-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
107 lines (92 loc) · 3.79 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import torch
import torch.nn as nn
class Encoder(nn.Module):
def __init__(self, dims):
super(Encoder, self).__init__()
self.dims = dims
models = []
for i in range(len(self.dims) - 1):
models.append(nn.Linear(self.dims[i], self.dims[i + 1]))
if i != len(self.dims) - 2:
models.append(nn.ReLU())
else:
models.append(nn.Dropout(p=0.5))
models.append(nn.Softmax())
self.models = nn.Sequential(*models)
def forward(self, X):
return self.models(X)
class Decoder(nn.Module):
def __init__(self, dims):
super(Decoder, self).__init__()
self.dims = dims
models = []
for i in range(len(self.dims) - 1):
models.append(nn.Linear(self.dims[i], self.dims[i + 1]))
if i == len(self.dims) - 2:
models.append(nn.Dropout(p=0.5))
models.append(nn.Sigmoid())
else:
models.append(nn.ReLU())
self.models = nn.Sequential(*models)
def forward(self, X):
return self.models(X)
class Discriminator(nn.Module):
def __init__(self, input_dim, feature_dim=64):
super(Discriminator, self).__init__()
self.input_dim = input_dim
self.feature_dim = feature_dim
self.discriminator = nn.Sequential(
nn.Linear(self.input_dim, self.feature_dim),
nn.LeakyReLU(),
nn.Linear(self.feature_dim, 1),
nn.Sigmoid()
)
def forward(self, x):
return self.discriminator(x)
def discriminator_loss(real_out, fake_out, lambda_dis=1):
real_loss = nn.BCEWithLogitsLoss()(real_out, torch.ones_like(real_out))
fake_loss = nn.BCEWithLogitsLoss()(fake_out, torch.zeros_like(fake_out))
return lambda_dis * (real_loss + fake_loss)
class MvAEModel(nn.Module):
def __init__(self, input_dims, view_num, out_dims, h_dims):
super().__init__()
self.input_dims = input_dims
self.view_num = view_num
self.out_dims = out_dims
self.h_dims = h_dims
self.discriminators = nn.ModuleList()
for v in range(view_num):
self.discriminators.append((Discriminator(out_dims)))
h_dims_reverse = list(reversed(h_dims))
self.encoders_specific = nn.ModuleList()
self.decoders_specific = nn.ModuleList()
for v in range(self.view_num):
self.encoders_specific.append(Encoder([input_dims[v]] + h_dims + [out_dims]))
self.decoders_specific.append(Decoder([out_dims * 2] + h_dims_reverse + [input_dims[v]]))
d_sum = 0
for d in input_dims:
d_sum += d
self.encoder_share = Encoder([d_sum] + h_dims + [out_dims])
def discriminators_loss(self, hidden_specific, i, LAMB_DIS=1):
discriminate_loss = 0.
for j in range(self.view_num):
if j != i:
real_out = self.discriminators[i](hidden_specific[i])
fake_out = self.discriminators[i](hidden_specific[j])
discriminate_loss += discriminator_loss(real_out, fake_out, LAMB_DIS)
return discriminate_loss
def forward(self, x_list):
x_total = torch.cat(x_list, dim=-1)
hidden_share = self.encoder_share(x_total)
recs = []
hidden_specific = []
for v in range(self.view_num):
x = x_list[v]
hidden_specific_v = self.encoders_specific[v](x)
hidden_specific.append(hidden_specific_v)
hidden_v = torch.cat((hidden_share, hidden_specific_v), dim=-1)
rec = self.decoders_specific[v](hidden_v)
recs.append(rec)
hidden_list = [hidden_share] + hidden_specific
hidden = torch.cat(hidden_list, dim=-1)
return hidden_share, hidden_specific, hidden, recs