599xD3nYDtPco1G4pXBMPvti9XHOkR7t3j8PAhh/7hqb/rP24LoxrhsnW5nYA00VUyBNZOmdgyZsWYq7z/vlFuPeo9eH8ww9LufjU2/cM8Xo59d5dDz+DMn2d3l8MTT59sJPb3D/DEjfkYZWGJ93YB0wrGR49MvVIROo4JHcccbtwKLQ3K2jaXtYtcljZbWflioKr3M7mkbqrtFPiX2MswAoWq8vEHhrkv1kvrvpPwvi0u/7LRYV6ei2H41dYVguP9cPfu9OLI//RwGFcjPGV97iM+THQFmyDbqbIVW1ZSNzdc/1iEm49OeDh29cPXHlU+siGYOVqdp4T/uzfEkZ7MmqvMrVNaGia8WsnVA4vBzu5BANbMz22pwGTRlYoXnBtl0xKXRzoddh526B+Z+vdwrE+4vS/E7Y+GqK1Unn9uJGex+4YRZMxO5ZbdJ0b4+8nEe4sD1OQ4n9SPti3fjEW9/OW6FCHipy1QKkLKWDTRDlSEvPDy3UeF0bh1f9keRjXK5Rumjp6YDSa6jEJTtmLLSurmhitao9xxFLb2eO8X18BbVgdTaAE0VGtaQqu2UlkZy7ta1erSq54AKUTlwHQYF1rj/8+14ILpRVdlGNYuUtYuiuKeE+XQCS/Pa0encHSa73dwVKyMvGHEMDuVO7r7RpgT66X10YdcHu2DBdXwqY0ONbMII/SrLSsEoxF47KiXg7Wz02HjEpfnnztZIFWG4fSFysOHhMqw16fxjHaX0xZ6fRo7jgnfvT3MaFzxpb8+EiLkaM5DCuMx0WUUirIVW8bs6e4boSYsfOpMh4895NI9Ap8/y5+9SVThWKzf1e4uh9ZG5WlnTDYK9dXQ1uTSeSpREIQdL89o9QJPYC1sUq9cOtDrIydMvMhKXp4PwQUze7ocgSXNypLmKE87A04MwM7DDo90OnR0J5aVb6zxSt+nYttBoatXWNvmbROUvDfDMPzD3ErhC2c5fO1R5WVLJePwwXIWVwAjY15O7sMHHR49Ignequ2HHK48O0ooxXzaxadHOXtZlFULlIqYJ/HxCJAqeN3F9Xzn9vDj1W4rQ8qK+YUxria6jHxjYsvIiviSuTUh4VMbHQYipCW0CmWsxvOuxqsG9sZVPjrWl1psAaxqVY6cUhbNVc9ztcDLJaoIecZhFNjfX5CPkDZTiazkbfIluCC98EKAeXVw4WkuF8bKyu866vDIYeHRI151w6lE1L17QuzucvjLdk+UrYsV2LCy8oZhTEeqdiTvX1d+PR+zZWgUdnR6AmvXUSHipv7uBkeFfceEla2TRdKS5unD7N2qfl57ST3fuS2MKrzm4gjLWgo7k2miy8gXJraMjEnVm6Q6JFSn8cCbT2M1EoF93cKuWGGL6cLVuvuE3iGvKW8yF58e5Ulro9RWThiFQzNrmaKQjshK3j6fggsmVzCcjppKr7/KxiUQdaOMRlJvNzwGHd0TBr53yCspf/fuEJVh5bRYWfnTF7opcwYMwyhPctVLq9yE1sAIPHLYK9G++6gQnaKxfTz11crAiACTRVI6ecxuZT+vu6SeiAvLC+TVSoWJLiPXmNgy0sJV5b8fi/CUlmjGpd3HyYexOnRCePSI57k6cDw9gzDOni6Hs5ZNjgc/NhYzCj7ud5mpyEq1b75FF6Tv7QIIOZ74SsVjR5wp/7ajSWXll7Yo69pc1ixymW9l5Q2jLOkfU76xfZhXLhcqZ1nitNyE1l8fcfjr9lBCiPdUNNYoG9pdNrS7LG2ZXE0202JR0cp+VqRhLwqBiS4jV5jYMmbEVeVTW0f55f4oNx2Cz/mol9bNO0I8cji9yoFhR1k+f6Kh8MImf1UPTIfZiKxUxyqE4ILMRFcqVra6vGBzhB2HvTCW5KpW4yheGMu+Yw43PgQt9cp5q6JcdJr/GkcbhpEfxlzlXXcP8feT8HCP8vEzHBqynCQsR1rqmVZoza2bEFjt82YvsJLp6BtIaStGI7Bln8MTVk4dbp4PTHQZs8XEljEtrir/unWMX+738pt298P7t7h8bpPDnMr899Lqi+VdbVzspky6XdXqTim2BC/vavUCT2AtaU5MzPVb3tVM5FJoxR+zUIILshdddVVw7nKXc5e7jEVhT5fwyGGvAlbfNE0yj/XLtE00DcMoLVSVj9w3zN9Peu+39sB7/+7ymU0OLVkUbypFr9bJAXj4kMPyFmXxvMnheqe3uYQdTcjNaqlXNiz2BFaqAkW5nrBMFlxjUfj+HWH2dDl090V51qZowYskmegyssXEljEtoy7s6k1MpOkZg/4IzEnjfpOpoRoZ88rAelUDhaO9npCaVzvG0hTJsqsWJHosmutjnqsFLivna0JYWlC8V8nkQ2QlH7+Qggtm5+mqCMGaNmVNWxRXo3SeFB7pdNhxWFKW7V+7KLVXq38Yth10WLvItXLzhlEi7Dk5wiNJJWKrQ1CfxdNOKQmtY32ewHr4kMPhk9598ryVURbPm1woqioMpy1UTvQr69uVMxa7tDamrgCbT7s6LrjGovD9v3lCC+DOXSFU4dlnFV5wgfe7MMFlZELZii1rFpkefYOjXLvR4eMPuWw5BfMqvfLu7bW5u8O5Cnfvdth2wOHACUkZvrCrS1KKrZZ6z2B4lQNd5iY9uwdVYEH+RVbyuQotuGD24YWOQPs8pX1elKdu8GZsd3Y67Oh02NslVFeScuYWvOpav9kS5jdbvHL/a9uUtW0ubXMnh8UYRjEwO5UZ3X0jNFYIXz3H4RPbXLb1QFs1XLvRoTpUfhd1V683ofTwISdlwajthxyec3Y05f3uJedFqJziCbGQdrWjb4A66ug8lTjIu3aHUDzBVYz7tXm5jEwoW7FlzSJnZryKU01IuHajw1d2Kq9cJixJU2ilMyvoKvzgjjA7OqfPu9rd5fCU9ZM9FCLw3HMSZ+aCLLCgsCIr+bzFEFyQWQXD6ZhbBxesdrlgtcvwGBzrkykN8Y648NPOUw6dp7xGmg3VXmXDtW0uK1snQk8No9CYnUqf+KqDjRXCZ890+MYu5cVLhLlphrzHE0Svlioc6RG2HfSqCHb3Tf+5+0eE/cckZeW/VEKrWLZ1gAHecGk9198SZnB04jPdvdvzcE0lGAuBiS4jHcpWbBnTk1wutzokfGh9+nezdA3VHY860wotQWmf53mtpiLo4mqcYoms5DEUS3CNM1tv1zjVFVN7tUYjsOto6t9z37Bw754Q9+4JURHyysqvWeSyZqFLffWshmQYRh5IVd69MiS8e41/Kufmk0MnhW0HPA/WiYGZP/N41dYN7S4tDdOXWPeLfR12+nnjpfVcf2s4Vl7e4549IVz1Jl2LGZFgosuYDhNbxuOoKsNR6B+anaFJ11AdPCH8Ydtkt0FLvddIeFWr17A2VTlwvxiAXOAHkRWPHwQX5E50pcJVuHxDlEcOey0DlNRWeiwqbD8sbD/slZVf0uyFGj5hhRIuw7Akwyh1gia0AG55JMT2GaryCsqK+V6Ri/XtLg3TTBz51b4OOf288dI6rr+lgv44wXXfXs/D9bxziyu4wESXkRoTWwbgCa2v7xjjliORrEq7j5OuoRoeg5/cHU7Iz6qpVN502Ritjan38asByJZ8i6xdXRPHX92amXgqZC+umciH6KqugEvWuFyyxmVgZCLPa9cRYXSasvL7jwt9w5KyMqZhGIWlb0z5t23DvHaFlHxOVtT1wuZTiYkNi92UYssRZVWrJ7DWLZq54XsQbOygDPCGS+u4/taKhEqz93d4OVzP94HgAhNdRiImtgwA/mPnGNfv8qoOvn+Ly2c3OTRlGOeertBShRv+HpoU7vDCzZEEoRWEG3+25FNoxYus+GWZCi7wj5cL8ufpqquCc5a7nBMrK7+3S9jR6fDI4dRl5de1uUgxSmAZhvE4o1HlnXcN8eApr5fWtRszt1nJ+M2rFXW9NhcPH/LuRy+7IMKKFPlVa9pcQo4SdYWw47U72bDYyzudqlH8OEG0s4My8LiHK/4e/UCH5+F6wWZ/CC4w0WV4mNgy+N/HhvivxyZu4HsG4NqHXb50lpOXh8q/73N4cH9i+OD5q6KsW6SBvPFnQiG9WanWBV1wQX7DCytCcHqbcnpblCvPjtJ5yuvntaNT6DzlzRxPVUq+UEhlFRXt6Venix69i8nFnQ0juKgqH7pvmAdPee939MG7H3D5/FkOrdXBztOKRL180ocPOew47DA0NvF5Hj7ksGL+5Ku5ugKesj5KU60nvKorZj5P0G3tAJ7g+u8kwfX3fZ7geuET/CO4oDxFVyZ2yu3dmceRFB8TW2VOd98IT5ov/OmIsuWUt6wuBG9ZlZnQysRQzW9Q5tYpJ2OerQVzXNat6KWjL5ORB4tC5GVNJ7Rmi98EF+SuguFUiMCiucqiuVEu3wCnBr1ww2UpWhAYhlE49p4cYe9A4nXYVAlz0hAZfmQ0Ao8dFR4+6DVqH4mktr3bDzk8a1NqEXHp2pkngYIusJLpjwmu62+toHdo4kvZsj9ERRied47/ppnKUXQZYJkHZcx4BafqWGn3c+ZCbQg+s8nh9Mb8CC2AJc3K2586xsYlUSpCykvPjxAu0fLaO7sHC+LNSldozUaQ+a2QRzwdfQN5f5BoqoXzV7mWr2UYRaS7b4SGCuHLZzuc3eQta6+BT57hUJVl3lYxvFojY7D1gMMP7wzzmRsq+OGdFWw9EJpSaIEnyk5meJsbvzeWmtAaxxNcYzTWTIjvqrByzrLiRiDMxPG+Ud94U438U7aerXJvFpmqtPu1ZzgcHIKV9fkTWo+frwL+4bwox/uj9FN6RqBQwiQb8ZRtOCH408MVTz5DDA2j0JS7nUom3m7VhYVPn+nwrd3K8xYLc7LM1yr0A68q/OTuEI8cdoi4M4+5tlJZ1+6yod3r+xdOc7KnVMVVKvp0gH+8tI7/vrWCoVF47SURljQHIwLBPF3lQdmKrXJuFpmqJwl4fUlW1qd/nNkaKRFKTmgV0vszGy9VKQsuMNFllAblbKeSSWW3Khzhradln5hTDM+CiNdSYjqhVV+lrI8JrOXzNW1vejkJrGR61Qsp7B8WlgZEaMVjoqu0KVuxVa78eNcQ587NfhZwnFwYqVIyDEERWcnHKWXBBSa6DKMUmGqC0K/0D8OOTodzlrtTlmrf0ZmooBprvCbDG9pdlrZoRsUdSsmWzoZed4DlzcG+15voKk1MbJUR/71jiK8/pqyoUz6XRWn3cTIRWq7CjVtDXLAqyrwMvGZBIohCK/54sxFc4I9eXDNhosswgsnuE8N8e6/yjyuF2nDuysvl2qvVM+gVsHj4kMO+Y16j9PkNYykL6qxtc3FEmVPL4wKrfZ4JrFzQ0TeQ8j4/GoHbdoa4dF007VDMYmKiq7QwsVUm/M9OT2gB7B2Aq7d4ZXLnztLDNRO37XS447EQ9+91eO45UTYt9ZJWS8FQFLpgRL6qDc5GcEFwvFyQ/wqGhmHkjpGo8oltLtt64JFe5dMbHZqrZm+zciW0Tg545dgfPuhw4MTkJ/iHDzksa5lcEa+mEv7pGWPMq/PCCtOlFOxmIUgWXKMR+N7fwuztdug8JbzsguAU5TLRVRoEQN8bs+Vo7zC3dSfOrh0eggNZPLtnYqQOHBf+/LB3RxuJCD+9J8zfHnUCbzAKUWEwmXyWdc/F8f1cqXAqSrlCl2EEHVeVD9w7zLYe7/3ufnjXAy6dQ8XNxznWB7fscPjGn8N86feV3Lg1nFJogSe2dIrhNtenL7TsXpU5499XvNACL7zzh3eFifivKvy0WPXCYGOerRKnu28ER4RPnuHwiW0uD5yECoFPnOFwZlNmM4SZXOhDo/Dju8O4OnGO2kpl4xKXE5GMTusbiiEo8i2yks9VLh6ueCzE0DD8x/5TI3QOJyqVhdXQPMsJ/mwfWI/3w0/vCXNwCmGVTFuTFx4YdcnKi2LiavZ09A3QXFFH31Dis87OTocf3Bnm5RdGqAiIh2sc83QFE/NslTDxScXVIU9wXdgMHz/D4QnN+RNaqvCrB0KcGkw8xws3RzgRCZ4BKYYnCwortHJ1ziB6uMax2WPD8AfdfSPUhYUvnOVwfrO3bEmtZ7sqs+ylBdkLLVfhJ3fPLLQWz3N5xsYI733mKG9/aoTL1rkZC61yvA/l024cHxvgDZeO0dKQKNwfPeLwgzvCjAXMwzWOebqChXm2SpRU1ZuqQsInznCQTILEydxA3d/hsO1gooW5cHWU6ob+jI5TbIopHIohtOLPXY4ernHM02UYxSPedtWEhE9scPh2h/KsNqGxojhl3h864HDo5GShJShLW7wqguvbXZqyvO2Vm7gaJ97G5tNunIgM8MYn1XH9rRV09038hh476vC/d4R55UXB83CNY56uYGBiqwQ50jtMaApBlW+h1dULv92SeNdqa3J5xsYoBwPi9ChXkRVPuQsuMNFlGIUm1SRhyBHeuDK/hZxm4oGORKG1oNHlvFUu6xe5NNRkd8xyFVjjpLKz+bQbxyNeH67rbw3T1Tvx99x11OH7f/MEV2WAn4hNdPkbCyMsMf5v9zDvvN/l1Ojsk4gzFVpjUS/UYiw6YRgrQso/nB/h4GAwDIsJrQnKOaQwnvGwnnJ/ODKMfJLPXlqzDbd69cURnr0pQk2l4ojyiosinL8qO6FV7veSYoXlAxwbG+ANT4rQ2ugmLN/d5Qmu0YDmk8djoYX+xMRWCfHzPcP863aXXf1eafeTORBcmXDT1hBHehJ/Us85O8oA/jcsxTQAkB+h1XGkl44jvbM6Ri4EV6mILrAHJcPIB7tPDPOlHS59Y7m3Wbl4+Aw7cOFpLu995hgvvzBCc4Y9I23CxiMdW5Bve3FsbIA3XhphwZxEwbWn2+F7JSS4THT5i7IVWyJypYhc19PTU+yh5IQ/H/CE1vjtY98gfOBBl4ibnfHK9EJ95LBw1+7E8MEzl0Q5Z5k7xR7+oNhiYFfXYN6EVqr/Z0MuxldKgsswCkWp2alUHDw1zMcecrnpiPKev7scHS5uaffpqKmEdYvSH58JLI9M7Wy+7UX3qOfhWpgkuPZ2O3z39jAjJSC4DH9RtmJLVW9Q1avmzJlT7KHMmu6+EdY0wFlNE8sE+IclQjiTlvQxMhVaPYPw8/sSg53n1inPPSfKvn5/GppiiyzIX9hgKnFlgsswgkcp2alUuKp87hGX7bHb0/5B+KcHXA4N5kZwFWN237xYiWR738+3vairgjc8KUJbU6Lg6jjm8NO7A5y8ZfiSshVbpcJ4nHtVrLT75nme0HrfWuGpCzP/82ZqnFz1eo8MjU6IOkeUfzgvwpFh/xkbP4gsKKzQSmddOpjgKl1E5GYR0SleF4pIm4h8QUQeFJF+ETkgIt8RkUXFHrsRXA6cGuFkkslZUgvzq2d/7EIKLRNYk/GLrZ2Kjr4Baqvg9UmCq7pCefK6gNaDL3GCbKdMbAWY5ITiylhp93850+HpBRBa4BXFqE0qfvPUDVGilf4q8+6XG3++wgYhPTFlgsuYgrcBFya9/ggcA+4FzgVeAPwQuBK4GjgfuENEMsxgMQzPftWGhc9tcnjSfG+yblktfHyDQ2UWERnxzFZodXQLt+xwZuzBZAIrNbm6x+fbVnT0DVBb6QmuRXNdqsLK6y6J0D7Pv6GsZU5g7ZT5SgPKVJWbKh1h87zMj5etcaoKw8svjHDPHoffPxhiWYty8RqX/T7RWn56sC+myMolsy0LD6VRGr6UUNXt8e9FpBLYDPxYVSMicjuwVlUjcds8AOwEXgR8p5DjNYJNvP2qDAkfXg/L9sEzFgr1s+illQtchd9tDXH4pMM9u5WnnRHlzKUu4/rPxNXU5MPe5ttWdPQNsLyhjtdfEuHkgLBorgktvxJkO2WerQDy1wPDOSntPs5sZwFF4PxVLm+5PMKLz4uw3yd5Wia0crdPMubhKnmeCczFmyFEVU/FG7DYskeBQaDoIRpGcEg1UeiI8OrlDq3Vsxdas7VnWw84HI41MO4ZEn52b5jOU964TGhNTT7v54XwcNVUYkIreATGTpnYChh/2j/Mh7a6RSntPhML5yjHx4pvjPwSMgjFDxvMx77jmOAqaV4GHARum2oDETkTqAUeLdSgjGCTz15aMHuhNRaFP25LrKq7od2l3R7Cp6UU7uPTCemRMfj1AyGGrJq63wiMnbIwwgDx5wPDXPOQy4jrlXa/eovL5zc5zKvKfjawlHox+O2Gn88mxbkQSx1Helm+sHFWx8hVSCFgYYVpEq4I09zWnPb2x+uqGYPnisi/xS2+TlWvS7W9iNQCzwX+U1VTPmWKiAP8G/AY8Ou0B2OULY8eH+abu5S3rhaaKosbKjgVdzzm0DM4MbaQKE/f6E2Um1drMoW0uYUIPR8PKYxnJALf/VuYfcccDp4QXvekyKQ8dSM1mdipnkO1jMLlInJ13OKSsVPm2QoI3X0j/PKgJ7TG2T8I957IfsYtG6F1tEd4+FBqQ1ksY+QnT9Y4fhdauTxWrj6r3/6GJcavVXVz3CulAYtxJVBHLDRjCj6Dl5z8alUdy+VAjdLjQKyX1l+7lHfnsLR7PLOdOBwYgVt3JHq1zl/tZtzAuFwoxv26EOeMf44ZjcD3bveEFsDhUw7/c2uYwfw6aMuZP5eqnTKxFQDGQy8+uM5JKH7xppXCM9qy+xNmW3nwx3eH+OGdFfz6gVBCpaZiCC2/iqygCK1cHtMEV0nxMmCXqt6XaqWIvA2vytNrVfXugo7MCBxHeof5zHaXnX3e+8PD8O6/u+wf8E/eMcBftocYiUxMJNZUKJfFSoCbV2uCYtvdQgouVUj+lXaecrj+1jADJriKTaDslIktn5NctekTZzicPw/esEJ4ydLCCS2A3z8YoqvXO+c9e0L8x5/DDBdhrqDYN/upyKfIgsJXHcwUE1zBR0TmAFcwxWyhiLwI+BrwflX9cSHHZgSP7r4RRqMwnFRCfWU9tNXk5hy5EFrdvXDvnkR7etm6qIWLJVFO9+aOvgGqKuA1F0dY3pLY+PhIj+fhMsFVHIJop0xs+ZhUycSVjvCJjQ4vW1ZYofXwIeGePYkhFoualOqKws36+VVkQfCFVq6Ob4Ir8LwAqCKFERORy4D/Bb6mql8s7LCMoFITFj59psNTF3heo5V18LENDhWz7KWVS256KIyrE+OZW6ecv8p7wDavlv9sb6HG0tE3QFXYE1wr5k8WXNffEqZ/uCBDMRIJnJ0yseVTunqnvoJDkp2RylZonRqEX9yXWEuluV658uxoQYWWH8l32CAUzqNlgsvAC814UFUfiV8oIuuAXwI7gB+LyAVxr1VFGKfhc+InCysc4eq1wj+uFD610aEunBuhlQuv1p4uYUdn4qPQMzZGCIem2KHM8Ot9uJCCqzIMr35ihJVJgutorxdSaIKr4ATOTpnY8iF3dQ7zzz4p7R514ad3hxkeS6zQ9A/nR6iqyP/5/TajFk8hRFahQwdNcJUvItICXA78KMXq84E5wCbgDuDOuNdHCzVGIxikisoQEf5hqcP8HPTSgtwILVfhxq2Jqmpps8uGds/2lrNXy8+2d5xCC65XPTHCqtZEwdXV6/Dft1TQZ4KrIATVTpnY8hl3dw7zgS0uD/XAP29xOT6SG8GVrWG6+ZEQ+44n/kyevjFK+1zNqyHy+42+VLxZ+Ty3Ca5goarHVLVCVT+bYt23VVWmeL2uCMM1fEq+e2nlkq37HQ6fSrRvV5wZJcvgkZLB7rmTmU5wdfcJ199SQd9QkQZXRgTVTpnY8hFbjg7zgQddemP9rw/Eemn1j81OcGUrtPZ2Czc/kvgTOW2By4WnuXkTWkEQWaUstHI9hlwKLj//LgzD8HppfXJbNGeThFORC69WqgbGZyyOsqS5fL1aQbzPFnK8HX0DVIQ8wXXagsmC679vqaDXBJeRgrIVWyJypYhc19PTU+yhAN5s4PwqOK0hcfn5zULdLFpPZ2uUBkfgp/eEUSam+OqrlBc9IcL+/twboSDc5PMtssAfQivX5PJ78/tvxDByid/s1HTsPzXMRx9y+dsx+KcHXDpyWNo9nlwILfBC5Ne1uzjijTPkKE8/IzrDXqVLkO+txRBcr7gowukLEwXXsX7hh3eGSd1i1yhnylZsqeoNqnrVnDlzij2Ux8Mu4ku7A7ygXbhqlSAFLoihCj+/L0zvUOJ5X3xehPrqrA4ZeMpRaOVyPCa4DCNz/GSnpuNIzzD/ut3l0Vgvra4ReE8eBFeuhBZAdQU856wo73r6GOsWuVywymVerIFxOXm1gjDRmQ5FEVwXRlgTJ7iqK7zCYeUehmpMpmzFll9Ijm+vdISPnuHwntOFt6wuvNACuHu3M6k60yVroqxekJ88LT/f6AsRNgj+E1rjmOAyDGM6uvtGGFMmdX9d1wiLc9RLK5+0NMArL4rwjDPLz6tl99Hs6egbIByCl18YYW2bS3WF8vonRVg019xaxmRMbBWRqRKJKx3hikVOUYRW5ymZVJ1p8VyXp24oXJl3v1AIkQX+FVrjmOAyDCMV4zasOhaV8ew2z2atrodrNjiEc9hLK5derVSMD7Vc7Fwp3j8L/ZnGBdfLLoxw1ZPHaDehZUyBia0isbVrmBN5TiLOhqM9khBvXBX2yryH8vRL8esN34RWIia4DMOIJ3myMOQI7zpdePtqr5dWbY56aUH+hVY5USphg1NRFMHlQGtjQU9rBAwTW0Vga5fXR+vqB3NX2n2c2Rqls5a5vPkpEZrrvXE995wo8+rLZ7avkGGDQRFa45jgMgxjOkSE5y12aK7yZ9LKwAjTFi8odTtXLvfKYgiuqRgegx/dFeJEaf+0jBlIu86diPwky3O8X1U7sty35NjWPcz7t7h0xyYFr97i8oWzcmOccjX7t2iu8ranjrHtgMOmpfkt8+4nSs2bdeiQd572dn9Oue3qGmR1a21OjrWze5A183NzLMMwpqeQvbRyZddchW/fFibswBWboixt9l9kSb7wm60tRTr6BljeUJewbGQMvnNbmAMnHA6ccHjjk8YeL8JilBeZeLZeDKwC5qf5agVeBMzL4XgDTXffCD/apxyNs1MHh+CXB2d/0891mEVVGM5d4c68YYlQqkIr+f+zJdfjz7WHyx4qDCO/7Dg2zEe2Rukazr9YyaVde3C/Q+cp76H3ur9W8KO7QkTjTFyperXK9Z5YjM8d/xsajcB3bveEFkDPoNeH63h/wYdl+IBMOzi9VVXvSWdDEQkDFmgdY3wm8K2nCcdGlbuPe8uf3Cq8buXsvFr5jGcvda9WoUQWBCc/ayY6jvSyfGHuvGW59HCBebkMI1/sOznMNQ+57O6Hdz3g8umNDqsb8hMymEu7NhqZ3MBYIG+5yH7ALza2mBTDFox7uEIONNUq+49PrOsZ8gTXGy8do9k8XGVFJreaTwIHM9g+GtvncEYjKkHiQy4qHeFjGxwubIZL5wvvXyuEZtGUYbYGaWenEJmi4m2pzvSNU6pCK5UnK5feLfC3hwvsQcMwck1nzzCfftgTWgAnRuF9W1z29Ps/HO+Ox5yEvpEhR3naxgnDV2q2zu5/ExTLwxVy4EVPiLJpaeIDVu+Q8K2bKzjWV/BhGUUkbbGlqp9U1bSFk3p8UlWPZDe00iBVbHuFI1yzweED64RQDkvjZsruLuH7fwvzn38NF/TC94MhKCehlc66bDDBZRjlQXffCK5CTVIszJlNsCwPjoNcerX6h+HWnYlerQtXu8yrm2KHAGOh1P4hXnCdtSxRcPUNex6ubhNcZUMJO9GLz3RJxBWOzLoHyWwM0sAI/OyeMIrQecrhG3+q4KEDEz+HUpvpG6dQ1QbH8YvQyhcmuAyjtBm3Y5Uh4SPrHV602LNbp9XDh9c7OZ8wzHVY/J+3hxiNTIyxplK5dG3pebXsXjc1xfpuOvoGcAReuDnK2VMIrq7SyC4wZmBWYktErsvVQEqNR48Pc+22aM5Lu48zG4OkCj+/N0zf8IQBGotCXZU31nwan2IahEKKLPCn0CqGIMsUE1yG4Q+SJwwdEd682uE9a7xeWjUhf5Z4H6erF+7bk/iY85R1UWoqizSgPGDerPQotuB6weYo5yxPFFz9w8L1JrjKgtl6tp6Zk1GUGLuOD/PBB11uP+aVdj/ms15ad+5y2Hkk8U//pLUuK1u1ZGb5kim0N8uPQivb7WciH5/VBJdhFJfpIjOuaHOYl4deWrn2at241YveGKe5XnnCqokShEG3d3Zfy4xifl+OwPPPjbJ5RZLgGvE8XEd7/D1xYcyOGasRisgU5RMQwP+ZsQVmz4lhPvCgy97YPfzgEPzzFpcv+aSX1uGTwk0PJcavL5nn8pT1U/2Zc0cxbnSl7M0C/3iqcl2hEKxK4VRUVIQy6p02Ul+JpQYYfifXQmvXUeHRpEnFZ2yMEC6R5AkTWsFhvEKhI/Dcc6I4AvfsmXgOGxgRrr81zOufFGHhnNJ5rM7ETumj1ZzM41iKTTq3nU5goaqGkl4OVmkwge6+EapC0FqduHxRNTRkWmQ/BbM1RiMR+MndYaLuhOirrlD+4fwIISf4s3zJmNDKz75TERQPlz2kGMb0bO8e5uotUQ4NFubBL9dCy1W4cWvipOKyFpd1iyY+T1Dtnd3DZkcxwwnB83BdeXaU81clTnAPjAg/viuMWzpay4gjHbH1a2DNFOtuzOFYAs3jScSO8NFYaXeAs+fCx89wqJxlbHsujNEfHgpxrD9xHM8/N8LcuvwbnkLf4ExoFeYYyQRBcIHNChvGVBztHebah10ePAXv/rvLIz3Be/rbut/hSE/i480VZ0aZRZcVX2D3rdxQbMElAs85K8oFcYKrptKb+C5igWojj8zob1HVt02z7k25HU5pUBETXD/er7xoiVDlgyTi4TG4f2+i8dm8IsoZi4NnSKej1EUW+Cd00DCM0qK7b4RjI7AzFnfaMwb/9HeXb5wbjObF42w9kGjrzlwSZfG84Hq1TGSVDuMhhSLw7LO8CYAt+xze8KQIbU2l9TxmTJCD4DYjFWFHeOXy4ouscR4+5BCJCx+cU6s8a5M3qxJkr1ahxRWYwDIMo3QZcScvW1Ff+HFki6uw/3ii7X3S2hQfKgCYyCptROBZm6I88fQoTcFPJzamIWOxJSLfU9VX52MwRmpyMfP34L7Emb6zl7lUBlRqm8AyDMPIDw4wtwJcPOGyqAZCAYq/G4vCpqUu+44JR3uE6gpobQyex8CEVnkgggmtMiCbx+1n5HwURl7pGYS93YnGctPS/FcfhNwYjGKIKzCBZRhG+dFeK/z4iaGZN/QpVWGvAAF44fMn+iUhD8bvIYQmsvJPMavSLm+oK9q5jeIRUN+GkQlbDzgJvUba57rMb/D+71fDU04CC4onsg4d6s2oPKthGEZQqK6ARXOD4dUykWUYpUvZii0RuRK4cvXq1bM+VnffCLd3K7d0KQ0VXpn3s+cKZ831R+jFnq7EEMJNSwsTv56p8TCBZRiGMUEu7ZThT0xklS8jY3DrzhCrWl2WNivh4DqUjRkoW7GlqjcAN2zevDknFRV39Su3dE/MoIUdciK2cpGv9eqLI+w7JmzZ7/DIIYczl3hiK59eLT8LrWKJKygPgZWPBseGUY7k2k75jXxUIgwSJrQKj59CCPd2C7fsCHHLjhAVIWXTUpfnn1uYFA+jsJSt2Mo1fWOJ73PRxDhXOAIr5isr5kd57tlRQul0VysghRBaJrAMwzDKG7+EzZvIMiAx6mgsKr57NjNyRzaS4EDOR1EC9EUS3zdUFGccM1GIi9kvhsQElmEUFxH5SZa7vl9VO3I5FqP06eqF2kqory72SFLjF9to+IPdXYnRT6tag9miIOgUwk5lLLZU9dyMh1MGvGixcH6z5+Hqi8Dqen/ka02FX2b4cu3VMoFlGL7ixcDfgXQvDgEuAT4LdORpTMY0dA0rNx1RHLyoiNZquHxBMKbcf/1AmI5jDs31ypJmlyevi9Lsgx5hJrL8QTFDCJPpG4ajvRPXlaCsmB+MYi4lSN7tVE6D3USkSVVP5fKYQWFNo7Cm0d8CqxAUw6gUU2CBiSzDmIG3quo96WwoImGgvBN5isyRYfhex8RD3xlz4PIFRRxQmkRdOHjCs8HH+4Xj/SEuX1/8/BcTWgZMztdKLlzWPlepqSzkiIwk8mqnshJbIvJWoEFVPx97fxbwG6BNRLYAz1PVg9kc25hgNsnDkajX3DHVxVsKXi0TWIYRCD4JZGILorF9DudnOMZMuEmT68HwaUHnKSHiTkx4NlRrQrPYQts9E1nGdCSHEK5sNa9WEcm7ncrWs/VO4N/j3v977KT/DHwAz7X2qiyPbeSAHZ3Cz+4Js6ZN2bQ0yukL819WNBPjko3QMoFlGMFCVT+Z4faKZ8SMIpH8yOcEJGBj//HEgS5tVqQIYzeR5U/8FEKoCruPJk5jrFpg+VrFohB2KluxtRTYCSAi84EnAper6s0iMgp8PcvjGjniwf0hIq7w8CHh4UMOTzwtyhWb8hdSkS8DYwLLMEoTETkDuBQv/v0WVX2oyEMygAXV8MplgqvgAm0+LTaRzGSxVdiHVxNZRroc74eeoYnfa9hRljabZ8uP5MpOZRshMAKMB6g9GRgEbou9PwE0ZXlcIwcMjsKjnYmGZ2MBemuly0xerY4jvY+/isGhQ72Pv8qBcvmcxtSIyOtERFO83jLF9l+Jrf9ilud7K3ArcBnwLOAeEXlb1h/AyBmLaoTXrnB4/UqHN650eNai/AQS5rrH1v7jieMs5MOrCS1jOmbK11rWolRYQ+MZCbKdytazdQ/wdhE5CLwLuFFVx90mKymzePtRV+kb83prVYZyE7cwG0O07aBDVCfG0VKvtM/Nn+HJhaEptgcLTHQYBvAUYCju/Z7kDURkPfBG0qjcJCK1qprqBvEB4EJVHY+QeCNwLfCNbAZtlDenBqE3yVPQFmfz8jXJaCIrGPgphBBgd5LYspLvGRM4O5Wt2HofcAPwEF7frTfErXsp8LcsjxtI9vTDux7wLpYqBzbOgX/dVLxpigf3JV7IZy6NIhIMr1ahMYFlGAncq6r9M2zzNeDfgFencbxHReQDqvq/ScsFL0ptHHvaMLIm2avVPk8J57Gyh4ksI1tchT2T+mtZCGGGBM5OZSW2VHU7sEpEmoETsWSxcf4ZOJLtgIJI39jE/0dcr0xJsTg5APuSDM+mpfl7jgmiV8sElmFkh4i8GFgLPJf0jNgrgK+KyDuBd8WV1v08cJeI/BmoBS4H3p+HIRtlQKriGPnChJaRCckhhJ2nhKGxid9rTUWiF9aYPX60U7Pts9UCbBKR5BTaJcDvZnnswNAXSbxQGsPFK9/04P5EobVknuuLpo5QXK+WCSwjHr+FlfiI3bFJtN3Al1X1P8dXiEgN8CXgg6o6IGmUelPVW0XkXLxwjl+JyB+BD6jq/xOR2/ESjwGuUdUtOf4sRplQqOIYJrSCh9/u9buPJv5WV7RqXip+NjeUdNOuwNmpbPtsbQR+CKzDc7Mlo0DZpPsp0FQBfRGIKjRUFGkc6lUhjOesZfkrjJGLUu/59GqZwDJKkaqKEMsXNqa9/bHaSjrhuSLyb3GLr1PV6+LedwIfxcvHDQEvA74Zi2X/SmybD8W2+34m441FPnxLRH4SO8c2Efky8EVVfTCTYxlGMqMROHJqas+WH8LnDWOcoVEh7OjjPeFKOV8rEzs10FDFPrhcRK6OW1wydipbz9b1wBjwHGAXGXZSLjUuX+Bw+QJQVYaik/uUZEq2xTE6TwndfRNGxxHljMXlNcNnAsswUvJrVf3AVCtV9SbgprhFv49FLFwTE2nL8ELEn5wUNp42qtoLXC0i/4k387hDRK5W1Z9lczwjP9xxTPnaoy6OeOWKL2gR3n6af1sbHzwhuHEFoZrrlbqqIg7IMKbhGWdGecqGKPuOCXu6HE5bWLpiKwv+rKpXTbUyyHYqW7G1DnhR7IMbMUSE2tkGZs6C5BDC0xZ6RqfYM3uF8GqZyDKMnPMz4B+A5cBngN8DO0WkKbbeAapi73tSGTcRqQU+DDwNr13IvcC1qvo8EXka8OW4OHnzcvmA4ahyPG6+r3ds6m39QLH7axn+pdghhMn5WuNUhGD1AmX1gmJm+JcMgbBT2U5X3YPX2NjwCa7CgwcS/5xn5akwhl+8WuXWD8swCozG/bsGeCFwMu61BHhH7P/tUxzjv4Er8WYIPwosBP4oIqKqfwQ2AT+NLbtuimMYBcRNehTJRwZyLntsHShQfy2/2D3DMBIIhJ3K1g9zFfBDERkE/gqcSt5gipr1Rp7Y0yX0D0+Yxaqwsqat+DN8ufZqmbAyjILxYuAYsA/4RyC51M6PgFuA/wC6pzjGFcBLYgYLEfkbcBxYBexSVRf4uoj8APh4zj+BkTHJViMfyfu55Gkbo5ze5rL/uLD/uGP5WkbZU+LFMZIJhJ3KVmwdAzqA706zTdkUyMgl2c74JYcQrm93qQzn3tjkoihGppjAMoz8IiL/hxexsBXv3v3S2OtdMUNzX4p9hoEDqnrzNIfeAbxaRO4HhoE3AwPAwfiNVPUE8E+z/yTGbHnSfOHsJkHxCj5V+9ySL5yjLJyjnL8Kitt4xfATfg0hNLInyHYqW7H1feBC4IuUeYGM7r6RYg8BV+HgicL11pot6Xi1TGAVlkOHemlvT79ykFFy7MRrTr8EL3JsO/AaVf3eLI/7WuDbeBN0ijdJ9xJVHZ7lcY08UR0S3wsswwgaoxEvVyuNSuTG1ATWTmUrtp4MvElVf5CrgQSZ7+51qXCgIeyVfb+oRagoYOyFI/DOp4+xt1t4cL/DgeMOK1s1kF4tE1mGUXhU9cN4CcKZ7LM8jW12AheKSB1QqaonsxuhYRQPy9cyZssfHgqx7aDDylaXVa1emkd9codaY1qCbKeyFVsdgN198Mq9/3C/Eo3Lyb3hksJPXTgCq1qVVa1RXI3mPM4+V8ZmKq+WiSzDKF1UdQAvLMMwCoLla5UvxQ4hTMXuLof+EWHrgRBbD8CrLhpj7aL8FHMxsiOfdirbaoRXAx8RkeU5HEsgGY6SILQqHagKFddPXOyE5lzlahnBJZ/Nqo3gICLvEpHWLPZpydeYDMMw8klyvlbvEJN6oC6fnx+hVWbFMXJCIexUtp6tT+KVfn9URDpIXY3wvCyPHSj6IonvG2bRZyuX5XBzOauXq/BB82oZRtnxFeBOoCudjUUkFNvndrz4ecNIycETwq6jwtJmZfE8pbKIPS4NYzp2dyX6NRbPU6orijQYIxV5t1PZ3p62xV5lT3UI3rBC6I94wqs6W19hiWOeDsMoSwT4jIicyGB7o4h0Din7B70/hCOwoBqW1Obuz5KrScVHDjvcssOr5OGIcvmGKJeuzX1hKMvXCha+DCE8mnj9rGy18EGfkXc7lZXYUtXXZ7NfKdJYIbxsWXGeD4ZGvco2+ZwhyXdRDPNqGUZJcyteid75Ge7Tl5/hGDPxt2PKdbsnHgZfuFh4y2r/aeD9xyfG5KowJ+4Z2/K1DL+gOtmztarVv9Wiy5S82ylzvAeYO3c53LojxNpFLmctdVm9UAk7/jM05tUyjPJEVS8r9hiMzHCTJt2LnQOciqjrhRHGs7TZHmCN4pOcr9XdB33DE7/VipCypNk8W36iEHYq7aA3S3TOL5mGVqjCg/tDRFxh28EQ37+jgi37chvDWIwGxoZhGEbxmCS2ijOMaTnSI4xFJx5g66uVuXmIHrMQwmDhxxDCPUlereUt3qR4PrDiGP4lE8+WJTr7iEMnheP9E8Ym5Cgb2t2cebXyXRQDLITQMAzDb7TVwHnzPNHlAu3+e35NCCEEWNqs1izW8CUWQmhAZmLLEp19xJb9iRfwmoVKTSUwUpzxGIZhGMHn0laHSzOKYSk8+49NHULotzB6o3xIDiGMurC3O/G3umqBhRCWI5mILUt09glRFx46kCi2Ni2N5uz45tUqTw4d6qW9vbHYwzAMw5iW/ccT7d9Sy4Epe/wYQnj4pDA8NiG2aiuVBXPst1qOpC22/JzoLCKr8RotXwhsAG4r1Hj/5WGXLaeU+rDXY+sfVzmc2ZSZUy/TfK3dR4WBkYlzVFcop7epzegZRhr40SgbhpEepwahZ2jC/oUdZVFT7h9gLV/LmC27u5JLvru+LDhj5J9SqUa4AXgWcBdQ0FZxp8aUnjHoGfPeRwoQjpscQrhhsUtFKDfHNq+WYRj5JlZsqVZVO4o9FqNw5KLH1oEkr9aiuUo4Zv9swtHwE5PztfLn1bLiGLknl3bKj4WGsuEGVV2iqi8BHi7kifvGEt835FnqjUS8Zo7xnLU0d4Ux0sWqDxqGMQu+ClyQvFBEVohITeGHYwSFVMUxjPLGD9EKyflao5HJv1UrjhE4vkqO7FRJiC1VLdovuDeS+L4hz77CRw45CSVv59Qoy1pyY2xyFTZhXi3DMGZgg6r+KMXyM4D/KvRgjOAwWWzZA6zhP0TghZujnLs8SlOtMrdOmVdf7FEZGZIzO1UqYYRF49vnO/SPQV8E+iPQXJXf8z2YFEJ45tLcxABbTy3DMApIyidkVb1BRL5Q6MEYE9zY6XLnMa+UugM8baHDhS3+SDQZjUDnqfx7tixfy5gtFSHYtNRl01JQjTI0NvM+hu/ImZ0qS7ElIlcBVwEsXbp0VseqdIR5VTAvS5GVSQx73zDsOppoaIoRQjgd2Xq1jncef/z/zW3NOR2TYZQSVWGH1a3ph808VlvQNNZ06RGRDaqaKux7uOCj8SG5tFOZsHcA7py4HbN+juKXTi6HTgquToxlXp1SX+3930920CgcfgwhTEYEasswpSoTO3W03pdfUM7sVFZhhCLyMRFZNMW6NhH5WDbHLRSqep2qblbVzfPnZ1LJvrg8dMBB44zewjluTsqI+s2rdbzzeIL4Mgyj5LgW+LmInB+/UERWAjYHTPHslCaZlJA/dBYAJ/oFRyYGaCGEhmHkkZzZqWw9Wx8HbgQOp1i3KLb+2iyPbUxBcgjhpgJ7tWYSWrnO1RoXXObpMozSQlX/IiLvBX4pIvuA+/H6OF4JvLWogytz3CSx5SOtxbkrXDYucTl0Uth/XGiznkWGYZUI80Qu7VS2YkuAqe5yi4GTWR43UHT3jRTsXIOjib1FBOXMJS4nZ9nLuBBFMWZiJi+WiS7DKD1U9bcisgJ4HnAm0A88U1UfKu7IyptnLRLOmSe46gmvVT5L6q8Mw4r5yor5+RFalq8VHPwQQmiUNrmyU2mLLRF5LfDauEX/ISLJT9jVwEbgD5kMolzJJF+rthLe/+wx9nQJW/Y7jIwJc2rhZF8eBxjHbMIHc1WB0ERX/jl0qJf29sZiD8MocUTkw8AWYIuq/hj4cXFHZIyzsl5YmQeBlYseW1Nh+VpGsUiVr/WX7Q6LmpTl85VqX6bMGumQSzuViWdrEIh3QfQAJ5K2GQV+D3wj2wFlg4jU4jU1BmgHGkXkxbH3v1PVSUpBRK4Erly9enXW5903oDzWpzRUCA1hWFANzVX5C7pwBFYvUFYviKI6ewMTBK/WdPuY6DKMwNIAvBM4S0Qc4EFiRg3PsG0v3tD8Qy7slGEYhePkAPxlu/do7YiytFl5w6WRnFSNNgpOzuxUJmLrCuD9qrpXRPYC7/ZRuEcr8NOkZePvVwAdyTuo6g3ADZs3b35Ttie974Tyn7uV8YjK57cLbzutMFeUzPI0hSqKkc++Wia6DCOYqOqHxv8vIguAs4BNwPvxoiNCxRmZv8iFnTKMUsSvIYR7uiZy610VFDWhFVByaacyqUb4WmC8JNIyIKPuyflEVTtUVaZ4deTrvH3JDY0L6C72S9jEbLxaucKqFxpGMBERAU4Hnga8ARgAPjTtToaRJyxfy5gtu7sSldWq1vxWzLTiGPknF3YqE89WJ3CZiIy7zapj4XspSRW6V2r0JRV+rA9I1zK/lHrPtUAyT5e/6DjSy/KFlv9lTEZEXgA8F3gy8ABwA/A5Ve0u6sAMXzI0Ct/4cwVL5rksbVaWtShtTV5EiV8mHo3yIzlfSzXRswWwqtUqZgaVXNqpTOTBdcBngc/gxc39dYbtSz4MZE0D9LcKfWNKXwQWVKfvK043WfjUINRUQFURkixnU+od8htCOB3HO4+b4DIMf/N/wH3AB4C7VHVfkcdjxOgbU8ZcL0fYEagJQUWR46AOHBdODggnB0JsPQAL5ri882mRmXc0ShK/hhB29Qr9IxPXSmVYWTzPxFaAyZmdSltsqeq1IvJbYB3wXeDTwO5sT1wKPL3N4elt+T3HjVtD7Ox0WLfIZdNSl9ULlAMD2c/k+SVMIt9hf+blMgxf80K82PeXAZ8VkTnAVrzE4wdV9X+KOLay5muPKTd3TTwgfmid8OQFxRVb+48neguWNef+AdYvttEILskhhCtalFAmyTqG38iZncoo8E1V7wfuF5HLgf9R1b2Z7G9kxvAY7DjsEHGFrQdCbD0Q4k2XjUFV/s8dVK9WMia6DMN/qOovgV+Ov48ZsbNir0sAE1tFYlJTYx8k9+8/njiIJXkQW4aRCalKvu9ODiFckN98LSO/5NJOZZVlpKqvz2Y/PxGEkroPH/KE1jhNtYpb2U+2tq+cZ+5MdBmGvxCRDcBzgLnATuDXqnpLcUflL4php1xNFDJO1hZngtn02Iq6cPBE4hiWNnsPsZavVX74NYQw6sLe7sTf6co852tZcYz8kys7lbWDU0ReKiJ/EpH9ItKV/Mr2uIVCVW9Q1avmzJlT8HOna3ge3Jf45zlrqZv1LGMui2LM1qtVzMqBVrmwvMmFoU41o2lkhog8A/gLsAqvsu2LgcdE5KqiDsxnFMNO1YWFpgqYUwENYagochjU0R5hNDph+OqqlHl2CRo+49AJYTSS+Dtd0Gge2CCTSzuVlWdLRF4BXA98G3hK7P8OXtWOU3g5XcYs6BmcPEuyaWmUfM/j5bP6oJ8wT5dhFJUPA09X1QfHF4jIacAPRWSfqt5UvKGVN+9b668kk+QQwqXNmvPQxnKO+jByw64UJd/9EIJrzIqc2als76pXA58C3h57/w1VfQNeA+FjgN25ZsnWAw4aF76xaK7LgGQntXJpSILs1UqFebom45d8O6OkmRNvwABU9THg1cC7izIiw5dMFluWB1Ou+CWEMFV0g5V8L0lyZqey7Qx1GvA3VY2KSBRojA2iT0Q+B3wF+GKWxw4Ehwdd3nVflIaw18x4cY3w+pW5mxF8cP/kEMJ8Uy5erVSYp8swCkrKG5qqPiIi8ws9GMO/JFciXNps/bUMfzEa8doTxLMyz82MjYKQMzuVrTroZaIm3iG8cvDjCFDyT6wnRpTd/bDlFNzWDfeeyN0sxpEe4UjPxJ9GUJrm9md1LD95tYKAebqMckREXiwid4jIcREZFpGdInKNiFQmbbdRRH4jIj0i0ici94jIuVmccqmIXBs77+kiFnBjTKZ3CE4NTvw0Qo6yaK55DAx/0XFMiOrE77S5Xpmb57zCciyOEWQ7la1n617gTOAm4NfAx0QkAowCHwPuynZAQaF3LPF9Q5pNh9MpjpHs1Vq9QKmtyq+BmW1RjHQIkogxT5dRZjTjJQJ/AS/v9jzgE8BC4B0AInIWcBvwK+Clsf2egJc4nClvxCuf+8rYOeeLyCN4PUwWZfUJjJIjOYRwUZNSEcrtOSxfKxj4OYSwb1iorlCGx7zfq3m18kZg7VS2YuszwLLY/z8W+/9/4HnK7gXenOVxC8ZsS+r2jCWKn8ZwbiZmXYWtSWJrU5YhhOkakVyED5aCVysVJrqMckBV/zNp0V9FpBF4u4i8U1UV+CZwg6q+Km67G7M85Z14TSE/CZP6l/irQkMRCUKLknwyVQihYfiJc5e7nLXU5fBJYXeXsKzFfqf5IMh2KmOxJSIVQAhPOaKqp4DniUgVUKWqgXjqVtUbgBs2b978pmz2v7g1xNfPceiNQN+Y0lyVG7G175jQMzRxrIqQUtfYl5NjZ0u5ebVSYaLLKEOOA5UAIrIeOB94T46O/VW8qIgOAFXtAW4RkQPAdTk6R+CZrZ3Khps6XbpHwBEvJ+DyBUJrdfb2bTY9tiYVx2ix/lqGPwk5XrNta7hdcAJhp7LxbEXx3HhXAIfHF6rqCDCSxfECSUOFcHrjuCHIXbrBliSv1rpFLhVZ/JWC5tUaO7Tr8f9XtPt3FtdEl1HKiEgILx/3HOBdwH+oqorI+bFN5orIg8AGYB/wr6r631mcaoOqviLVcuBa4FUp1hkF4KYjyraeifdnzBFaqws/jrEodJ5MElvz7EG2HPFLCKHhD4JopzJ+jFdVV0Qew4uRLFu6+zLXlTPN8I1F4eGDiWKrbX7mYqiQRTHywdihXb4WXGCiyygeVWEno4ePu2rCAM8VkX+LW3ydqqaamRtgovjRd/HafMDE/f67wOfxwsVfDHxLRDpV9XfpfwJg6ipPN4jIFzI8lpFD3CQ94xSpdMnIGJy51GX/cYfj/cLcOqUhm6yLabB8LSMT/NLQPijFMTKxU4/WVQBcLiJXxy0uGTuVbc7WR4DPichDqvpQlscwkjjWJ4TitFZdldLeHMnb+QpV6j2bEMJxT5eJLsPICb9W1Q+ksd1FQC1e4vHHgK8Db2PCff8tVf187P9/FZF1wIeATI1Yj4hsUNWHU6wbzvBYRg6ZJLaKMwzqq+FFT4gCUQZGEqsSGoZRkvxZVa9KY7vA2alsxdY1eFVBtojIIeAokHCLVtXzsjx22dLWpLz/2WPsPio8eMBhTg04GVq6XIYPpuPVynUIYap1fhdcYKLLKA1U9YHYf28XkWPAd0TkS8DJ2PK/Ju3yF7KLj78W+LmIvEZV7x5fKCIrgbGpdzPyzTPahHPmgaonvJqrZt4n39RVeZOPYPla5YafQwjHop7nN2QlfQpKEO1UtmJrW+xl5JiQA6e3Kae3RUvCqOSiMEZQvFxQOqLr0KFe2tsbiz0Mo7iMG7QVwCOx/ye7F4QpQi2mQ1X/IiLvBX4pIvuA+/Hs0XOAt2Y3XCMXPHuRPTkaRjps2edw49YQK+Yrq1pdTm9zaa4v9qjKjkDYqazElqq+Ppv9SokdvUqlAw1hr8dWlQPF7ssZRK9WJpjoMoyC8sTYv3uBA3izhk8hsYzu5cCD2RxcVX8rIiuA5wKb8MIynmmh6UYhsHwtIxNS5Wvt6RJGIsKOTmFHp8NIJMJl66zHVoEJhJ3K1rMVeGbbv+TjD7mcjHMi/uBCh5Zpwi0yLX9bCl6tdJguhHC6fYIguMBElxEMRORG4E/Aw3gVZ58IvA/4sarujm1zLfB5ETmFl3j8IuBJwKWzOPUIXunehcALVPVTszhWyVHufbaM8sbPIYSuwu6uRC/wqtb8V8sMSnGMfBBkO5W22BKRJ2VyYFW9NdPBFJLZ9C9RVfqS6lY0FFm2+tGrlc/eWkHycoGJLsP33Au8DlgORIA9eAnF3xzfQFW/KiIO8E7gE8BO4MWqelumJxORC4CXAy8BFgCjxHqlGBMUo89WLsm2x1Z3LzTUQHVF4vJymYQ0/M/RHmFwdCKaqSqsLJprrQnyTGDtVCYS4Wa8Ihjjv674X5UkvQev8XFJMhSFSNynrXSgKpR9CGFXLzTVQmWWgq2QPbX8RpC8XGCiy/AnqvpR4KNpbPdl4MvZnENENuIZrpcBy4BTwM+BHwFNwE+yOa5RevzorjBdvcKCOcrSZuXJ66I5LftuIYT+x09erVQhhLu7Ep/5VsxXK5SRZ4JspzJ5vN8Y9/824Hq8mMifA11AK5677hnAG7IZTFAYicIZc6BvDPointjKFlXPsJwaENa1u2xa6hKu6c+4CmGuKKRXK5sQwumOY6LLf3Qc6WX5Qiu0Ua7Eqja9PPZaD/QCvwLeDvxRVSOx7Z5XtEEavmJoFLp6BUU40iMc7VGedka02MMyjAT2JIcQLrBcraBSCDuVttiKrzMvIv8KfFdVr0na7EYR+TTwbry4ypJkbpXw5bPTd9xNF0pxpEfo6vUu2gf3h3jogMMrLhOqK9NzR5ezVysZE12G4Tt24VWB+hley5DfqWp2sWVGQfinB6J0D4OIV9b6i2c5LKguXPGngyc8oTVOa6NSYwGmho+IuLC3O/GaWNVqYivA5N1OZes/uRy4ZYp1twCXZXncsmPLvsQ/QXvLWNpCK9f4sQJhNuTKY1ZIjncez2uOm5GbsJRU4STGtOzDszNPxEtSPquoozFm5MQoHBuF7hE4Ojy5yXG+2X880SYuabb+WuWGn0IIU3HwuDAWnRBbDdXK/IYiDsiYLXm3U9mKrRPAVO60F8TWGzPgKmw9kPgnWN2WvpgudFGMdPGDaBg7tMtEl2EUGVVdAVyEF27+cuBOEdkrIp8VkXOKOzojFcniyilwR5P9xxNPuLQ5t2rP8rWMTEidr5VchdClEJ1/yrkSYT4phJ3KtobeZ4Gvi8hy4NdM5Gw9D7gCeEcuBlfq7OkS+oYnrtDKsLKsNaOm1DOSy/DBXHq1CiWEglZAYxwLLzRKBVW9C7hLRN6D1//k5cBVwNUisgcv8diegH2CJoutAp7bVThwIllsWXiW4S+Si2OsLEDJdyO/5NtOZdvU+Bsicgj4MPD/8CoPRoG/Ay9U1V9mO6By4sH9iWZsWeso4TRTwXI5O1dqXq1kgpjLNY6JLqNUUFUXL5f3TyLyFuBZeAbtPUAtkyvaGkXg6+c6RNVLYHAV5hVwMv1ojzAamXiQra1UmusLd36j+Pg9hHB4zMsrjMfytUqHfNmprLtDqeqvgF+JSAhoAY6pqpUMSmKq4hijEdh+KCmEcFF6IYTFKIoRhFytmQiqlwuKI7oOHeqlvd0qCRq5R1XH8Ko9/UpEaoHn45XaNYrMvKrcxENl02MrVQihiOVrGcUhVQhhR7fg6sTvtKVBmeNvfWhkSS7t1Kxb8cYE1tHZHqfQiMiVwJWrV2f+8P3jvWPc3+3SUOE1M37ifGF5XWYGamenw0j8DF6VS9u8yDR75IdcerXSpZi5VEH2coF5uozSQ1UHgR/EXkYcs7FTQWSy2Mqtx8DytYzZMqnku3m1yoLZ2qmsw7FFpFJErhKRb4nIb2P/vklEApHBp6o3qOpVc+bMyXjfe4+7/PGo8vODync6lH0DmXsVtySFEK5cOJpWIrKfS737MYRwKoJaQGMcK6RhGKXPbOxUNsxvqCrIeaYiuRJhrotjGP7G7yGEMDlfq1Biy4pjBJusxJaIrAMew8vXOgMvX+uM2PtdIrI+ZyP0Ib2jiQagIZyZV2tgBB47krhPuiGEuSRdr1YphBBORZAFF5joMgyjNOgbhpMDE3YxJEr7PLUQQsNXPH1jlItWR1kwx8URZcV8mxAwZibbMMLrgB7gElXdP75QRJYCvwG+iVerviTpGUu8uOorUm83Vcz6zk4nIea3qS5Kc8PM6W6l4NXyo7gJemghWHihYRjBpvNU4gTkwialIs2CUYaRa6bqqbimTVnT5j2vDY5iDbeNtMhWbG0GXh4vtABUdb+IfJwSj71//eoKDvaO4QJRhYXVme1/KkkLLZk/VpAeDdlQyl6tUuR453ETXIZhZM3xEaVr2GtqfGxEuXyBMKcy/wYqWVidGpSCN1Q2jEyoNaFlpEm2YqsDmEpiVAP7p1hXEjyzPUx3Y/aFFwdHEw1XbVXhEyyLURjD7wS5WmE8JrgMw8iWj29zebRv4v2aRmFOAR4ql8xTqsL6eOGogRHh4AlheXOdhRIaBaejb2BK75ZhZEq2BTI+CHxaRM6PXygiFwCfAj4w24GVMoMjie+rK3I3fVeMEMJ08WMIYTJBGKNhGEa+aEmqkdE9Uhj3UjgEa9pcFsxxefK6KG9/6hhL5uX23EEowFDOWLVIo1TJ1rN1DdAI3CEiXUAX0Bp7HQc+LCIfHt9YVc+b7UD9RHffyMwbTcMFq11WtSqDozA4IsybhZfMD+SsQEP/Caifl5tjlTnm3co9NstplAMtlUJ8385jWZq75obKjHttvXBzlLDlaRmGUWJkK7YeBrblciDlxNJmTShp29GXu+IYuaSg+Vr9Jwp3rhmwcMLSIxcz2kOjUF1B0fMrq0JORsKvsWKKCj6GkYIltbC63vNwtVQJKzPsITkbphJayxtyF0q4Zn6teVCMWTM8Bt29QnWlMr+h2KPxJ5nYqblVpZ0Al5XYUtXX5XgcRomTdnieebdyigmu3KAKX/p9BSEHFs5Rth4Y5bUXV1Bd4dPKNoaRJc9b7PC8xcUehVGu7Owe9HW455Z9Dn/YFqJ3yLv3X7g6yrPPCnZ0kpF/0hZbInL9NKsjeKGEt6rqH2Y9KiOv+L44hg8EV6l4t4zcMDAsDI95xnV3l3D4VIQ3XWYeI8MIIubdMtIhVZGMcEgfF1oAXb024WbMTCaerY3TrAsBbXi5WrcDz1LV/lmNzMe84LYowy6ExKsw8sOLHOoybGxcKuQkXytVCKEJLl9w6FAv7e2NxR5G0Tnel3irXNXq4BQ7ntAwyohchhKCCS4jO1obE4u2mNgy0iFtsaWqT5hpm1h1wl8Dnwbenf2w8o+IXAlcuXp15g/TEfX6a0Vj15xj11p+8IHgMgyA6Ehip4uVrdkWcjWM9JmNnfID2RTJGKd3CLYfcth+2GHNQpcnnl74FilGcfBzKGFzPYREiar34Nc3LAxZc2NjBnL6xKCqdwPXAi/M5XHzgareoKpXzZkzJ+N9kxsthjIQW0Oj8NgR4dBJ4eQAPHYydzN1uSz7nsviGEEupx7ksZcKq1uLb3SP9CTeKleb2DIKwGzsVJB56IDD539byW+2hNnT5bDtYH6uN78+0Bv+JeRAc4N5t4zMyLYa4XRsBxbk4bi+IZostjLYt/OU8J3bJ3I9FjQ5XHl+3zR7lDgzVSH0gXfLwgmNzlOJxnTVAjOuhpEvlrUkerEOnHDoHcp9KKFhZENro9IVNx/d1SssaylMPzojmORDbC0D/FPHOw/89lIHVz0PV1QzCyMcSoqoqK4sbGhELotj5Ky/1kz4QHAFGatIODtGI3ByYOIiF5QVLebZMkqT+Q1VfHfnEPefhGMjSvcIvP00h4taCjfB0FgDi+e5HDwxcZ09ctjh/FW5t5eWu+VP/BJKmKpIhuVtGZmS0ycGEWnDa3j8+1we12+ERKhwhKqQUBsWJINE+YHRxG2rKkp7NiRnYXhF7sNl4YTly4m+RN91SwNUWcl3o4TZ2Qe3divbe6F7BLqGs7dTzQ3ZJbOsX5QorLYfsgkOwx+Y2DIyJZPS7z+ZZnUIWAicCxwAPjzLcZUsgyOJ79MRW4WedStYM+NMBZR5uIwsmO3s6PHexNtkW5Ml6hulTUtV4vtjI6m3yyfr213+sG3i/d5uYXA0P6GE5t0yMsHElpEpmUwVzZ/m1QjsA94DnKWqR3I8zpJhKMmzVegwwlxRsBDCZIro4TLvVnkyOpL45LlwTml7ow1jfpLY6i6C2GppgNbGCfvoqrCzM3/eLT+ErBmJ+FUAj1ckHGe8ImE+ybaqp+EPMin9/uR8DqRcGEjO2cpRGGEuKxHmilIUJ1Yso/w4klQco63JxJZR2pzZJLx/LcyvElqqJnu6CsX6RYmFCLYfcjh7WTAnKI3SIeRAS4NytDexubEVyTCmwoKgC8zQSLJnq3AXZy6LY8ya2Xioipy/ZZQPrgtHexKv2YUmtowSp61GeOpCh01zhfZaLz+5GKxvTxRWjx0RRiNMKliQK8y75T/84N1KFbY630IJjQwwsZUhQxHl94ddbup0+dMRl9u7M3vwGkzybFVV+GuWrmD5WrPFwgmNAtAz6BBxJ4xofZXSUD3NDoZhTCLbIhltTUpT7YSNjbjCY0fsodYoPpa3ZWRCPkq/lzS9Y8pXHp24yOZVKhfPT7/T1mAJVCNMJ1+rIILECmYYeeZ4b+K1bSGEhlE4RLyqhHfsmrgOtx922LA4mreeW1Ysw0iHBUli66iJLWMazLOVIZEkR9RUPbamSmZMrkZYyDDCkqRIHq6gebeKVtAk4KxpqeK8lVGWzHOpDKkVxzCMApMcSriz05lkh43Sxo/id8EcpX2uy9nLojxjY4TL1kaLPSTDx5hnK0PcpGetTELZoy4MjSV5tsJl+PBWIjlXViyj9FnSrCxp9oyoqxAxe2oYBWVpi1JXpQzE8p2Hx4S9XcJpC/NnO827ZcxESwO89fJIsYdhBATzbGVITRieuVB42gLhKa3CRc3pq63hscT3VWEXZ4a/QDo3fD9WIiwoJSLe/Epg8vhSkMuEd0egsoSnp0RktYj8p4hsFZGoiNycYps2EfkfETkkIv0i8ncReWURhmvkkfkNVURdpWtY2d6j3Nql7OmfnbjJNm/LEViX1OD44ViD43wVyjCMZPIRsmpkTlDtVAk/OuSHlmqH967NTqNOamjss0qE6TxU+yZfK5ki5W+Zd8soITYAzwLuAiqSV4qIA/waaAbeDxwBXgx8X0SGVPXnBRyrkWe+t0/5wb4JG/WKZcLK+iJVJVzkct/eEPMblHWLXDYuyX8coXm3/MXO7kGrFmlAQO1U2YotEbkSuHL16sI9KA+UQHGMWZNPL5QVzDCM2XCDqv4KQER+BrQkrT8d2Aw8V1VviC37s4icD7wUMLGVY4php8ZJ7q11rAiNjcdZuUB519NHaW0s7HlNcBmG7wiknSrbMEJVvUFVr5ozZ07BztlYozxlfYQLVkc5c0mUxc1jM+9kZEYRQgqDVizDMFKhqjO5C8ZnEXuSlp8CrBRXHiiGnRpnflXin7R7pHiTg2GHKYWWhRIaRvkQVDtVtp6tYjCvDp6yfuJ30tE3XMTRZI5vQwiTKYKHy8IJS4/qaD39w0q99dUaZxtwN3CtiLwJOAq8EHgicEUxB2bknvlV0FThebhaquD0hvLU0+bd8g9+DSUcGoXuXuH4gHD2MiuVWWR8aadMbBlAgYogWCELI0NWtxbPsP747jDdfUJ9ldLWpDzv3AhNPrDz4ZBkVGygutIBeK6I/Fvc4utU9bpMzquqKiJXAL8CHo0tHgNer6p/yeRYhv9ZWS/85Inp95BMh+aGyinbohiG3+noG0jwpKrCl2+s4OTAxETEmrZRarOrBVNyZGKnaqtCAJeLyNVxi0vGTpnYKgPSKY5Rcph3axLHO4/T3NZc7GEEgkgUjvV5/+8fER47KtRMSsUNFL9W1Q/M5gCxxOPv4iUevxTowktU/m8ROa6qN85+mIaROflqcDyOebeMVIhAZViJj07r6hWWt5RhPn5u+LOqXjWbA/jVTpnYypBtJ6K87/4ojng9tlbXC287rXipb34q++6LEMJ4THAZWXKyP4TGGdB5dUpVsMVWLnhO7HW6qj4WW3aziCwBPg+Y2DIKQv8wPHLY4fAp4XnnWPO7csJvoYStDcrRuOwgE1tFx5d2ysRWhvSOKTv7Jt6HJH8XlZ9m0tLJ15qWYoUQWoXCsmU2Bvl4b2L4VFuTGU9gLTAYZ8DG+Tvw3CKMxygzXIX/uTVMR7c8PhnyxNOitDTk/9zm3TJS0dqYaBu6esszt9FH+NJOlW01wmyJJD1zORlcVycHvBm5qM/yJ4PctDYtCiz0fOfhMzJmbCSxKsbCJp9dtMVhH1ArImuSlp8LdBR+OEYQyba5MXj2ViDB6/zI4cI1OPaTR6Wc8ZPobZ1jYstn+NJOmWcrQ6JJYiuUwXX13dsr6O7zdqiuUJ5znkNTvT3EGYbf6DyVeGG3zSl9z5aI1OLFtgO0A40i8uLY+9/FXvuBX4rItUA38GzgH4C3F3i4Rpmyvt1lT/fEPPH2Qw6XrDE7ahSG5CIZrQ0mtgpJUO2Uia0MOac5xL+f4+CqJ7zqMvgGB+OKMA2PCRXh/D/AFao4xrTeHD9UISxwOKHlbgUXVTjSk2gwF5ZHGGEr8NOkZePvV6hqh4hcDnwG+BLQCOwG3gJkVDHK8D/zG6q48/AwfzyqHBtRjo3AmU3CG1cWNyBm3SKX32yZeH/ghEPvEDTWFOb8Fk5oxDOvHkKOEnU9m9E/LAyOYhUJ80cg7ZSJrQyZUymsbcx85kLV68UQT3VlMB7gZp2v5RdMcBlp0DvoMBqZuMZrKpQ5BXqQKyaq2sEMTR9VdRfwkoIMyCg6R4fhFwcn7FR9ASYIZ2JOLSye63Lw5IToe+Sww/mr3LxXJTT8g18KZYQcaGlQjvZYRcJCEFQ7ZTlbBWJ4DFyd+H2EQ0polt++nyoRBgY/eNkMX3OiL7E4xsImRSwyxChD5lclvj82UpxxJLOuPTFs8OFDhX2U8cNDvuEfLJTQmAkTWwViMNmrVeGPGPNcFMcIXEGIAgquwH03BtGRRDeWVSI0ypWWPImt2RTJANiQJLY6umWSjc03JriMcQpVkdAaggcXE1sFYnAk8eKrCkgI4awxT5KvyDYktOQrVsbRmZyvVQbFMQwjFU2V8MaVwgfWCV88y+Hfz/HHI0NLA7Q2TgguV4WdnYWrSmj4g2LlziWHqlpFQmMm/HHnLAMme7aCURyjZPK1kjHvVkkzm1nnI8mVCM2zZZQpjggvXepw+QKHM5uE9lr/PESuX5R4XW4vcCghmHfL8LAwQmMmTGxlyIkRl119yt5+Zd+AcmIkvQexwdHEi28msRWUakeBFhImuIwkhkeFnqGJazUkyvxGE1uG4TfWJ4USPnZEGI0UaTBGWTNekXCc8YqEhjGOia0MufFghLfd7/Lm+1zedK/LdzvSFFtJse5VlcXP2cp7aFgQQgiDMEajYCQXx5jfqITtLmkYOWe2eVttTUpT7YT9jbjCY0e8iZJChhKad6u4+GFierwiYTzm3TLisceIDIkmaSQnxfWUKokx2bNVNcswwkJUIizZEMJkCiS4zLvlf+bURXnuORHOWxllyTyXpc3m1TIMPyIC6xclGuTth4vzSGOCy1i/SDlneZQrzozwmovHLNfXSMD6bGVIJOn6CaU5eVGMnK18U1LiocA9uAx/smF+LcwvvtfZMIyZWdfucseuCW/0zk6HiBs1b7SRdzr6BhI8qJdviBZxNIbfsVtShsytFFbWwbJaWFIL89KMhEiuRlid5zDCXBTHmBUWnpeSkhKohmGUNPMbvNrvUVfpGla29ygP9/hnonBZi1JX5Y1nbp2yeYXLWCxvq9BVCc27VTz8EEpoGNNhnq0Mef7yCtbXjGW8X7Jna7ZhhLOlnEp5p02BvFtjh3ZR0b467+cJOqtb/fnwMttcE8MIEjt7lX96wGV8evC0evh/m0PT7lMoHIEXnBuhqRYWzLHm44Zh+BPzbBWISWGEPu+zVTb5WsmUgUeubP+2hmFkzNxKiI/DyFVjY8jNxMXaRcrCptRCy7xb5YN5tww/U7ZiS0SuFJHrenp6CnK+0xco6xe5LG9xmVsfpcYH1Qhnw7ThcEEXLAUYv4UT5g974DFKhULbqVTMq4R4HXNyDMZcf08WFhO7/xiGkUzZhhGq6g3ADZs3b35TIc73jDMnkieTu48nYzM0PsAKZpQd0aF6HhvwSkrXVxd7NIZReDuVirAjzKuEqEJLFcyvgqEoVJTtVK1heCQXyQAYGoWjvUJXr7CgUVnWYhMTRhmLrSAzU9n3ohfHMNLCcrf8xc2PhNjb7T1B1lcrLzs/wvL5ZigN43sXOIRT9TkJAMsb6mac4Mw1a+bX2qRpEdjZPVhUz+LtjzrcuHXisfqCVVGWtViVQqOMwwjLmZmKY8yU01PSIYTxWDhh2aAKR05NPEz2DwsNNSa0DAMIlNAaGIH7OxyO9RV7JEa6FKJvaCGYV2eNjY3UmGcrQ353YIzfdbiExKuEdFGzsGmuXVAli4UTlgUDw8LQ2MR1XBlW5hY2tz5two7zeEnudKipsNu84V+aGyo53jc684YzsLNTuP3REPuOCa4KT14XLWrvI/NulR/zG01sxZOJnaqvKm07ZZ6tDLnvWJTfHFZ+dUj5xUHlsX6b/S558uzhCop3q5TbBRzvS7zRL5yjpJrMt7LvhuFP+keEvd0OrnoX7vZDExdwoasSjmPFMmYm116tYgrceXUQciaeCftHhMEcVu80gouJrQyJJhURDKUxcRF1vTClUiAowiDnmOAqadyRxIoYbU0lcsEaRpmwts3FkYnr9mivhRIGiaCGEsbnA4YcmN+QaDuOlrl3y/AwsZUh0aRnsHTE1r17HD7+8wo+e0MF//6HMA91pO9azZSZimPMNl9rWkopX6vEsV5biXT2JN4KF84xsWUYQaKuikmV3x45XPxHHPNuTU1QBdZ0tCaFEnab2DKwnK2MuXJpmCYngque8NowZ+YLaWDEiyHvH/Hcyotasr/4SvHmFBjynL9l1QmLR+epxGvSPFuG4TG/oYr9p4b5zSHl2AgcG1XGXLh2Yyhn58hV3taGdvfxiqIA2w85XLLGC0cpRlVCozgUsyqh5W0ZqTCxlSHnt4aZq5nNlg0l2ZCqiqkf5Cyh1udYwQxfk