forked from bcaitech1/p3-mrc-team-ikyo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_mrc.py
394 lines (329 loc) · 16.4 KB
/
train_mrc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import os
import sys
import time
import pickle
import random
import logging
import wandb
import torch
import numpy as np
import pandas as pd
from tqdm import tqdm
from torch import nn
from torch.utils.data import DataLoader
from torch.cuda.amp import autocast, GradScaler
from datasets import load_metric, load_from_disk, load_dataset
from transformers import AutoConfig, AutoModelForQuestionAnswering, AutoTokenizer, AdamW, get_cosine_with_hard_restarts_schedule_with_warmup
from transformers import (
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TrainingArguments,
set_seed,
)
from model.ConvModel import ConvModel
from model.QueryAttentionModel import QueryAttentionModel
from model.QAConvModelV1 import QAConvModelV1
from model.QAConvModelV2 import QAConvModelV2
from utils_qa import postprocess_qa_predictions, check_no_error, tokenize, AverageMeter, last_processing
from trainer_qa import QuestionAnsweringTrainer
from arguments import ModelArguments, DataTrainingArguments
from data_processing import DataProcessor
# from prepare_dataset import make_custom_dataset
def get_args() :
'''훈련 시 입력한 각종 Argument를 반환하는 함수'''
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
return model_args, data_args, training_args
def set_seed_everything(seed):
'''Random Seed를 고정하는 함수'''
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
set_seed(seed)
return None
def get_model(model_args, training_args) :
'''tokenizer, model_config, model, optimizer, scaler, shceduler를 반환하는 함수'''
# Load pretrained model and tokenizer
model_config = AutoConfig.from_pretrained(
model_args.config_name
if model_args.config_name
else model_args.model_name_or_path,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name
if model_args.tokenizer_name
else model_args.model_name_or_path,
use_fast=True,
)
if model_args.use_custom_model == 'ConvModel' :
model = ConvModel(model_args.config_name, model_config, model_args.tokenizer_name)
elif model_args.use_custom_model == 'QueryAttentionModel' :
model = QueryAttentionModel(model_args.config_name, model_config, model_args.tokenizer_name)
elif model_args.use_custom_model == 'QAConvModelV1' :
model = QAConvModelV1(model_args.config_name, model_config, model_args.tokenizer_name)
elif model_args.use_custom_model == 'QAConvModelV2' :
model = QAConvModelV2(model_args.config_name, model_config, model_args.tokenizer_name)
else:
model = AutoModelForQuestionAnswering.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=model_config,
)
if model_args.use_pretrained_model:
pretrained_model = torch.load(f'/opt/ml/output/{model_args.model_name_or_path}/{model_args.model_name_or_path}.pt')
pretrained_model_state = deepcopy(pretrained_model.state_dict())
model.load_state_dict(pretrained_model_state)
del pretrained_model
optimizer = AdamW(model.parameters(), lr=training_args.learning_rate)
scaler = GradScaler()
scheduler = get_cosine_with_hard_restarts_schedule_with_warmup(optimizer=optimizer, num_warmup_steps=1000, num_training_steps=12820, num_cycles=2)
return tokenizer, model_config, model, optimizer, scaler, scheduler
def get_pickle(pickle_path):
'''Custom Dataset을 Load하기 위한 함수'''
f = open(pickle_path, "rb")
dataset = pickle.load(f)
f.close()
return dataset
def get_data(data_args, training_args, tokenizer) :
'''train과 validation의 dataloader와 dataset를 반환하는 함수'''
if data_args.dataset_name == 'basic' :
if os.path.isdir("../data/train_dataset") :
dataset = load_from_disk("../data/train_dataset")
else :
raise Exception ("Set the data path to 'p3-mrc-team-ikyo/data/.'")
