-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDeepLearning.py
72 lines (59 loc) · 2.75 KB
/
DeepLearning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import argparse
import cv2
import numpy as np
def applyDL(image):
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--prototxt", required=True,
help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required=True,
help="path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.05,
help="minimum probability to filter weak detections")
args = vars(ap.parse_args())
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
"sofa", "train", "tvmonitor"]
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
rows, cols = image.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 0.007843,
(300, 300), 127.5)
net.setInput(blob)
detections = net.forward()
bestStartX, bestStartY, bestEndX, bestEndY = 0, 0, 0, 0
for i in np.arange(0, detections.shape[2]):
# extract the confidence (i.e., probability) associated with the
# prediction
confidence = detections[0, 0, i, 2]
# filter out weak detections by ensuring the `confidence` is
# greater than the minimum confidence
if confidence > args["confidence"]:
# extract the index of the class label from the `detections`,
# then compute the (x, y)-coordinates of the bounding box for
# the object
idx = int(detections[0, 0, i, 1])
box = detections[0, 0, i, 3:7] * np.array([cols, rows, cols, rows])
(startX, startY, endX, endY) = box.astype("int")
# display the prediction
label = "{}: {:.2f}%".format(CLASSES[idx], confidence * 100)
print("[INFO] {}".format(label))
cv2.rectangle(image, (startX, startY), (endX, endY),
255, 2)
if (endX - startX) * (endY - startY) > (bestEndX - bestStartX) * (bestEndY - bestStartY):
bestStartX = startX
bestStartY = startY
bestEndX = endX
bestEndY = endY
y = startY - 15 if startY - 15 > 15 else startY + 15
cv2.putText(image, label, (startX, y),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, 255, 2)
# cv2.imshow("Output", image)
while bestStartX % 10 != 0:
bestStartX -= 1
while bestEndX % 10 != 0:
bestEndX += 1
while bestEndY % 10 != 0:
bestEndY += 1
while bestStartY % 10 != 0:
bestStartY -= 1
return bestStartX, bestStartY, bestEndX, bestEndY