42BHY3AyYEJgyjopNlJwyhnQsB/7Zm4Jhwg6iohn1UpXLfI5TdbJt4fOOHQOwSNNUUbEmDFMsqJBY0WRmhMpvg+9jJgMElsVVf680HOSr6nSR4/q+VuFZ4TfYkz9C0NUGnTUIbxOJUhoTHumnCBk2NFG86UzKmFxXMTE6v9EEoIFk6YTKlG6SRP1JlnywATWwVhYCTxYquucKfYMr+UcjW5gmOCq2Q4kVyJsKk416dh+JmWpFTjYz6tsrauPfH63X5o4jGnWFUJjfTIpQArpCcxPjx1blJFwoERYcCn14pROGz+tgBkEkZoBAgLKSwJRoYTnyLbrDiGYUziOYuEgagnuuZXCUt96qjZ0O7yx20T7/d2C4OjUOuDrg0WTuhRql4tmKhIeKRnYpK9q1dYMT83duV436i1IAkg5tkqAIOjSZ6tPIURzlSJcDZYCGFhMe9W4TiSZnEMM3BGOfOcdoeXLnW4fIHDmU1CbTi34VG5ur5aGqC1ccK75aqws9MedYzCYaGERjJ2ByoAyU3tsvVs5XM2yEqBZ4kJzUDjunC0J9EQLrRKhIYRaNYvSryG/RRKaLlbhaNYXkQTW0YyJrYy5I23DfLMm6M8+5YoV94a5Z7j0z+YRaIwGo2rdCZKZdge5kqKPAku827ln55Bh4g7cX3WVykN1dPsYBiG71mflLf12BFhNFKkwaSgnAVXKYcQjmNiy0jGcrYyJOJ6lZhcBdLQTMmVCKsqFCnCdTeb4hgWQpgGecrfymfvreOdx2lua87LsWfL6tbCPIw01Lhc9eQxOk8JR3qECpt+MozA09akNNUqpwY9YxtxhceOCBsW20Sn39nVNZjT+3+hem519A087jVta1LOXR6ltdFrI7LA8oDLHhNbGRJNumaS24wkN2YcnFSJ0C66ksUKZhSVbAzq6qY6QFnabNelYRSbXDU3FoH1i1zu2OW1dZhTo4xFhfEZUj80OLZiGaXL3Dp4weZosYdh+AgTWxmSLLZCM3ipJnu2pi4rPZsb72yKY1i+lr/Jp3fLMAxjJuY3VNHd5yUfR1zlxCh0j8D6RpBihGqkwaalLhVhL6RwUVNxIkqMRMohhNAwUmFiK0N+cFkNO44OElVPeFVmKLb82tB4KiyEMENK3Lt16FAv7e2NxR6GYRhF4I33RDk4OBFB/5OLHJp8WqSzfZ7SPs/f3gXzbhWGQoUSGsZUWIZChogIIREqHaEmJISS4wiTSC77XoweW9bMuMDkQYRasQzDMIqNQ2Kqsl8bG6dDsasSjlMuIsC8WkY5Y2Irz1RXwOK5LnPrlOoKzdqzZTeqgGGCq6Qohx5bIrJeRP4sIoMiclhErhWRULHHZfiHlsT+33QHWGwZ/iWozzvFzgMsB4JqpyyMMM+cucTlzCUTeVp7e4eKOJrJWL5WHinxkMKgs787zMHDDgublLYmpa5q5n1KFRGZC/wJ2A48D1gFfAlvQu6aIg7N8BEtVV6RibkV0Fw1c85yNuSqSEaQsHDC/FOMUMLBETjaK3T1CqcGhGec6e+wVr8TZDtlYquAdPQN5CVJdzbFMabD8rVyQI4FlxXLyB1HumvZemBiQux550R4wsqpC9iUOG8BaoAXqmov8EcRaQQ+ISKfjy0zypy3rBbeeboXRh9Ehkbh5ICwaK5/qhKWA0H1VM0GV+Hzv61I6ON48ZpoWU/q5YDA2ikLIyxxLF+r9MhlOGE5ezY7TyXe/uY3Bqt4TY65ArgpyVj9CM+wXVqcIRl+oy4cPKE1GoF7djt8+7Ywn7mhgh/eFUZ9eKmXS+5WueAItDRYc+McE1g7ZWIrQ27YP8bvO13+0OnypyMuAxEf3rXTpJwftAuKeQHzTqYPKpEoHOtLXLYwII0nNeMnxbS2XwvsSDrPfmAwts4wAokCv3swxK6jDq4KJwe8Bubj+KVQBpjgiicf3rBCh2q2Npa12JJMbFWa2wbWTpnYypAvPTTCV3YqX9ypfH6HcipHoeV+i9e2EMIck+PvzIplzI6T/SGUCcPnFbAp4oAyoLV1Po9uf4iaytCMr7C43HPn3wAuEJH74l5XJR12LnAqxelOxtYZRsHIZUGaqjCsXpD4ILf9kD36FIpyCyGMD0stZ7H16te87uzb/vrHtOxUdYXDX/50E8CaUrVTdsfJkGRHViEiKsrtZlWymEj1Dcd7E4sXtTUFw6sF8Kc//mHzRz/ywbS2/e//uo7nPPd5qOqXVHVz3Ou6PA/TMHzDuvbEXMzth/370GverdKhnMXW97777WXXfuJjRKMzFwW54de/YvXq01DVa0vVTpnYypBoUv78dNWYoi588XcVfOPPYb59W5i/bq3Neax4vopjGHkih4LLvFvZMzZSnfB+4ZzgFMZQ1fvnzWvmj3+4adrtent7uf5b1/Hpaz/RkMZhTwJzUiyfG1tnGIFlbZuLIxPG92iPw/H+ifV+CiUsJfw4UVzIKKJyFluquv+yJz+F733n29NuNzY2xmc+fS3/c/232tM4bGDtlImtDLlyaZhnLBSeukB4cqtQPU11/6FRODUoHD7psOuow8HuirxUI5yK6YpjTJevZSGEwcEEV3Z0nkq8EKfzbPmxx9aPf/SDFZ/8+EennTX80hc+x5vf+nZUtX/KjSbYQVLMu4gsAWpJipE3ypP5DV4ZtXuOKz/d7/Ifj7lcuy3K4SH/e4XrqmBZS3BCCc27VRrMq4ewM/G7GxgRBsqoN92Xv/j5ud/4+r8zMDB1xc/rv/VfXPHs56Cqh9M4ZGDtlH/vNj7lw2dV8761Du9f5/Ch9Q6NFVOrp8GkfK6qLBsaGyWGCdaiokpCgjwEK4wQQFU7LnnSpfzv976bcv3Bgwf50x9u4h1ve3O6mWi/B54hIvFesJcCQ8AtsxutUUr89IDLf+1RfnFIuf0YHPZX68gp2ZAcSuhjsQUmuCB/nrFCebfKvSKhqp56zevewNf+7Ssp1/f29vKt677JZ/7lU41pHjKwdsrfd5uAMziSeFFVVwTrgc7IIxZOWDT6hhxGIxPXZnWFMqemiAPKkq9++Yvzvv7vX2VwcPKDw6c+8TE+8rFPoKqRNA/3TWAE+LmIPDWWmPwJ4Mt+7l1iFB6vsfEE3SP5sWu59iivW5Qotg6ccOiNE4oWSphb/BhCWCisSMYEV7/v3VW//Pn/cfTo0UnrvvKlL3DVW96Gqval2DUVgbVTvhJbIrJeRP4sIoMiclhErhWRaQL1QEQqReQLInKbiAyJiG8UzWTPVnDyQlJiHpnc4pPvs9xaAKQqjlHI8N5coaonX/Wa1/H1f/9qwvKHtm7lwIH9vOj5V6Z9f1fVk8DlQAi4Afgk8BXg47kbsVEKtCQ1ZT0WkLCoObWweG6iDX7ksK8egSZh3q3gU+5iS1VHr/7gh/nXT30yYfmhQ4f4w42/513veGvadYCDbKd8c6cRkbnAn/DaYjwPuBZ4H96XOR21wD/i1dm/I59jzJTB0fx6tqYrjpGXfC0j9+RIcBXy75bvRtmrWzN7wMj0gSQ6kujGagtIf61UfODq91b//Gc/paur6/FlH/3IB/nrX/68WTNsyKWq21X1Kapao6ptqvpRVZ25lJRRVmycIzyvXXjjSuED64RL5wfn4XFSVUKfhxIa+aNQoYT5EFvH+3LUc6hAvOrl/+Bs2/YQj+7c+fiyT33iY3zomo9lEn0BBNdO+elO8xa8LtAvVNU/quo38YTWe0VkynhOVT0FzFPVZwC/KMhI02QwacavagqxNd1FX86ueCMz/CqU/VYxMzlfa2HA8rXiUdWR973/g/zrp68F4M9/+iNNTXNR1fuLPDSjRDmvWXj7aQ4vXepw+QKHpXXBEVvJeVt7u4WhuOdWP4YSBtG7Zc8tE5S7ZwtAVfWOv91+8Uev+RAA2x56iI6Ovbzkhc/zkwbJK376oFcANyXFXf4IT4BdOt2Omc7gFopJnq0gF8jwSchbSWLfbUHJpBJhEHjNK1/mbH1wCzt37OCTH/8oP/7RD1YUe0yGkQtynbfV0gCtjROCy1VhR6efHoNSE0TBlSuCLtzKvSLhOKr6N4Dbb7+Naz78AW65+a/n+/XZPR/46S6zlqTSjaq6Hy88cG3KPQqMqnLlHwZ45/1R3v1AlPf+Pcp0v5VJOVsVxc/ZshBCnxLAcMIgMjpGQlK8I8r8hmDf71VV77zjb5c+51lP56InXoyqdhR7TIbhV9YvmrjeBaW7DD0N+SRI4iifoYTjRTIcgfnm3QLg17/8xdo3veG1NDQ2oqr3FHs8hUT8IixFZAy4WlW/mrT8IPBdVf1wGsd4B/A1VZ32lxyrYHJV7O0ZwLasBh0MWoBjxR5EnrHPWBqUw2dco6rpNBnOmK9/4z/1nW9/y7xYErERcMrMTkHpX/+l/vnAPmOpkDc79e3v/UBf/5pXLlfVffk4vl8pS7GVtM99qro50/EGhVL/fGCfsVSwz2gYqSmH302pf8ZS/3xgn7FUKIfPWGj8FEZ4EpiTYvnc2DrDMAzDMAzDMIzA4CextYOk3CwRWYJX2n1Hyj0MwzAMwzAMwzB8ip/E1u+BZ4hIfJzoS4Eh4JY8nve6PB7bD5T65wP7jKWCfUbDSE05/G5K/TOW+ucD+4ylQjl8xoLip5ytucB2vCTgzwErgS8DX1XVa+K22wXcoqpvjFt2BVAHPBN4I/CS2Kp7yy0JzzAMwzAMwzAMf+AbsQUgIuuBrwMXAqeAbwGfiO8OLSIdwM2q+rqkZctSHPL1qvrtvA3YMAzDMAzDMAxjCnwltgzDMAzDMAzDMEoFP+VsGYZhGIZhGIZhlAwmtgzDMAzDMAzDMPKAiS3DMAzDMAzDMIw8YGLLMAzDMAzDMAwjD5jYMgzDMAzDMAzDyAMmtgzDMAzDMAzDMPKAiS3DMAzDMAzDMIw8YGLLMAzDMAzDMAwjD5jYMgzDMAzDMAzDyAMmtgzDMAzDMAzDMPKAiS3DMAzDMAzDMIw8YGLLMAzDMAzDMAwjD5jYMgzDMAzDMAzDyAMmtgzDMAzDMAzDMPKAiS3DMAzDMAzDMIw8YGLLMAzDMAzDMAwjD5jYMgzDMAzDMAzDyAMmtgzDMAzDMAzDMPKAiS3DMAzDMAzDMIw8YGLLMAzDMAzDMAwjD5jYMgzDMAzDMAzDyAMmtgzDMAzDMAzDMPKAiS3DMAzDMAzDMIw8YGLLMAzDMAKOiHSIiMZelxV7PIZhGIaHiS3DMIwcIiILROQOEblZRO4WkcuLPSbDMAzDGMfsVGEJF3sAhmEYJcYx4BJVjYrISuDHwBOKPCbDMAzDGMfsVAExz5ZhpEBEFsfCcZYXeyxGsFDVqKpGY2+bgK1FHI5hGCWK2SkjW8xOFRYTWzFEpEpE3iUit4vISREZFZHDIvIbEbkwh+e5WUSumWq5iPy3iPxVRJy4dY6I3Coi/znT+hnO/ZHYjfm1ufo8RvCI/dZURJ6UtHyXiLyuAOd/mYjcJiK9IhKZZrunishdItIvIsdE5Btx60Ii8gUR6RaRPhH5PxFpyffY00VEVojI7cBNwC+KPR6jdBCRTSLyBxEZEJETIvK/ItKe43OYnTKKig/s1LdFZCxmf8Zfb5tiWycWkqcisjhuudkpAzCxBYCIzAPuBP4NeCKeyq8A2oBnA+cXcDj/BCwB3hu37P1AK/CeNNanJGb03gScAK7K7ZCNAHIc+KKISBHOfRL4BvDuqTaIJfj/DPgi0AwsBr4Vt8kHgefhXZvjxu17OR/p1OO7K8XrK+PrVXWvql4cG9/XCzUuo7QRkTOB24GnAbXAXOAVwN+AhgIOxeyUUQiKaacAvqOq9XGvb0yx3XuAwRTLzU4ZHqpa9i/gB4DGXiPA54FnAS/Fe8B7aw7PdTNwzXTL8X74/cCZwFmx/58bt+2066c47xXAGJ54VOCMpPX1eA+2e4A+YDtePO9M6zqAV8UdZ3ns+IvjlnUA1wB/jY31odjYXw7sAnpi33M4g+8xo2PiPbB/FzgSe30HmBd3vIXAr2P7PQr8Y+xzLI/bpjb2PezFexi4EVg9zRin+95mGk8H8GHgz7HPtw24KJ1jp/kb/AxwGHhF3PJdwOsKeN1dBkSmWHcn8Nlp9t0HvDHu/arY32tZFn+LnP4+gaq4/7cA2wr1ndqrtF+x3+i4rToIvBp4IV4IkMa9LpvleW7G7JTZqTK2U8C3gW+lsd3pwO7Ybzz5N2V2yl7ed1zsART7BczBu7mPG6l35fl8NzODEYu9/2jsYtoGfDDF9tOuT7H9L4Bfx/7/IPC1pPU/Bm4DVgACrB6/Qc+wroP0jNhjwDo8j+H3Yzen64A6YCnQBbwyg+8xo2PiGZwb8GaC5wK/BX4bd7w/x76jOXgG7XYmG7H/BX4DLAAqgU8CO4CKKcY43fc203g6YjfQDUAI+ArwWDrHTvc3iGeoO4jddMnCiOF5qE5N85ryt8kUYiv294viGZ0H8BJ5bwY2x9Y3xf42ZyXt1wM8N4u/RUa/pTS+k4uBW/GM4u3A5fm8p9irPF54D0Txguq5cevWUWCxFXtvdmr6z5PRMTE7Nem3RpHsFJ7YOoknWB8FvgDUJ23jxP4GL0j+TWF2yl7x33exB1DsF171lXgjtTjP57sZGEpxsUdINGIh4F7gLsBJcZxp1ydtuwhPUD4/9v5dsZtITex9a+yzb0ix75TrYus7SM+IXR33/lmxbebHLfsJ8JUMvse0jxn7/AqcFrduTWxZG9Ae+/+quPVPI86IMfGgszRuGyd247w4k+9tpvFM8fk2xNbPmelvkuZv8JrYb2gb8P7Y8seNGN4M3K14N/7biQmdHF8Ll5FabC2Ofb5DeDN3lXizp114BmxJbP2KpP32xf8WM/wN5/T3aS975fqF5ymKt1Xzk9afILdiy+yU2amytVPAuXiC1Yl9rnuAHyZt8x7gZ6l+U5idslfcy3K2isO/qGpT/AvvRvE46lWJeRjPtesmH2Cm9Um8Ec8Q/yb2/vtADV6YJHg3CfBmb5KZbl0mdMb9fxCIqmp30rJMcw7SPeaS2Pu9cet2x/5dwkQs9b649fHbgjfTBLBVRE6JyCm877Qi7vjxLI/9m+p7m2k848R/voHYvw0zHDttYr+hq4EPi0hz0upTwAtU9RK83ImvzOZcGdIX+/d/VHWrqo7ihZNUABfFrZ+TtF8T0JvieMtj/073feXj92kYQcbslNmp6cYzTknaKVW9X1WPqqqrqg/jCasXi0gVgIisBt4HvGOKQ5idMh7HxJb3w47GvX9B8gZFTM6cNbGE4zfiXeAHReQIXhxwCHhzbLOO2L+npTjEdOvAu6HUxb1flP1o88aB2L/L45atjFt3KPb/ZXHr47eFCQN3WtIDSK2q/jDFOTvGt89iPDMx3bEzQlV/jzfz/LGk5cdV9Xjs7QiJ18jjiMg3k6o1Jb8+nMWYevA+oyav8lbrKWA/cE7cOFYCjaQuX9sR+3fW35dhFJHdSe8vGP+PiKzFC/MKJGanALNTU+ITOzU+WTD+PHgxMB/YJiLH8ELewRO6bzM7ZcRT9mIr9mD307hFXxCRz4rIFSLyEhH5JvCWIg0vFzwTbxbqIrwEzvHXc4ALRGSjqnbhVX77hogsF4/VIrJ6unWx498PvFxE6kVkPl6Mvq9Q1cPAH4AviUiTiMwFvgT8XlU7VfUgXsjC50WkUUQWMPmm3oVXSOUb42WWY8d6gYjUpzjndN/ptONJ4/PM9DfJlH/Ge6CZn7xCRELAvwOfnWIsb9HEak3Jr39NdUwRqcYLD0REqmOv+EmNbwCvF5H1IhLGm9kcAe6Irb8O+ECsdG0j8DngJlXtSDHGXH9fhlFwVPUYcEvcov8nIq8SkRcCPyrSsHKF2SmzUzNRaDv1MhFpiv3/NLzP/mtVHY5t8hO8MMazYq9nxZY/Ha+oCJidMmKUvdiK8Q4mZhqqgA8Av8O7mN4cWxZU3gz8MuYSPxL3ugmv4tv4rOEbgC14xrwP+BVeAu5M667Bm03qxDMEszb64s1C/X62x0niVXhj34mXLHwKeE3c+lfg/Z0P4MV/f5fJvCm2/80i0oeX+P0SJntgxpnue5tpPDMx5bEz/f5U9UHgh3gzbo8TEz/XA79R1RszGNtMvBovH+QmvJnrodgrfsb2i7Fz/wWvQMYVwBWxyRHwjOoNeLOdh2LHedU055zub2EYQeHdTIRqLcErI/1/eDk9PVPsEwTMTnmYnZqCItiptwB7RGQAT3TeBbw+bjyDqnpw/IVXrRHgiKr2x/5vdsoAQFSnuv7Ki9hM+1vxbkrr8cqnHgP+DnxaVe8s4vAMo+CIyNeBo6r6qWKPxTAMDxE5G689yUV4BSX+jNfD6s9MTFg8WVVvLsoADaOAmJ0ygoCvxVbMfXo1cCFeNZjbVPWypG0E+BCeUGrBm0F4l6puKehgDaOEEK+p8B+YCNs7oaovLNqADMMwDCMOs1NGUAgXewAzsAEvDvYuvGo6qfggXvz11Xhu7vcCfxKRM1T1yBT7GIYxDbFZ8cpij8MwDMMwUmF2yggKfvdsOePlYkXkZ0BLvGcrFvp3FPiSql4bW1aHV9XlP1X1moIP2jAMwzAMwzAMA58XyEijL8dFeMmSP4nbZwAvIfGKPA7NMAzDMAzDMAxjWnwtttJgLV6FoceSlj8SW2cYhlEWyLq5GivPbBiGYRi+QzbOUxFZNvOWpYXfc7ZmYi7QH+swHs9JoFZEKlV1NHknEbkKr9s4dXV1565dm5kui2oky+EWh+ikrydzBt1Rdo90Pf6+zqliWWUzIfGfXh9zJ/3JDSMlFU524f6VTnbdIO6///5jqjqpT8xskc3zlb19sLT+BBNNN40AU252ajpyYcPi6Rg5Rp/rtUsK4dBWMYe54boZ9vIfZuvSJ9t7faEJSSiHx8ruET9vdkpkDTUhWFDTQZnZqaCLraxQ1evwms2xefNmve+++zLav2f0RD6GlRdOjh6feaM0eO3eb7FvYPfj7zfULuNHK95MYh/awnNk8HBRz2+UDgtrF6W97fL607I6h4jsy2rH6Y8pzKmEc5rh4ZOIyPJUTTONYFFOdmomcmXHAO4Z2Msr916X8PDzr8tezyUNp+fsHPnEbF52ZHJ/LyZzK5tzdqw5lfOy2i8fdgqA+dU7WFYPe/uQ81pV7+kqG8EVdLF1EqgXkVCSd2suMJjKq2VkzrA7Rm3STP57Wp9WFKFlhmZm9vcdmLRsacOSIowkWMT/toJimAE4Y67LqVGoq4BVjdA5uJcymzU0jHTpjQ4xP9xAd6QPgCfUruDiLCdPCoXZvdlzZPBwIO7rJ0eP51Rw+QV5wnyvGl9TFZzmwM5TiIion6v05ZCgi60deB25V+N1OB9nbWxdWZOr2cBqp4L/WPZqtg4e4Ctdf8RVlwvqV+Xk2NNhBiY9UokrgMGREXqHh1jQOOfxbUx0pUdQhJeIVFFf4Xm1AJqrYX8/cn6r6t3lM2tolC659GoBPLVxPU+sX833jt/Jdcdu4b0Lnl70CI1UmP0zSgUREZoqYV2Tt6C+AmrCsLTepUwmBoMutu4AeoGXAJ8GEJFa4Epi4RdG7jizdgn/s/wNDOYpTtyMS/pMJbBGIxG27t/HPXseY8fhQ7iqrGxdwBsufQpNtXUmurLA18LrtDnDuAqVcXH+q+fAYz1lNWtoGJlQ41Ry1fxLeVXzhdT6KJfHbGB+KYZ3S1UzFvMl593aOM/l5IgXfTHOykZ48DgiElYtoQTTKfC12IoJp2fF3rYDjSLy4tj736nqoIh8FvioiJxkoqmxA3xthmNfCVy5evXq/Ay+hMmHcTIjMz1TiSsAV5VdRzq5Z88utuzby/DYWML6PV1H+eJvf8Wbn/J0ljS3JBzPRFdmjP9Os83ZyiUiMpf6MDwhKY+5oQKqQrBpXtnMGpYqZqfyix+Eltm+wlIowXVo9CS/OPUAvzz1d7659DWsrm7N+zn9iIhUUl8BZyeJx+oQtFRDe90YZWCn/N7UeDmwd4rVK1S1Q7wpgw8DbwWagfuAd6nq39M5R6kmHuc69CKfmLFJzXQCC6Dz1Enu2b2L+/bu4uTAwIzHqwyHee0ll7Fp6fJJ60x0ZcYFrZdmtZ+I3K+qm3MxBlneoNSFYVGKKmrDUXjwOPSNVaQzaygiNwNTfaiLVPVOEekAkkv2HlXVhZmN3MiUUrVTMxEkO5YJZvOKS77F1ueO/J5vHbv18fdXtVzK1QufmfFxZuvdmkWBjNzZqTVNSsT1PFnJRFy4rxv6I42q2pfGuG4moHbK156tWEWtaRVvLEzmX2Ivwwg0MwmscUYjEb74218zEhmbeeO4fb711z/xD+dfxCVr1086rwmu4CAiy2msgNUpDBh4s4bNVZnMGr4Nr0F8PNcCZwP3xi37AYlRA1aEyDDSwASWf8i3d+v0qgUJ73916u+8d8HTfdkqJ5+ISFPK6Itxwg6018Go20uJ2ylfiy2jeNzYs43OsVO8Yt75VDkVM++QJeVugNIVV8lUhsNsWrace3Yn9/OGhuoaNq9cxRNWrubePbv46/Ztj68Lh0IsbUl947PQwgCxsGYvbbUwXS7A8ga4rxsRqVfV/ukOp6rb49+LSCWwGfhxkmesU1XvmsXIDSMtcuXVGnEjfPzwL3l180VsqClsvk6527dy5emNG/hE568ez28/ER3g0eGjrKtpy+g4gc/dWlZ/ktowhKYRme11cG83IrJIVae9YIJsp0xslSCzNVJjGuVzR37HwbGTXH/sdt7e+hReNPdcKnLYbA/K1xClI7DG87C27OvgReddQMiZfLM6b+Xqx8VWRSjEpqXLOW/Vata0tT++/dLmFhY0zuEnd9+Bq8prLr6MZVOIreTxmejyJ3J+qzLmepUHp2N81nDM7SPzmPhn4rXQ+GF2ozQMf/CTk/fw/9s77zg5yvrxv5/d2+u9X3K5lEsjvdNr6BCKoKigogJ2rNh+ioL6FcGCit8vxoaKqAhSQg8loQYSQhKSENJ7crne6+7z+2P3Lrt7bcvszszu5/167SuZZ2ae+czt3Xzm83zaw01v83DT21ycO5svl53HpDTD+7UOkKx6LVLM0jex9G5lOdO4IHcWu7truTJ/AZfkzSE/JTMm17IqSqmqEaMv+nEomJgDdV2HSGA9JcaWMIiHGtdxsLcRgKN9zdx+5HFOzZ7MuAjjf5OdcLxXQ+VhzaisZFZl1aBjp5ZXsGDCRGaMHce88RNIdw2d7H3atBMozsnlcGMD8ydMDFtuMbosxs4WmDKKAuvn+Kphqdb6WBhX+TBwEHglaPzTSqmbgU5gJfB1rXVsGmAKQpR0eHr439qXBrafanmXopRsbh1zmaHXEQMrfIL1YqKFsv94zJWkOqJ/xbatd6sicx9lGSNHX/RT4mtZotQJWuv3wriKbfSUGFtCAFpr7qt/LWDsgwWLDDe0El05hWNgtXZ2sm7PLt7atYMDDYO9km/t2jmkseVwOPjUmUtDusb0MWOZPmbssPs9Hg+OIbxnIEaX5fBoqMwO/fjSDGjt/bpSyv+XZbnWesj2GL4qsJcBvw8qHf8YsAavcjsB+AHwilJqtta6Ocy7EIRhMSqE8Jnmd6nrOx5Bm65cfK7kbEPmTnQdFksiDZ83mlh6t4wwtGzNkY53OLl0fkjGFkBlFjT1fFUptcBvNGH0VNL+NiRqSd1olZRSigcm3sTy2tXc37AGBXy+5BxjhPORiEoqXOXR09fHpgP7WLtrJ+8dPohnhKqg7x7YR2dPDxmpsSlT3N3by2+fe4qTpkzjtKnThz1OjC5b87jW+lshHrsMyCIoNENr/WW/zVeUUq8DG4BPAncbIKMQRKLqqXhxZf4CilKy+WXNc2ztOswnik6hxJUT1ZyJqL/ixWh6MtG8W0ZhU++WDtnQOs4LWuubQjzWVnoqaY0trfUKYMWiRYtuNFsWq1GUks13Ki7hk8WnsaHjAGWuEEOWkoxwDazR+mEF45+HlZoSmz9Vj9b87dXV7K2rZW9dLTXNTVy5cMmwXi4QhZgEfBjYqbUesda41nqzUup9YMFIxwmRI3oqOpRSnJkzjdOzp/BsyxZOyY7OaBVDKzKs4skaCjMaHQuGYCs9lbTGViJidE+SclceF+blGTqn3ZVVpErDozU/eewhappH9mIrYGrFGBZPmjxiHtZo7GraH7BdnT84DBHgiXfWsXH/3oHtl7Zu5lhLM5884+wRry1ersREKZUHXATcGeIp2vcRBEOIRW8th3JwUd5sw+cVRiYSfZnoi3l92k2KwcXGkg076ikxtgRhBIxakXMoRVVR8bDGVkV+AUsmTWbRpMkUZA3RpDYMgg2t/rGhDK7xRSWkpqTQ03e8auqWgwf45dMr+Ow551OYPXLIjRhdCceVQBohVHdSSs0CpgNDxtQLQiJh94XCeGNlb1YwsfZu9Wk3L7du55Gm9WzvruHpyV/BEWbPLZuGEsYK2+kpMbaEuGEXZRWpkujp62Pzwf3MrZowZKn2xZOmsHb3roHt/n5YSyZNprKwCBV+fHMAQxlZwfuDDa654yfw1exLufeF52ju7BgYP9zYyF1PPsZN55zPxJLSUa8tRlfC8GFgY3BFKKXUJcB1wBPAYbzK63vAfuC+OMsoJCix8GoJ8SUc/enRmrf37GLPsWPMmzCBqeVjBuZIFF3Sp92ct/0XAxWeAdZ27OXErEkmSmV7bKenxNhKEKJRUo197XR6ehmTmm+cQEFY2dCKZgVuqDysz597ITPGVg46dlrFGIpzcplQXDKoH1Y0jGZkBR8bbHCNKyrmlksu5/cvPhdQDbG1q4tfP/Mk1512BosmVoc0vxhd9kUpVQwsBb4/xO4DQCneBON8oB54Bviu1rolTiIKwqi807GfORmVOMP0HIyElfWXVYhEj67bvZO/vboagNd3bOOrFy0b6AMZb4MrVt6tFOVkbuY4DjYfN7YeaVwfkbEl3i376ikxtgTurV3F3xve4MMFS/hcydlRV2uyA9GGOAzVD6uftbt3DGlsOR0Obr3i6hGLT4RLOIaW/znBBld+VhZfufBS/vbq6oAcrj6Pm/tefoljzc1cNHd+yN63RFqZTBa01nWAa5h9m/AqOEGwLHu76/jI7t8zKa2Er5Sdx3k5M6KOGBBDa3Qi1aeLJlazdvcu3jt8kD6PhxXr1/HF8y8yWDrz+UD+Ap5s3jSwvbXrMFrrqH83kxG76qmkNbakpK6Xo73N3N+whl7t5u8Nb/CfxnX8ZcKnWJQ1wbhrWEBZGRE/PtAPa/dODtTXDXvchn17ueakniELTBhlaEViZAWfH2xwpblcfPqspTzxzjqee3djwL6nNq6npqWZa085PeTKiOLlEoToSCY9ZUQI4a+PPY8bDzu6a/jC/vu5NG8uvxr3YQOkE4YiWr3a0N5OTkbGwPa2I4fYVXOU6rLygfkTwbt1avYUJqWVsChzAlfmL2Bh5viIDS3xbtmTpDW2EqmkbjRK6v9qX6JHHy+OkOfMYHbG8M1vw8VMQ8sIAyucflgAuRkZLJpYTZ/bM8zaS3REa2QFzxVscDmU4rIFiynLy+eB11/B7fEM7Ht7zy7q21q56exzyc3IDPk6YnQJQmQkkp6KNdu6jvBEc+Ai0dKcE6Ka0woLhVbEqOIXxTk5NLS1Bow9uWE9N19wsSHzWwWnckRUFENIHJLW2BK8zMuoYpXrfQ73NgHwhdJzSHPEwEqIA0ZXP3rwzdd5a9eOUfthpaakMLdqPIsnTWFaxRhD8rCGwkhDy3/OoaoUnlg9haLsHP7w0krau7sHxvfWHuO+l1dFpAzF6BIEIVbkOjK4Mn8+jzZtQKOZnl7OxVLu3VAi1bEtnR1sO3yIJdVTBu27ZN5Cfv3skwPb248eZsfRI0wprxi4ZiJ4t4w0tMS7ZT/E2EpyrixYwMV5c/hP41qebN7E1QWLDJs7HquCsSwv297VNayhZVQ/rFCIhZEVPP9QBtfksnK+cbG3cMbR5iYAMlypfOikU6K6nhhdgiD4Y0QI4ZjUfO6s/BA3Fp/J3cdWclX+wqhecMWrFUikunZP7TH+tOp5mjs6yEpLZ2Zl4HN/SnkF0yrG8P6R4z/vJze8zZcvuERymoSEQYwtm2OEkkpzpHBd0clcV3SyARJ5iaWiMtLAau3sJCstbchcqiXVU3h77+6AsYr8ApZUT2bRxOj7YY1GrI2s4GsNZXCV5Oby9Ysv40+rX2D7kcN8+qyllOflG3JNMboEQTCaKell/K7qOrPFSBgi1bdaa17bvo3/vPXGQDj6fa+8xDcvuYKS3NyAYy+etyDA2NpZc5TtR48wrcKcUvCx7rtlBOLdshdibAmWx2jvVXAe1ufPvZDpYwbnqU0fM5ac9HSUUiyaWM2S6imMLSiM+WpbPI2s4OsOZXBlpKbyuaUXsKf2GJN9ictGIpULBSF5sWJvLfFqRad3e919PLjmdd7YuT1gvLOnhxe3vss1J50aMF5dWs70MWPZdvjQwNiTG95manlFQnu3tNZ06z7SbZq6IYSOGFs2xopKCoxRVEYbWEP1w+rnrV07hjS2nA4HX7nwUopzcmOWhxWMWYaW//WHMricDseIhlZdayuZaalkpqZFdF3xcgmCIJhP1BUG29r446rn2T9Exd6lM2dz2YLFQ553ybyFAcbW7mM1bDtyiBPGVA7IlSjerSO9zTzW9A6PNK7npOxJ3DbmiojmEe+WfRBjSzCUaAytWORfHW1q5K3dO1m7exeN7W1DHrNh/16u6e0lzTV4danMoJC50TDbyPJnOINrODq6u/nf559BKfjsOedTkpsX8bXF6BIEIVRi0asomb1a0erg948c4i+rX6KtuytgPDUlhetOPYMFE4Zv5DuxpJQZYyvZeujgwNiTG9YzvWLswHecCFEQ69r38tE9y9F4KxvXN7fx3fJLSXPI63gik7R1KJVSy5RSy5ubm80WJa6807Gfj+/5I+907DNblACMzsN6aetmfvbEo/z4sYd57t2NwxpaAEXZOTSMsD+W7GrabylDq59QZXJ7PPxx1Qsca2mmprmZu556nJ1Hj0R9/f2tB2Ja/EQQ7ECi66loojM82sNH9yznnmMv0ObuHv0EYViifd5qrVm5eSP3rHxmkKFVkpvLLRdfPqKh1c8l8xYGbO+tPRZgfMWbWBjeczIqyXce7y3W7O7kxdb3Ip7PqhFOQiBJa0rbvX9JpH9gd9c8xxvtu3hj9y7OzJ7Gt8ovYkp6mSEymb0iuGHfHt7YsT2kflg56RksnhS/PKyhsKKR5U8oHq6Xtm5m+9Hj33tHdze/Xfk0Hzn5NE6aPDVqGcTTJSQzdtdTseSJ5k2s69jLuo69/K3+DT5XchafLD4tqjnN1mHxxogFra7eHu5/7WU27Ns7aN/scVV8/LSzyEgNrVrv+OISZlVWsfngcd341Ib1zBhbmTDerVRHCpfmzeXvDW8AkIKDvd2DQy6FxCJpja1kZE3bLl5v3zWwvbrtfW7oO50pRG9sWSF88O09u9lyaPi5XE4nc6smsKR6MtMqxsYtDyuYeBlZ2xu8HqaphRURzzGawXXmCTM42FDPuj3Hf6/cHg/3v/YyNc1NLFuwGIcBhqzdFawgCMbRq938+tjKge1GdztbOg+NcIbgj1E692hzE3986fmB1iD9KOCS+Qs5f/a8sJ//l8xbEGBs7auvZXdtDdWlxhdnCoVY5G5dVbCQdzr2c2XBAi7Nm0thSmwrGwvmI8ZWErGq9f2A7VOyqjkpu9okaYxn8aTJvLNvT8BYPPthjUY8PVn9hlb//2NlcLmcKXzi9LMoy8vnyQ1vB+xbuXkTNc3NfOL0s4bMhwsX8XIJQuIQTfjTru5jtLg7B7ZTcPCl0nOjkidZvFpGGVrt3V384qnH6ezpCRjPTE3j+jPOYsbYyJ7T44qKmTNuPJsO7GNKeQWXzF0wyNCy++LbzIyxPDL5i4bNJ4UyrI8YWzYkUiX17YqLOTtnOr889hzrO/bxlbLzDZEnHl6t1s5O1u3ZxVu7d3LlwiVMrRi80jRjbCVZaWm0d3fHtR9WKJhlaPmPxcrgUkpx0dz5lOXl8fdXV9Prdg/s23RgH7965gk+e8755Bv0PYjRJQjJzfT0Cl6c+k3+XPcKf6l/lWV58xifJi+bI2F0DmxWWjrnzprDivXrBsYqC4u44aylFOfkjnDm6Fy2YBFnnTBzSD1vBnbouyVYGzG2kowTsyfxr6zPsKnzIHMzrf2yGtwPqz8P663dO4d8CKc4nXzk5NMozsk1LQ8rmHjnZQ1laPnvi2VI4YIJkyjMyub3L66ktev4qvPBhnrufPIxPnPOeYwvLon4+sGI0SUI9sSIpP4cZzpfLjuP64pOjnquRPZqxbLQ0Pmz5rKvtpZNB/axZNJkPnzyaaSmRP9aWZ5fQHl+wYjH2N27ZTTi3bI2YmwlIUopwwwto71aI/XD6mfDvj186MRThnyozxs/MWJ5jMSM4hcjGVr+x8TS4JpQUsotl1zO7198jkONDQPjLZ0d3P3ME3z89LOYb/B3lGxGl0p1kjohP+Tj+3a34R79MEGwJUUp2WaLYEniUc1VKcXHTjuTjfv3cmL1lLgvcMbT4BLvVvikhaOnjnXjpjF2wphM0pZ+tytWKvNp5GpgTXMTj69fyw8e/je/ee4p1uzcPqShBdDd28ue2hrDrm00VjW0jGK0+yvMzuarF13KrMpAo6zX7eZPq17g2Xc3oEepFhkJUi5eEIRwSUSvltHPwS0HD+D2eIbcl5GaykmTp1oiksTutLq76NWRL41Z6f1QCESMLcEU/JXBK++/F1I/rIr8Ai5fuJjbr/4I0yrGxkPMsDCjZ9b2hiNhG1pGGGaj3We6K5Wbzj6Xc2bMHrRv/Z7dAXldRiMGlyBYF3khjB1GLzj1ud38e81r/N8Lz/LEO+tGPyHG1LW2sLf2WMBYPJ/3sTDM3drDK63b+eqBf3Hytp/wcut2w68hmI+EEdqIcJVUr3bzZNNGLsmfi0s5DZXFqIdOR083j657a1hPR056BosmVbNk0mQqC4ssuXpmVr+saIymaMMJYfSQQofDwQcWn0hZXh7/XvMaHq3Jzcjgs0vPNySufySSLbRQEBKdFU0bmJExhuq0UsPmTBSvViwMjqaOdv606gX2+IyblZs3UVVcYngYeCg0tLXyzKYNrNm5ndLcPL572QdwmNS6xWjuPPo0f65/dWD7kab1LM09IeL5JHfLmiStsaWUWgYsmzx5stmixIyHGtdx6+FH+W3tC9xcei6X5s3FqaJ/QEWroPwVw+vb36e7LzBc0Cr9sELBjoaW/xyxNrgATp06nZKcXP76yipuPPtcCrLil2MhRpdgZxJNT0Xq1TrW28J3D/2XHt3HlfkL+FLpUsamjlxAIRmIlVdn59Ej/Gn1iwGFjgAeXPMaM8eOi/limT9tXV386NGHBqIhjjY3sX7vHhZNOt62xs65WxfkzQowtl5sfY+mvg7yUzINu4ZgPtZ9i40xWusVWuub8vLyzBYlJnR7evndsRcB2N/TwDcOPjiwbRX63G5Wvbc5YOz0aSfw02uu5fozzmbG2HGWNbTMCBnsx8j8rHiEFIK319kPr/oQE0qMW5UOB8nnEuxIouupUPnf2pfo0r140Dzc9DbX7fkDbj10DlGo2N2rFYvnmdaal7Zu5jfPPTXI0CrKzuEL510UV0MLIDs9nfkTJgWMPb1xPZ5hcsjsxvyMKib4eaJKU3LYF2WorYTqWg9rvskKgwj3j+eBhjep6WsZ2E5TKXyocHHUchjp1VJKsWzBYsYUeFcoU1NSuGTeQlMbD4+GmUYWxKYQRrwMLpdzeCV9oL6OV99/L2o5RkOMLkGwF4d7mniwcW3A2A3FZxgSpWFHYvUM6+7t5a+vrOLhtWsG2qz0c8KYSr556eVUFpoTnnbRnHk4/FIIalqaWbdnV8Axds3dUkrx0cKT+ED+Qu6fcCMvTr3F8m15hPBJ2jDCROfCvNns6q7l4cZ19OHh2sKTKHdFtzpq9Eqg0+HgxOopLJk0mW2HD1HX2kJ2erqh1zAKMw2sfmJZcTBeIYVD0dTRzu9ffI6mjg6ONjdx5aITY+7RlB4tghBfIl1tL3fl8ovKa7j72Ep2d9dS6SrggwWLopLFjl6tWBoTtS0t/GHVSg43Di69feGceVw8d4GpOVIluXksqZ7Cmp3Hi0c8vfEdFk6stmz0Szh8svg0w+ds7KknL7XQ8HmFyBBjK0GpcOXx47FXcmPxGdxbu4qbSs40W6RhlYVSihPGVsZZmtAx29CKZ1n3aAnX4Orp62P5iytp6ugAYNV7WzjW0swnzziHjNTYejgln0sQrI9DObgobzbn5c7g8aYN5DjTSXVE/uoihlYgWw4e4L5XXqKzpydgPN3l4uOnncWcqvExu3Y4XDhnHm/t2jHgdattbWHt7p2cNHnqwDF2zt0SEhv7LwkkAdHE345PK+KnlVdF3fjRyPBBu2B2yCDE19Ay6lrh/MwONzZwtLkpYGzroYP88ukV1LW2GiLPaEhooSBYnxTl5AMFCzkvd6bZosSNWD6bPFrz1Ib13PvCs4MMrfK8fG655Iq4GFqh6tninNwAwwrgmY3vDOr/Jc9ywYqIsSWMih1XAqPBCkYWmOPRirfBNaGklK9dtIyCrKyA8SNNjfz8qcfYfSx+zavF6BKE2GCVhH276LJ4PIv++forPLVxPcFNV+aPn8gtl1xOWRyKsvjriVB0xgVz5gWEDda1tfLmrh0xkS0U7PL7JJiPGFtCzAlWGsN1orcCVjCywNzQwXgbXJWFRXzj4ssZX1QSMN7W1cVvnn2Stbt3GiJPqIjRJQiCGcTz2XPi5KkBRSeUUly5aAmfOvMc0lyumF8/El1blJ0zpHerz1cWvp9EeH5rrTnUMziHTrAnYmxZnHBWBLs8vaMfFCZGr9w0trfzvf/8kyfeWUdLZ4ehc0eDVbxZYI0cLSMNrlB+rnmZmXz5wksGNczs83j46yureOKdtwdVyIo1YnQJQvRE4tVq7GsfttF9pFjdCxHvZ83ksnKuXHQiANlp6XzxvItYOnMOys8AixXR6NoLZs8jxc+71dDexpoE8m4d623hD7Uvc8nOX3Phjl/R6u4ydH7BHMTYShCO9jZzxvt38POjz9DUZx0jJliBrH5vM61dnTyzaQO3PvRvnt74jkmSebGSkQXWMLT6MVKWUH7GqSkpfPLMc7hwzvxB+57Z9A73vfwiPX19hskUKmJwCUL80Frz+f33c9Xu3/FK63bDjS6rYeaizlknzOSSeQv51rIrmFYRn2IPI+mCUPREYXY2J0+ZFjD27KZ3Bpoe92PH57bWmg/v/j131jzNju4aunQvzzS/a7ZYggGIsWVhwlkR/L/al2h0d/D7utWcvf1O/lH/RtTXN3rFprOnh1e3bxvY7vO4ycnIMPQa4WA1I8tKhlY/8Ta4HEpx6fyFfOL0swJWLwHW793Dr599kuaO+C8miJdLEOLDy23bWdexl3c7D/GpfX/huj1/oNPTM/qJI2BFr1a8niktnR3DRpEopbho7nwKsqIroBUqRunc82fPI8XhHNhubG/njR3vGzJ3JBj1+6WUYln+3ICx/zatN2RuwVzE2EoADvQ08GDD8aaPbZ5uVJQNH414eAQrktd3vE9X7/FQx+z0dJZMmhz1dcJFvFnhEW+DC2DxpMl86YKLB/Vd21dXy11PPkZda8swZ8YWMboEIXTCDSH0aA+/rHkuYCzDkUqGw7qN7sMlns+QPbXHuPOJR/njqhcG5TXFm1Cf/aEcV5CVxWnTpgeMrdk52Atqx2f1lfkLBv7vxEGuM4MeT/wjOgRjSVpjSym1TCm1vLm52WxRomZ/TwP5KZkD25WuAq7OX2iiRINxezysem9zwNiZ02eQmhK/Vm9WM7LA+oZWLAj1O6guLecbF19OeV5+wHhRdg55mVlDnyQICUQi6alQaPf0MC6oEetXy86Pak4rebXi9fKvtebV99/j7meeoKmjg93Hanhk3ZtxufZQxELvnjdrLi6nk5z0dK5cdCJfufDSuOSbDYdRv2cT0or5YMEivlt+Ca9O/za/H//xqPrKCdYgaY0trfUKrfVNeXEobxoJ4awInpo9mRen3sItZReS78zg5tJzTW/6GKxU1u/dTWN7+8C2y+nk9Gkzor5OqFjNyAJ7GVpGyxrq91Gck8PXL76MGb6m18XZOdx49rm4nM5RzhQE+2N1PWU0Oc507qm6lv9Wf4HTs6dwce5sZmbYv3FsPL1Zve4+Hnj9Ff615rWAyr+rt21ly8H4e3pipXvzMjP57NIL+OEHrmHpzNnDLtza0bv1P2Ov4pPFp1GckmO2KIJBJK2xlWhkOFK5qeRMXpz6TS7LnxfxPLFYBdRa88KWwCTPkyZPHRQiFgus6M2C+BhaO47VseNYnWHzmWVwZaSm8plzzufcWXP4zNLz4/J7k4wopVKUUt9WSu1QSnUrpQ4qpX4VdIxSSn1XKXVAKdWplHpZKTXPJJEFCxNNb63ZGZX8ecKnuLPyQ1HJYLZXK95hxw1trfzy6Sd4Y+f2QfuWzpzN9DFj4yYLRG5ohXretIoxIZWpj9d3YPbvWzJgVz0lvskEI8dp/oto8INt+9HDHGw4rngVcM6MWTGVwYoGVj/xMrT8/z+ltNiQebc3HGFqYYUhc4H3e6rOrxr1OKfDwRULl4x4jMfjweGQ9aMouA84B7gN2AaMA4Ldz98Gvg/c4jvma8DzSqlZWuuj8RNVSAbSbBo+ZYY3ZdvhQ/zl5Rdp7+4OGE9NSeG6U89gwYRJcZXHyjpYsDX3YUM9Zc8nWYITzYpgNMRqVSbYqzWnagIlubELi7HqQ95OYYMjYZbBNRI7jh7hwTdf54azzqUsSUKujEQpdSFwDTBXa711mGPS8Sqxn2qt7/GNvQHsBb4IfC8+0gpWxywd5o9ZXoZ4G1paa57fvInH31k3qEBEaW4eN551LhUFBXGVyQgdbIRe8Gd/6wGqcsYZNt9wHO04THmm/UNfrYid9ZQsAwuAcYopWNEcbmxg66GDAWNLZ8425FrBWDVkEOJraA0VOmhkOCGYF1I4FLUtzfxh1fMcaWrkF089zvYjEsoRAZ8CXhxOgfk4BcgFHuwf0Fq3AyuAi2IrniBYGzMqlXb19vCn1S/w2Pq1gwytOePGc8sll9vS0IqGPreb17Zvo9uv8nG8iYWh3+buZn9Pg+Hz2gzb6ikxtmzKr2tWsrXT+i+VwV6tSSWlTCotM/QaVjaywHxDK5R9kWAFg6ujp5t7X3yODl/oTEdPN/esfJrX/fq5CSFxIrBdKXWPUqpFKdWhlPqvUsp/iXY64AZ2BJ37nm+fIITNP+rf4E91r9DlMe7lOJ5eLbPaQRxtbuLnTz7Ohn17A8YVcOn8hdxw9rlkpMa3ZL6Zetjt8fDa9m3c9sh/+Ocbr/LytsHv43YrluHWHl5r28k3DvybU7b9hFsPPWK2SGZjWz0lYYQWI5TwizVtu7in9kXuqX2Ri3Nnc3PZuVSnlUZ8zVh5tZo62lm3Z1fA2NKZcwy5Fpi/ghYKVjG0/I8xKn8rFoQbOuJypjC+uJQav9LYHq154I1XOdrczBULFydcHpfLlcLYsqKQj6/LrKMFLlNK/dpveLnWernfdjlwPbAR+DCQA9wJPKKUOkl7l80LgDatdXDDnkYgUymVqrWOrvusYHvCCSFscXfyy5rnaPF08Ze6V/lC6TlcXbAIl7J+tVEzX9x3HD3C7198LqBvJUBmahrXn3H2QPXWeBILfRyOPnhxy7s8tv54v9Hnt2zi9OknkO4yp0ebEeGEu7truX7vnwa2X2/fxZHeZipc9giVD0dPNeW00gBLlVK3+A0njJ5KrLeQJEBrza+OrRzYfqrlXX50eEXE88VyBXD1e1sDSs+W5OQye5wxMdhiaAVitNcqVGJxj+F8ty6nk4+degaXLVg8aN+LW9/lD6ueNzWcxEI8rrVe5PdZHrRf+T6Xa62f0lr/G/gYsARvMrIgGM6f6l6hxdMFQE1fC3cdfYZ2d/coZ41MPLxaZntIyvPyBxkRlYVFfPPSKxLG0AqXU6ZOI92vMmF7dzer37O3d2tKehkz048bbBrNY03vmChRzHkhUfWUGFsWIpQVwXUde1nfsS9g7Mtl58ZKpJAZ6gGW4nQE9L44Z+bsqL0MVg8Z7MfKhpbVwwkhPOWtlOL82XP59FlLB/XfevfAfn759Aoa29uMFjHRaATe1Vr7P4ReBXo4XumpEchWapDboQDoEK+WEA49nj4ealwXMHZD8Rnkp2SaJFFoWOFlPScjgxvOWkqKT58umTSZr120jOKc+Pdlsoo+zkpL5+ygKscvbHmXzp7BjyU7lYK/smDBwP/LU/LIdqRFPaeNsa2eEmPLZizKnMDy8Z/ghHRvNbizcqYxP3N8RHPFegXwknkL+fHVH+GyBYsZW1DIidVTIp7LTkaWlQ2taM8bDrMNLoD54yfy1YuWkZsR+LJ2qLGBu558jL21x4wUL9F4D++KYTAK6HdPbwOcwOSgY6b79glJTjghhKmOFFZM/jKfLj6dNJVCoTOLTxSdEtX1Y63TrGBo9TOhpJQPnXQqHzzxFD522pnDNvWNJfHQyeFc4+wZs8jw8/h19HSz6r0tsRArbizLm8cV+fO5b8KnWTXtm1xXdLLZIpmJbfWUGFs2QynF2TnTebT6i/xm3Ef5RtmFEc1jpFIaSQFlpqVx/uy5fHvZlRErAzsYWRD/0u5mhQ4OhxUMrqqiYm655HIqCwNjxVs6O/n1s0+yfu9uI8VLJJ4AZiul/BP6zgBceOPjAV4HWoAP9h+glMoElgFPx0lOIYEoTMni2+UX8/zUb3D3uI+Q5UzqVfshaensGHbfKVOmceb0GSg11PtnbLGiXs5MTeOcoGrHL255l46ewaGpdvFuFaZkcVflhzg1ezJOlfSv7LbVU0n/zVmFcPuSOJSDi/JmMy29PEYSGUskysAu3iywp6EVC2PNCgZXQVYWX73wUuaMC/T49rrd/Hn1izyz8Z1BZZIFlgP1wAql1DKl1EeBvwPPa61fBdBadwF3AN9VSn1BKbUU+A9ePfJbk+QWLEI0vbXKXXmcnF0d1fXN6qsVK/rcbv695jV+8tjDNLS1mi1OAPHWy+Fc76wTZpKZetxo7+zt4aWtm2MhlhB/bKunxNhKQuLl1YoUOxlZYE9DKxZz9WMFgyvN5eKGs8/lvFmDq18+seHtQVUykx2tdQveBONG4F/A74AXgA8FHXoH8BPgO3hXGXOB87TWNfGTVhDiTzxDCJva2/n1s0/yyvvv0d7dzR9WvUCvuy9u1x8Jq+vmjNTUQb08X9q6mfburkHH2sW7JXixs54SY0uwFFZ/kAdjZ0MrlljB4HIoxeULl3DtKWfg9CvMMrNyHAsnTDJaPNujtd6ptb5Ya52ltS7QWl+vtW4MOkZrrX+ita7UWmdorU/XWid0eSzB+iTSy+zOo0f42ROPsscvx/RAfR3/XfumiVJ5sYt+PvOEGWSlHfdudfX28uIW8W4lAnbVU0lrbPlckMub/frzmMVo4Rf7exrwaM+Ix4RKrL1aj739Fhv27cHjCU9eu3mzIHEMLbsYcBCZsj95ylS+eN5FZKalMaaggE+ecXbC9d4SEhMr6amRCDWEcF93PQd7Gkc/MAwSxdDSWvPS1s385rmnaO3qDNhXlJ3DqVPN7Rtutn4O5/rprlTODYpqWPXeFtq6Ese79V7nERr72g2dU4gdSfvGobVeobW+KS/P2s3huj29XLt7Oct2/oaVLVuiyjWJtVI60tjIys2b+OOqF/jRow/xyrateBIwNybeFQch9gaRXcIJITKlP6W8glsuvozPnnO+aU0uBSFc7KKnQuV/jj7J+Tt+wW2HH+NYb4vZ4oRMrF/Iu3t7ue+VVTy8ds0gnTljbCXfvHRw0Z94YrahFQlnTJtBdnr6wHZ3Xy8vbHnXRImip76vjb/Uvcqynb/hsl2/4dHE7rmVUCStsWUX/tnwFkf7mtneXcPn99/PR/csN8zLFQ1DKZ8Xtx5/kNW2tvDm7p1D1ui0M/E2suyOlQyuktw8CrOH70NzsKFeCmcIQox4p2M/L7a+R692c3/DGpZu/zm7u2ujmjMRvFq1Lc384unHeXuIPNIL58zns+ecT1Za+hBnxgcrGVrhyJLmcg3K2V29bQutnZ2DjrWLd+u/jev5n6NPsq3Lq1f/27TeCLGEOCDGlsmMFH7R4enh3tpVAWOzM8biiKD8Z6yVUnNHB2t37wwYWzpzdkhVCK30MB8JswyteIX5xeo6VjK4huPdA/v42YpHePDN13GHGQIrCMlMqCGEv6p5LmD7hPQKJqYWD3N0crD54H7ufOIxDjcGhlamu1x85pzzuHT+Qgl5joLTp80gJz1jYLvX7WbbkUNDHmulHmrDcVn+PBx+S9jbuo7wXqcsANsB+Su2MJ2eHk7Nnozy/XFlOlL5TMlZYc9jtKE11ENp9bYt9Pm9pBZn5zB3XGTNlq1Iohtasb6elQ2ugw31/OXll9DAK++/x/+98OyQfVkEQYgMrTVX5i+g0lUwMPb1sgui6g8VL69WLF7CPVrz1Ib13PvCc3T29gTsq8gv4JuXXsFsC+hPuyyEDkdqSgrnz56LAhZOmMT/u+wDLJ4U3Os2vkTze1vmyuXUbK/8DhRnZE/FgywO2oH4txwXBhhtRbAoJZtfjLuGz5Scya+PPc/ktFKKUrLjJF3odPf28ur7gY25z545O2FW5JLF0Io12xuOMLWwwvB5dzXtpzq/KqJzPVpz38sv0dN3vKzytsOH+OVTK/js0vMpzsk1SkxBSDhC9WoppbiyYAGX5M3hP41r2dB5gBOzk7MiaHdvL39++UW2HBxsxC2YMIlrTzmdNJfLBMkCsaqhFe7z/tSp05lWMYYxBYWjHru/9QBVOeOiES/mXF90KidnTeay/HmUuUQ/2YWQjS2l1IMRXuObWuu9EZ4rAFPTy/ld1XUR5ZPEw6v1xs73AzwBmWlpnFQ9JaT5rPpA7ycZDa0dx+qYUhqb8B6rGVwOpfjkGWdz74sraWxvGxg/2tzEXU8+xo1nn8fkMns0DhcEq5PqSOHaopO5lpOjmsfOuVqulJRBury/TcU5M2ZF5e0zCqvr5XBITUkJydCKJ0c7DlOeOSaic8/ImcYZOdMMlkiINeG4Hq4GqoGSED+lwFWAtX7LbUy4D+F4KCS3xzOoO/sZ006wxMpcNJhRcbAfK3i0rCBDuET6gjC2sIhbLrmMCcUlAePt3d389rmneHPXDiPEEwTBZsQihNChFJ84/SyKfcV6stPT+eJ5F4Wc4xxr7GBoxVJGO+RuCfYj3DDCz2mt3wrlQKVUCtAz6oFJSqjhF1ZiqIfQxv17qW877hFIcTg4Y/qMeIplOGZWHLSSkRMrD1esvFsQuYcrNyOTmy+4hH+89jJv7909MO72ePj7q6upaW7i0vmLcFjgZUgQrIBZOszOXq1+stLSueHsc3l47Ro+ftqZFGRZIz3ADoZWohCNd0uwH+F4tm4DDoZxvNt3jv2fjDYkHgpJa80LmwP7ViypnkJuRmZI51vxwS6GVnyI5c850t+r1JQUrj/jbC6eu2DQvufe3cifVr0QkNslCMLweLQn6VspjPS8qCws4ubzLxZDyyT21dXy6vZtQ+4T75ZgNCEbW1rr27TWIb/Bay+3aa2PRiZacvKLo8/yu2Mv0uaOvBpaLAytoR4+u2qOsq8+sE/KOTNmGX7teCGG1mBiKZcVDS6lFBfPW8D1p59NisMZsG/j/r386pknaOpoN0JEQUhoHmxcx7V7/sC69r2GzRlPr1a0L9y7j9Vw+yP/4d0Dwz+LrBA2CPY0tCKV+UB9Hfe+8Bx3PfkYD735ekCubrwx6ve5w9PDCy3vGTKXEBsSo1yczRgu/OJgTyN/qn+Fu4+t5Jztd/Hnulfo9lh3Jf35oG7ssyqrKM8vGOZoayOG1vAkm8EFsGhSNV++8BJy0gObiR6or+PnTz7GpsPboxVPEGzLaCGEXZ5e7jn2Ams79vCRPb/nhr1/YV+3/ULnI0FrzSvbtvLrZ5+kqaOdv72yitqWZrPFGhY7GlqR4vF4+OOqF9h80HvPfR4Pz27aMOSxdvBuvdW+h28ffIhTtv2Ez+7/G7u6j5ktkjAMURlbSqnlRgkiwG+PvUCvdgPQ6G7n7/VvEO66V7y8WkebGgceWP2cO3N2yHNa6QEvhpa5WNXgmlhSyi2XXM6YgsAFhKaODlbtXButaIKQsDzQsIaavpaB7Tfad5PmiK7TjB1ytXr6+rj/tZf5t19z9M7eHpa/9Dzdvb0mSzcYK+nhSAhXfofDwYVz5gWMvbFzO/VtrUMeHw+DK5rf698ee56Hm96m3eMtj/BI43qjxBIMJlrP1oWGSJFEDLci2Obu5qXWwPjhm0vPJTVKBRUrNgWFRowvKqHaZiWyzaw4CPYytGItq1UNrsLsHL520TJmVh7vvbJ40mS+dPpHjRBNEGxHKIUxtnYGvkB+rPBkyl15sRLJcCJ5yW5oa+VXT68YsnrpzLGVpDidQ5xlHnY3tCJlSfWUgUqQ4C2CNJx3y+pckR+YX/xo0zu4tTQ5tiKjvskrpdzD7QKSO/vVQLKdaTw/9ev8pe5V/lL/KmWuPC7LnxfWHPHyagGcP3suU8oreHHLu2zYv5els6xRtjZUzDSywF6GVj+x7L8Va6JpfJzuSuUzZ5/HI2+/xb7aY3z0lNNN/V13uVKoGBP699CZtZ+W0Q8TBMP4+bhr+FDhEn5V8xzvdR3mppIzo5rP6l6t9w4f5L6XX6K9OzDXOjUlhetOPYMFE6zVwDlZDS0Ap8PBhXPnc/9rLw+Mrdm5nfNnzx2yiX08Gh1HWpnwgtxZ3Hb4MTp1L6UpOVyWP48uTy9ZzrQYSBk+4egpd24tDTGUxWxCcZscAeZrrWuDdyilrB/UaiNynRl8uew8PlZ0Ckd7m3Gq0B2PZiijiSWlfPqspdS2tFCYHXpFJbMf9GJoWZNYloSH6Awuh8PBVYtPotfdh8tiK9SCYEWWZE3kgYk3sb+ngcKULLPFiQlaa1Zu3sSKd9YNqrxYmpvHjWefS4XF8pjN1r9GE8lzffGkyTz77gZqW7zLUB6teWbTBq479YxYiBgzsp1pfKv8YsalFnBK9mRSlOgmqxLK2/zjwHDtqp8xUJaEJ9S+JIUpWczIML//QqihFCW5uTgd9qi1YrahZXfsHE4I0b9ouJzWDOsVhHgQbm8tpRTj04qiuqZVvVoerbnv5Zd4fP3aQYbWnHHjueWSy8XQsihOh4OL5swPGHtr1w6ODVPIxMq5W9cWncQZOdPE0LI4o74ha60/r7V+dZh9NxovkhAuVlVGVsMKhlYieLWS1eBK9p5BgpAMhPpivXHf3oAG6ODNrVg2fxE3nH0uGampMZAucsTQCmTRxGrKco/nEXq05rVh+m4JQrTYwx0hJAxmPPDNLoTRTyIYWolCJL+Hq7dt5Z7nnubNXTto6+6IgVSCIPhj5YXEtq7OgO0MVyqfO/dCLpgzD4eN8pcTgUie5w6Hg6VBFZT7wwoFwWjCNraUUn+PhSCCtRhqdc/j8eDx2KvSjRWMLBBDy2pEkrt11gkzueakU2loa2XZn77EugNbYiCZIAh2IDhEMDcjgxljK02SRoiEnIzMgG33CO83dui7JViXSBIQLjBciiTmkcb11LvbGJ9a5PsUh9WPJJ4rf+8fPcx9L7/EjLGVzBg7jhPGVJId1PTVSoihJRhNSW4uF81dwAevvBaPlNgVhAE2dhzg0ab1FKZkU5SSzfT0chZkjjdbrJhRWVQUUJL5WEszXb09pLusFT4oDE9wrrmUTRdihWR7m8yDjWtZ17F3YPtP46/njJzh6pGYy5aDB2jv7mbt7l2s3b2Lk6dM5dpTQq/eE88QQjG0vBw5XBdW+VUhNJRSOCUhWUgiRiuOsbXrMPc3rBnYvjp/kS2NraqccSF5MdJdqZTm5VHT3ExqSgrjCotp6+oSY8tGBBtbZkfuRFoC/mBPI/c3vEFDXzuN7nbGuPK5bcwVxgsoREzSGltKqWXAssmTJ8flesMpqn1B4+NTo6vcZATDKZothwLHZ42NrIx2rBFDy8uRw+JREwQ7E289FQ31fW0B20UJWu7dn4+efDpZaWmU5ubhsElFXuE4zqDcupHCCK1Ms7uTP9W9MrA9Ja3MRGmEoUjap4PWeoXW+qa8PPO62re7u6ntax3YduJgTKq1SsX2c6ylOSB51OlwMG2M+eXp/bFKIQwrIIbW8ETaa0sQ4o0V9FSoNPS1B2wXpYTee9GuVJeVU55fIIaWTQn+3tw2rTgb3Mcu+G9RMJ+k9WxZAQ18p/xi9vXUs7e7HjceXBYNTdpyMNCrNbmsPKxwiViHEFrNyDLbqyUYR2N7OwVZib9KLwjRcHHeHMalFtLobqe+r50Z6dZajBOEYMYXl3DHNdfhdDhwKGWbfqHBFDoD9VOTu0Nyii1GJMaWlGQxiGxnGp8qPj3i8+NZHCM4hHDG2HFxu/ZoiKEVSLBXS/K2IqexvZ1bH/4XVUXFLJ40mYUTJ5GTnmG2WIJgORZlTWBR1gSzxRCEkHE6HJYu8hUqaY4UvlV+EbmODApTsgZ5ugTzCdvY0lovjIUggjUYKl+ru7eXnUcDDZqZldYwtsTQCiQRwgenFlaYLcIAb+/ZhdaafXW17KurZe3unfz2w180WyzboJR6MMJTv6m13mukLIIgCInKDcWhFysTAomHnjI0jFApla+1bjJyTsF83j9ymD6/xNHi7JyAzuujEYsQQqsZWWC+oSWMTrj5Wm/t3hGwvWhitZHiJANXA+8AoXYLVcDpwB3A3hjJJAgjEmpFwmC01vS63aSmWC9Dozq/Kq4VgQXBRsRcT0X0RFBKfQ7I0Vrf6dueBzwBVCilNgCXa60PRjK3YD0GhRBWjkMFVfGJJ2JoDU08vVo7jtUxpTSxQxMPNtRzuLFxYNuhFAsnTjJRItvyOa31W6EcqJRKAXpiLI8QJqOVfU9maltaWLNzOwca6thfV8e0ijF88sxzzBZLEITwiKmeijQb8EsEWoC/AQ4D1/rmvCPCeQWLobUeVBxjpon5WlY0tKxAIoQPWo23du0M2J4+ZiyzSq3ZA8/C3AaEs/Dm9p0Tv4RUQYiClq4Onn13A1sPHaStu4v9DfIsFgSbEXM9Famvuwp4H0ApVQKcCizVWq9SSvUA90Q4b0Iy1KqgW3vo1W7SHa6I5oxFcYyhwiYONzXS1HG8jKjL6WRKeeg5NUaGLVjV0LKCV2s0pEhGeCGEHo+HdXt2BYwtnmT9XkdWQ2t9W5jHa7xKTLARvdqNR3tIi1Cf2ZnKgiKUUmhf2fDalhY6e3rISJXmxlanq7eH597diNvjwePRuFKcXLZgsdliCXEmHnoqUmOrG+h/kpwNdAD9HdUagPwI500adnUf45Kdv6Y8JY/xaUUsyKzia2UXmC3WIIK9WlMrxsQ9Ht2qRhZYw9ASr5bxvH/0MC2dHQPbaSku5lZNME+gBEQpNQs4E2/8+2qt9bsmiyREyLr2vXx87x/JdqRRlJLNadlT+OGYy80WKy6kuVyU5+VzpOl4yPGB+jqmVkjpe6vT63bz3LsbB7az0tJsbWx5tIdmdyeN7g5cyskEswVKAIzSU5GGEb4FfEEpNRO4GXhGa+327ZuEhICMyj6ft+toXzNvtu9mY4c1U9yCja1ZcQ4hFENrZMTQig1rg0II542fwOSCiSZJE3+UUmOVUm1KKa2UyvYb3+sb8/8cjWD+zwEvA2cBFwNvKaU+b9gNCHGlvq8NgDZPN/t66ge2k4WqosCogf318ly2A04V+Ars8dizqTHAiqYNzNjyfZZs+zEX7Pgld9esNFukmGMnPRWpi+LrwArgXbx9tz7lt+8a4LUI500a9gWFFo5PKzJJkuHp6O5mT21NwNiMMEq+RxtCKIbWyIihFRu6e3vZsH9vwNiS6qQLIbwLaAOGatjyAPBbv+1hE4WVUpla644hdn0LOFlr3R+O/mngduB/I5ZYMI16d6BxlWx9fsYVFfPmruOVS8XYsgfBTYzdNm4EnO1Mx81x+Rvc7SMcnTDYRk9F5NnSWm/VWlcDJcAErfV2v93f8H2EEWjq68DB8Yp+E1LNNbaGytdypTj51JnncPKUqeRmZFKel09Rdk5c5BFDSzCScPK1Nu7fS09f38B2XkYmU8qs0/sr1iilzgAuBH4+zCFHtNZr/D7rR5huu1Lq2qEuA/i/2dj3LUeg09OL0+91osiZPcLR9qAqJ/SFRfFs2RNHsLHlse9jqMCZGbDd0JfYxpbd9FS0yTfFwFylVHAL7nHAU1HOndB8o/xCvlR6Lod6G9nXU8+k1JKQz41FcYyhcDlTmDd+IvPGT0RrTWtXZ8yvaWUjy0pE4tWSIhmhsXZ3cGGMaibkjTdJmviilHLiXQ28HWgyYMqPAncrpb4E3OxXWvdOYI1S6gUgE1gKfNOA6wkm8NmSs7ip+Aya3Z3U97WT4wx+JUhsKguLcCiFx1cko661hY7ubjLT0kyWTBgJZ1ALG4+Nja3CFO8CR5YjjUJnFhWu0Huh2g076qlI+2zNBv4JnAAM1XBJA85I5k4m0hwpTEorYVJa6IaWWSilyM3IHP1AH5GEENrB0LKCVyuRwwenFprrQWru6GDbkUMBY4urp5gkjSl8FkgDfoe3lcdQfFopdTPQCawEvq613jfUgVrrl5VSC4FPA48ppVYC39Ja/04p9SrexGOA72mtNxh4H4JBhNpjy6EcFKRkUZBkIYQAqSkplOfnB/TlO9BQx7SKsSZKNRhpbByIw+GNL+rP1NJ4Da5gj5cdqHTls3nG7clSEdR2eipSz9afgV7gUmAn0oTS1gwVQhhvxNASrMC6PbsGSjgDjC0oZGxBoYkSDSY9JSWshtINmekcgcuUUr/2G16utV7uf5xSqgj4EXCd1rp3mMbljwFr8PYkOQH4AfCKUmq21rp5qBN8ZXL/qJR6EPg+sFkp9Uvg51rrjUOdIwh2o6qoJMDY2l9vPWNLGIzD4QgIH3RrHXHlODNxKAdpylqSh6OnurKz2AdLlVK3+A0njJ6K1Ng6AbhKa/1stAIIgh2wiqGVyF6tWBFOvpZ/+Wbw9tYKJ3fDwjyutf7WKMf8BFijtR42BFxr/WW/zVeUUq8DG4BPAnePNLnWugW4RSn1e+AXwDal1C1a64dCkF8QLM24omLW7Dyevr6/Tp7VdsAZZGx5PB5wSmCWSbygtb5plGNsqaeiKf0e+htMEhNqCEYikWhhCmJoJQ/XnXoG37/ig1w4Zz4lObksmlRttkhxwdfG41PA7UqpfKVUPt4YdYA8pVTGUOdprTfjbXC/YJh5M5VSP1ZKvamUekcptRzo0lpfDtwE/EAptVopNdfoexKEeDI+qEjGASmSYQuCy7/buUhGomNnPRWpZ+sm4J9KqQ7gJYZIUBumjKIQJfEojtHS2cGTG9Yzc+w4plWMIc2VFDHAQ2IVQ8sopEjG6JTl5XHp/IVcMm8Bw4QoJCJTABfwxhD7DgJ/Am4Y5lzN8bSHYP4EzMC7GtmBV3esVErN0Fqv9Cmvz/vGHg1hVVMQLMmYgsLAIhltrbR3d5GVllzFQuyGwxH4jLdz+fckwLZ6KlJjqw7YC/xthGPEDzsMjzdt4EhvM+NTixifWsTEtGLSTUpqHCpfa+uhg7y2fRuvbd9GisPBqVOn88ETT4mZDFbN17KSoSVerfijlEqUEMJQeBU4O2jsQrx9Ri4Gdg91klJqFjAdWD7UfuAi4INa65W+418D6oFqYKfW2gPco5R6AG9cvWAzGvva+XfjWoqcWRSmZFPuymNmxhizxTKEqpxxIec0p6akUJFfwKHGhoGxA/X1TB8jeVtWZlCvLfFsWRnb6qlIja37gZPx1reXAhlh8kjTel5tO94A8Z5x13JB3iwTJQpk66HjyqXP4yEjNfTytYkWQmgFrGpo7ThWF1YCrBmEk6+VzGit64BV/mNKqQm+/76itW5TSl0CXAc8ARzGq7y+B+wH7htm6m3Ax5RSbwNdwGeAdryrkP7XbwC+PPh0weoc7G3kFzXH07enp5ezYnJyfpVVRcUca2lmbGERVUXF5KSLV8vqOILCCD2e4Zwf1mdz5yHWtu+h0d1OQ18H15SczbLCxWaLZRh21lORGltnAzdqrR+I8PykZl93YB7XhDTrvLC6PR7eOxRY+npWZdKs7g9gJa+WYA5J5NUKlQNAKd4E43y8K3/PAN/1JRUPxSfwKrg6vCEce/GuIHbFVlQhXtT3tQVsJ0JD40i5ctGJfPjk0wZ5SwTrYjXP1tGOw5RnRuYZfrl1O7869tzAdlXGmIQytkLEknoqUmNrL964RiFMejx9HOoNrHg2LtU6paX3HKuhs/e4ozI7LZ2qotCMwUTprWUlQ8uqXq1Eoqevj+aOdkpyE7cJZCRore/DbyVQa70Jb1PHcOZ4HzhZKZUFpGqtG0c7R7AOoRR4qu9rD9guSkleY0uaGNuPQcaWjXO2CoN63NX2DmdbJA520VORGlu3ALcppTZorfcaKE/C40HznfJL2N9Tz76eeto83WQ6Uk2RZahY9M2HAsdOGFtpywZ/kZIMhpYUyQhk04F93PfyS0wsKWXxpMksmDCJbAn/MRStdTvesAwhwZicVsqni0+noa+N+r52Q/O1yjPHxKUoVDIhjY0DufaU0+nzuHEqBw6Hg8Is+y4WFDgzA7br+hLf2DKSWOqpSI2t2/CWft+ulNrL0NUIl0QuVuKS7nBxffGpEZ0bD6Wz5WCgsTUziUIIk8HQSiZCzddau3snAHtqj7Gn9hi1rS189ZwPxlK0pEEpdTPwL631sTDPecAXny9YnLmZ45ibmTx6QkgsqsvKzRbBMKrTSrm28CQKnVkUpmRxSv48s0WyBfHQU5EaW5t9HyGBaGhrC2jqqpTihBArKdl9pcxKhlayMrWwIu7XbO3s5L1DATmwLJk0ecRzIo2nT1J+hbdMb0hKTCnl9J3zKt74eUEwlXAqEgqCmUxOL+WHYy4f2J6QPcVEaWxFzPVURMaW1vqTkZyXbNitofGWoBDCiSWlMe0RYsV8LSsgXq348fbeXQN9cQAq8guoLCwyUaKEQwE/VUo1jHrk8eMFISFo7uigqaOd8cUlZosiCMLwxFxPRerZEmzOUCt1yRpCaCWvlhha8WXtrl0B20smTWZ8rpSLN5CX8fZcDOdt82WgNTbiCEJsaens4J9vvMr+ujqaOzsoyMrmR1d/2GyxBEEYnpjrqZCNLYm9T2x63X1sPxqYEzZzbGjGlp1DCK1kaMWTRC+SEUq+Vk1zE/vqawe2FbBoUvWI50gIYXhorc8yWwZBiCcZqWlsPXRwoIR4Y3sbrV2d5KRnmCyZIAhDEQ89FU6ZuV8B40M92C+mUZaJfXi0h3Z3d0Tnxro4xo6jR+np6xvYzs/MZGxB7ErSWyGE0GqGlni14stbu3YGbE8pr6DAxpWoBEEwH5fTyZj8goCxA/XybLcqu44d5e09u1i7eydrdm6nsV2KpgrGE04YocTeR8nB3iaWbr+LkpQcxqcWMTtjLN+tuDTucgwVQrg1KF9rxthxKJW4X6EYWsmNR+uBKoT9LJ40RRoZC4KPUHKOW91dLN3+c4pSsih0ZjE2NZ87Kz8UB+mszbiiYg40HP/57a+vY0aIkSJCfHnu3Y0BKRSfOed8CrKyRjjDPrS7u3AqB+kmtRcSjhOOsSWx91Gyr9v7Ql3b10ptXysaPcoZ8UFrzeYI87XsGEJoNUNLiD+7j9XQ0N42sO1yOpk3foJ5AgmCDanva6PR3U6j2+sNqOwtGOWM5KCquITXd7w/sL2/TnSOVXGqwAAvj42bGgPcefRpnmjeSGNfB126l79P/gofLj7NbLGSnpCNLSvH3iulJuNttHwyMBN4xYry7g9aKaxKtUbVs163m/FFxbR3d9HZ04PT4WB6RWgl34XoEa+WsYSSr/XWrh0B27PHjScjdeTVP8nXEoRA6vvaArYLUxLDIxBMuOXfq4oC82EPNMgz3qo4HYHGVn+unV1p93RzpLd5YFsaG1uDRKlGOBO4GFgDuEyWZVia3J04ceDG+8c83iLGVmpKCp888xzcHg97a49R09xEmit2P0Yz87Ws5tUy09BK9CIZw9Hr7uOdvXsCxpZUT5YQQkEIk3p3YH5LUYrkPIK3hUSKw0HfQJGMdlo7O8nJsEaRjOr8KltGpcQCR4IZWwXOwAWPul4xtqxAohhbK7TWjwEopR4CTH+DHCre/Qul53BTyZkc7mliX08d41JDK0BhZHGMkVbnnA4H1WXlIXdUt9vD2mqGViKw41gdU0pN/3MLi80HD9DZ2zOwnZ2ezgljKk2UKPlQSpUCmVrrvWbLIkTOOTnTeX3ad6l3t1Hf106m5IYA3rDkioLCgMIY++vrkqadip1wBuWm+/ddtCP+3uU05aJH941wtDASRuqphDC2tLZPkK1LORmfVsT4NGt4tZIFKxpaEj54nKmFFYbME0oI4dqgKoQLJ0waFEoixJy7gceBvf6DSqmJwFGtdacJMglhkqKclLhyKHHlmC2K5agqKhZjywYkWhjhsry5nJUznUJnFjNzZyZ0obM4cDcG6Sl5wxDiihkhhGJoCf14PB5auwKfj0uqR69CKPlahjNTa/2vIcZnAX+ItzCCYDSD8rak/LslCQ4j9Njc2CpIyaIqtZBsZ5oYWtFjmJ5KCM9WuCilbgJuAqiqkjZgkWCXEEIxtEYm2fK2HA4HX7/4Mo42NfLW7p3sr6sb9FJkddJSXGF5At9Pt2TRgiHfaLTWK5RSd8VbGCtipp4Kpey7MDLBz5X9fg3UBesQXI1wJM/W/tYDktsbBuHoqaMZlvSOG6anIvJsKaVuVUoNudSrlKpQSt0aybzxQmu9XGu9SGu9qKQknEr29iY4X0trzfYjh+l1u02SSBDMoTy/gMsWLOaL518kq3/m0KyUmjnMvq64SmJRklVPWZVwX7L7i2T009TRQUtnh9FiCVGSaGGEgqEYpqciDSP8ATBcRvkY337BAIwsjhHMocYGfvPcU3z7X/ez/MWVg8phG028QwiT3at1qKaeQzXJs0IdSr7WUEgIoSncDvxXKXWi/6BSahLQa45IgmAcKU4nYwsCc7P3Syih5XA4EqtAhmAohumpSMMIFQzbkbcSaIxw3oTlqeZN7O2uZ0JaEeNTi5iYVmJ65aYth7yeru6+XjYd2IdHa5ZUTxn1PDuEECa7oSUIVkZr/aJS6mvAo0qpfcDbgBNYBnzOVOGEkHmiaSO5znSKUrIpTMmmPCVXPMV+jCsqYp9f+OCB+jpmVUrqgpUQz5YwHEbqqZCNLaXUJ4BP+A39n1IquIB/OjAbeC4cIZKBJ5o2srJ168D2zys/xOX5802UCLYeDAwrTJRKSVY0tARBCERr/aSvqtPlwBygDbhQa/2uuZIJoeDWHr528N9ov3XXrTN/jAuniVJZi4mlZeyrq6WquIRxRcVMLTem6qpgHI6gnC2PfYpbC3HAKD0VjmerA/CPSWoGGoKO6QGeBv43HCGiRSmVibepMcBYIFcpdbVv+ymttemB0vuCEo7j3dA4OF+rvbuL3bXHAsZmjrW/sWVVQyveXq1wwgeToUhGQ1srHq0pzskNGJdkZ3NQSn0X2ABs0Fr/G/i3uRIJ4dLobg8wtPKcGbiUGFr+nFg9hRNDiBYxA2ls7EU8W8JwGKmnwjG2LgK+qbXeo5TaA3zFQiuQpcB/gsb6tycSVCMfQCm1DFg2efJkw4UJruTk0R729wTapfE2toJ57/AhtF9sckV+AYXZ2aOeF+nDOR75WmJoJS+j5Wut3LyJV95/j0mlZSyZNJkFEyaRmZY26rz++Vof3b2cUlcOczPGcZHWLM6uxikvl5GSA3wJmKeUcgAb8Sk1vIpt6/CnJg+x1FPRUt/XHrBd5BxdfwiC1bCisXW047DkClsDw/RUOMbWJ4B7gT3AeCAjjHNjiq+7c1iB4lrrFcCKRYsW3RgTofzo0x6+WX4h+3rq2ddTT31fG/nOzFhfdkQSNYRQGOzVOlRTz9iy5G2i3ed28/be3QDsPlbD7mM15GZkMqdqfMhz1PW1srZjDwBPNm/irppnqV/8VzLE2IoIrfV3+v+vlCoD5gFzgW/iDUWXHyzx1VPhkqZSuDRvLg19bdT3tVOVWmi2SIIQNlPKK7h8wWIcDoXT4aCqSCp/Cl6M1FPhGFtHgLOUUv2WXLovfG84IU0P3bMKqY4UPlZ0StjnxaoSocfjYeuhgwFjdg8hFK+WMBxbDh2go7t7YDszLY0ZYyvDCiHc0BG4ODE3cwIZjtE9Y8LIKG81hanAecCleEPVvzPiSUJMCbXH1oS0Yn417sMxlsZaVOWMGxSSL9ibiSWlTCwpNVsMwcIYoafCMbaWA3cAP8VbifClUY6XlUmLEKwc9tfX0dZ9vEVAhiuVSaVlo85j1RBCMbSOY8dS7+E0PoyEt3btDNheOGESKc7wHk8bOgJ/90/MsWYehl1QSl0JXAacDawHVgA/01pL51dBEATBdIzUUyEbW1rr25VSTwInAH8DfgzsCveCgvn0l3zvZ/qYsYPilu2CVQ0tu2HnIhkj5Wt1dHez5WCgobR4Umj5L/4x818qXcrS3Bls6NjPho79nJc3NzJhhX4eBtYB3wLWaK33mSyPIMSUtq4u9tfXcaSpgaUz55gtjiAIo2OYngqrz5bW+m3gbaXUUuAvWus9kV5YMI/NCZKvZWVDS7xa1mD9vj30+SU8l+TkMrGkNOwqhGkOF/Mzq5if6TXsJmSLZytKPoA39v3DwB1KqTxgE97E441a67+YKJsgGIbWmh8/9hA1zc0DYwsnVpOfmWWiVIIghIBheiqipsZa609Gcp6VsHKVJyMJDiFs6ezgQFAX+xljK0edx2olYsXQsg47jtUxpdSaXrG1u3YEbC+eNFmarloArfWjwKP92z4lNs/3OR0QY4vk0VOJjFKKjNTA/M79dXXkV4mxJQhWxkg9FZGx5bvoNcCNeJPG0ocQ0tIZh/Gq8qS1ps3TTY5z0I9oRGJVHGPLwcDCGFVFxeRmxK4yYjxKvluJZDO0rExdayu7jtUEjC2eVB3SuVJ2N/YopWbiTTYuAN4HHtdarzZXKmth5WqEQuhUFRaz16+v5YGGurCqoQqxo7u3l5bOTjzag9vjIc3loig7x2yxBItglJ6KyNhSSn0U+DNwH3CO7/8OvIlkTXhzupKS4EpOdX1tnPL+/1DozGJ8ahEnZFRw25grzBEO2HrI/iGEVvZqmUWyhhCOlK+1dndgYYyJJaWU5OZJI2MLoJS6AK+eeAzoBK4GfqGU+rbWermpwgkhcdO+v9Lj6aMoJZuilCw+X3IO+SnmtjSxKlXFxd7XNB/760SHWYWthw7yp9UvDGzPrZrAjWefa6JEglUwUk9F6tm6BfgR3uqENwH/q7Ver5TKAVYCUvbdxz6f8dXgbqehs51u3WeaLB6tB630h1Ly3UohhFY2tKzs1Qql15adi2QEo7UeZGwtCbEwhhAXvgucr7Xe2D+glJoC/FMptU9r/ax5ogmh8Fb7Hto9x1sqfL7kHBOlsTbjigKfq/vr69Bamx7SXJ1fZSn9bgZWbGosWAbD9FSkJeimAK9prd2AG8gF0Fq3Aj8DvhjhvAnHviBP1/jU+DWXDc7XcijFbVd9iM+feyFnnTCTCSWlVBXHroGf0SGEYmgNTbJ6tUZiX10tx1qOJ6Q7HQ7mT5gU9jzN7k5+X7uaN9t30+HpMVLEZCfPX4EBaK13AB8DvmKKRELIPba6PL0BhlYKDnLDDJW3K5F4xsvz8nH5tZto7eqkqUPWpK2AwxFo8Hq0GFvCAIbpqUg9Wy1Af8bnIbzl4Ff5thUQP4vC4jS7O3ApJ73aDcCENHN/NC5nCjPGVoZUFMNKWNnQEqzHW0FerZljx5Gdnh7Si5J/vtY7Hfv4ec0zADhxcFHe7KRr5Bojhnyj0Vq/p5SK3QqQYAgNfe0B24UpWTiUPduHxAOnw0FlYRF7/PO26usoyJIiGWbjVOLZEobFMD0VqbG1FpgDPAs8DtyqlOoDeoBbgTURzptwfKr4dD5RdCpHepvZ11NPuSt31HNiVRwjEqwQYmB1Q0u8WuYwXL6W2+Nh/Z7dAWOLqyMLIdzQcdw77MYTdqEbu6CUuhr4GjANyAL2AX8H7tRa9/iOUcB3gM8BxXj1wM1a6w0RXLJKKXU73jK6m4AdWmsd7X0I8aEoJZtHqr9IfV8b9X1teJCvbjSqiooDjK399bVSJMMCOILCCD3yGLIsdtZTkRpbPwX6nxK3+v7/f3jDEtcCn4lw3rgRz5K6TuWgMrWAytSCmF8r0RBDK7GZWlhh+JxNHe3kZ2XR1t0FQEZqKrMqhy+kMRIbOgIXG+ZnRDaPDSgCXgTuwlvkaAnwQ6Cc42Hh3wa+jzdndxtepfe8UmqW1vpomNf7NN7yudf6rlmilHoPr0KTUpA+rFr6Pc2RwqyMsWaLYSuGytsSzEdytmyFbfVU2MaWUsoFOIFXALTWTcDlSqk0IE1r3RLunGaQ6CV1g/O14k2ylXw3g1h4tRKhSEZRdg7fXnYlRxobeWv3DpwOJy6nM6Jci2X58yhx5bChYz97e+qZl5mYlQy11r8PGnpJKZULfEEp9SW8YePfBn6qtb4HQCn1BrAXr5L7XpiXfANvU8jbfHP59y+ReDQfia6nkonxRYFRR1YpkpHsiLFlH+yspyLxbLnxWpYXAQPxblrrbqB7uJMEc4nkoW52CKF4tYThGKnkez8VBQVcvnBJWPMG99e6qmAhVxUsBLx5KgXOTAriWOTGZOqBVN//T8FbCOnB/p1a63al1Aq8uiBcJXY33hD0vb65moHVSqkDgJR+FxKOsrw8UlNS6OnzViRu6+qisb2dwuxskyVLbhxB70UeMbbshi30VNgriFprD7ADr9tOsAE9fX3c+vC/+OsrL7F2907aurrMFmlUxNAynmTO7zKCwpSshF+FVko5lVKZSqnTgJuB//PFqE/Hu9C2I+iU93z7wmWm1vpfQ40Df4hgPkGwNA5fkQx/DkgooekM8mxJNULLY0c9FWnO1v8DfqaUeldr/W6EcyQcoZbNHYlYFMfYWXOExvZ21u7exdrduyjMyua2q66J2YtjtCGEVje0rIAYTuGRSI2M05ypIXn2+slPywG4TCn1a7/h5cM0ZWzneKXZv+GNewcoANp87T78aQQylVKp/QnKITJclacVSqm7wphHEGxDVVExu/16Xe6rr2Xu+AnmCSQMqkbo8UiBDKMIR09tzsgHWKqUusVvOGH0VKTG1vfwJqptUEodAmogsByR1jq8+J0E5NnmzWzvrmF8ahHjU4uoTisl25k2+olREpyvtflg4PYJYytHNbTMCiG0g6FlR6+WMDrBIYQJxuNa62+FcNwpQCbexONbgXuAz8dAnmal1Eyt9ZYh9lnf9Z6AhLNYuLXzME7loCgli3xnJinKOfpJCURVzriI8qKrgopkHGwwf9Es2RsbB1cjlJwtU3lBa31TCMfZTk9Famxt9n2EEXimZTNPNB/vh/aTMR/gQ4WL4yqD1pqtQcbWzLHWXOUXQys0Yu3VsnqRjOFWy3YfqyE/M5PC7Jw4S5Q4aK3X+/77qlKqDvirUuoXeFcGs5VSzqBVwwKgI8zVQoDbgf8qpT6utX6zf1ApNQnojeIWhDjwnUMPs7XLG4WhUDxc/XlmZ9ird6MZTCwp5cTqKVQVFVNVXMLYgkKzRUp6pECG/bCjnorI2NJafzKS85KN/UErheNNSKw/1tJMXVvrwHaKw8G0ioRewY8ZVjC0rMqOY3VMKTXPQNNa88Drr3C0uYnJZeUsqZ7CwgmTSHO5IgohbOrrwKkcCdtXK0T6FdpEvCV0ncBk4H2/Y6b79oWF1vpFpdTXgEeVUvuAt/Hqo0vx9kcRLIx/U2ONJt+ZaaI09qEkN4+PnXam2WIIfjgdQQUyJGfLbthCT0mJ3RihtWZvd+DLeVVa7I2t0UIIJ5dVkOZyjThHNCEFkeZr2cGrZQUkV2toDjbUc7S5CYCdNUf51xuv0uPui3i+vze8wcL3bueiHb/iu4ceZm37HoBkqkQIcKrv3z3A60AL8MH+nUqpTGAZ8HQkk2utn8SrIH+Jt2fKQeBCrfXjkYssxBqtNfXutoCxohSpqCfYE6t6tmKRv5+g2EJPhezZUkqdEaaAL4dzfLyJdbNID5qvl1/I/u569vbUcbi3ibKU+Ic3bT0UFEJYac0QQqsjXi1r89aunQHbM8ZWkpOeEfL5wflaGzv2o9Hs7D7Gzu5jzM+oYnHWRENktSJKqWeA54EteKs5nQp8Hfi31nqX75g7gO8rpRo53izSAfw2ikt34y3dWw5cqbX+URRzJRxWbGrcrfuYl1FFvbuNhr42erSbTEfq6CcKggVxOVOYP34iDqVwOhxkpMrvslWxs54KJ4xwFd4iGP0+V/+CGCpoG7yuPMsS62aRTuXgo4UnhnWO0SsZXb097KwJbJgtxlb4WMXQEq/W0Plabo+HdXt2BYwtnuR9OY0khFBrzYbOwEWKeZmhV1WyKWuB64EJQB+wG/gOcK/fMXfgVVrfwVsgaR1wnta6hjBRSp0EfATvCmQZ0MPxXimCDys2NU53uHhg0vEc9r5Bhb8EwT5kpKby6bOWmi2GEBq21VPhGFuz/f5fAfwZeAb4L3AMKAWuAi4APhWJMIKxvH/4cIBLvCQnl9LcvBHPMSOEUIgfh2rqGVs2eihcPIpkTC2sMGSe948corWrc2A73eVi9rjxEc/X4G6nLCWXFncXGk22I43qtBIjRLUsWuvvA98f5RgN/MT3CRul1Gy8iuvDwHi8IRn/Bf4F5OPXiFKwD8lWiVAQBHOws54K2djyL32olPof4G9a6+BuzM8opX4MfAWvq0+II8H5WlskhDBqxKtlfYJDCOePn0hqSkrEvbWKUrJ5cspXaHV3sanzIHV9rTiUpLdGgq9q00d8nxl44+kfA74ArNRa9/mOu9w0IQVDekQKodPZ08OB+jr2+z5XLFxCYbbkvQmCGcRDT0Va+n0p3rr2Q7Ear7GVVFhNWWmt2WKTku9WxSqGljA8Xb09bNy/N2CsP4QwVIbrr5XjTOfU7ONzJVlxDKPYibcx5EN4+zM+FUH5XUGwHJH22gL4/YvPBYT4zx8/UYwtQTCPmOupSJdrG4DhLLwrffsFEznU2EBzZ8fAdmpKCpPLRw7bkkbGgpUZKl9r4/599LqP54wUZGWN+nsuxJV9ePXMqcAZwDxTpREECzAuqLnx/vpakyTxMlzvQkFIEmKupyL1bN0B3KOUmgA8zvGcrcuBi4AvGiKdjWl2d5LnDL0amtHFMYK9WtMqxuByxi62PtHytazk1ZIQwuF5a9eOgO1FEyfjUCriEELBWLTWE/2SjD8CfFkptR/4N/CgX3NKQUgaqgYZW9bRN4KQbMRDT0Xa1Ph/lVKHgO8Cv8NbedANvAN8QGv9aLSC2ZkWdyeL3rudPGcG41OLmJJWxh2VV8f0moPytQ4GeqlGCyE0y6tlRaxkaJlJPIpkRENTezvbjwQuUiypNiaEUDAOrfUaYI1S6qvAOXiV2U3ALUqp3XgTjztGmEKwEL+vXc3u7lqKUrIoSsnmvNyZVKUWmi2WrQg2tg7U16O1Rik1zBlCLPnef/5JZ08Pbo8Hj/Zw50c+RrpLiqMmE7HWU5F6ttBaPwY8ppRyAsVAndZSAxZgf483irLZ3cmmzoO0ebrjLsO5s+by7sF9bDl4kJbODimOYVPEqzU86/bsCug3UVlYREV+gWnyCCOjtfbgLZz0vFLqs8DFeBXaV4FMBrcPESzIq23bWdO+e2B7Wnq5GFthUpKbR7rLRVdvLwAdPd3Ut7VSnJNrsmTJSXdfL919vQPbVmlsLMSfWOmpiI0tP8HcQNj1680mls0i93YHekbGm5BYP6dqPHOqxqO15mhzEwVZsUu+TaQQQvFqWZOhcgrW7g6sQrgkit5a/dx2+DFa3V3My6xiXmYV09LLcSmnFMcwGK11L95qT48ppTKBK/CW2hX8sGJT4/q+9oDtQmeWSZLYF4dSVBYWBRTJ2F9fJ8aWSTiDqs16PLLuIxirpyKuZ6yUSlVK3aSU+qNS6knfvzcqpWzhe9Var9Ba35SXN3LfqUhodneSqo7bsWYYW/0opUZd7ZcQQi9WM7Ri5dVKBG/ZoYZ6DjUer8OjlGLRpOqo5tRa83TzZh5r3sBtRx7nyl33sLPrWLSiCqOgte7QWj+gtb7MbFmsRiz1VKTU9bUFbBelSBW9SKgqCuzdJ3lb5uFwBL4Ki2dLCCZaPRWRZ0spdQLehsZjgLfxFsiYBXwc+L5S6kKt9dZI5k4Eri06iY8ULqGmt4V9PfWjKqNoi2NEWn7WCkglQiES2nu6GVNQwOHGRgCmV4wlNyMzrDmC87UO9DZS7z7+IpnpSGVKemn0wgqChQm3bclPx36Aur426vvaqXe3UeAM7+9O8DI4b0t0oVk4HYG5ch4txpZgLJGGES4HmoHTtdYDbhGlVBXwBHAv3vKJScFQysqhHFSk5lORmh9/geJIooQQJotXK1zCKZKx41gdU0pDO3ZqYXTl2aeWj+G7l13FoYZ63tq9k+rSciC6EMINHYEe3tkZlaSo2FXwFAQ7sjR3htkiWIZoem1VFQ+uSChFMswhOIywbwTP1v7WA1LtVgibSI2tRcBH/A0tAK31fqXUD4AHopZMEOKE1QwtIZCResCMLSziykJjwnT7tJtL8+YyI30MMzLGUOmSYhuCIMSG4pzcgCIZnT09NHd2kJ8pOXDxJs3lCtjetH8f586aY5I0xznacVgq5iYIkeZs7QXSh9mXDkgSkMn0uvs42FDP5oPyVQjWw4oe0Q8ULORX4z7MjSVncGr2ZManSVEMIfGR4i/m4FBqUOGq1s5Ok6SxP9HkngdXa35u80Y6e3qiFUkQBojU2Po28GOl1In+g76mYD8CvhWtYHbCSsqqq7eH2x/5D1/7x1+5Y8Uj/GnVC3himOwZbThYqGFnQvIiBVwEIXlJ5JX93IyMgO0WMbZM4ZwZs0n38251dHfzwpZNwx4fzzz5aHP6BWsQqbH1PSAXeF0pdUQptVEpdQR4zTf+XaXUW/0fo4QVRifdlUpHdzdae0uX9rrd1LW1miyVEA7xyNeySk6Y0di5WIwgmEU0C4Z92s3va1fxpl/vLaNJVIMruKhPc6f09o6GSBfmstPTOXdmYNjgi1s302KR70MMLvsTac7WFmCzkYIkEu3ubnZ013C4t4lDPU2UpGRzRcGCYY8vzxxj6B9TRUEBO44eD9M60tRIaa51SgcHM6W0WKoSWphwimQkKo099ZbxYKc6U8NK0M5x5cRQGiGZea/zCN859BBbug5TlVrIE5O/TIYjNt1fjNaTRhFNkYy8QZ4ta7zcJyNnz5jF6m1baO3qAqCnr49nN23ggyeeMuTx8S6UYcf8rXB+PgVp+bETxAJEZGxpra83WI6EYl3HXm7Yd9/A9olZk0Y0tqIl+GFfkRdkbDU2MrdqQsyuLwj9hFORMBpaOjtYv3c3R5uaONrcRH5mFtefcXZYc9hReQlCrChILQqrDPyR3mau2v07erUbgP09Ddxds5LvVFwSKxEta3BFyuJJk5lUWk5eZia5GRnkpGeMflIMSKRQ7V1N+0csqjQcaS4XF8yZz0NvvTEw9ur2bZw9YzbFOdZYsBKdZV9CDiNUSv15hM9ypdSPlVLnx1JYuzDGlR+wfainMa7XrygIrKJ2pGnk60fyYPIn2rwts0l2r41ZRFMko62ri4feWsOr27exs+You44dNVAy6Pb0sqnjAKtb3zd0XkGwMuF4bytceVxTsDhg7LGmDbS6u4wWK4BEetkcW1jEnKrxjC8uoSArmxSntJowgkiNx1OnTqfQr2iJ2+Ph6Y3rhz3ejLD1RFpsSCbC8WzNHmGfE6jAm6v1KnCx1rpthOMTmmBj62hvM27tGdTLIVZU5AcaW4dHMbasgIQSeolnLtWhmnrGllkjNC5cSnLzUEoN5CY2trfT3ds7qIRvuBzpaeKGffexq7sWNx7KUnJ5dfp3jBBZEBKOr5ddyEut2zjU28TFubO5dcxl5DiHK1RsHInm4RKsgcvp5JL5C/n7q6sBWDixmgvnzDNXKCEhCNnY0lovHu0YX3XCx4EfA1+JXKzYo5RaBiybPHmy4XNnOdNYlDmBHGc6Y135jHEV0KfdcTS28gO2j7U04/Z4cDric31BMJrg0BCX00lxTg61LS0DY0ebmxhfXBLVdYpSstnTU4cbbwXPmr4W6vvaKErJtlTelpAcxFJPDUc44YTZzjTuGHs1ze5OLsibFWPJArGSwRVN3pbgjXIwOkIm0nDCxROr2Vt7jFOnTqcyhB6OZjQ5lnBC+2Ho27fW+k3gduADRs4bC7TWK7TWN+XlxaZwxD8nfYbl4z/BD8Zczo0lZ5DmiG7FPRyy0tIDqhy5PR6OtTTH7fpC4mHFxs/lefkB2zXNTVHPmepIYWpaWcDY1k5rvNAJyUes9ZQRnJRdHXdDqx954bQ//eHkVum96HA4uOakU0MytMzEKgsNQmjEwtWxFSgb9SghpozJDy9vSxCMIl7hoMHG1lGfsRXtCvOMDO8LXKWrgPNzZ5LlTItqPkGwG3by4IrBFR1WKo5htMEVr3szy6spBpd9iLT0+0iMBxpiMK+lCbeSUzDRhkQMqkiYX8C2I4cGtkMpkhHNg2lqYYVlVqbsSqL2vooVZcHGVlOTIfN+ufQ8vlV+MXlOcyqDCYIQHlYKKQyXXTVHqW9rpaWzk5bODpbOnENeZuboJyYA8s4QPRJSaA8M9WwppSrwNjx+2sh5hfAJtyKhFYhHyXAhELMNvGiUrRFhhEO9oJW5csXQEpKeaL1bh3oauWnfX9nRVWOQRCNj1xfO/657k7+9uppH336LF7dupq61ZfSTEhgre7f21dXi8RVlCkZy9oSRCNmzpZR6cITdTqAcWAgcAL4bpVxClARXJDzSaH1jSxDCIdizVdvaQp/bHdPyyVIkQ0gmIonY8GgPDzS8yc9rnqHd00N9XxsPTvpcXApEmenhirRIRm5QY+PmJGlsHE+vVqTFMvo51FDP4++sY8vBA3zyjLNZOLHaQOmiR7xb1iecp1/JCJ9cYB/wVWCe1trYpjcJQH/jx3gRvOpf29pCr7svrjII5tO9t8mwucwukhG8QpmRmkq+X7iNR2tqk3xVWBDM5vX2Xdx25HHaPT0AbOo8yH31r8Xt+nZ76fQvZgXQ0tlpkiTWwUrhhau3beWOFY+w5aDXkH7inbdxezxDHmumd8uuYbTJQjil38+OpSCJRqenh28ffIhDvU0c7m2iy9PL2yfcilIqLtfPSE2lICubxnZvuzOP1tQ0N1u+wo5gHEYaWlalLC+fpo7jK8FHm5sGeXUFQYiccL1bp2ZN5rzcmaxs2TIwtqZ9F58qOi1u+s9OOVzBnq2WOHq2rFQcI9ZE6t2aXjE2oKdjbWsLb+zczmlTpxstYtSIh8u6SOOlGJGuXLzQ+h4bOw9Q29dKq6eLFk9XXGWYVTmOBRMmcsm8hdxw1lIKs7NHPD4aNztgeJ+MZMLs3CmjMasiYY1BFQmD0cPE6QuCEIhSih9WXEaeM4MsRxo/GnMly6s+ETdDqx+7vHQGe7Zak8CzFYrnyirerbK8PE6aPDVg7OkN6+npGzpSyOzcLbssMiQbsahGKOBVOGNc+ezpOf7SeainkbyM2CXeB8eMX3PSqTG7VqyYUloctxd1wcuhmnrGltnT4xmLXlsAre4uHm96h61dR9jSeQincvBw9RcAb95WXmqhIdcRBDsQrner1JXLr8d9lEmpxVSk5sdOsFGIt4crkrytwZ6txDe2zCJS79ZFcxewdvdOet3edJDmzg5Wb9vCebPmGi2iIYiHy3qIZyuGjHHlD/xfoajrax3xePnjEIzCP4TQ6uGE0axgluXnB2wbVf7drT388MjjPNi4li1dh9naeZhuT68hcwuCHQm3MMyp2ZNNNbT6sbpezRuUs5XYBTLCed5bxbtVkJXFmdNnBIytfHcTHT3dQx5vtndLsB5ibMWQm8vO5e8TbuCFqbewecbtnJEzzWyRBCEqzC6SEYy/ZysrLY3s9PA9x0OtfOenZDLWb7GkDw/bu+NTwloQBGOxssE1uBqheLb8sUop+HNnzSXd5RrY7ujp5vnNm4wSy3AknNBaSBihgQSHWizIHG+iNOYgzY3DJ9HytWJJcBhITnoGX7nwUsry8siJwNAaiRnpYzjU2zSwvbPrGLMzKg29hiDYiUhKwQ+FW3viUgreH6sWzcgJMrbaujrxeDw4HLIWHisiCSfMTk/n3FlzeOKdtwfGVr23hbNOmDko7w683q2qnHFRyyokBvLXLFgOaW4cHVYJG4xH7p1Sisll5YYbWgCX5c/n62UX8Ofxn2TN9P/HlQULDL+GICQbTze/y0U7fkVNb/zbNMTDwxXuC7bLmUJGaurAtkdr2ruHDk8zEjMqEUa6EGuVBdyzT5gVoGt6+vp4ZuMG8wQSbIMYW0lAT18fB+rreGvXDvbV1Y54bLQVCQV7It61wVyYN4vPlpzF6TlTKUoZuZJnIqCUmqyU+r1SapNSyq2UWjXEMXuVUjroI30Vk4hIm3rX9rbyhf33c/OBB9jTU8ethx81pcqnFUMKzSz/nqxEYmymuVxcOGdewNir29+jbpj+jpK7ZTx21VNibCUYwatqL2zZxNcf+Cs/e+JR/vbqat7es9skyQQzsYq3azhisXIpii5sZgIXA+8D20c47gHgZL/PxbEXTbA7T7e8y3N+vbdebH2PJ5o3miiRdRhcJCPx8raifcZbxbt16tTpFPm10fFozZMb1psoUdJhSz2VtMaWUmqZUmp5c3Oz2aLETgJnVgAALm1JREFUlLyMrIDVw6PNjSZKIwRjR4+S1YpkCIaxQms9Tmv9QWDLCMcd0Vqv8fvIm0aMsKqeisS7dW3hSczPOB454VJO6vvajRQrZKzm3coJNra6Es/YsiKReLdSnE4umbcwYGzd7p0camwY8nhZ9DMcW+qppDW2tNYrtNY35eXlxfQ6tb2tvNOxjyebN7G8djW1vfEt/15RUBCwfbgx9saWNDc2D6t7sATrorX2mC2DEEi89FQkhGtwOZWD/xl7FS7lZE5GJY9Wf5Hri83rBRlLgyvcvC0JIwyNWHi3IjG4Fk2spiL/+LuVBt7Y8b6BUgnDYVc9JdUIY8yXDvyDtzv2DWzPzBhLiSsnbtcvzc3DoRQen3erqaOdzp6egIRcKyLNjeNPLJob7zhWZ3jBk6EqSb2ybSsHGuqpaW6iprmZ/3fFVWEVzZAmkGHxaaXUzUAnsBL4utZ63yjnCAKT00t5YOJNzMoYS4pymi2OZSoUzquaQGluHrkZGeRmZFKSkxvT68W7OIaRRtL2hiOmL+g6HA4uW7CI37+4kpKcXC6Zv5AFEyYNe7xUJjQFS+kpMbZizBhXPm9z/Ps97FdKOh64nE5Kc/M42nz8ukeaGplUWjbsOdX5VaZUKhKESHltx/scbDgeklnT1EROuTEVCrs9fezsrmFL52HaPd18svg0Q+aNFJfDFZZhmOnKArhMKfVrv+HlWuvlEVz+MWANcBA4AfgB8IpSarbW2lqxbkLMiaQU/LxMaxVhsoLBVV1WTnVZuakyJDORlIKfVVnFp89cypyq8TilTP+QhKOnsl25AEuVUrf4DSeMnhJjK8aMdQWF8fXEP2eqIr8gLGNLiA9G52uNFkLYvbeJtAn5hl7TKpTl5QcYW0ebm5hcHv3q55GeJpbu+Dm92g1AriOd64vMC32Kgse11t+KdhKt9Zf9Nl9RSr0ObAA+Cdwd7fyCYAZWMLgSlViE/lnBu6WUYv6EiSEfL96tkHhBa31TtJNYUU+JOW4wwXHs1WklnJBewbk5M/h40SnMj8OqXvAftH9sMXiNLUGIhlgUyYhGKZfn5Qds9y8uRJucXObKJU0dX5Nq8XRxsFf+fvrRWm/GWxVKmpAlKZGWgh+KVneXYXOFi9FhxPJibS8kmidxsYKeEs9WjLmiYAFXmNwMNbhIRjyMramFFZYp1SokPmVBBQT8PbnR4FAOTkgfw9qOPQNjWzsPc7ohsycM2vcRhIhodXdxV80zrG59nycmf5kcZ7opcoiHy1hi+Q5gBe9WuIh3y1RM1VPi2UoCgj1b8ahIaARGF1ZIZIyqQhiLUvTxKHQS7NmqMcjYApiRUcEYVz7n5czg5tJzqU4rNWxuu6OUmgVMB942WxbBPKLxbr3c+j6X7Lybfza8yeHeJu6qecZAycIn0QvliAdneIz42bR3d/Hspg24PbYsmpeQWEFPiWcrCSjJySXF4aDP98ff2tVJW1cX2enDrx5KkYzYYsf+WlYiOKG5JDcPpdRAT7nG9na6e3tJc7mivtZ3yi/hexXLop7H6iilMjne+HEskKuUutq3/RRwNnAd8ARwGK/y+h6wH7gvrsIKliOSYhkAa9p3c6T3eM76Pxve5OLc2ZyUXW2keGFhhoerprmZpo52Wjo7aOns5MTqKSPqaCE23q1IimUAdPf2suq9LTy/eROdvT1kpqVx+rQTBh0n3q3osKueEmPLghj9oHc6HJTl5Qc03TvS1MgUAwoICIIVcDmdFOfkUNvSMjB2tLmJ8cUlIc8xXPl3p0qaAIBS4D9BY/3bE4EDvmPuBvKBeuAZ4Lta6xYEIQJuLj2XlS1b2Osz1CakFpHmiH6RJFribXDd98pLHKg/HgUwqbTM1sZWOCGEsWgREm+e3PA2L27dPLD99MZ3OLF6Cqkpg1+zxeCKClvqqaR5i0h2pEhG4hJOCKGRTY+tXiTDyFDCZEBrvVdrrYb57NVab9JaL9Val2itXVrrcq319VprSXIRgMjCCdMdLn469mpScHBj8RmsmPzluBSSCoVoQwrDeaFO1sbG/WHmkYabW6XR8TkzZ+NyHu8d19LZwer3thgploB99ZQYWybQH+oUT8wwtuyWvCrYm1hVJBQEIbYsyprAi1Nv4ZvlF5FuAa+WP/HK4RpsbHXG5bqxIN7FsaxQjCs/M4szT5gZMPbc5o10dHcPebzopeRCjK048HzLVr60/x9ctet3nLztJyyveznm10yU8u92Dy2wI3bNJysLNraamkyRQxCSmUiLZVSk5hsriIHEw+DKTc8M2I6FZ0vysEMnkp/VebPmkOFKHdju7Onh+S2bjBRLsClibMWB/T31PNOymU2dB6nra+OwCX16KguLWDhhEpfOX8iNZ5/LdaeeEXcZBC92NWaiwe4VCf3p024OdMf+fgTBrhjZe8sqxNrgSiTPVqREoyes4N3KSkvn3FlzAsZe2rqZ5o6hDWfxbiUPYmzFgGBFM8YV6FU61NMUR2m8FGZn88kzz+HCOfOZWzWB4pzcUc+JpCKPEF+MzMGyG8Erj8GerdrWFvrcbkOu1dDXzvcOPcJVu37HvK0/5NytPzBkXkEQRqbH08cRE3TmUERicIWat5WbEXvPVjwItzCGlYnEu3XWCTPJST9uOPe63Tyz6R0jxRJsiBhbcWCMK6jhql+Z20RH8rash9WLZERKRmoq+ZnHX1g8WlPbGl7xoeGqj2U4XPyncS2bOg/SrfvY3V1DU197VPIKQiJjhHdrU8cBrtx1Dzft/ys9nj4DpLIuuZni2QLrebfCNbjSXC4umjs/YOy17dsCKuX6I96t5ECMrTgwKa2UO8d+kPsn3shLU7/JI5O/OOo5id5YUbA2ZoY6RqMw+71b2enpTC4rN8yzleFIHdTMeGP7HkPmFgQhEI/2cOfRp/ng7v9je3cN27qOsrxutdlixZR45GzFGiuE8lmBU6ZMoyg7Z2DbozVPbpC+78mM9NmKA9nONK4sWGC2GLZlSmmx5cMNQsVIIyaZQwiH4yMnn066yxWT/jQz0ivY0V0DQJkrnwZ3m+HXEIREItJGxw7loKa3BQ/HK/f+b+1LnJ87k6np5UaKaBmGytnSWqOUMkmi2BIrnW6FRscpTieXzl/IX19ZNTD29p5dnDtrDpWFgz2+0ncr8RHPVgIjf7yClYiHwVyckzOkoWVEqMZ1RSfzh/Gf4LVp3+Hgwj9yZeFJUc8pCMLQfK/iUoqc2QPby/LmURYUkm8XQtHFaS4XaSnHy967PR46eoYuGx4JdqpEGK2usIKHbeHEasYUHM/X18CKd9aZJ5BgKmJsJRk9fX3sr6/jzV07eHz92lF7fkmRDEHwMi+zirNyplPqGr24jCAIXiLN3SpIyeIHYy6jwpXHn8Zfz88qrybPmTH6iTEmliH+dq5IaAUDJ5aEa6w6lGLZ/MUBY1sOHmBXzdEhj5fcrcRGjK0kQmvN//vPA9z5xKP8/dXVPPfuRpo6Yp/kL0UyjMdKIYRmFsmw02qtICQrkRpcF+XN5tkpX+OMnGkGS2RN7GxshUMonqtE8G7NqhzHpJLjub5pKa6wizYJiYEYW0mEUmpQLyK7NDdOBKzUXysUY81K8gqCkJxkOFJHPyhBsGv5dysYNvEg3MU9pRSXLVxCisPBWSfM5Icf+BAnTZ467PHi3UpcktbYUkotU0otb26OTxl2t/ZwpKeJt9v38njTBp5r2RKX6wZTkR/Y8+twoz2MrSmlxWaLIMQRo5S31hq3xxPWOcOVfxeEeBNvPRVLErHRcTiEkrc12LNlD2MrVljRuxWuwTW5rJzbr/4wVy85mZwM88NgBXNI2mqEWusVwIpFixbdGIv5g6swrevYy3V7/jCwPSejkvNzZ444R3nmGMNf/IKNLfFsCfFkx7G6mBvO7x06yPq9u6lpbuJoczMXzJnH0pmzY3pNQYgFsdZTdmZvdx2pKoUxqflmi2IYM8aOIyM1lZyMTHIzMhg3ROW6SLBSuHWiVBYOh2CP5UhIZcLEJGmNrXgz1hXkUeptist1q3LGBbimxdiyP1bK17Iih5saeGPn9oHtmuYmQJSYIJhNpKXg/XFrD/fVv8avap5jYeYE7pvwqbiXR4/FQijAzMpxzKy01zPK6iGEVigFLwhibMWJMlcuDtRA35C6vja6Pb2kOVyjnGks/qVIAY42N+HRGscIyqo6vyrqlbGphRWWfyjHkkTPfzpyuI6KMdYI9SzPG/w7nkg4VUpYIVlpDuN7jglCpERjcDX2tXPDvvvY1HkQgNfbd/JQ4zo+WLh4lDMFuxKPaAirkSgLg+HoqUxn6N4/O5K0OVvxxqWcTE0vZ2b6GM7Lncknik6hR7vjLkdOegaZaWkD2z19fTS0tcZdDsF8EqVIRvBCQFlQEZijzU2jtjgQBMH65DszyXKkBYz99OhT1PdJg3EzsMsCqhVyt/zRWrNx315+8+xTdPf2GiiVYFXE2IojKybfzKOTv8T/Vl3H9yqWkeOM/4qzUooxUiTDtiRTCGGkCrIwOxuX0zmw3dHdTVtXl1FiCYIQJZEWy1BK8eOxHyBDeSNC8pwZfL9iGYXOLCPFixmJ4K2IhkjztYzI87KKYbjj6BF+/tTj/GHV82w/epjV27YOeZxUJkwsxNhKQgblbTXbw9gSEoNYJ0g7lBrSuyUIgv2pSi3k6+UXcF7uTJ6e/FWuLFgQ95wtOxGr4hhWMV7MJJKf7dZDB9hXVzuwvXLzRjq6u40US7AgYmwlIYOMLZt4tuyKHULxEo1ojS0p/y4IsSWaUvAfLzyF3427lhJXjoESWYPOnh5qmpvYcfQI6/bsorOnx2yRLIFVvVvhGlznzZpLRurx3nGdPT2s3LxxyGPFu5U4iLGVBASHLgSHEYZSkdCIyjtGVwRKNqweQnjksHVK+gY3764Rz5YgJAxKKdO9WeWZY2Iy793PPMGPHn2IXz/7JPe9/BLHWuzfYw2Ss+T7UGSmpXHerLkBY6ve20JTR7tJEgnxQIwtixOLB3p5kLFV09wUduNXITFIlCIZwQQbW0f9yr8LgmANkrHR8Wh5W8E9mazY2NjOIYRW8G6ddcLMgAbWvW43z2x8Z8hjRWclBmJsxRCrKpLs9PSAP/Q+j4e61hYTJQodKZIhDEWwshPPliDYAyP1pNaax5reoanPegZKqPjrZoCWzk6TJLEeieIdS01J4aI58wPGXt/xPrUJ4sUUBiPGVhxxaw8/OfIEX9h/P1fuvIfTtv0UtzbHoxSct3VYmhtbGquHEMaKSFchi3NzA8KMGtvbpcSuICQwR3qauHHffXzj4IP8z9EnzBYnYgZ7tiI3tmJRHCOSZ7LVjCQreLdOnjKN4uzjOYcerXliw/ohjxXvlv0RYyuOOJWDR5rW81zLFjZ3HaKmr4XaPnN6XJ1YPYVl8xdx09nn8YMrP8TccePjct1ky9syPQSv2ZrJ1bFWvi6nk+KcwOR5qUgoCNYkWu/Wu50HuWjn3axu2w7AI03vsKp1mxGixZ3Bni37euligVG6w+xQyBSnk0vmLwwYe3vPLg422C9sXxgdMbbizBhXfsD24d4mU+RYUj2FC+bMY07VeEpyc3E4Rv9VMKJIhmBPQjUapUiGIAjxZlpaOZWuwGiNnxx5IuaRI5HmVI+UtyXGln0J17u1cGI1YwsKA8ZWrF835LHi3bI3YmzFmbFBCuFwT1NcrpvszRSTEot6teLFcEUyQkXKvwtC/IjGu5XqSOGnlVfhwBs6vChzAn8Yfz1OZb9XHCPDCI3GKiGEVvZuhWNwOZRi2YJFAWNbDh1g51H7FiARhibFbAGSjWuLTuLCvFmMdRUwxpVPaQL2CYk1U0qLLRcDHktina/VvbeJtAn5Mb2GGfT32srNyKA8L58iX3z8/tYDsvggCBakILWIxp7IwqhmZ1TyxdKlFDgz+WjhiThsaGiBFMhINmaOHUd1aRm7jtUMjD2+fi1fvWjZoPYGorvsixhbcea07Clhn1OeOUZW2W2I6flaCcL2hiMh5frtatofEOo6f/xE5lSNJzM1LZbiCYJgEb5UutRsEaJmqNLvWuuw+4oZXRzD7BynWBGqfgmHYF00EkopLluwmF89c7yoy+7aY2w+eIDZ4yR1I1Gw59KPYGuSrUiGMDSx9k6muVxiaAmCzbBqyxSjGc5Dke5y4XI6B7Z73W66bFpJNZbP+ESKbqkuK2dm5fHfh+kVYynIyhryWMndsifi2Yox0YRFxJqevj6ONDUOfMYWFLKkOnzPmxA7DAkhbO6BvNSopzlUU8/YstFfhI4crqNijPRDEwRBCBelFLkZmdS3Ha9U3NLZQUZq9M9wYWjM9m4BXDZ/Ee1dXSxbsIhpFWMNlUUwH/FsJTHr9+7mricf4/7XXuaFLe+yYd/eUc+RioQ2IcmLYwiCYF+M9m419XVw19Fn6PYY7yGKtCLhSFgtb8uqIYSJ5N0aW1jE1y++LCRDS7xb9kOMrSQmuLHxERs1Np5Sam3Pid3ytZK1abIgCInNcy1buHjn3SyvW81vj71gtjghIeXf44/ZlQmBsPPyBPsgxpYJ9Gk3h3uaWNu+h8ea3qG2Nz6NjYNjxINLY9e1ttDT1xcXWYTREQPIWLTWdPZ4PX6hrgwmU2EapdQMpdQLSqkOpdRhpdTtSinn6GcKgvEY4d36d8NbfGH//dT2eXXsH+te4d3Og1HPaxTD5W1Zqfx7pEaIHb1OVjC4QiVZvVt21VOSs2UCN+37K6+07RjYvrfqYyx1zYi7HGkuF0XZOQOx4Rpv49dxRbH3Gk0trLBsaIIQP3YcqwvJSxlpRcLG9naeeGcdNc1N1DQ3U5STw7eXXRmVzImIUqoAeB7YClwOVAO/wLsg9z0TRROSmGhzni/Om8Nvj71ATV8LAG48/KnuFe4e9xGjRIwJ1aXl9Lrd5GZkkJuRwZSy8PKJYvWCb0VC1SF2prOnR3L2sLeeEs+WCVS48gO2D/c2jXpOLOLCwd6hhEL8CTU88shha6xqOh2KN3ftYG9dLZ29PdQ0N+HR2myxrMhngQzgA1rrlVrre4HbgK8ppXLNFU0QIiPHmc6PxnoXV1Jw8MWSc/jZ2A+aLNXoLJpUzXWnnsFlCxZz1gmzGFtoToXGZFwQtZJ3q6Gtlb+/upof/PfftHd3DdqfhN4t2+opMbZMYEyQsXUoBGMrVowpCDS2DodgbFmlSIZVV7NMz9eS4hgD5KRnBJR/73W7aWxvM1Eiy3IR8KzWusVv7F94FduZ5ogkCNGHE56dM52vlJ7Hf6u/yJfLziPNIQE9sSbeIYR2DFkcjSc3vM3tj/yHN3ftoKO7m5WbN5ktkhWwrZ4SY8sExrryKXJmMyejkgtyZzEtrdw0WcSzZU0kX8sYlFKU5+UFjB1tajJHGIPo7emhu7s75OPr6+oBBi+LBjId2OY/oLXeD3T49gmCbflC6TmckBG7/o6xijwRzMEK3q3UlBT6PJ6B7dXvbaGpvX3QcVb1bi05ccmChvqGkI+vS3A9JcaWCVyeP581J/w/Hq7+AvdUXcuVBQtMk2WQsdUYP2NLmhtbi0Q18Mry8wO2jzY3mSKHUXz4I9fw53vvI82ZPupn7459HDl0FGChUmqd3+emoGkLgKYhLtfo2ycIppHIjY6HK5JhNnYLIUw079aZ02cGFErpdbt5etM7JkoUHp/53I388o67Q9JTTXXNvPzSywBjElVPibEVB4IVhZnlPYMf7GV5eQHyNLS30dUrYWgJh4GhhaaHSYZJcNXNGpsbW7d+74eZD9z/AA0No68afu+7t/Laq6+dqrVerrVe5PdZHgdRBUGIM2YXx0gUo8ds71ZqSgoXz50fMPbGjvc51tI86Fgrerc+ff2NzjfXvMWe3XtGPfanP76Db3zrG2it/y9R9ZQYW0mOy5lCaU5gXqHdw6zsTqJ4mEItkhGqcg5V+QUrtPK8wAWvfs+WXcu/a607b/7Kl7jzp3eNeNyrr7yG0+lEa/16CNM2AnlDjBf49gmCqcTCu7WufS/fPPggHu0Z/WAT6O7t5VhLMztrjsa1LYvdvFqxwmyD6+Qp0yjxez/zaM2T77xtuEyxQGvtue1HP+DW7/1wxOO2v7+ddzdt5mMf+Xgo9oht9ZQYWwIVUiTDMEz3+khxjEGUBXm2jjY3oW1ekfDGT30m5fXX3mDvnr1D7tdac+v/+wGPPfLY1BCn3EZQzLtSahyQSVCMvCCYhVEGV7u7m9sPP85H9yznkaZ3uL9hjSHzGsmdTzzK1x/4K7c/8h/ufuYJ23vk40GieNX6cTocXDJ/YcDY23t3c6B+8H1a0bt10fmXqLbWVta+tW7YY7733Vt5/bXXT9ehKWXb6ikxtgQpkiEkNIXZ2bicx3sednR309Y1Wh6utdFau39w2/f5wfd/OOT+h/7zMHPnz0VrvWPIAwbzNHCBUirHb+waoBNYHZWwgmAxfnr0Sf7e8AYa7/vdL2qe5UBP6Mn8QxFNkYyh8raC+yqZ2dg4VBLN2AHzvVsLJkyiMqj0/4p3hjderMYzTz87+/vf/f6QC5yvvvIaAFrrV0OczrZ6SowtGxG3XltSJMM0zA4hNPv6scCh1JDeLbtzyYXLVGNDI2+vWx8w3t3dzS/u/AX3/u7e0jCmuxfoBv6rlDrXl5j8Q+CXQWV2BcFUjPBufbF0KdmO4y0hOjw9rG59P+p5jSQ3IyNgO17Glt1DCBPN4HMoxbL5iwLGth46yI6jg78nK3q3tNabJ0ycwJNPPBU8zq3/7weseGxFOFUEbaunLGVsKaVmKKVeUEp1KKUOK6VuV0o5RzknVSl1l1LqFaVUp1LKFvFB69r38uMjK/j8vr9zxc7f8ofal02TJdjYqm9rNUkSwS6YHi4ZJolobAGsfO75ud/7zvcCVg2X3/sHPnDVB9Ba14Y6j9a6EVgKOIEVeBtF/gr4gcEiC4LplLvy+E75JQCMcxXy9wk3cF3RySZLFUhOembAdktXx6jnmF0cI1Ex27s1Y2wl1aWBLYIeX7/WNuHwf/3L3yp/+uOf0ueXd/jfhx9h9pxZaK1DXuWws56yjLGllCoAngc0cDlwO/B1vD/MkcgEbsBbZz+URHBLsL27hr/Wv87K1q1s6TrMju6auF07OGShNDePZQsW8ZlzzuOHH7iG71/5wbjJkkjYzQCJB2YVyQgm0SoS9qO13jSuahxPP/kMAE1NTdz/t/v5wfd/mBXBXFu11udorTO01hVa6+9rrd2GCy0IUWKEd+uDBYv4QcVlPDHly5yUXW2AVMaSlxno2WqNg2fL7l6tfhLNu6WU4rKFgd6tPbXH2HxwsMFmUe/WofMvOJ/7/vxXAHp6erjrjrtYfu8fwm4ya1c9ZRljC/gs3i7QH9Bar9Ra34vX0PqaUip3uJO01k1Aodb6AuCRuEhqAGNd+QHbh3ubTJEDvEmYF8yex+xx4ynOycFhYmn6SLBakYxIScQQPrMYXJEwP2C7v+KmFRVTuPz9r/eP+8mPfkJfXx93/vQuvnjzF9Baj74MLgg2JlqDSynFdUUnk+lIHf3gOBC8COrfYwmgucPaf9KJZuAEY7Z3q7q0nFmVgb8jj69fh8djzUqawdzxPz/LXX7vclpbW1l+7x+44sor0FrHz8tgMlYyti4Cng2Ku/wXXgPszJFODLGKiaUYE2RsHeqxX1EKq1QkFHyMVokwiSsVDjK2wvRsWa38uz9a64PnnncuP/rhj3nl5Ve56dOfTTFbJkEQosOsnC0hvoRjcC2bvwj/pfAjTY28s29wHysrLiJqrVtvuOkGbvvB7fztvr9x2w9uDzv6ws5YydiaTlDpRq31frzhgeEk0FmS4FW4ytQCvlF2Ab+ovIZ/TfwMD0z6jEmSmY8UyRBiTUluLg6lyM/MZFrFGOaNn4DHfms0w3LnHXfl3ffn+/jBbd/HDiEVgmAEsei9FQ1GFrHKzcgkMzWN8rx8ppaPYXxxiWFzD0WihBD2EwtPm9k/o7GFRSyaNBmAnPR0PnjiKcytmmCqTOHw5S9+JfX5517gC1/6fNJFXyirOIWUUr3ALVrru4PGDwJ/01p/N4Q5vgj8Vms9Yhycr4LJTb7NWcDmiIS2B8VAYvv35R4ThWS4x2la65zRDxOSnSTTU5D4f/+Jfn8g95goiJ4ymKQMN9FaLweWAyil1mmtF41yim1J9PsDucdEIVnu0WwZBHuQTHoKEv8eE/3+QO4xURA9ZTxWCiNsBPKGGC/w7RMEQRAEQRAEQbANVjK2thGUm6WUGoe3tPu2Ic8QBEEQBEEQBEGwKFYytp4GLlBK+ceJXgN0AqtjeN3lMZzbCiT6/YHcY6Ig9ygIQ5MMvzeJfo+Jfn8g95goJMM9xhUrFcgoALbiTQL+GTAJ+CVwt9b6e37H7QRWa60/7Td2EZAFXAh8GujvyrtWa70vPncgCIIgCIIgCIJwHMsYWwBKqRnAPcDJQBPwR+CH/qWMlVJ7gVVa6+uDxsYPMeUntdb3xUxgQRAEQRAEQRCEYbCUsSUIgiAIgiAIgpAoWClny1CUUjOUUi8opTqUUoeVUrcrpZwhnJenlPqLUqpRKdWslPqHUspanRN9RHKPSqnFvvvb6TvvfaXUD5RS6fGSO1Qi/Q79zncopdYppbRS6tJYyhop0dyjUuoDSqm1SqlOpVS9UuoZpZTlurJH8be4SCn1nFKqwfd5Xil1YjxkDhel1GSl1O+VUpuUUm6l1KoQz7PN80YwHtFTw55jGz0Fia+rRE+NeJ7oKWFUErLPlvLmfz2PNwfscqAa+AVe4/J7I5wK8CAwFbgB8ODNH3sUOD1G4kZEFPd4je/YnwE7gDnAj3z/XhVDkcMiyu+wnxuAypgIaADR3KNS6ga8Ibd3ArfgbZFwDhb7m470HpW3EunzwHrgY77hW4CVSqnZFszFnAlcDKwBXGGcZ4vnjWA8oqfsr6cg8XWV6CnRU9jkeWNptNYJ9wG+g7c3V67f2DeBDv+xIc47GdDAGX5jS3xj55p9XwbdY/EQYzf57nG82fcV7f35HVsA1OItmKKBS82+JyO/Q6AVuNHse4jhPX4WcAN5Qd+pG/ic2fc1hLwOv/8/hDevdLRzbPO8kU9MfmdETw1/ni30VDT36HespXWV6CnRU3Z53lj5k6hhhBcBz2qtW/zG/gVkAGeOcl6N1vrl/gGt9VvAHt8+KxHRPWqt64YYfsf37xjjxIuaSL/Dfn4EvAa8EAPZjCLSe/yQ79+/xkowA4n0Hl1AH9DuN9bmG1NGCxktWmtPBKfZ6XkjGI/oqWGwkZ6CxNdVoqeGR/SUEBKJamxNJ6gRstZ6P95ViulDnjHMeT7eG+U8M4j0HofiZLyu4V3GiGYIEd+fUmoO8CngGzGTzhgivccTgfeBTyulDiqlepVSbyqlTomdqBET6T0+7DvmF0qpUqVUKfArvKuP/4mRrPHGTs8bwXhET4WHFfUUJL6uEj01PKKnhJBIVGOrAG/p+GAaffuMPs8MDJFVKVWONyb571rrY8aIZgjR3N9vgXu01juNFspgIr3HcmAa3u/tW8AyvCtrzyilygyWMVoiuket9WHgbLz5GTW+zweAC7TWtcaLaQp2et4IxiN6KkQsrKcg8XWV6KlhED1lueeNZUlUY0sIAaVUKt7ExzbgqyaLYwhKqQ/jfcD/2GxZYogCsoFPa63/obV+BrgCb5z4F80UzCiUUhV4VwbfxhuqcJHv/08qparMlE0QhPiRiHoKkkJXiZ4SBB+Jamw1AnlDjBf49hl9nhlEJatSSgF/w1edRmtt+/tTSrmAu/BWynEopfKBXN/uLKVUTgzkjIZofk81sKp/wBdr/jYww0D5jCDSe7wFbzz81VrrZ3yK+iq8itrKITfhYKfnjWA8oqdGwQZ6ChJfV4meGh7RU0JIJKqxtY2gWFJfic5Mho49HfY8H8PFrJpJpPfYz914S5xerrW22r1BZPeXhbd87i/xPgQagY2+ff/ieIK1VYj0O3wP76phcAKuwpvTYCUivcfpwBatdW//gNa6B9iCtyxvImCn541gPKKnRudurK2nIPF1leip4RE9JYREohpbTwMXBK0OXQN0AqtHOa9cKXVa/4BSahEwybfPSkR6jyilvoPXjX+d1vrV2IkYFZHcXxve+Gn/z0d8+74LXBsbUSMm0u/wCd+/Z/cPKKXygIUcV9hWIdJ73AfM8oUQAaCUSgNmAXtjIKcZ2Ol5IxiP6KkRsImegsTXVaKnhkf0lBAaZteej8UHr3vzCLASOBdvf4424MdBx+0E/hQ09iywG2+S4xV4q+m8YvY9GXWPwEfxuvb/ApwU9Ckx+76M+A6D9k/Agr1LDPg9fdR37ieAS/AqhFqgwOz7Muj3dCHQCzzpu79L8T7Ye4G5Zt/XEPeZCVzt+7yBd2WzfztzhO/RFs8b+cTkd0b01DD3aBc9Fe33GLTfkrpK9NSIv6eip+QT2s/ebAFidmPemOAX8a5MHMHby8IZdMxe4L6gsXzfA74JaAEeYIgGi1b4RHKPwH2+B/pQn+vNvicjvsOg/ZZUYNHeI97E4/8D6n3nPg/MNvt+DL7HpcDLQIPvsxo4y+z7GeX3bKjPhBHu0TbPG/nE5PdG9NQQ92gnPRXN9xi037K6SvTUiPcoeko+o36U7wcpCIIgCIIgCIIgGEii5mwJgiAIgiAIgiCYihhbgiAIgiAIgiAIMUCMLUEQBEEQBEEQhBggxpYgCIIgCIIgCEIMEGNLEARBEARBEAQhBoixJQiCIAiCIAiCEAPE2EpClJfrlVJvKqXalFItSqnVSqnLzJZtOJRSZymltFJqltmyxBul1K1KqUNKKY9S6r44XO98pdRXhhi/Tym1LtbXFwRBED1lL0RPCcLwSJ+tJEQp9X/AjcD/AiuAFODDwMeBb2utf2aieEOilMrF23Rwo9a602x54oVSahGwFvgusAo4prXeFeNr/hy4Wms9IWi8GsjQWm+O5fUFQRBET9kH0VOCMDIpZgsgxBel1BXAZ4HPaa3v9dv1tFLqKPA/SqmVWuv1w5zvAjxaa3fspT2O1roFWBPPa1qE6b5/f+f7GQyJUioj1so91spTEAQBRE/ZENFTgjACEkaYfHwZ2An8YYh9/wO0Al/sH1BKrVJKPaSUukkptQvoAsb4Qjx+pJQ65gvv+LNS6sO+EIoJfuffoZR61xcGclAp9Q+lVLn/RZVSe5VSP1dKfdV3TKNS6l9KqXy/YwaFZyilnEqp7yiltiulun3n3jfSzfvm+KpS6hdKqXqlVJ1S6hu+fZ9QSu1WSjX57ifd77wK39hupVSn75o/VkqlBs3/HaXUTqVUl1KqRin1TP/9KqVcvvvc75P3sFLqkeA5/Oa6D/i7b7PZJ/tZfj+LC5RSjyul2oB7fOd8XSm1VinV7Lv+CqXU5CHmvlIp9ZbvXuqVUk8ppcYrpX4IfB0Y77uG7v+ZDhWeoZSap5R6QSnV4fve/qGUKvPbP8E3x4eUUr/3yXVQKXWbUkqeP4IgDIXoKdFToqeEhEE8W0mEUioFOBn436FW/LTWzUqpl4AzgnadClQD3wI6gGbgK3hDBn4CvApcDtw5xGVL8SrHw0AJ3gfki0qpWVprj99xHwI2ATcBlcAvfed9foRb+j3ekJI7gdVAIXDVCMf383XgSeAjwKXAXUqpUmAxcDNQBfwK2A7c4TunGGgAvgY0AlOBH/ru6TMASqmP4/2ZfAvYAhQB5wBZvjm+A1wLfBvYA5QDFwPOYeT8EXAA+J5vnk5gK7DAt/9PwF+Au/G+XID3Z3cPsA/Ixbs6/LpSaorWutkn58eAvwH/8l1D+eYvAf4ITPFtX+mbs3Yo4ZRSJXhDRt4DPgpk+35eK5VSi7TWPX6H3wk8DFwNLAVu9f2MHhzm3gVBSEJETw0gekr0lJAoaK3lkyQfvA9NDXx5hGPuBjr9tlfhfXiW+Y05gSN4Qwb8z33KN/+EYeZ2AmN9x5zhN74X2AWkBMlx1G/7LN95s3zb033bN4f5M9DAS37bDt+9NAK5fuMPAm+OME8K3gd3F5DqG7sHeHiEc54AfhGmvNf7ZM4e4mfxq1HOdQIZeFeBP+53v4eA/45w3s+BvUOM3wes89u+A2gK+rmd6JPtI77tCb7tvwXNtQH4l9l/E/KRj3ys9RE9JXpK9JR8Eu0j7lEhFN7WWtf4bY/DqxAfDzoueBul1EVKqdeVUs1AH3DQt2tq0KEvaa37/La3AqXKG3s/FGf7/r0vBPmDeaH/P9q7arkH7z36x5rvxKtwgYHKWF9RSm1VSnUCvcA/gDS8K4zgfTBf7As9WKKUCl4J3ABcr5T6plJqjlJKRSC7P08GDyilTlJKrVRK1eP9eXfgXcnr/3lPA8bgXWmMliXAc/4/N631m3hfSk4LOva5oO2teFc3BUEQjED0lOipoRA9JZiOGFvJRR3QDYwf4ZjxeFeU/KkJ2u6PZQ922wdsK6UW41VsB4GP4Q0NOcm3Oz3wVJqCtnvwhg2kDSNnEdCuR0jGHYGhrjXUmL+MX8G7kvYI3lCUJcAXfPv6j/sz3vCMDwFvAjW+ePl+ZfZj4Hd4Q042AgeUUl+OQP5+Ar4XpVQVXmWh8IaMnIo35OSYn4xFvn+PRHHdfiqCZfCTqzBorCloO/jnKwiCAKKnRrrWUGOip0ZG9JRgOmJsJRG+Fbk3gEuGSvpU3rK1ZwEvB58atH3U929J0Hjw9pV4Fds1WuvHtdZr/M6NlnogyydzPPgg8JDW+v9prZ/TWq8F2v0P0Fp7tNa/0lqfgHcV8ed4499v9O3v0lrfqr2laqcC/wbuVkpdGKFMwd/LhUAmcLnW+iGt9et4Vyn9FUq979+KCK/pzxG8uQ7BlOHNGxAEQQgL0VNRIXpqMKKnBNMRYyv5+DXeB+gNQ+z7Nt5k1XtGmeMAXmV0edB4cLPJDKBXa+3/sL02dFFH5EXfvx83aL7RyMC72urPsPeitT6gtb4Db5jHjCH27wC+4Ztz0P4oZPTgDcvo50MEFsJ5H++K8CdGmCfU1bw3gQuUUjn9A75V4gl4k9EFQRAiQfRUZIieGozoKcF0pBphkqG1flQpdS/wO6XUDLzJsCnANXiTXL+jh+ld4jeHWyl1F97qSLXAa3gV2GzfIf3Vm1YCX1FK3Y23KeUpwHUG3cf7SqnlwC98FZpeBvLxNjn8sBHXCGIlcLNS6k28SdLXAgGlapVSv8e7UrYGbyWss/FWTPqWb/8jwNvAO3iTua/G+7MPXqGNlBfxJhv/RSn1J2AmXkXZ1H+A1tqjlPom8A+l1D+Af+JdeTwH+KfWeh2wDShTSl0PbAbqtNZ7h7jeL4HPAc8qpX7G8SpP7+Kt6CQIghA2oqciRvTUYERPCaYjnq3k5PN4QwZOBh4D/gNMwuvWv2OkE/34FfBT31wPAwV4S+ACtABorZ/C+wC/Cm9M/Jl4S9gaxeeB2/AqxqfwVobqMHB+f27H+8D/se/fHrzld/15A2854r/45LkSuFFr/ahv/+vAFcADeH/uC4GrfIojarTW7+J9ETkR78vJR/GGlTQHHfcA3u9kOvAQ3vK60zmey/Ag3oTuO4G1eEsHD3W9WryKugvvz+R3wCvAeTqwnK4gCEK4iJ4KH9FTg68nekowHRXoOReEyFFK/RHvA2ykxGZBEARBMAXRU4IgxBsJIxQiQik1C29Ix+t4wzEuAj6JLxRBEARBEMxE9JQgCFZAPFtCRCilJuItITsPb+f5fcDv8TZDlF8qQRAEwVRETwmCYAXE2BIEQRAEQRAEQYgBUiBDEARBEARBEAQhBoixJQiCIAiCIAiCEAPE2BIEQRAEQRAEQYgBYmwJgiAIgiAIgiDEADG2BEEQBEEQBEEQYsD/B/QEwpmz/mFCAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -176,6 +172,13 @@ "plot_contours(subplot_list, updraft_list, forg_list, output, actfrac=False, save=False)\n", "plot_contours(subplot_list, updraft_list, forg_list, output, actfrac=True, save=False)\n" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/examples/PySDM_examples/Lowe_et_al_2019/fig_s2.ipynb b/examples/PySDM_examples/Lowe_et_al_2019/fig_s2.ipynb new file mode 100644 index 000000000..c81e9157b --- /dev/null +++ b/examples/PySDM_examples/Lowe_et_al_2019/fig_s2.ipynb @@ -0,0 +1,226 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Lowe_et_al_2019/fig_s2.ipynb)\n", + "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Lowe_et_al_2019/fig_s2.ipynb)\n", + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Lowe_et_al_2019/fig_s2.ipynb)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### based on Fig. S2 from Lowe et al. 2019 (Nature Comm.) \"_Key drivers of cloud response to surface-active organics_\" \n", + "https://doi.org/10.1038/s41467-019-12982-0" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "if 'google.colab' in sys.modules:\n", + " !pip --quiet install open-atmos-jupyter-utils\n", + " from open_atmos_jupyter_utils import pip_install_on_colab\n", + " pip_install_on_colab('PySDM-examples')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "from contextlib import contextmanager\n", + "\n", + "import numba\n", + "\n", + "from PySDM_examples.Lowe_et_al_2019 import Settings, Simulation\n", + "from PySDM_examples.Lowe_et_al_2019.aerosol_code import AerosolBoreal, AerosolMarine, AerosolNascent\n", + "from PySDM_examples.Lowe_et_al_2019.constants_def import LOWE_CONSTS\n", + "from open_atmos_jupyter_utils import show_plot\n", + "\n", + "from PySDM import Formulae\n", + "from PySDM.initialisation.sampling import spectral_sampling as spec_sampling\n", + "from PySDM.initialisation.spectra import Sum\n", + "from PySDM.physics import si, in_unit\n", + "\n", + "import numpy as np\n", + "from joblib import Parallel, delayed, parallel_backend\n", + "\n", + "from matplotlib import pyplot" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "@contextmanager\n", + "def numba_threading_disabled():\n", + " numba_original_num_threads = numba.get_num_threads()\n", + " numba.set_num_threads(1)\n", + " try:\n", + " yield\n", + " finally:\n", + " numba.set_num_threads(numba_original_num_threads)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "CI = 'CI' in os.environ\n", + "nRes = 10\n", + "updraft_list = np.linspace(0.2, 2.4, 2 if CI else nRes)\n", + "models = ('Constant', 'CompressedFilmOvadnevaite')\n", + "\n", + "FORMULAE = Formulae(\n", + " constants=LOWE_CONSTS,\n", + ")\n", + "WATER_MOLAR_VOLUME = FORMULAE.constants.Mv / FORMULAE.constants.rho_w\n", + "aerosols = (\n", + " AerosolMarine(water_molar_volume=WATER_MOLAR_VOLUME), \n", + " AerosolBoreal(water_molar_volume=WATER_MOLAR_VOLUME), \n", + " AerosolNascent(water_molar_volume=WATER_MOLAR_VOLUME)\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def compute(keyname, settings):\n", + " simulation = Simulation(settings)\n", + " out = simulation.run()\n", + " out['updraft'] = settings.w\n", + " out['org_fraction'] = settings.aerosol.modes[0]['f_org']\n", + " out['color'] = settings.aerosol.color\n", + " out['Na_tot'] = Sum(\n", + " tuple(settings.aerosol.modes[i]['spectrum']\n", + " for i in range(len(settings.aerosol.modes)))).norm_factor\n", + " return keyname, out\n", + "\n", + "print(f'tasks scheduled: {len(models) * len(aerosols) * len(updraft_list)}')\n", + "print('updrafts:', updraft_list)\n", + "\n", + "with numba_threading_disabled():\n", + " with parallel_backend(backend='loky', n_jobs=-2):\n", + " output = dict(Parallel(verbose=0)(\n", + " delayed(compute)(f\"w{w:.2f}_{aerosol.