forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark.py
322 lines (297 loc) · 11.6 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from multiprocessing import Process, Queue
from time import time
import torch
from allowed_configs import get_allowed_models
from bert_benchmark import BERTBenchmark
from gpt_benchmark import GPTBenchmark
from mem_monitor import mem_monitor
from tensorrt_llm.logger import logger
def parse_arguments():
parser = argparse.ArgumentParser(
description='Benchmark TensorRT-LLM models.')
parser.add_argument('-m',
'--model',
type=str,
default="gpt_350m",
choices=get_allowed_models(),
help='Specify model you want to benchmark.')
parser.add_argument(
'--mode',
type=str,
default="plugin",
choices=['ootb', 'plugin'],
help=
('Choose mode between ootb/plugin. '
'\"ootb\" means the engines will be built without any plugins, '
'while \"plugin\" means the engines will be built with tuned recipe of using plugins.'
))
parser.add_argument('--batch_size',
type=str,
default="8",
help=('Specify batch size(s) you want to benchmark. '
'Multiple batch sizes can be separated by \";\", '
'example: \"1;8;64\".'))
parser.add_argument(
'--input_len',
type=str,
default="128",
help=('Specify input length(s) you want to benchmark, '
'this option is mainly for BERT. '
'Multiple input lengths can be separated by \";\", '
'example: \"20;60;128\".'))
parser.add_argument(
'--input_output_len',
type=str,
default="128,20",
help=('Specify input-output length(s) you want to benchmark, '
'this option is mainly for GPT and GPT-like models. '
'Multiple input lengths can be separated by \";\", '
'example: \"60,20;128,20\".'))
parser.add_argument(
'--dtype',
type=str,
default='float16',
choices=['float16', 'bfloat16', 'float32'],
help='Choose data type between float16/bfloat16/float32.')
parser.add_argument(
'--refit',
default=False,
action="store_true",
help=
'If this option is specified, a refit flag is added to TensorRT engines.'
)
parser.add_argument('--num_beams',
type=int,
default="1",
help=('Specify number of beams you want to benchmark.'))
parser.add_argument('--top_k',
type=int,
default="1",
help=('Specify Top-K value of decoding.'))
parser.add_argument('--top_p',
type=float,
default="0",
help=('Specify Top-P value of decoding.'))
parser.add_argument(
'--log_level',
type=str,
default="error",
choices=['verbose', 'info', 'warning', 'error', 'internal_error'],
help=
'Choose log level between verbose/info/warning/error/internal_error.')
parser.add_argument(
'--warm_up',
type=int,
default=2,
help='Specify warm up iterations before benchmark starts.')
parser.add_argument(
'--num_runs',
type=int,
default=10,
help='Minimal number of iterations to run during benchmarking.')
parser.add_argument(
'--duration',
type=int,
default=60,
help='Minimal duration of iterations to measure in seconds.')
parser.add_argument(
'--output_dir',
type=str,
default=None,
help=
'If this option is specified, TensorRT engines will be saved to engine_dir.'
)
parser.add_argument(
'--engine_dir',
type=str,
default=None,
help=
('If this option is specified, instead of building engines on-air before benchmarking, '
'the engines contained in the engine_dir will be used.'))
parser.add_argument(
'--n_positions',
type=int,
default=None,
help=
('If this option is specified, it will override the n_positions of TRT engines to the specified value instead of using pre-defined one'
'By default when this option is not used, it will use pre-defined n_positions'
))
parser.add_argument(
'--max_input_len',
type=int,
default=None,
help=
('If this option is specified, it will override the max input len of TRT engines to the specified value instead of using pre-defined one'
'By default when this option is not used, it will use pre-defined max input len'
))
parser.add_argument(
'--max_output_len',
type=int,
default=None,
help=
('If this option is specified, it will override the max output len of TRT engines to the specified value instead of using pre-defined one'
'By default when this option is not used, it will use pre-defined max output len'
))
parser.add_argument(
'--max_batch_size',
type=int,
default=None,
help=
('If this option is specified, it will override the max batch size of TRT engines to the specified value instead of using pre-defined one'
'By default when this option is not used, it will use pre-defined max batch size'
))
parser.add_argument(
'--force_num_layer_1',
default=False,
action='store_true',
help=
'Quick sanity check with num_layer=1; will be silently ignored if --engine_dir is specified.'
