forked from bcaitech1/p3-mrc-team-ikyo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathretrieval_inference.py
249 lines (196 loc) · 9.07 KB
/
retrieval_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
#!/usr/bin/env python
# coding: utf-8
import logging
import os
import sys
import time
import json
import torch
import random
import numpy as np
import pandas as pd
import os
import pickle
from scipy.special import log_softmax
from tqdm import tqdm
from datasets import load_metric, load_from_disk, Sequence, Value, Features, Dataset, DatasetDict
from transformers import DPRContextEncoder, DPRContextEncoderTokenizer, DPRQuestionEncoder, DPRQuestionEncoderTokenizer, AdamW
from transformers import AutoConfig, AutoModelForQuestionAnswering, AutoTokenizer
from torch.utils.data import DataLoader, TensorDataset
from konlpy.tag import Mecab
from konlpy.tag import Kkma
from konlpy.tag import Hannanum
from elasticsearch import Elasticsearch
from subprocess import Popen, PIPE, STDOUT
from transformers import (
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TrainingArguments,
set_seed,
)
from retrieval_model import Encoder
# 엘라스틱 서치 노트북 파일 (es_retrieval.ipynb 를 먼저 실행하여 index 등록후 사용해야합니다. )
def elastic_setting(index_name):
config = {'host':'localhost', 'port':9200}
es = Elasticsearch([config])
return es
def search_es(es_obj, index_name, question_text, n_results):
# search query
query = {
'query': {
'match': {
'document_text': question_text
}
}
}
# n_result => 상위 몇개를 선택?
res = es_obj.search(index=index_name, body=query, size=n_results)
return res
def elastic_retrieval(es, index_name, question_text, n_results):
res = search_es(es, index_name, question_text, n_results)
# 매칭된 context만 list형태로 만든다.
context_list = list((hit['_source']['document_text'], hit['_score']) for hit in res['hits']['hits'])
return context_list
def get_pickle(pickle_path):
'''Custom Dataset을 Load하기 위한 함수'''
f = open(pickle_path, "rb")
dataset = pickle.load(f)
f.close()
return dataset
def save_pickle(save_path, data_set):
file = open(save_path, "wb")
pickle.dump(data_set, file)
file.close()
return None
def select_range(attention_mask):
sent_len = len([i for i in attention_mask if i != 0])
if sent_len <= 512:
return [(1,511)]
else:
num = sent_len // 255
res = sent_len % 255
if res == 0:
num -= 1
ids_list = []
for n in range(num):
if res > 0 and n == num-1:
end_idx = sent_len-1
start_idx = end_idx - 510
else:
start_idx = n*255+1
end_idx = start_idx + 510
ids_list.append((start_idx, end_idx))
return ids_list
def inference(args, p_encoder, q_encoder, question_texts, p_tokenizer, q_tokenizer):
es = elastic_setting(args.index_name)
p_encoder.eval()
q_encoder.eval()
dense_retrieval_result = {}
for question_text in tqdm(question_texts):
es_context_list = elastic_retrieval(es, args.index_name, question_text, args.es_top_k = 70)
es_context_list = [context for context, score in es_context_list]
p_seqs = p_tokenizer(es_context_list,
padding='max_length',
truncation=True,
return_tensors='pt')
q_seqs = q_tokenizer(question_text,
padding='max_length',
truncation=True,
return_tensors='pt')
p_input_ids = p_seqs['input_ids']
p_attention_mask = p_seqs['attention_mask']
p_token_type_ids = p_seqs['token_type_ids']
q_input_ids = q_seqs['input_ids']
q_attention_mask = q_seqs['attention_mask']
q_token_type_ids = q_seqs['token_type_ids']
p_input_ids_list = torch.Tensor([])
p_attention_mask_list = torch.Tensor([])
p_token_type_ids_list = torch.Tensor([])
top_k_id = []
for i in range(len(p_attention_mask)):
ids_list = select_range(p_attention_mask[i])
for str_idx, end_idx in ids_list:
p_input_ids_tmp = torch.cat([torch.Tensor([101]), p_input_ids[i][str_idx:end_idx], torch.Tensor([102])]).int().long()
p_attention_mask_tmp = p_attention_mask[i][str_idx-1:end_idx+1].int().long()
p_token_type_ids_tmp = p_token_type_ids[i][str_idx-1:end_idx+1].int().long()
p_input_ids_list = torch.cat([p_input_ids_list, p_input_ids_tmp.unsqueeze(0)]).int().long()