elif data_args.dataset_name == 'preprocessed' :
if os.path.isfile("../data/preprocess_train.pkl") :
dataset = get_pickle("../data/preprocess_train.pkl")
else :
dataset = make_custom_dataset("../data/preprocess_train.pkl")
elif data_args.dataset_name == 'concat' :
if os.path.isfile("../data/concat_train.pkl") :
dataset = get_pickle("../data/concat_train.pkl")
else :
dataset = make_custom_dataset("../data/concat_train.pkl")
elif data_args.dataset_name == 'korquad' :
if os.path.isfile("../data/korquad_train.pkl") :
dataset = get_pickle("../data/korquad_train.pkl")
else :
dataset = make_custom_dataset("../data/korquad_train.pkl")
elif data_args.dataset_name == "question_type":
if os.path.isfile("../data/question_type.pkl") :
dataset = get_pickle("../data/question_type.pkl")
else :
dataset = make_custom_dataset("../data/question_type.pkl")
elif data_args.dataset_name == "ai_hub":
if os.path.isfile("../data/ai_hub_dataset.pkl") :
dataset = get_pickle("../data/ai_hub_dataset.pkl")
else :
dataset = make_custom_dataset("../data/ai_hub_dataset.pkl")
elif data_args.dataset_name == "only_korquad":
dataset = load_dataset("squad_kor_v1")
elif data_args.dataset_name == "random_masking":
if os.path.isfile("../data/random_mask_train.pkl") :
dataset = get_pickle("../data/random_mask_train.pkl")
else :
dataset = make_custom_dataset("../data/random_mask_train.pkl")
elif data_args.dataset_name == "token_masking":
if os.path.isfile("../data/concat_token_mask_top_3.pkl") :
dataset = get_pickle("../data/concat_token_mask_top_3.pkl")
else :
dataset = make_mask_dataset("../data/concat_token_mask_top_3.pkl", tokenizer)
train_dataset = dataset['train']
val_dataset = dataset['validation']
else :
raise Exception ("dataset_name have to be one of ['basic', 'preprocessed', 'concat', 'korquad', 'only_korquad', 'question_type', 'ai_hub', 'random_masking', 'token_masking']")
if data_args.dataset_name != "token_masking":
train_dataset = dataset['train']
val_dataset = dataset['validation']
train_column_names = train_dataset.column_names
val_column_names = val_dataset.column_names
data_processor = DataProcessor(tokenizer, data_args.max_seq_length, data_args.doc_stride)
train_dataset = data_processor.train_tokenizer(train_dataset, train_column_names)
val_dataset = data_processor.val_tokenzier(val_dataset, val_column_names)
data_collator = (DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None))
train_iter = DataLoader(train_dataset, collate_fn = data_collator, batch_size=training_args.per_device_train_batch_size)
val_iter = DataLoader(val_dataset, collate_fn = data_collator, batch_size=training_args.per_device_eval_batch_size)
return dataset, train_iter, val_iter, train_dataset, val_dataset
def post_processing_function(examples, features, predictions, text_data, data_args, training_args):
'''Model의 Prediction을 Text 형태로 변환하는 함수'''
predictions = postprocess_qa_predictions(
examples=examples,
features=features,
predictions=predictions,
max_answer_length=data_args.max_answer_length,
output_dir=training_args.output_dir,
)
formatted_predictions = [
{"id": k, "prediction_text": last_processing(v)} for k, v in predictions.items()
]
if training_args.do_predict:
return formatted_predictions
references = [
{"id": ex["id"], "answers": ex["answers"]}
for ex in text_data["validation"]
]
return EvalPrediction(predictions=formatted_predictions, label_ids=references)
def create_and_fill_np_array(start_or_end_logits, dataset, max_len):
'''Model의 Logit을 Context 단위로 연결하기 위한 함수'''
step = 0
logits_concat = np.full((len(dataset), max_len), -100, dtype=np.float64)
for i, output_logit in enumerate(start_or_end_logits):
batch_size = output_logit.shape[0]
cols = output_logit.shape[1]
if step + batch_size < len(dataset):
logits_concat[step : step + batch_size, :cols] = output_logit
else:
logits_concat[step:, :cols] = output_logit[: len(dataset) - step]
step += batch_size
return logits_concat
def custom_to_mask(batch, tokenizer):
'''Question 부분에 Random Masking을 적용하는 함수'''
mask_token = tokenizer.mask_token_id
for i in range(len(batch["input_ids"])):