__class__.__name__}_{model}\", Settings(\n", + " dz = 10 * si.m if CI else 1 * si.m,\n", + " n_sd_per_mode = 10 if CI else 100,\n", + " model = model,\n", + " aerosol = aerosol,\n", + " w = w * si.m / si.s,\n", + " spectral_sampling = spec_sampling.ConstantMultiplicity,\n", + " ))\n", + " for w in updraft_list\n", + " for model in models\n", + " for aerosol in aerosols\n", + " ))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "fig, axes = pyplot.subplots(1, 3, figsize=(10,3))\n", + "\n", + "for key, out_item in output.items():\n", + " ll = \"_\".join(key.split(\"_\", maxsplit=1)[1:]).replace(\"Aerosol\",\"\").replace(\"CompressedFilm\",\"\")\n", + " cc, disp = {\n", + " \"Marine\": (\"b\", -0.1),\n", + " \"Boreal\": (\"g\", -0.05),\n", + " \"Nascent\": (\"r\", 0.0),\n", + " }[ll.split(\"_\", maxsplit=1)[0]]\n", + " w, a, h = {\n", + " \"Constant\": (0.05, 0.4, \"\"),\n", + " \"Ovadnevaite\": (0.025, 0.6, \"//\"),\n", + " }[ll.split(\"_\", maxsplit=1)[1]]\n", + "\n", + " ax = axes[0]\n", + " label = ll if key.split(\"_\", maxsplit=1)[0] == \"w0.20\" else ''\n", + " common_kwargs = {\n", + " 'color': cc,\n", + " 'width': w,\n", + " 'alpha': a,\n", + " 'hatch': h\n", + " }\n", + "\n", + " ax.bar(\n", + " out_item[\"updraft\"] + disp,\n", + " in_unit(out_item[\"lwp\"], si.g / si.m**2),\n", + " **common_kwargs, label=label\n", + " )\n", + " if label != '':\n", + " ax.legend(loc = 0) #bbox_to_anchor=(5, 1))\n", + "\n", + " ax.set_xlabel(\"w [m s$^{-1}$]\")\n", + " ax.set_ylabel(\"LWP [g m$^{-2}$]\")\n", + " ax.set_ylim(27,35) # 27,33\n", + "\n", + " ax = axes[1]\n", + " ax.bar(out_item[\"updraft\"] + disp, out_item[\"tau\"], **common_kwargs)\n", + " ax.set_xlabel(\"w [m s$^{-1}$]\")\n", + " ax.set_ylabel(\"$\\\\tau$, optical depth\")\n", + " ax.set_ylim(0,13) # 0,11\n", + "\n", + " ax = axes[2]\n", + " ax.bar(out_item[\"updraft\"] + disp, out_item[\"albedo\"], **common_kwargs)\n", + " ax.set_xlabel(\"w [m s$^{-1}$]\")\n", + " ax.set_ylabel(\"$\\\\alpha$, cloud albedo\")\n", + " ax.set_ylim(0,0.5) # 0,0.45\n", + "\n", + "pyplot.tight_layout()\n", + "show_plot()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + }, + "vscode": { + "interpreter": { + "hash": "b14f34a08619f4a218d80d7380beed3f0c712c89ff93e7183219752d640ed427" + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/examples/PySDM_examples/Lowe_et_al_2019/plot_helper.py b/examples/PySDM_examples/Lowe_et_al_2019/plot_helper.py index ae71f0368..f8d117da3 100644 --- a/examples/PySDM_examples/Lowe_et_al_2019/plot_helper.py +++ b/examples/PySDM_examples/Lowe_et_al_2019/plot_helper.py @@ -17,7 +17,7 @@ def plot_profiles(subplot_list, updraft_list, forg_list, output, save=False): for i, w in enumerate(updraft_list): for _, Forg in enumerate(forg_list): key = subplot + f"_w{w:.2f}_f{Forg:.2f}_" - var = "n_c_cm3" + var = "CDNC_cm3" z = np.array(output[key + "CompressedFilmOvadnevaite"]["z"]) CDNC_film = np.array(output[key + "CompressedFilmOvadnevaite"][var]) CDNC_bulk = np.array(output[key + "Constant"][var]) @@ -60,7 +60,7 @@ def plot_contours( CDNC_film = output[key + "CompressedFilmOvadnevaite"][var][0] * Naer CDNC_bulk = output[key + "Constant"][var][0] * Naer else: - var = "n_c_cm3" + var = "CDNC_cm3" z = np.array(output[key + "CompressedFilmOvadnevaite"]["z"]) wz = np.where(z == z[-1])[0][0] CDNC_film = np.array( diff --git a/examples/PySDM_examples/Lowe_et_al_2019/settings.py b/examples/PySDM_examples/Lowe_et_al_2019/settings.py index a7a34d8d9..25c674984 100644 --- a/examples/PySDM_examples/Lowe_et_al_2019/settings.py +++ b/examples/PySDM_examples/Lowe_et_al_2019/settings.py @@ -1,6 +1,6 @@ import numpy as np +from PySDM_examples.Lowe_et_al_2019.constants_def import LOWE_CONSTS from pystrict import strict -from scipy import constants as sci from PySDM import Formulae from PySDM.initialisation.aerosol_composition import DryAerosolMixture @@ -18,31 +18,19 @@ def __init__( model: str, spectral_sampling: type(spec_sampling.SpectralSampling), w: float = 0.32 * si.m / si.s, - delta_min: float = 0.1, # 0.2 in paper, but 0.1 matches plot fig 1c/d - MAC: float = 1, - HAC: float = 1, - c_pd: float = 1005 * si.joule / si.kilogram / si.kelvin, - g_std: float = sci.g * si.metre / si.second**2, - scipy_ode_solver: bool = False, ): assert model in ("Constant", "CompressedFilmOvadnevaite") self.model = model self.n_sd_per_mode = n_sd_per_mode - self.scipy_ode_solver = scipy_ode_solver self.formulae = Formulae( surface_tension=model, - constants={ - "sgm_org": 40 * si.mN / si.m, - "delta_min": delta_min * si.nm, - "MAC": MAC, - "HAC": HAC, - "c_pd": c_pd, - "g_std": g_std, - }, + constants=LOWE_CONSTS, diffusion_kinetics="LoweEtAl2019", diffusion_thermics="LoweEtAl2019", latent_heat="Lowe2019", saturation_vapour_pressure="Lowe1977", + optical_albedo="Bohren1987", + optical_depth="Stephens1978", ) const = self.formulae.constants self.aerosol = aerosol @@ -54,8 +42,6 @@ def __init__( self.dt = dz / self.w self.output_interval = 1 * self.dt - self.g = 9.81 * si.m / si.s**2 - self.p0 = 980 * si.mbar self.T0 = 280 * si.K pv0 = 0.999 * self.formulae.saturation_vapour_pressure.pvs_Celsius( diff --git a/examples/PySDM_examples/Lowe_et_al_2019/simulation.py b/examples/PySDM_examples/Lowe_et_al_2019/simulation.py index 1d8ef3f09..ccd255eab 100644 --- a/examples/PySDM_examples/Lowe_et_al_2019/simulation.py +++ b/examples/PySDM_examples/Lowe_et_al_2019/simulation.py @@ -4,7 +4,6 @@ import PySDM.products as PySDM_products from PySDM import Builder from PySDM.backends import CPU -from PySDM.backends.impl_numba.test_helpers import scipy_ode_condensation_solver from PySDM.dynamics import AmbientThermodynamics, Condensation from PySDM.environments import Parcel from PySDM.initialisation import equilibrate_wet_radii @@ -32,14 +31,15 @@ def __init__(self, settings, products=None): "kappa times dry volume": np.empty(0), "multiplicity": np.ndarray(0), } + initial_volume = settings.mass_of_dry_air / settings.rho0 for mode in settings.aerosol.modes: r_dry, n_in_dv = settings.spectral_sampling( spectrum=mode["spectrum"] ).sample(settings.n_sd_per_mode) - V = settings.mass_of_dry_air / settings.rho0 - N = n_in_dv * V v_dry = settings.formulae.trivia.volume(radius=r_dry) - attributes["multiplicity"] = np.append(attributes["multiplicity"], N) + attributes["multiplicity"] = np.append( + attributes["multiplicity"], n_in_dv * initial_volume + ) attributes["dry volume"] = np.append(attributes["dry volume"], v_dry) attributes["dry volume organic"] = np.append( attributes["dry volume organic"], mode["f_org"] * v_dry @@ -52,7 +52,7 @@ def __init__(self, settings, products=None): assert attribute.shape[0] == n_sd np.testing.assert_approx_equal( - np.sum(attributes["multiplicity"]) / V, + np.sum(attributes["multiplicity"]) / initial_volume, Sum( tuple( settings.aerosol.modes[i]["spectrum"] @@ -80,46 +80,61 @@ def __init__(self, settings, products=None): PySDM_products.Time(name="t"), PySDM_products.PeakSupersaturation(unit="%", name="S_max"), PySDM_products.AmbientRelativeHumidity(unit="%", name="RH"), - PySDM_products.ParticleConcentration( - name="n_c_cm3", unit="cm^-3", radius_range=settings.cloud_radius_range + PySDM_products.ActivatedParticleConcentration( + name="CDNC_cm3", + unit="cm^-3", + count_activated=True, + count_unactivated=False, ), PySDM_products.ParticleSizeSpectrumPerVolume( radius_bins_edges=settings.wet_radius_bins_edges ), - PySDM_products.ActivableFraction(), + PySDM_products.ActivableFraction(name="Activated Fraction"), + PySDM_products.WaterMixingRatio(), + PySDM_products.AmbientDryAirDensity(name="rhod"), + PySDM_products.ActivatedEffectiveRadius( + name="reff", count_activated=True, count_unactivated=False + ), + PySDM_products.ParcelLiquidWaterPath( + name="lwp", count_activated=True, count_unactivated=False + ), + PySDM_products.CloudOpticalDepth(name="tau"), + PySDM_products.CloudAlbedo(name="albedo"), ) particulator = builder.build(attributes=attributes, products=products) - if settings.scipy_ode_solver: - scipy_ode_condensation_solver.patch_particulator(particulator) self.settings = settings super().__init__(particulator=particulator) def _save_scalars(self, output): for k, v in self.particulator.products.items(): - if len(v.shape) > 1 or k == "activable fraction": + if len(v.shape) > 1 or k in ("lwp", "Activated Fraction", "tau", "albedo"): continue value = v.get() if isinstance(value, np.ndarray) and value.size == 1: value = value[0] output[k].append(value) - def _save_spectrum(self, output): - value = self.particulator.products["particle size spectrum per volume"].get() - output["spectrum"] = value + def _save_final_timestep_products(self, output): + output["spectrum"] = self.particulator.products[ + "particle size spectrum per volume" + ].get() + + for name, args_call in { + "Activated Fraction": lambda: {"S_max": np.nanmax(output["S_max"])}, + "lwp": lambda: {}, + "tau": lambda: { + "effective_radius": output["reff"][-1], + "liquid_water_path": output["lwp"][0], + }, + "albedo": lambda: {"optical_depth": output["tau"]}, + }.items(): + output[name] = self.particulator.products[name].get(**args_call()) def run(self): output = {k: [] for k in self.particulator.products} for step in self.settings.output_steps: self.particulator.run(step - self.particulator.n_steps) self._save_scalars(output) - self._save_spectrum(output) - if self.settings.scipy_ode_solver: - output["Activated Fraction"] = self.particulator.products[ - "activable fraction" - ].get(S_max=np.nanmax(output["RH"]) - 100) - else: - output["Activated Fraction"] = self.particulator.products[ - "activable fraction" - ].get(S_max=np.nanmax(output["S_max"])) + self._save_final_timestep_products(output) return output diff --git a/tests/smoke_tests/parcel/lowe_et_al_2019/test_dz_sensitivity.py b/tests/smoke_tests/parcel/lowe_et_al_2019/test_dz_sensitivity.py index 8a0a8e4cb..e100b9e1e 100644 --- a/tests/smoke_tests/parcel/lowe_et_al_2019/test_dz_sensitivity.py +++ b/tests/smoke_tests/parcel/lowe_et_al_2019/test_dz_sensitivity.py @@ -4,28 +4,22 @@ from matplotlib import pyplot from PySDM_examples.Lowe_et_al_2019 import Settings, Simulation from PySDM_examples.Lowe_et_al_2019.aerosol_code import AerosolMarine +from PySDM_examples.Lowe_et_al_2019.constants_def import LOWE_CONSTS +from PySDM import Formulae from PySDM.initialisation.sampling import spectral_sampling as spec_sampling -from PySDM.physics import constants_defaults, si +from PySDM.physics import si + +FORMULAE = Formulae(constants=LOWE_CONSTS) +WATER_MOLAR_VOLUME = FORMULAE.constants.water_molar_volume def test_dz_sensitivity( plot=False, ): # pylint: disable=too-many-locals,too-many-branches # arrange - consts = { - "delta_min": 0.1, - "MAC": 1, - "HAC": 1, - "c_pd": 1006 * si.joule / si.kilogram / si.kelvin, - "g_std": 9.81 * si.m / si.s**2, - "scipy_ode_solver": False, - } - output = {} - aerosol = AerosolMarine( - water_molar_volume=constants_defaults.Mv / constants_defaults.rho_w - ) + aerosol = AerosolMarine(water_molar_volume=WATER_MOLAR_VOLUME) model = "Constant" # act @@ -37,7 +31,6 @@ def test_dz_sensitivity( model=model, aerosol=aerosol, spectral_sampling=spec_sampling.ConstantMultiplicity, - **consts, ) simulation = Simulation(settings) output[key] = simulation.run() @@ -46,7 +39,7 @@ def test_dz_sensitivity( # plot pyplot.rc("font", size=14) _, axs = pyplot.subplots(1, 2, figsize=(11, 4), sharey=True) - vlist = ("S_max", "n_c_cm3") + vlist = ("S_max", "CDNC_cm3") for idx, var in enumerate(vlist): for key, out_item in output.items(): @@ -60,7 +53,7 @@ def test_dz_sensitivity( if var == "S_max": axs[idx].set_xlabel("Supersaturation [%]") axs[idx].set_xlim(0) - elif var == "n_c_cm3": + elif var == "CDNC_cm3": axs[idx].set_xlabel("Cloud droplet concentration [cm$^{-3}$]") else: assert False diff --git a/tests/smoke_tests/parcel/lowe_et_al_2019/test_fig_1.py b/tests/smoke_tests/parcel/lowe_et_al_2019/test_fig_1.py index 31285a856..247914d76 100644 --- a/tests/smoke_tests/parcel/lowe_et_al_2019/test_fig_1.py +++ b/tests/smoke_tests/parcel/lowe_et_al_2019/test_fig_1.py @@ -2,27 +2,28 @@ import numpy as np import pytest from PySDM_examples.Lowe_et_al_2019 import aerosol as paper_aerosol +from PySDM_examples.Lowe_et_al_2019.constants_def import LOWE_CONSTS from scipy import signal from PySDM import Formulae from PySDM.physics import constants_defaults as const from PySDM.physics import si -FORMULAE = Formulae() +FORMULAE = Formulae(constants=LOWE_CONSTS) TRIVIA = FORMULAE.trivia R_WET = np.logspace(np.log(150 * si.nm), np.log(3000 * si.nm), base=np.e, num=100) R_DRY = 50 * si.nm V_WET = TRIVIA.volume(R_WET) V_DRY = TRIVIA.volume(R_DRY) TEMPERATURE = 300 * si.K -WATER_MOLAR_VOLUME = FORMULAE.constants.Mv / FORMULAE.constants.rho_w +WATER_MOLAR_VOLUME = FORMULAE.constants.water_molar_volume class TestFig1: @staticmethod def test_bulk_surface_tension_is_sgm_w(): # arrange - formulae = Formulae(surface_tension="Constant") + formulae = Formulae(surface_tension="Constant", constants=LOWE_CONSTS) r_wet = np.logspace( np.log(150 * si.nm), np.log(3000 * si.nm), base=np.e, num=100 ) @@ -57,7 +58,7 @@ def test_kink_location(constants, aerosol, cutoff): # arrange formulae = Formulae( surface_tension="CompressedFilmOvadnevaite", - constants={"sgm_org": 40 * si.mN / si.m, "delta_min": 0.1 * si.nm}, + constants=LOWE_CONSTS, ) # act @@ -123,7 +124,7 @@ def test_koehler_maxima(*, aerosol, surface_tension, maximum_x, maximum_y, bimod # arrange formulae = Formulae( surface_tension=surface_tension, - constants={"sgm_org": 40 * si.mN / si.m, "delta_min": 0.1 * si.nm}, + constants=LOWE_CONSTS, ) sigma = formulae.surface_tension.sigma( np.nan, V_WET, V_DRY, aerosol.modes[0]["f_org"] diff --git a/tests/smoke_tests/parcel/lowe_et_al_2019/test_fig_2.py b/tests/smoke_tests/parcel/lowe_et_al_2019/test_fig_2.py index f659e6d8f..26d1f9c70 100644 --- a/tests/smoke_tests/parcel/lowe_et_al_2019/test_fig_2.py +++ b/tests/smoke_tests/parcel/lowe_et_al_2019/test_fig_2.py @@ -3,11 +3,14 @@ import pytest from PySDM_examples.Lowe_et_al_2019 import Settings, Simulation from PySDM_examples.Lowe_et_al_2019 import aerosol as paper_aerosol +from PySDM_examples.Lowe_et_al_2019.constants_def import LOWE_CONSTS +from PySDM import Formulae from PySDM.initialisation.sampling import spectral_sampling -from PySDM.physics import constants_defaults, si +from PySDM.physics import si -WATER_MOLAR_VOLUME = constants_defaults.Mv / constants_defaults.rho_w +FORMULAE = Formulae(constants=LOWE_CONSTS) +WATER_MOLAR_VOLUME = FORMULAE.constants.water_molar_volume class TestFig2: # pylint: disable=too-few-public-methods @@ -84,7 +87,9 @@ def test_peak_supersaturation_and_final_concentration( print(i_100m, output["z"][i_100m]) print(np.nanmax(output["S_max"]), s_max) print(output["S_max"][i_100m], s_100m) - print(output["n_c_cm3"][i_100m], n_100m) + print(output["CDNC_cm3"][i_100m], n_100m) np.testing.assert_approx_equal(np.nanmax(output["S_max"]), s_max, significant=2) np.testing.assert_approx_equal(output["S_max"][i_100m], s_100m, significant=2) - np.testing.assert_approx_equal(output["n_c_cm3"][i_100m], n_100m, significant=2) + np.testing.assert_approx_equal( + output["CDNC_cm3"][i_100m], n_100m, significant=2 + ) diff --git a/tests/smoke_tests/parcel/lowe_et_al_2019/test_fig_s2.py b/tests/smoke_tests/parcel/lowe_et_al_2019/test_fig_s2.py new file mode 100644 index 000000000..8d8e19650 --- /dev/null +++ b/tests/smoke_tests/parcel/lowe_et_al_2019/test_fig_s2.py @@ -0,0 +1,83 @@ +""" + test for supplementary figure 2 in Lowe et al 2019 paper. + checks that values from panels d)-f) are in a reasonable range + and decrease/increase monotonically with updraft velocity +""" + +import os +from pathlib import Path + +import numpy as np +import pytest +from PySDM_examples import Lowe_et_al_2019 +from PySDM_examples.utils import notebook_vars + +from PySDM.physics import si + +PLOT = False + + +@pytest.fixture(scope="session", name="variables") +def variables_fixture(): + return notebook_vars( + file=Path(Lowe_et_al_2019.