-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmlp.py
executable file
·58 lines (49 loc) · 2.21 KB
/
mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
###MLP with lienar output
class MLP(nn.Module):
def __init__(self, num_layers, input_dim, hidden_dim, output_dim):
'''
num_layers: number of layers in the neural networks (EXCLUDING the input layer). If num_layers=1, this reduces to linear model.
input_dim: dimensionality of input features
hidden_dim: dimensionality of hidden units at ALL layers
output_dim: number of classes for prediction
device: which device to use
'''
super(MLP, self).__init__()
self.linear_or_not = True #default is linear model
self.num_layers = num_layers
if num_layers < 1:
raise ValueError("number of layers should be positive!")
elif num_layers == 1:
#Linear model
self.linear = nn.Linear(input_dim, output_dim, bias=True)
else:
#Multi-layer model
self.linear_or_not = False
self.linears = torch.nn.ModuleList()
self.batch_norms = torch.nn.ModuleList()
self.linears.append(nn.Linear(input_dim, hidden_dim))
for layer in range(num_layers - 2):
self.linears.append(nn.Linear(hidden_dim, hidden_dim))
self.linears.append(nn.Linear(hidden_dim, output_dim))
# Initialize the weights of the MLP###################### May not be necessary
for i in range(num_layers):
init.xavier_uniform_(self.linears[i].weight)
init.constant_(self.linears[i].bias, 0) # I don't think we would need to initialize the bias to zero
for layer in range(num_layers - 1):
self.batch_norms.append(nn.BatchNorm1d((hidden_dim)))
def forward(self, x):
if self.linear_or_not:
#If linear model
return self.linear(x)
else:
#If MLP
h = x
for layer in range(self.num_layers - 1):
h = self.linears[layer](h)
h = self.batch_norms[layer](h) # I don't think this would be an issue.
h = F.relu(h)
return self.linears[self.num_layers - 1](h)