-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathindex_layout.py
691 lines (631 loc) · 25.5 KB
/
index_layout.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
import dash_core_components as dcc
import dash_html_components as html
import dash_bootstrap_components as dbc
from dash.dependencies import Input, Output, State
navbar = dbc.NavbarSimple(
children=[
dbc.DropdownMenu(
children=[
dbc.DropdownMenuItem(
"github", href="https://github.com/oegedijk/explainingtitanic"
),
],
nav=True,
in_navbar=True,
label="Source",
),
dbc.DropdownMenu(
children=[
dbc.DropdownMenuItem(
"github", href="https://github.com/oegedijk/explainerdashboard"
),
dbc.DropdownMenuItem(
"readthedocs",
href="http://explainerdashboard.readthedocs.io/en/latest/",
),
dbc.DropdownMenuItem(
"pypi", href="https://pypi.org/project/explainerdashboard/"
),
],
nav=True,
in_navbar=True,
label="explainerdashboard",
),
],
brand="Titanic Explainer",
brand_href="https://github.com/oegedijk/explainingtitanic",
color="primary",
dark=True,
fluid=True,
)
survive_card = dbc.Card(
[
dbc.CardImg(src="assets/titanic.jpeg", top=True),
dbc.CardBody(
[
html.H4("Classifier Dashboard", className="card-title"),
html.P(
"Predicting the probability of surviving "
"the titanic. Showing the full default dashboard.",
className="card-text",
),
html.A(
dbc.Button("Go to dashboard", color="primary"), href="/classifier"
),
dbc.Button("Show Code", id="clas-code-modal-open", className="mr-1"),
dbc.Modal(
[
dbc.ModalHeader("Code needed for this Classifier Dashboard"),
dcc.Markdown(
"""
```python
from sklearn.ensemble import RandomForestClassifier
from explainerdashboard import ClassifierExplainer, ExplainerDashboard
from explainerdashboard.datasets import titanic_survive, feature_descriptions
X_train, y_train, X_test, y_test = titanic_survive()
model = RandomForestClassifier(n_estimators=50, max_depth=10).fit(X_train, y_train)
explainer = ClassifierExplainer(model, X_test, y_test,
cats=['Sex', 'Deck', 'Embarked'],
descriptions=feature_descriptions,
labels=['Not survived', 'Survived'])
ExplainerDashboard(explainer).run()
```
"""
),
dbc.ModalFooter(
dbc.Button(
"Close", id="clas-code-modal-close", className="ml-auto"
)
),
],
id="clas-code-modal",
size="lg",
),
]
),
],
style={"width": "18rem"},
)
ticket_card = dbc.Card(
[
dbc.CardImg(src="assets/ticket.jpeg", top=True),
dbc.CardBody(
[
html.H4("Regression Dashboard", className="card-title"),
html.P(
"Predicting the fare paid for a ticket on the titanic. "
"Showing the full default dashboard.",
className="card-text",
),
html.A(
dbc.Button("Go to dashboard", color="primary"), href="/regression"
),
dbc.Button("Show Code", id="reg-code-modal-open", className="mr-1"),
dbc.Modal(
[
dbc.ModalHeader("Code needed for this Regression Dashboard"),
dcc.Markdown(
"""
```python
from sklearn.ensemble import RandomForestRegressor
from explainerdashboard import RegressionExplainer, ExplainerDashboard
from explainerdashboard.datasets import titanic_fare, feature_descriptions
X_train, y_train, X_test, y_test = titanic_fare()
model = RandomForestRegressor(n_estimators=50, max_depth=10).fit(X_train, y_train)
explainer = RegressionExplainer(model, X_test, y_test,
cats=['Sex', 'Deck', 'Embarked'],
descriptions=feature_descriptions,
units="$")
ExplainerDashboard(explainer).run()
```
"""
),
dbc.ModalFooter(
dbc.Button(
"Close", id="reg-code-modal-close", className="ml-auto"
)
),
],
id="reg-code-modal",
size="lg",
),
]
),
],
style={"width": "18rem"},
)
port_card = dbc.Card(
[
dbc.CardImg(src="assets/port.jpeg", top=True),
dbc.CardBody(
[
html.H4("Multiclass Dashboard", className="card-title"),
html.P(
"Predicting the departure port for passengers on the titanic. "
"Showing the full default dashboard.",
className="card-text",
),
html.A(
