-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_COLLAB_edge_classification.py
executable file
·468 lines (371 loc) · 20 KB
/
main_COLLAB_edge_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
"""
IMPORTING LIBS
"""
import dgl
import numpy as np
import os
import socket
import time
import random
import glob
import argparse, json
import pickle
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
from tqdm import tqdm
from zz_average_of_mul_simulation import save_float_to_csv
class DotDict(dict):
def __init__(self, **kwds):
self.update(kwds)
self.__dict__ = self
"""
IMPORTING CUSTOM MODULES/METHODS
"""
from nets.COLLAB_edge_classification.load_net import gnn_model # import all GNNS
from data.data import LoadData # import dataset
"""
GPU Setup
"""
def gpu_setup(use_gpu, gpu_id):
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id)
if torch.cuda.is_available() and use_gpu:
print('cuda available with GPU:',torch.cuda.get_device_name(0))
device = torch.device("cuda")
else:
print('cuda not available')
device = torch.device("cpu")
return device
"""
VIEWING MODEL CONFIG AND PARAMS
"""
def view_model_param(MODEL_NAME, net_params):
model = gnn_model(MODEL_NAME, net_params)
total_param = 0
print("MODEL DETAILS:\n")
print(model)
for param in model.parameters():
# print(param.data.size())
total_param += np.prod(list(param.data.size()))
print('MODEL/Total parameters:', MODEL_NAME, total_param)
return total_param
"""
TRAINING CODE
"""
def train_val_pipeline(MODEL_NAME, dataset, params, net_params, save_file_params, dirs):
t0 = time.time()
per_epoch_time = []
DATASET_NAME = dataset.name
#assert net_params['self_loop'] == False, "No self-loop support for %s dataset" % DATASET_NAME
if MODEL_NAME in ['GatedGCN']:
if net_params['pos_enc']:
print("[!] Adding graph positional encoding",net_params['pos_enc_dim'])
dataset._add_positional_encodings(net_params, save_adj=False, #set as True to get adjacency matrix
use_existing=False) #set as True to use saved laplacian
if net_params['pos_enc_type'].lower() == "learn":
# This would be used to set the learnable parameter size
net_params['num_nodes'] = dataset.num_nodes
print('Time PE:',time.time()-t0)
# if not net_params['use_NAPE']:
# # We enforce this only to get the time taken for the Laplacian to be computed
# print('\nTIME HAS BEEN COMPUTED!')
# exit()
graph = dataset.graph
evaluator = dataset.evaluator
train_edges, val_edges, val_edges_neg, test_edges, test_edges_neg = dataset.train_edges, dataset.val_edges, dataset.val_edges_neg, dataset.test_edges, dataset.test_edges_neg
root_log_dir, root_ckpt_dir, write_file_name, write_config_file = dirs
device = net_params['device']
net_params['total_param'] = view_model_param(MODEL_NAME, net_params)
# Write the network and optimization hyper-parameters in folder config/
with open(write_config_file + '.txt', 'w') as f:
f.write("""Dataset: {},\nModel: {}\n\nparams={}\n\nnet_params={}\n\n\nTotal Parameters: {}\n\n""" .format(DATASET_NAME, MODEL_NAME, params, net_params, net_params['total_param']))
log_dir = os.path.join(root_log_dir, "RUN_" + str(0))
writer = SummaryWriter(log_dir=log_dir)
# setting seeds
random.seed(params['seed'])
np.random.seed(params['seed'])
torch.manual_seed(params['seed'])
if device.type == 'cuda':
torch.cuda.manual_seed(params['seed'])
print("Graph: ", graph)
print("Training Edges: ", len(train_edges))
print("Validation Edges: ", len(val_edges) + len(val_edges_neg))
print("Test Edges: ", len(test_edges) + len(test_edges_neg))
model = gnn_model(MODEL_NAME, net_params)
model = model.to(device)
optimizer = optim.Adam(model.parameters(), lr=params['init_lr'], weight_decay=params['weight_decay'])
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max',
factor=params['lr_reduce_factor'],
patience=params['lr_schedule_patience'],
verbose=True)
epoch_train_losses = []
epoch_train_hits, epoch_val_hits = [], []
if MODEL_NAME in ['RingGNN', '3WLGNN']:
raise NotImplementedError # gave OOM while preparing dense tensor
else:
# import train functions for all other GCNs
from train.train_COLLAB_edge_classification import train_epoch_sparse as train_epoch, evaluate_network_sparse as evaluate_network