)
parser.add_argument(
'--enable_fp8',
default=False,
action='store_true',
help='Use FP8 Linear layer for LMHead, Attention QKV/Dense, and MLP.')
parser.add_argument(
'--fp8_kv_cache',
default=False,
action="store_true",
help=
'By default, we use dtype for KV cache. fp8_kv_cache chooses fp8 quantization for KV'
)
parser.add_argument('--csv',
default=False,
action="store_true",
help='Output in CSV format.')
parser.add_argument('--enable_cuda_graph',
default=False,
action='store_true',
help='Execute GPT session with CUDA graph.')
parser.add_argument(
'--enable_custom_all_reduce',
default=False,
action='store_true',
help=
'Use latency-optimized all-reduce for tensor parallelism. Gives better performance with NVLink.'
)
return parser.parse_args()
def main(args):
logger.set_level(args.log_level)
# Batch size
batch_size_options = args.batch_size.split(';')
batch_size_options = [int(i) for i in batch_size_options]
# Input length (for BERT-like models)
input_len_options = args.input_len.split(';')
input_len_options = [int(i) for i in input_len_options]
# Input-output length combination (for GPT-like models)
in_out_len_options = args.input_output_len.split(';')
in_out_len_options = [[int(i) for i in io.split(',')]
for io in in_out_len_options]
if args.model in get_allowed_models(benchmark_type="gpt"):
benchmarker = GPTBenchmark(
args.engine_dir,
args.model,
args.mode,
batch_size_options,
in_out_len_options,
args.dtype,
args.refit,
args.num_beams,
args.top_k,
args.top_p,
args.output_dir,
args.n_positions,
args.max_input_len,
args.max_output_len,
args.max_batch_size,
force_num_layer_1=args.force_num_layer_1,
enable_fp8=args.enable_fp8,
fp8_kv_cache=args.fp8_kv_cache,
enable_cuda_graph=args.enable_cuda_graph,
enable_custom_all_reduce=args.enable_custom_all_reduce)
elif args.model in get_allowed_models(benchmark_type="bert"):
benchmarker = BERTBenchmark(args.engine_dir,
args.model,
args.mode,
batch_size_options,
input_len_options,
args.dtype,
args.output_dir,
args.n_positions,
args.max_input_len,
args.max_output_len,
args.max_batch_size,
force_num_layer_1=args.force_num_layer_1)
else:
raise Exception(f'Unexpected model: {args.model}')
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
benchmarker.print_report_header(args.csv)
for config in benchmarker.get_config():
try:
inputs = benchmarker.prepare_inputs(config)
except torch.cuda.OutOfMemoryError as e:
logger.error(
f'Exception {e} caught while allocating memory; skipping {config}'
)
continue
torch.cuda.empty_cache()
latencies = []
# Launch a subprocess to monitor memory usage
q1 = Queue() # q1 is used for sending signal to subprocess
q2 = Queue() # q2 is used for receiving results from subprocess
p = Process(target=mem_monitor, args=(q1, q2))
p.start()
iter_idx = 0
try:
# Warm up
for _ in range(args.warm_up):
benchmarker.run(inputs, config)
logger.info('Warm up done. Start benchmarking.')
cur_duration = 0
start_time = time()
while iter_idx < args.num_runs or cur_duration < args.duration:
start.record()
benchmarker.run(inputs, config)
end.record()
torch.cuda.synchronize()
latencies.append(start.elapsed_time(end))
iter_idx += 1
cur_duration = round(time() - start_time, 3)
logger.info(
f'Benchmarking done. Iteration: {iter_idx}, duration: {cur_duration} sec.'
)
except Exception as e:
p.kill()
raise e
q1.put(1)
peak_gpu_used = q2.get()
p.join()
latency = round(sum(latencies) / iter_idx, 3)
latencies.sort()
percentile95 = round(latencies[int(iter_idx * 0.95)], 3)
percentile99 = round(latencies[int(iter_idx * 0.99)], 3)
benchmarker.report(config,
latency,
percentile95,
percentile99,
peak_gpu_used,
csv=args.csv)
if __name__ == '__main__':
args = parse_arguments()
main(args)