# sep 토큰으로 question과 context가 나뉘어져 있다.
sep_idx = np.where(batch["input_ids"][i].numpy() == tokenizer.sep_token_id)
# q_ids = > 첫번째 sep 토큰위치
q_ids = sep_idx[0][0]
mask_idxs = set()
while len(mask_idxs) < 1:
# 1 ~ q_ids까지가 Question 위치
ids = random.randrange(1, q_ids)
mask_idxs.add(ids)
for mask_idx in list(mask_idxs):
batch["input_ids"][i][mask_idx] = mask_token
return batch
def cal_loss(start_positions, end_positions, start_logits, end_logits):
'''MRC Task에서 Loss를 계산하는 함수'''
total_loss =None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions.clamp_(0, ignored_index)
end_positions.clamp_(0, ignored_index)
loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
return total_loss
def cal_query_loss(question_type, query_logits) :
'''Sub Task에서 Loss를 계산하는 함수'''
return nn.CrossEntropyLoss()(query_logits, question_type)/5
def training_per_step(model, optimizer, scaler, batch, model_args, data_args, training_args, tokenizer, device):
'''매 step마다 학습을 하는 함수'''
model.train()
with autocast():
mask_props = 0.8
mask_p = random.random()
if mask_p < mask_props:
# 확률 안에 들면 mask 적용
batch = custom_to_mask(batch, tokenizer)
batch = batch.to(device)
outputs = model(**batch)
# output안에 loss가 들어있는 형태
if model_args.use_custom_model:
loss = cal_loss(batch["start_positions"], batch["end_positions"], outputs["start_logits"], outputs["end_logits"])
if 'query_logits' in outputs.keys() and 'question_type' in batch.keys() :
loss += cal_query_loss(batch['question_type'], outputs['query_logits'])
else:
loss = outputs.loss
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
return loss.item()
def validating_per_steps(epoch, model, text_data, test_loader, test_dataset, model_args, data_args, training_args, device):
'''특정 step마다 검증을 하는 함수'''
metric = load_metric("squad")
if "xlm" in model_args.tokenizer_name:
test_dataset.set_format(type="torch", columns=["attention_mask", "input_ids"])
else:
test_dataset.set_format(type="torch", columns=["attention_mask", "input_ids", "token_type_ids"])
model.eval()
all_start_logits = []
all_end_logits = []
for batch in test_loader :
batch = batch.to(device)
outputs = model(**batch)
if model_args.use_custom_model:
start_logits = outputs["start_logits"]
end_logits = outputs["end_logits"]
else:
start_logits = outputs.start_logits
end_logits = outputs.end_logits
all_start_logits.append(start_logits.detach().cpu().numpy())
all_end_logits.append(end_logits.detach().cpu().numpy())
max_len = max(x.shape[1] for x in all_start_logits)
start_logits_concat = create_and_fill_np_array(all_start_logits, test_dataset, max_len)
end_logits_concat = create_and_fill_np_array(all_end_logits, test_dataset, max_len)
del all_start_logits
del all_end_logits
test_dataset.set_format(type=None, columns=list(test_dataset.features.keys()))
output_numpy = (start_logits_concat, end_logits_concat)
prediction = post_processing_function(text_data["validation"], test_dataset, output_numpy, text_data, data_args, training_args)
val_metric = metric.compute(predictions=prediction.predictions, references=prediction.label_ids)
return val_metric
def train_mrc(model, optimizer, scaler, text_data, train_loader, test_loader, train_dataset, test_dataset, scheduler, model_args, data_args, training_args, tokenizer, device):
'''training과 validating을 진행하는 함수'''
prev_f1 = 0
prev_em = 0
global_steps = 0
train_loss = AverageMeter()
for epoch in range(int(training_args.num_train_epochs)):
pbar = tqdm(enumerate(train_loader), total=len(train_loader), position=0, leave=True)
for step, batch in pbar:
# training phase
loss = training_per_step(model, optimizer, scaler, batch, model_args, data_args, training_args, tokenizer, device)
train_loss.update(loss, len(batch['input_ids']))
global_steps += 1
description = f"{epoch+1}epoch {global_steps: >5d}step | loss: {train_loss.avg: .4f} | best_f1: {prev_f1: .4f} | em : {prev_em: .4f}"
pbar.set_description(description)
if scheduler is not None :
scheduler.step()
# validating phase
if global_steps % training_args.logging_steps == 0 :
with torch.no_grad():
val_metric = validating_per_steps(epoch, model, text_data, test_loader, test_dataset, model_args, data_args, training_args, device)
if val_metric["f1"] > prev_f1:
torch.save(model, training_args.output_dir + f"/{training_args.run_name}.pt")
prev_f1 = val_metric["f1"]
prev_em = val_metric["exact_match"]
wandb.log({
'train/loss' : train_loss.avg,
'train/learning_rate' : scheduler.get_last_lr()[0] if scheduler is not None else training_args.learning_rate,
'eval/exact_match' : val_metric['exact_match'],
'eval/f1_score' : val_metric['f1'],
'global_steps': global_steps
})
train_loss.reset()
else :
wandb.log({'global_steps':global_steps})
def main():
'''각종 설정 이후 train_mrc를 실행하는 함수'''
model_args, data_args, training_args = get_args()
training_args.output_dir = os.path.join(training_args.output_dir, training_args.run_name)
set_seed_everything(training_args.seed)
device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
tokenizer, model_config, model, optimizer, scaler, scheduler = get_model(model_args, training_args)
text_data, train_loader, val_loader, train_dataset, val_dataset = get_data(data_args, training_args, tokenizer)
model.cuda()
if not os.path.isdir(training_args.output_dir) :
os.mkdir(training_args.output_dir)
# set wandb
os.environ['WANDB_LOG_MODEL'] = 'true'
os.environ['WANDB_WATCH'] = 'all'
os.environ['WANDB_SILENT'] = 'true'
wandb.login()
wandb.init(project='P3-MRC', entity='team-ikyo', name=training_args.run_name)
train_mrc(model, optimizer, scaler, text_data, train_loader, val_loader, train_dataset, val_dataset, scheduler, model_args, data_args, training_args, tokenizer, device)
if __name__ == "__main__":
main()