forked from csyfjiang/MLLA-UNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_mlla.py
247 lines (222 loc) · 10.9 KB
/
test_mlla.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import argparse
import logging
import os
import random
import sys
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
from torch.utils.data import DataLoader
from tqdm import tqdm
from datasets.dataset_synapse import Synapse_dataset
try:
from datasets.dataset_acdc import BaseDataSets as ACDC_dataset
except:
pass
from datasets.dataset_ab import dataset_ab
from utils import test_single_volume
# from networks.vision_transformer import SwinUnet as ViT_seg
from networks.MLLA_Unet_Build import MLLAUnet as ViT_seg
from trainer import trainer_synapse
from config_mlla_unet import get_config
device = torch.device("cuda:1")
parser = argparse.ArgumentParser()
parser.add_argument('--volume_path', type=str,
default='../data/Synapse/test_vol_h5', help='root dir for validation volume data') # for acdc volume_path=root_dir
parser.add_argument('--dataset', type=str,
default='Synapse', help='experiment_name')
parser.add_argument('--num_classes', type=int,
default=9, help='output channel of network')
parser.add_argument('--list_dir', type=str,
default='./lists/lists_Synapse', help='list dir')
parser.add_argument('--output_dir', type=str, help='output dir')
parser.add_argument('--max_iterations', type=int,default=30000, help='maximum epoch number to train')
parser.add_argument('--max_epochs', type=int, default=150, help='maximum epoch number to train')
parser.add_argument('--batch_size', type=int, default=24,
help='batch_size per gpu')
parser.add_argument('--img_size', type=int, default=224, help='input patch size of network input')
parser.add_argument('--is_savenii', action="store_true", help='whether to save results during inference')
parser.add_argument('--test_save_dir', type=str, default='../predictions', help='saving prediction as nii!')
parser.add_argument('--deterministic', type=int, default=1, help='whether use deterministic training')
parser.add_argument('--base_lr', type=float, default=0.01, help='segmentation network learning rate')
parser.add_argument('--seed', type=int, default=1234, help='random seed')
parser.add_argument('--cfg', type=str, required=True, metavar="FILE", help='path to config file', )
parser.add_argument(
"--opts",
help="Modify config options by adding 'KEY VALUE' pairs. ",
default=None,
nargs='+',
)
parser.add_argument('--zip', action='store_true', help='use zipped dataset instead of folder dataset')
parser.add_argument('--cache-mode', type=str, default='part', choices=['no', 'full', 'part'],
help='no: no cache, '
'full: cache all data, '
'part: sharding the dataset into nonoverlapping pieces and only cache one piece')
parser.add_argument('--resume', help='resume from checkpoint')
parser.add_argument('--accumulation-steps', type=int, help="gradient accumulation steps")
parser.add_argument('--use-checkpoint', action='store_true',
help="whether to use gradient checkpointing to save memory")
parser.add_argument('--amp-opt-level', type=str, default='O1', choices=['O0', 'O1', 'O2'],
help='mixed precision opt level, if O0, no amp is used')
parser.add_argument('--tag', help='tag of experiment')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--throughput', action='store_true', help='Test throughput only')
parser.add_argument('--device', type=str, default='cuda:0',
help='Device to use for computation: cpu, cuda:0, cuda:1, ..., mps')
args = parser.parse_args()
if args.dataset == "Synapse":
args.volume_path = os.path.join(args.volume_path, "test_vol_h5")
config = get_config(args)
def inference(args, model, test_save_path=None,dataset_name=None):
# txt命名在这里
db_test = args.Dataset(base_dir=args.volume_path, split="val", list_dir=args.list_dir, dataset_name = dataset_name)
testloader = DataLoader(db_test, batch_size=1, shuffle=False, num_workers=1)
logging.info("{} test iterations per epoch".format(len(testloader)))
model.eval()
metric_list = 0.0
device = torch.device(args.device)
for i_batch, sampled_batch in tqdm(enumerate(testloader)):
h, w = sampled_batch["image"].size()[2:]
image, label, case_name = sampled_batch["image"], sampled_batch["label"], sampled_batch['case_name'][0]
metric_i = test_single_volume(image, label, model, device=device, classes=args.num_classes, patch_size=[args.img_size, args.img_size],
test_save_path=test_save_path, case=case_name, z_spacing=args.z_spacing)
metric_list += np.array(metric_i)
logging.info('idx %d case %s mean_dice %f mean_hd95 %f' % (i_batch, case_name, np.mean(metric_i, axis=0)[0], np.mean(metric_i, axis=0)[1]))
metric_list = metric_list / len(db_test)
for i in range(1, args.num_classes):
logging.info('Mean class %d mean_dice %f mean_hd95 %f' % (i, metric_list[i-1][0], metric_list[i-1][1]))
performance = np.mean(metric_list, axis=0)[0]
mean_hd95 = np.mean(metric_list, axis=0)[1]
logging.info('Testing performance in best val model: mean_dice : %f mean_hd95 : %f' % (performance, mean_hd95))
return "Testing Finished!"