dbc.Button("Go to dashboard", color="primary"), href="/multiclass"
),
dbc.Button("Show Code", id="multi-code-modal-open", className="mr-1"),
dbc.Modal(
[
dbc.ModalHeader(
"Code needed for this Multi Classifier Dashboard"
),
dcc.Markdown(
"""
```python
from sklearn.ensemble import RandomForestClassifier
from explainerdashboard import ClassifierExplainer, ExplainerDashboard
from explainerdashboard.datasets import titanic_embarked, feature_descriptions
X_train, y_train, X_test, y_test = titanic_embarked()
model = RandomForestClassifier(n_estimators=50, max_depth=10).fit(X_train, y_train)
explainer = ClassifierExplainer(model, X_test, y_test,
cats=['Sex', 'Deck'],
descriptions=feature_descriptions,
labels=['Queenstown', 'Southampton', 'Cherbourg'])
ExplainerDashboard(explainer).run()
```
"""
),
dbc.ModalFooter(
dbc.Button(
"Close",
id="multi-code-modal-close",
className="ml-auto",
)
),
],
id="multi-code-modal",
size="lg",
),
]
),
],
style={"width": "18rem"},
)
custom_card = dbc.Card(
[
dbc.CardImg(src="assets/custom.png", top=True),
dbc.CardBody(
[
html.H4("Customized Classifier Dashboard", className="card-title"),
html.P(
"You can also completely customize the layout and elements of your "
"dashboard using a low-code approach.",
className="card-text",
),
# dbc.CardLink("Source code",
# href="https://github.com/oegedijk/explainingtitanic/blob/master/custom.py",
# target="_blank"),
html.P(),
html.A(dbc.Button("Go to dashboard", color="primary"), href="/custom"),
dbc.Button("Show Code", id="custom-code-modal-open", className="mr-1"),
dbc.Modal(
[
dbc.ModalHeader("Code needed for this Custom Dashboard"),
dcc.Markdown(
"""
```python
from explainerdashboard import ExplainerDashboard
from explainerdashboard.custom import *
class CustomModelTab(ExplainerComponent):
def __init__(self, explainer):
super().__init__(explainer, title="Model Summary")
self.precision = PrecisionComponent(explainer,
title='Precision',
hide_subtitle=True, hide_footer=True,
hide_selector=True,
cutoff=None)
self.shap_summary = ShapSummaryComponent(explainer,
title='Impact',
hide_subtitle=True, hide_selector=True,
hide_depth=True, depth=8,
hide_cats=True, cats=True)
self.shap_dependence = ShapDependenceComponent(explainer,
title='Dependence',
hide_subtitle=True, hide_selector=True,
hide_cats=True, cats=True,
hide_index=True,
col='Fare', color_col="PassengerClass")
self.connector = ShapSummaryDependenceConnector(
self.shap_summary, self.shap_dependence)
self.register_components()
def layout(self):
return dbc.Container([
dbc.Row([
dbc.Col([
html.H3("Model Performance"),
html.Div("As you can see on the right, the model performs quite well."),
html.Div("The higher the predicted probability of survival predicted by "
"the model on the basis of learning from examples in the training set"
", the higher is the actual percentage of passengers surviving in "
"the test set"),
], width=4, style=dict(margin=30)),
dbc.Col([
self.precision.layout()
], style=dict(margin=30))
]),
dbc.Row([
dbc.Col([
self.shap_summary.layout()
], style=dict(margin=30)),
dbc.Col([
html.H3("Feature Importances"),
html.Div("On the left you can check out for yourself which parameters were the most important."),
html.Div(f"Clearly {self.explainer.columns_ranked_by_shap()[0]} was the most important"
f", followed by {self.explainer.columns_ranked_by_shap()[1]}"
f" and {self.explainer.columns_ranked_by_shap()[2]}."),
html.Div("If you select 'detailed' you can see the impact of that variable on "
"each individual prediction. With 'aggregate' you see the average impact size "
"of that variable on the final prediction."),
html.Div("With the detailed view you can clearly see that the the large impact from Sex "
"stems both from males having a much lower chance of survival and females a much "
"higher chance.")