# At any point you can hit Ctrl + C to break out of training early.
try:
monet_pseudo = None
if MODEL_NAME == "MoNet":
print("\nPre-computing MoNet pseudo-edges")
# for MoNet: computing the 'pseudo' named tensor which depends on node degrees
us, vs = graph.edges()
# to avoid zero division in case in_degree is 0, we add constant '1' in all node degrees denoting self-loop
monet_pseudo = [
[1/np.sqrt(graph.in_degree(us[i])+1), 1/np.sqrt(graph.in_degree(vs[i])+1)]
for i in range(graph.number_of_edges())
]
monet_pseudo = torch.Tensor(monet_pseudo)
with tqdm(range(params['epochs'])) as t:
for epoch in t:
t.set_description('Epoch %d' % epoch)
start = time.time()
epoch_train_loss, optimizer = train_epoch(model, optimizer, device, graph, train_edges,
params['batch_size'], epoch, monet_pseudo,
net_params['pos_enc_type'])
epoch_train_hits, epoch_val_hits, epoch_test_hits = evaluate_network(
model, device, graph, train_edges, val_edges, val_edges_neg, test_edges, test_edges_neg, evaluator, params['batch_size'], epoch, monet_pseudo)
epoch_train_losses.append(epoch_train_loss)
epoch_train_hits.append(epoch_train_hits)
epoch_val_hits.append(epoch_val_hits)
writer.add_scalar('train/_loss', epoch_train_loss, epoch)
writer.add_scalar('train/_hits@10', epoch_train_hits[0]*100, epoch)
writer.add_scalar('train/_hits@50', epoch_train_hits[1]*100, epoch)
writer.add_scalar('train/_hits@100', epoch_train_hits[2]*100, epoch)
writer.add_scalar('val/_hits@10', epoch_val_hits[0]*100, epoch)
writer.add_scalar('val/_hits@50', epoch_val_hits[1]*100, epoch)
writer.add_scalar('val/_hits@100', epoch_val_hits[2]*100, epoch)
writer.add_scalar('test/_hits@10', epoch_test_hits[0]*100, epoch)
writer.add_scalar('test/_hits@50', epoch_test_hits[1]*100, epoch)
writer.add_scalar('test/_hits@100', epoch_test_hits[2]*100, epoch)
writer.add_scalar('learning_rate', optimizer.param_groups[0]['lr'], epoch)
t.set_postfix(time=time.time()-start, lr=optimizer.param_groups[0]['lr'],
train_loss=epoch_train_loss, train_hits=epoch_train_hits[1],
val_hits=epoch_val_hits[1], test_hits=epoch_test_hits[1])
per_epoch_time.append(time.time()-start)
# Saving checkpoint
ckpt_dir = os.path.join(root_ckpt_dir, "RUN_")
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir)
torch.save(model.state_dict(), '{}.pkl'.format(ckpt_dir + "/epoch_" + str(epoch)))
files = glob.glob(ckpt_dir + '/*.pkl')
for file in files:
epoch_nb = file.split('_')[-1]
epoch_nb = int(epoch_nb.split('.')[0])
if epoch_nb < epoch-1:
os.remove(file)
scheduler.step(epoch_val_hits[1])
if optimizer.param_groups[0]['lr'] < params['min_lr']:
print("\n!! LR EQUAL TO MIN LR SET.")