if __name__ == "__main__":
if not args.deterministic:
cudnn.benchmark = True
cudnn.deterministic = False
else:
cudnn.benchmark = False
cudnn.deterministic = True
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
# Validate and set the device
if args.device.startswith('cuda'):
if not torch.cuda.is_available():
raise ValueError("CUDA is not available on this system.")
device_id = int(args.device.split(':')[1]) if ':' in args.device else 0
if device_id >= torch.cuda.device_count():
raise ValueError(f"Invalid CUDA device ID: {device_id}. Available devices: {torch.cuda.device_count()}")
elif args.device == 'mps':
if not torch.backends.mps.is_available():
raise ValueError("MPS is not available on this system.")
elif args.device != 'cpu':
raise ValueError(f"Invalid device specified: {args.device}")
device = torch.device(args.device)
print(f"Using device: {device}")
dataset_config = {
'ACDC': {
'Dataset': ACDC_dataset, # datasets.dataset_acdc.BaseDataSets,
'volume_path': './data/ACDC',
'list_dir': None,
'num_classes': 4,
'z_spacing': 5,
'info': '3D'
},
'Synapse': {
'Dataset': Synapse_dataset,
'volume_path': args.volume_path,
'list_dir': './lists/lists_Synapse',
'num_classes': 9,
'z_spacing': 1,
},
'flare22': {
'Dataset': dataset_ab,
'volume_path': './data/data',
'num_classes': 14,
'list_dir': './lists/lists_flare22',
'z_spacing': 2.5,
},
'altas': {
'Dataset': dataset_ab,
'volume_path': './data/data',
'num_classes': 3,
'list_dir': './lists/lists_altas',
'z_spacing': 1,
},
'amos': {
'Dataset': dataset_ab,
'volume_path': './data/data',
'num_classes': 16,
'list_dir': './lists/lists_amos',
'z_spacing': 5,
},
'amos_mr': {
'Dataset': dataset_ab,
'volume_path': './data/data',
'num_classes': 16,
'list_dir': './lists/lists_amos_mr',
'z_spacing': 5,
},
'word': {
'Dataset': dataset_ab,
'volume_path': './data/data',
'num_classes': 17,
'list_dir': './lists/lists_word',
'z_spacing': 2.5,
},
}
dataset_name = args.dataset
args.num_classes = dataset_config[dataset_name]['num_classes']
args.volume_path = dataset_config[dataset_name]['volume_path']
args.Dataset = dataset_config[dataset_name]['Dataset']
args.list_dir = dataset_config[dataset_name]['list_dir']
args.z_spacing = dataset_config[dataset_name]['z_spacing']
args.is_pretrain = True
# net = ViT_seg(config, img_size=args.img_size, num_classes=args.num_classes).to(device)
# snapshot = os.path.join(args.output_dir, 'best_model.pth')
# # if not os.path.exists(snapshot): snapshot = snapshot.replace('best_model', 'epoch_'+str(args.max_epochs-1))
# msg = net.load_state_dict(torch.load(snapshot))
# print("self trained swin unet",msg)
# snapshot_name = snapshot.split('/')[-1]
# log_folder = './test_log/test_log_'
# os.makedirs(log_folder, exist_ok=True)
# logging.basicConfig(filename=log_folder + '/'+snapshot_name+".txt", level=logging.INFO, format='[%(asctime)s.%(msecs)03d] %(message)s', datefmt='%H:%M:%S')
# logging.getLogger().addHandler(logging.StreamHandler(sys.stdout))
# logging.info(str(args))
# logging.info(snapshot_name)
# if args.is_savenii:
# args.test_save_dir = os.path.join(args.output_dir, "predictions")
# test_save_path = args.test_save_dir
# os.makedirs(test_save_path, exist_ok=True)
# else:
# test_save_path = None
# inference(args, net, test_save_path)
# New ↓ Test multiple model ckpts
model_list = [f'best_model_val_{dataset_name}.pth', f'best_model_{dataset_name}.pth', f'final_model_epoch_612_{dataset_name}.pth']
net = ViT_seg(config, img_size=args.img_size, num_classes=args.num_classes).to(device)
for model_name in tqdm(model_list, desc="Testing models"):
snapshot = os.path.join(args.output_dir, model_name)
msg = net.load_state_dict(torch.load(snapshot))
print(f"Loaded model: {model_name}, Message: {msg}")
log_folder = f'./test_log/test_log_{dataset_name}'
os.makedirs(log_folder, exist_ok=True)
logging.basicConfig(filename=os.path.join(log_folder, f'{model_name}.txt'),
level=logging.INFO,
format='[%(asctime)s.%(msecs)03d] %(message)s',
datefmt='%H:%M:%S')
logging.getLogger().addHandler(logging.StreamHandler(sys.stdout))
logging.info(str(args))
logging.info(model_name)
if args.is_savenii:
args.test_save_dir = os.path.join(args.output_dir, f"predictions_{dataset_name}_{model_name}")
test_save_path = args.test_save_dir
os.makedirs(test_save_path, exist_ok=True)
else:
test_save_path = None
print(device)
inference(args, net, test_save_path, dataset_name=dataset_name)
# 清除之前的日志处理器,避免重复日志
for handler in logging.root.handlers[:]:
logging.root.removeHandler(handler)