], width=4, style=dict(margin=30)),
]),
dbc.Row([
dbc.Col([
html.H3("Feature dependence"),
html.Div("In the plot to the right you can see that the higher the cost "
"of the fare that passengers paid, the higher the chance of survival. "
"Probably the people with more expensive tickets were in higher up cabins, "
"and were more likely to make it to a lifeboat."),
html.Div("When you color the impacts by PassengerClass, you can clearly see that "
"the more expensive tickets were mostly 1st class, and the cheaper tickets "
"mostly 3rd class."),
html.Div("On the right you can check out for yourself how different features impacted "
"the model output."),
], width=4, style=dict(margin=30)),
dbc.Col([
self.shap_dependence.layout()
], style=dict(margin=30)),
])
])
class CustomPredictionsTab(ExplainerComponent):
def __init__(self, explainer):
super().__init__(explainer, title="Predictions")
self.index = ClassifierRandomIndexComponent(explainer,
hide_title=True, hide_index=False,
hide_slider=True, hide_labels=True,
hide_pred_or_perc=True,
hide_selector=True, hide_button=False)
self.contributions = ShapContributionsGraphComponent(explainer,
hide_title=True, hide_index=True,
hide_depth=True, hide_sort=True,
hide_orientation=True, hide_cats=True,
hide_selector=True,
sort='importance')
self.trees = DecisionTreesComponent(explainer,
hide_title=True, hide_index=True,
hide_highlight=True, hide_selector=True)
self.connector = IndexConnector(self.index, [self.contributions, self.trees])
self.register_components()
def layout(self):
return dbc.Container([
dbc.Row([
dbc.Col([
html.H3("Enter name:"),
self.index.layout()
])
]),
dbc.Row([
dbc.Col([
html.H3("Contributions to prediction:"),
self.contributions.layout()
]),
]),
dbc.Row([
dbc.Col([
html.H3("Every tree in the Random Forest:"),
self.trees.layout()
]),
])
])
ExplainerDashboard(explainer, [CustomModelTab, CustomPredictionsTab],
title='Titanic Explainer', header_hide_selector=True,
bootstrap=FLATLY).run()
```
"""
),
dbc.ModalFooter(
dbc.Button(
"Close",
id="custom-code-modal-close",
className="ml-auto",
)
),
],
id="custom-code-modal",
size="xl",
scrollable=False,
),
]
),
],
style={"width": "18rem"},
)
simple_survive_card = dbc.Card(
[
dbc.CardImg(src="assets/titanic.jpeg", top=True),
dbc.CardBody(
[
html.H4("Simplified Classifier Dashboard", className="card-title"),
html.P(
"You can generate a simplified single page dashboard "
"by passing simple=True to ExplainerDashboard.",
className="card-text",
),
html.A(
dbc.Button("Go to dashboard", color="primary"),
href="/simple_classifier",
),
dbc.Button(
"Show Code", id="simple-clas-code-modal-open", className="mr-1"
),
dbc.Modal(
[
dbc.ModalHeader("Code needed for this Classifier Dashboard"),
dcc.Markdown(
"""
```python
from sklearn.ensemble import RandomForestClassifier
from explainerdashboard import ClassifierExplainer, ExplainerDashboard
from explainerdashboard.datasets import titanic_survive, feature_descriptions
X_train, y_train, X_test, y_test = titanic_survive()
model = RandomForestClassifier(n_estimators=50, max_depth=10).fit(X_train, y_train)
explainer = ClassifierExplainer(model, X_test, y_test,
cats=['Sex', 'Deck', 'Embarked'],
descriptions=feature_descriptions,
labels=['Not survived', 'Survived'])
ExplainerDashboard(explainer, title="Simplified Classifier Dashboard", simple=True).run()
```
"""
),
dbc.ModalFooter(
dbc.Button(
"Close",
id="simple-clas-code-modal-close",
className="ml-auto",
)
),
],
id="simple-clas-code-modal",
size="lg",
),
]
),
],
style={"width": "18rem"},
)
simple_ticket_card = dbc.Card(
[
dbc.CardImg(src="assets/ticket.jpeg", top=True),
dbc.CardBody(
[
html.H4("Simplified Regression Dashboard", className="card-title"),
html.P(
"You can generate a simplified single page dashboard "
"by passing simple=True to ExplainerDashboard.",
className="card-text",
),
html.A(
dbc.Button("Go to dashboard", color="primary"),
href="/simple_regression",
),
dbc.Button(
"Show Code", id="simple-reg-code-modal-open", className="mr-1"
),
dbc.Modal(
[
dbc.ModalHeader("Code needed for this Regression Dashboard"),
dcc.Markdown(
"""
```python
from sklearn.ensemble import RandomForestRegressor
from explainerdashboard import RegressionExplainer, ExplainerDashboard
from explainerdashboard.datasets import titanic_fare, feature_descriptions
X_train, y_train, X_test, y_test = titanic_fare()
model = RandomForestRegressor(n_estimators=50, max_depth=10).fit(X_train, y_train)
explainer = RegressionExplainer(model, X_test, y_test,
cats=['Sex', 'Deck', 'Embarked'],
descriptions=feature_descriptions,
units="$")
ExplainerDashboard(explainer, title="Simplified Regression Dashboard", simple=True).run()
```
"""
),
dbc.ModalFooter(
dbc.Button(
"Close",
id="simple-reg-code-modal-close",
className="ml-auto",
)
),
],
id="simple-reg-code-modal",
size="lg",
),
]
),
],
style={"width": "18rem"},
)
default_cards = dbc.Row(
[
dbc.Col(survive_card, width=12, md=4, className="mb-4"),
dbc.Col(ticket_card, width=12, md=4, className="mb-4"),
dbc.Col(port_card, width=12, md=4, className="mb-4"),
],
className="g-4",
)
custom_cards = dbc.Row(
[
dbc.Col(simple_survive_card, width=12, md=4, className="mb-4"),
dbc.Col(simple_ticket_card, width=12, md=4, className="mb-4"),
dbc.Col(custom_card, width=12, md=4, className="mb-4"),
],
className="g-4",
)
index_layout = dbc.Container(
[
navbar,
dbc.Row(
[
dbc.Col(
[
html.H3("explainerdashboard"),
dcc.Markdown(
"`explainerdashboard` is a python package that makes it easy"
" to quickly build an interactive dashboard that explains the inner "
"workings of a fitted machine learning model. This allows you to "
"open up the 'black box' and show customers, managers, "
"stakeholders, regulators (and yourself) exactly how "
"the machine learning algorithm generates its predictions."