p_attention_mask_list = torch.cat([p_attention_mask_list, p_attention_mask_tmp.unsqueeze(0)]).int().long()
p_token_type_ids_list = torch.cat([p_token_type_ids_list, p_token_type_ids_tmp.unsqueeze(0)]).int().long()
top_k_id.append(i)
batch_num = 20
if len(p_input_ids_list) % batch_num == 0:
num = len(p_input_ids_list) // batch_num
else:
num = len(p_input_ids_list) // batch_num + 1
p_output_list = []
for i in range(num):
p_input_ids = p_input_ids_list[i*batch_num:(i+1)*batch_num]
p_attention_mask = p_attention_mask_list[i*batch_num:(i+1)*batch_num]
p_token_type_ids =p_token_type_ids_list[i*batch_num:(i+1)*batch_num]
batch = (p_input_ids, p_attention_mask, p_token_type_ids)
p_inputs = {'input_ids' : batch[0].to('cuda'),
'attention_mask' : batch[1].to('cuda'),
'token_type_ids': batch[2].to('cuda')}
p_outputs = p_encoder(**p_inputs).cpu()
p_output_list.extend(p_outputs.cpu().tolist())
p_output_list = np.array(p_output_list)
batch = (q_input_ids, q_attention_mask, q_token_type_ids)
q_inputs = {'input_ids' : batch[0].to('cuda'),
'attention_mask' : batch[1].to('cuda'),
'token_type_ids': batch[2].to('cuda')}
q_outputs = q_encoder(**q_inputs).cpu() # (N, E)
q_outputs = np.array(q_outputs.cpu().tolist())
sim_scores = np.matmul(q_outputs, np.transpose(p_output_list, [1, 0])) # (1, E) x (E, N) = (1, N)
sim_scores = log_softmax(sim_scores, axis=1)
class_0 = np.array([1 if i == 0 else 0 for idx, i in enumerate(top_k_id)])
w = np.sum(sim_scores, axis=1) * 1/np.shape(sim_scores)[1]
sim_scores = sim_scores[0] - w[0]*class_0
preds_idx = np.argsort(-1*sim_scores, axis=0)
top_idx_list = []
top_k_list = []
for idx in preds_idx:
top_idx = top_k_id[idx]
if top_idx in top_idx_list:
continue
top_idx_list.append(top_idx)
top_k_list.append((es_context_list[top_idx], sim_scores[idx]))
dense_retrieval_result[question_text] = top_k_list[:args.dr_top_k]
return dense_retrieval_result
def main(args):
text_data = load_from_disk('../../data/test_dataset')
question_texts = text_data["validation"]["question"]
p_tokenizer = AutoTokenizer.from_pretrained(args.model_checkpoint)
p_tokenizer.model_max_length = 1536
q_tokenizer = AutoTokenizer.from_pretrained(args.model_checkpoint)
p_encoder = Encoder(args.model_checkpoint)
q_encoder = Encoder(args.model_checkpoint)
p_encoder.load_state_dict(torch.load(f'../retrieval_output/{args.run_name}/model/p_{args.run_name}.pt'))
q_encoder.load_state_dict(torch.load(f'../retrieval_output/{args.run_name}/model/q_{args.run_name}.pt'))
if torch.cuda.is_available():
p_encoder.to('cuda')
q_encoder.to('cuda')
print('GPU enabled')
dense_retrieval_result = inference(args, p_encoder, q_encoder, question_texts, p_tokenizer, q_tokenizer)
save_path = f'../data/test_ex{args.es_top_k}_dr{args.dr_top_k}_dense.pkl'
save_pickle(save_path, dense_retrieval_result)
print('complete !!')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model_checkpoint', type=str, default='bert-base-multilingual-cased')
parser.add_argument('--run_name', type=str, default='best_dense_retrieval')
parser.add_argument('--es_top_k', type=int, default=70)
parser.add_argument('--dr_top_k', type=int, default=70)
parser.add_argument('--index_name', type=str, default="nori-index")
args = parser.parse_args()
if not os.path.exists(args.output_dir):
os.mkdir(args.output_dir)
args.output_dir = os.path.join(args.output_dir, args.run_name)
print(f'Model Checkpoint ::: {args.model_checkpoint}')
print(f'Run Name ::: {args.run_name}')
print(f'Top k Number of Elastic Retrieval ::: {args.es_top_k}')
print(f'Top k Number of Dense Retrieval ::: {args.dr_top_k}')
print(f'Index Name ::: {args.index_name}')
if args.es_top_k < args.dr_top_k:
raise ValueError(f' Top k number of elastic retrieval must be greater than Top k number of dense retrieval >>> [ Top k number of elastic retrieval : {args.es_top_k} / Top k number of dense retrieval : {args.dr_top_k} ]')
main(args)