break
# Stop training after params['max_time'] hours
if time.time()-t0 > params['max_time']*3600:
print('-' * 89)
print("Max_time for training elapsed {:.2f} hours, so stopping".format(params['max_time']))
break
except KeyboardInterrupt:
print('-' * 89)
print('Exiting from training early because of KeyboardInterrupt')
train_hits, val_hits, test_hits = evaluate_network(
model, device, graph, train_edges, val_edges, val_edges_neg, test_edges, test_edges_neg, evaluator, params['batch_size'], epoch, monet_pseudo)
print(f"Test:\nHits@10: {test_hits[0]*100:.4f}% \nHits@50: {test_hits[1]*100:.4f}% \nHits@100: {test_hits[2]*100:.4f}% \n")
print(f"Train:\nHits@10: {train_hits[0]*100:.4f}% \nHits@50: {train_hits[1]*100:.4f}% \nHits@100: {train_hits[2]*100:.4f}% \n")
print("Convergence Time (Epochs): {:.4f}".format(epoch))
print("TOTAL TIME TAKEN: {:.4f}s".format(time.time()-t0))
print("AVG TIME PER EPOCH: {:.4f}s".format(np.mean(per_epoch_time)))
# Save train metric
if save_file_params['save']:
try:
os.mkdir(save_file_params['folder'])
except FileExistsError:
print("Folder Already Exists!")
save_float_to_csv(value=train_hits[1]*100, filename=os.path.join(save_file_params['folder'],save_file_params['train_file']))
# Save test metric
save_float_to_csv(value=test_hits[1]*100, filename=os.path.join(save_file_params['folder'],save_file_params['test_file']))
writer.close()
"""
Write the results in out_dir/results folder
"""
with open(write_file_name + '.txt', 'w') as f:
f.write("""Dataset: {},\nModel: {}\n\nparams={}\n\nnet_params={}\n\n{}\n\nTotal Parameters: {}\n\n
FINAL RESULTS\nTEST HITS@10: {:.4f}\nTEST HITS@50: {:.4f}\nTEST HITS@100: {:.4f}\nTRAIN HITS@10: {:.4f}\nTRAIN HITS@50: {:.4f}\nTRAIN HITS@100: {:.4f}\n\n
Convergence Time (Epochs): {:.4f}\nTotal Time Taken: {:.4f}hrs\nAverage Time Per Epoch: {:.4f}s\n\n\n"""\
.format(DATASET_NAME, MODEL_NAME, params, net_params, model, net_params['total_param'],
test_hits[0]*100, test_hits[1]*100, test_hits[2]*100, train_hits[0]*100, train_hits[1]*100, train_hits[2]*100,
epoch, (time.time()-t0)/3600, np.mean(per_epoch_time)))
def main():
"""
USER CONTROLS
"""
parser = argparse.ArgumentParser()
parser.add_argument('--config', help="Please give a config.json file with training/model/data/param details")
parser.add_argument('--gpu_id', help="Please give a value for gpu id")
parser.add_argument('--model', help="Please give a value for model name")
parser.add_argument('--dataset', help="Please give a value for dataset name")
parser.add_argument('--out_dir', help="Please give a value for out_dir")
parser.add_argument('--seed', help="Please give a value for seed")
parser.add_argument('--epochs', help="Please give a value for epochs")
parser.add_argument('--batch_size', help="Please give a value for batch_size")
parser.add_argument('--init_lr', help="Please give a value for init_lr")
parser.add_argument('--lr_reduce_factor', help="Please give a value for lr_reduce_factor")
parser.add_argument('--lr_schedule_patience', help="Please give a value for lr_schedule_patience")
parser.add_argument('--min_lr', help="Please give a value for min_lr")
parser.add_argument('--weight_decay', help="Please give a value for weight_decay")
parser.add_argument('--print_epoch_interval', help="Please give a value for print_epoch_interval")
parser.add_argument('--L', help="Please give a value for L")
parser.add_argument('--hidden_dim', help="Please give a value for hidden_dim")
parser.add_argument('--out_dim', help="Please give a value for out_dim")
parser.add_argument('--residual', help="Please give a value for residual")