),
dcc.Markdown(
"You can explore model performance, feature importances, "
"feature contributions (SHAP values), what-if scenarios, "
"(partial) dependences, feature interactions, individual predictions, "
"permutation importances and even individual decision trees. "
"All interactively. All with a minimum amount of code."
),
dcc.Markdown(
"Works with all scikit-learn compatible models, including XGBoost, Catboost and LightGBM."
),
dcc.Markdown(
"Due to the modular design, it is also really easy to design your "
"own custom dashboards, such as the custom example below."
),
]
)
],
justify="center",
),
dbc.Row(
[
dbc.Col(
[
html.H3("Installation"),
dcc.Markdown(
"""
You can install the library with:
```
pip install explainerdashboard
```
or:
```
conda install -c conda-forge explainerdashboard
```
"""
),
]
)
],
justify="center",
),
dbc.Row(
[
dbc.Col(
[
dcc.Markdown(
"""
More information can be found in the [github repo](http://github.com/oegedijk/explainerdashboard)
and the documentation on [explainerdashboard.readthedocs.io](http://explainerdashboard.readthedocs.io).
"""
)
]
)
],
justify="center",
),
dbc.Row(
[
dbc.Col(
[
html.H3("Examples"),
dcc.Markdown("""
Below you can find demonstrations of the three default dashboards for classification,
regression and multi class classification problems, plus one demonstration of
a custom dashboard.
"""),
]
)
],
justify="center",
),
dbc.Row(
[
dbc.Col(
[
default_cards,
]
),
]
),
dbc.Row([dbc.Col([custom_cards])], justify="start"),
]
)
def register_callbacks(app):
@app.callback(
Output("clas-code-modal", "is_open"),
Input("clas-code-modal-open", "n_clicks"),
Input("clas-code-modal-close", "n_clicks"),
State("clas-code-modal", "is_open"),
)
def toggle_modal(click_open, click_close, is_open):
if click_open or click_close:
return not is_open
return is_open
@app.callback(
Output("reg-code-modal", "is_open"),
Input("reg-code-modal-open", "n_clicks"),
Input("reg-code-modal-close", "n_clicks"),
State("reg-code-modal", "is_open"),
)
def toggle_modal(click_open, click_close, is_open):
if click_open or click_close:
return not is_open
return is_open
@app.callback(
Output("multi-code-modal", "is_open"),
Input("multi-code-modal-open", "n_clicks"),
Input("multi-code-modal-close", "n_clicks"),
State("multi-code-modal", "is_open"),
)
def toggle_modal(click_open, click_close, is_open):
if click_open or click_close:
return not is_open
return is_open
@app.callback(
Output("custom-code-modal", "is_open"),
Input("custom-code-modal-open", "n_clicks"),
Input("custom-code-modal-close", "n_clicks"),
State("custom-code-modal", "is_open"),
)
def toggle_modal(click_open, click_close, is_open):
if click_open or click_close:
return not is_open
return is_open
@app.callback(
Output("simple-clas-code-modal", "is_open"),
Input("simple-clas-code-modal-open", "n_clicks"),
Input("simple-clas-code-modal-close", "n_clicks"),
State("simple-clas-code-modal", "is_open"),
)
def toggle_modal(click_open, click_close, is_open):
if click_open or click_close:
return not is_open
return is_open
@app.callback(
Output("simple-reg-code-modal", "is_open"),
Input("simple-reg-code-modal-open", "n_clicks"),
Input("simple-reg-code-modal-close", "n_clicks"),
State("simple-reg-code-modal", "is_open"),
)
def toggle_modal(click_open, click_close, is_open):
if click_open or click_close:
return not is_open
return is_open