__file__).parent / "fig_s2.ipynb", plot=PLOT + ) + + +CI = "CI" in os.environ +nRes = 10 +updrafts = np.linspace(0.2, 2.4, 2 if CI else nRes) +models = ("Constant", "CompressedFilmOvadnevaite") +aerosol_names = ("AerosolMarine", "AerosolBoreal", "AerosolNascent") + + +def keygen(updraft, model, aerosol_class_name): + return f"w{updraft:.2f}_{aerosol_class_name}_{model}" + + +@pytest.fixture( + params=[ + keygen(updraft, model, aerosol_class_name) + for updraft in updrafts + for model in models + for aerosol_class_name in aerosol_names + ], + scope="session", + name="key", +) +def keys_fixture(request): + return request.param + + +@pytest.fixture(params=models, scope="session", name="model") +def models_fixture(request): + return request.param + + +@pytest.fixture(params=aerosol_names, scope="session", name="aerosol_class_name") +def aerosols_fixture(request): + return request.param + + +class TestFigS2: + @staticmethod + @pytest.mark.parametrize( + "var, value_range", + ( + ("lwp", (28 * si.g / si.m**2, 36 * si.g / si.m**2)), # TODO #1247: 28 to 33 + ("tau", (2, 13)), # TODO #1247: 2 to 11 + ("albedo", (0.15, 0.5)), # TODO #1247: 0.15 to 0.45 + ), + ) + # TODO #1246: range mismatch possibly related to supersaturation profile discrepancies + def test_ranges(var, value_range, variables, key): + assert value_range[0] < variables["output"][key][var] < value_range[1] + + @staticmethod + @pytest.mark.parametrize("var, sgn", (("lwp", -1), ("tau", 1), ("albedo", 1))) + def test_monotonicity(var, sgn, variables, model, aerosol_class_name): + tmp = [ + variables["output"][keygen(updraft, model, aerosol_class_name)][var] + for updraft in updrafts + ] + assert (np.diff(tmp) * sgn > -np.mean(tmp) * 1e-2).all() diff --git a/tests/smoke_tests/parcel/lowe_et_al_2019/test_surface_tension_models.py b/tests/smoke_tests/parcel/lowe_et_al_2019/test_surface_tension_models.py index 697fc4722..1b18c0eb6 100644 --- a/tests/smoke_tests/parcel/lowe_et_al_2019/test_surface_tension_models.py +++ b/tests/smoke_tests/parcel/lowe_et_al_2019/test_surface_tension_models.py @@ -1,19 +1,20 @@ # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import numpy as np from PySDM_examples.Lowe_et_al_2019 import aerosol +from PySDM_examples.Lowe_et_al_2019.constants_def import LOWE_CONSTS from PySDM import Formulae from PySDM.physics import constants_defaults as const from PySDM.physics import si -FORMULAE = Formulae() +FORMULAE = Formulae(constants=LOWE_CONSTS) TRIVIA = FORMULAE.trivia R_WET = np.logspace(np.log(150 * si.nm), np.log(3000 * si.nm), base=np.e, num=100) R_DRY = 50 * si.nm V_WET = TRIVIA.volume(R_WET) V_DRY = TRIVIA.volume(R_DRY) TEMPERATURE = 300 * si.K -WATER_MOLAR_VOLUME = FORMULAE.constants.Mv / FORMULAE.constants.rho_w +WATER_MOLAR_VOLUME = FORMULAE.constants.water_molar_volume aer = aerosol.AerosolBoreal(water_molar_volume=WATER_MOLAR_VOLUME) @@ -21,7 +22,7 @@ class TestFig1: @staticmethod def test_bulk_surface_tension_is_sgm_w(): # arrange - formulae = Formulae(surface_tension="Constant") + formulae = Formulae(surface_tension="Constant", constants=LOWE_CONSTS) # act sigma = formulae.surface_tension.sigma(np.nan, V_WET, np.nan, np.nan) @@ -34,7 +35,7 @@ def test_ovad_surface_tension(): # arrange formulae = Formulae( surface_tension="CompressedFilmOvadnevaite", - constants={"sgm_org": 40 * si.mN / si.m, "delta_min": 0.1 * si.nm}, + constants=LOWE_CONSTS, ) # act @@ -147,7 +148,7 @@ def test_ovad_surface_tension(): 0.0709052019598351, ] ) - assert np.allclose(sigma, test, atol=1e-8) + np.testing.assert_allclose(sigma, test, atol=1e-8) @staticmethod def test_ruehl_surface_tension(): @@ -155,6 +156,7 @@ def test_ruehl_surface_tension(): formulae = Formulae( surface_tension="CompressedFilmRuehl", constants={ + **LOWE_CONSTS, "RUEHL_nu_org": aer.modes[0]["nu_org"], "RUEHL_A0": 115e-20 * si.m * si.m, "RUEHL_C0": 6e-7, @@ -273,7 +275,7 @@ def test_ruehl_surface_tension(): 0.072, ] ) - assert np.allclose(sigma, test, atol=1e-8) + np.testing.assert_allclose(sigma, test, atol=1e-5) @staticmethod def test_SL_surface_tension(): @@ -281,6 +283,7 @@ def test_SL_surface_tension(): formulae = Formulae( surface_tension="SzyszkowskiLangmuir", constants={ + **LOWE_CONSTS, "RUEHL_nu_org": aer.modes[0]["nu_org"], "RUEHL_A0": 115e-20 * si.m * si.m, "RUEHL_C0": 6e-7, @@ -398,4 +401,4 @@ def test_SL_surface_tension(): 0.07194516711540175, ] ) - assert np.allclose(sigma, test, atol=1e-8) + np.testing.assert_allclose(sigma, test, atol=1e-5) diff --git a/tests/smoke_tests/parcel/lowe_et_al_2019/test_zero_forg.py b/tests/smoke_tests/parcel/lowe_et_al_2019/test_zero_forg.py index 2af7adcde..6660c2835 100644 --- a/tests/smoke_tests/parcel/lowe_et_al_2019/test_zero_forg.py +++ b/tests/smoke_tests/parcel/lowe_et_al_2019/test_zero_forg.py @@ -3,13 +3,14 @@ from matplotlib import pyplot from PySDM_examples.Lowe_et_al_2019 import Settings, Simulation from PySDM_examples.Lowe_et_al_2019.aerosol import AerosolBoreal, AerosolMarine +from PySDM_examples.Lowe_et_al_2019.constants_def import LOWE_CONSTS from PySDM import Formulae from PySDM.initialisation.sampling import spectral_sampling as spec_sampling from PySDM.physics import si -FORMULAE = Formulae() -WATER_MOLAR_VOLUME = FORMULAE.constants.Mv / FORMULAE.constants.rho_w +FORMULAE = Formulae(constants=LOWE_CONSTS) +WATER_MOLAR_VOLUME = FORMULAE.constants.water_molar_volume def test_zero_forg(plot=False): # pylint: disable=too-many-locals @@ -21,15 +22,6 @@ def test_zero_forg(plot=False): # pylint: disable=too-many-locals Acc = {"a": 30, "b": 134, "c": 160, "d": 540} - consts = { - "delta_min": 0.1, - "MAC": 1, - "HAC": 1, - "c_pd": 1006 * si.joule / si.kilogram / si.kelvin, - "g_std": 9.81 * si.metre / si.second**2, - "scipy_ode_solver": False, - } - cdnc_compare = np.zeros((len(models), len(subplot_list), len(updraft_list))) for i, w in enumerate(updraft_list): for k, subplot in enumerate(subplot_list): @@ -62,11 +54,10 @@ def test_zero_forg(plot=False): # pylint: disable=too-many-locals }[subplot], w=w * si.m / si.s, spectral_sampling=spec_sampling.ConstantMultiplicity, - **consts, ) simulation = Simulation(settings) output = simulation.run() - cdnc_compare[m, k, i] = np.array(output["n_c_cm3"])[-1] + cdnc_compare[m, k, i] = np.array(output["CDNC_cm3"])[-1] mrkr = ["o", "s", "*", "v", "^", "D", "h", "x", "+", "8", "p", "<", ">", "d", "H"] _, axes = pyplot.subplots( diff --git a/tests/unit_tests/attributes/test_critical_supersaturation.py b/tests/unit_tests/attributes/test_critical_supersaturation.py index de7cc15b0..2c495ce73 100644 --- a/tests/unit_tests/attributes/test_critical_supersaturation.py +++ b/tests/unit_tests/attributes/test_critical_supersaturation.py @@ -24,7 +24,6 @@ def test_critical_supersaturation(): "volume": np.linspace(0.01, 10, n_sd) * si.um**3, "dry volume": vdry, "kappa times dry volume": 0.9 * vdry, - "dry volume organic": np.zeros(n_sd), }, products=(ActivableFraction(),), ) diff --git a/tests/unit_tests/physics/test_optical.py b/tests/unit_tests/physics/test_optical.py new file mode 100644 index 000000000..6ea3302f2 --- /dev/null +++ b/tests/unit_tests/physics/test_optical.py @@ -0,0 +1,47 @@ +""" tests for optical formulae (albedo, optical depth, ...) """ + +import pytest + +from PySDM import Formulae +from PySDM.physics import optical_albedo, optical_depth, constants_defaults +from PySDM.formulae import _choices +from PySDM.physics.dimensional_analysis import DimensionalAnalysis + + +class TestOptical: + @staticmethod + @pytest.mark.parametrize( + "paper", [p for p in _choices(optical_albedo) if p != "Null"] + ) + def test_albedo_unit(paper): + with DimensionalAnalysis(): + # arrange + formulae = Formulae(optical_albedo=paper) + si = constants_defaults.si + tau = 1 * si.dimensionless + + # act + albedo = formulae.optical_albedo.albedo(tau) + + # assert + assert albedo.check("[]") + + @staticmethod + @pytest.mark.parametrize( + "paper", [p for p in _choices(optical_depth) if p != "Null"] + ) + def test_optical_depth_unit(paper): + with DimensionalAnalysis(): + # arrange + formulae = Formulae(optical_depth=paper) + si = constants_defaults.si + liquid_water_path = 30 * si.g / si.m**2 + effective_radius = 10 * si.um + + # act + tau = formulae.optical_depth.tau( + LWP=liquid_water_path, reff=effective_radius + ) + + # assert + assert tau.check("[]") diff --git a/tests/unit_tests/products/test_effective_radii.py b/tests/unit_tests/products/test_effective_radii.py new file mode 100644 index 000000000..7d07b7493 --- /dev/null +++ b/tests/unit_tests/products/test_effective_radii.py @@ -0,0 +1,56 @@ +""" tests different formulations of effective radius product """ + +import numpy as np + +from PySDM import Builder +from PySDM.environments import Box +from PySDM.physics import si +from PySDM.products import EffectiveRadius, ActivatedEffectiveRadius + + +def test_effective_radii(backend_class): + # arrange + env = Box(dt=np.nan, dv=np.nan) + wet_radii = np.asarray([0.01 * si.um, 0.05 * si.um, 0.09 * si.um, 1 * si.um]) + dry_radii = np.asarray([0.009 * si.um] * len(wet_radii)) + kappa = 1.666 + + builder = Builder( + n_sd=len(wet_radii), + backend=backend_class(double_precision=True), + environment=env, + ) + dry_volume = builder.formulae.trivia.volume(radius=dry_radii) + env["T"] = 300 * si.K + particulator = builder.build( + attributes={ + "water mass": builder.formulae.particle_shape_and_density.radius_to_mass( + wet_radii + ), + "dry volume": dry_volume, + "kappa times dry volume": kappa * dry_volume, + "multiplicity": np.asarray([1] * len(wet_radii)), + }, + products=( + ActivatedEffectiveRadius( + name="a", count_unactivated=False, count_activated=False + ), + ActivatedEffectiveRadius( + name="b", count_unactivated=True, count_activated=False + ), + ActivatedEffectiveRadius( + name="c", count_activated=True, count_unactivated=True + ), + EffectiveRadius(name="d", radius_range=(0.5 * si.um, np.inf)), + ), + ) + + # act + sut = {k: product.get()[0] for k, product in particulator.products.items()} + + # assert + assert np.isnan(sut["a"]) + assert min(wet_radii) < sut["b"] + assert sut["b"] < sut["c"] + assert sut["c"] < sut["d"] + assert sut["d"] < max(wet_radii) diff --git a/tests/unit_tests/products/test_impl.py b/tests/unit_tests/products/test_impl.py index 42c8fcf97..81f2f21db 100644 --- a/tests/unit_tests/products/test_impl.py +++ b/tests/unit_tests/products/test_impl.py @@ -11,6 +11,7 @@ from PySDM.backends import CPU from PySDM.environments import Box from PySDM.products import ( + ActivatedEffectiveRadius, ActivatedMeanRadius, ActivatedParticleConcentration, ActivatedParticleSpecificConcentration, @@ -25,6 +26,7 @@ GaseousMoleFraction, MeanVolumeRadius, NumberSizeSpectrum, + ParcelLiquidWaterPath, ParticleSizeSpectrumPerMass, ParticleSizeSpectrumPerVolume, ParticleVolumeVersusRadiusLogarithmSpectrum, @@ -67,6 +69,8 @@ RadiusStandardDeviation: {"count_activated": True, "count_unactivated": False}, AreaStandardDeviation: {"count_activated": True, "count_unactivated": False}, VolumeStandardDeviation: {"count_activated": True, "count_unactivated": False}, + ActivatedEffectiveRadius: {"count_activated": True, "count_unactivated": False}, + ParcelLiquidWaterPath: {"count_activated": True, "count_unactivated": False}, } diff --git a/tests/unit_tests/products/test_parcel_liquid_water_path.py b/tests/unit_tests/products/test_parcel_liquid_water_path.py new file mode 100644 index 000000000..bb449d9f6 --- /dev/null +++ b/tests/unit_tests/products/test_parcel_liquid_water_path.py @@ -0,0 +1,94 @@ +""" tests the liquid-water-path computing product for Parcel env """ + +import numpy as np +from matplotlib import pyplot + +from PySDM.products import ( + ParcelLiquidWaterPath, + LiquidWaterContent, + AmbientRelativeHumidity, +) +from PySDM.environments import Parcel +from PySDM.dynamics import Condensation, AmbientThermodynamics +from PySDM import Builder +from PySDM.physics import si + + +def test_parcel_liquid_water_path( + backend_class, plot=False +): # pylint: disable=too-many-locals + # arrange + n_sd = 1 + n_steps = 32 + dz = 5 * si.m + dt = 1 * si.s + + env = Parcel( + dt=dt, + mass_of_dry_air=1 * si.mg, + p0=1000 * si.hPa, + initial_water_vapour_mixing_ratio=22.2 * si.g / si.kg, + T0=300 * si.K, + w=dz / dt, + ) + + builder = Builder( + n_sd=n_sd, backend=backend_class(double_precision=True), environment=env + ) + builder.add_dynamic(AmbientThermodynamics()) + builder.add_dynamic(Condensation()) + particulator = builder.build( + attributes=env.init_attributes( + n_in_dv=np.asarray([1000]), kappa=0.666, r_dry=np.asarray([0.01 * si.um]) + ), + products=( + ParcelLiquidWaterPath( + name="LWP", count_unactivated=True, count_activated=True + ), + LiquidWaterContent(name="LWC"), + AmbientRelativeHumidity(name="RH"), + ), + ) + + # act + data = {product: [] for product in particulator.products} + for _ in range(n_steps): + particulator.run(steps=1) + for key, product in particulator.products.items(): + value = product.get() + if isinstance(value, np.ndarray): + value = value[0] + data[key].append(value) + for k, datum in data.items(): + data[k] = np.asarray(datum) + cumsum = np.cumsum((data["LWC"] - np.diff(data["LWC"], prepend=0) / 2) * dz) + t = np.arange(1, len(cumsum) + 1) * dt + + # plot + pyplot.title(backend_class.__name__) + pyplot.plot( + t, + cumsum, + label="cumsum((LWC - diff(LWC)/2) * dz)", + color="black", + linestyle=":", + ) + pyplot.plot(t, data["LWP"], label="LWP", color="black") + pyplot.ylabel("LWP [kg/m^2]") + pyplot.xlabel("time [s] (values at the end of each timestep)") + pyplot.ylim(0, 0.016) + pyplot.legend() + pyplot.grid() + + twin = pyplot.gca().twinx() + twin.plot(t, data["RH"], color="red", marker="o") + twin.set_ylabel("RH [1]", color="red") + twin.set_ylim(0.98, 1.02) + + if plot: + pyplot.show() + else: + pyplot.clf() + + # assert + np.testing.assert_allclose(cumsum, data["LWP"], atol=2e-10) diff --git a/tests/unit_tests/products/test_particle_size_product.py b/tests/unit_tests/products/test_particle_size_product.py index cfab56115..2dfbc3fc1 100644 --- a/tests/unit_tests/products/test_particle_size_product.py +++ b/tests/unit_tests/products/test_particle_size_product.py @@ -100,7 +100,6 @@ def test_particle_size_product( "multiplicity": np.asarray(n), "volume": volume, "dry volume": dry_volume, - "dry volume organic": np.full_like(r, 0), "kappa times dry volume": KAPPA * dry_volume, }, products=(