parser.add_argument('--edge_feat', help="Please give a value for edge_feat")
parser.add_argument('--readout', help="Please give a value for readout")
parser.add_argument('--kernel', help="Please give a value for kernel")
parser.add_argument('--n_heads', help="Please give a value for n_heads")
parser.add_argument('--gated', help="Please give a value for gated")
parser.add_argument('--in_feat_dropout', help="Please give a value for in_feat_dropout")
parser.add_argument('--dropout', help="Please give a value for dropout")
parser.add_argument('--layer_norm', help="Please give a value for layer_norm")
parser.add_argument('--batch_norm', help="Please give a value for batch_norm")
parser.add_argument('--sage_aggregator', help="Please give a value for sage_aggregator")
parser.add_argument('--data_mode', help="Please give a value for data_mode")
parser.add_argument('--num_pool', help="Please give a value for num_pool")
parser.add_argument('--gnn_per_block', help="Please give a value for gnn_per_block")
parser.add_argument('--embedding_dim', help="Please give a value for embedding_dim")
parser.add_argument('--pool_ratio', help="Please give a value for pool_ratio")
parser.add_argument('--linkpred', help="Please give a value for linkpred")
parser.add_argument('--cat', help="Please give a value for cat")
parser.add_argument('--self_loop', help="Please give a value for self_loop")
parser.add_argument('--max_time', help="Please give a value for max_time")
parser.add_argument('--layer_type', help="Please give a value for layer_type (for GAT and GatedGCN only)")
parser.add_argument('--pos_enc_dim', help="Please give a value for pos_enc_dim")
parser.add_argument('--pos_enc', help="Please give a value for pos_enc")
parser.add_argument('--save_folder', help="The folder to save the file holding the metrics.")
parser.add_argument('--pos_enc_type', help="One of NAPE, Spectral, Learn, Node-embed, Dist-enc and Relative-enc.")
parser.add_argument('--num_hops', help="Number of hops for distance encoding position encoding.")
args = parser.parse_args()
with open(args.config) as f:
config = json.load(f)
# parameters to determine where to save the computed metrics
save_file_params = config['save_file']
if args.save_folder is not None:
save_file_params['folder'] = args.save_folder
# device
if args.gpu_id is not None:
config['gpu']['id'] = int(args.gpu_id)
config['gpu']['use'] = True
device = gpu_setup(config['gpu']['use'], config['gpu']['id'])
# model, dataset, out_dir
if args.model is not None:
MODEL_NAME = args.model
else:
MODEL_NAME = config['model']
if args.dataset is not None:
DATASET_NAME = args.dataset
else:
DATASET_NAME = config['dataset']
dataset = LoadData(DATASET_NAME)
if args.out_dir is not None:
out_dir = args.out_dir
else:
out_dir = config['out_dir']
# parameters
params = config['params']
if args.seed is not None:
params['seed'] = int(args.seed)
if args.epochs is not None:
params['epochs'] = int(args.epochs)
if args.batch_size is not None:
params['batch_size'] = int(args.batch_size)
if args.init_lr is not None:
params['init_lr'] = float(args.init_lr)
if args.lr_reduce_factor is not None:
params['lr_reduce_factor'] = float(args.lr_reduce_factor)
if args.lr_schedule_patience is not None:
params['lr_schedule_patience'] = int(args.lr_schedule_patience)
if args.min_lr is not None:
params['min_lr'] = float(args.min_lr)
if args.weight_decay is not None:
params['weight_decay'] = float(args.weight_decay)
if args.print_epoch_interval is not None:
params['print_epoch_interval'] = int(args.print_epoch_interval)
if args.max_time is not None:
params['max_time'] = float(args.max_time)
# network parameters
net_params = config['net_params']
net_params['device'] = device
net_params['gpu_id'] = config['gpu']['id']
net_params['batch_size'] = params['batch_size']
if args.L is not None:
net_params['L'] = int(args.L)
if args.hidden_dim is not None:
net_params['hidden_dim'] = int(args.hidden_dim)
if args.out_dim is not None:
net_params['out_dim'] = int(args.out_dim)
if args.residual is not None:
net_params['residual'] = True if args.residual=='True' else False
if args.edge_feat is not None:
net_params['edge_feat'] = True if args.edge_feat=='True' else False
if args.readout is not None:
net_params['readout'] = args.readout
if args.kernel is not None:
net_params['kernel'] = int(args.kernel)
if args.n_heads is not None:
net_params['n_heads'] = int(args.n_heads)
if args.gated is not None:
net_params['gated'] = True if args.gated=='True' else False
if args.in_feat_dropout is not None:
net_params['in_feat_dropout'] = float(args.in_feat_dropout)
if args.dropout is not None:
net_params['dropout'] = float(args.dropout)
if args.layer_norm is not None:
net_params['layer_norm'] = True if args.layer_norm=='True' else False
if args.batch_norm is not None:
net_params['batch_norm'] = True if args.batch_norm=='True' else False
if args.sage_aggregator is not None:
net_params['sage_aggregator'] = args.sage_aggregator
if args.data_mode is not None:
net_params['data_mode'] = args.data_mode
if args.num_pool is not None:
net_params['num_pool'] = int(args.num_pool)
if args.gnn_per_block is not None:
net_params['gnn_per_block'] = int(args.gnn_per_block)
if args.embedding_dim is not None:
net_params['embedding_dim'] = int(args.embedding_dim)
if args.pool_ratio is not None:
net_params['pool_ratio'] = float(args.pool_ratio)
if args.linkpred is not None:
net_params['linkpred'] = True if args.linkpred=='True' else False
if args.cat is not None:
net_params['cat'] = True if args.cat=='True' else False
if args.self_loop is not None:
net_params['self_loop'] = True if args.self_loop=='True' else False
if args.layer_type is not None:
net_params['layer_type'] = layer_type
if args.pos_enc is not None:
net_params['pos_enc'] = True if args.pos_enc=='True' else False
if args.pos_enc_dim is not None:
net_params['pos_enc_dim'] = int(args.pos_enc_dim)
if args.pos_enc_type is not None:
net_params['pos_enc_type'] = args.pos_enc_type
if args.num_hops is not None:
net_params['num_hops'] = int(args.num_hops)
# COLLAB
net_params['in_dim'] = dataset.graph.ndata['feat'].shape[-1]
net_params['in_dim_edge'] = dataset.graph.edata['feat'].shape[-1]
net_params['n_classes'] = 1 # binary prediction
root_log_dir = out_dir + 'logs/' + MODEL_NAME + "_" + DATASET_NAME + "_GPU" + str(config['gpu']['id']) + "_" + time.strftime('%Hh%Mm%Ss_on_%b_%d_%Y')
root_ckpt_dir = out_dir + 'checkpoints/' + MODEL_NAME + "_" + DATASET_NAME + "_GPU" + str(config['gpu']['id']) + "_" + time.strftime('%Hh%Mm%Ss_on_%b_%d_%Y')
write_file_name = out_dir + 'results/result_' + MODEL_NAME + "_" + DATASET_NAME + "_GPU" + str(config['gpu']['id']) + "_" + time.strftime('%Hh%Mm%Ss_on_%b_%d_%Y')
write_config_file = out_dir + 'configs/config_' + MODEL_NAME + "_" + DATASET_NAME + "_GPU" + str(config['gpu']['id']) + "_" + time.strftime('%Hh%Mm%Ss_on_%b_%d_%Y')
dirs = root_log_dir, root_ckpt_dir, write_file_name, write_config_file
if not os.path.exists(out_dir + 'results'):
os.makedirs(out_dir + 'results')
if not os.path.exists(out_dir + 'configs'):
os.makedirs(out_dir + 'configs')
train_val_pipeline(MODEL_NAME, dataset, params, net_params, save_file_params, dirs)
main()