-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.json
137 lines (137 loc) · 4.43 KB
/
models.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
{
"models": {
"vit_large": {
"name": "timm/vit_large_patch16_224.augreg_in21k_ft_in1k",
"batch_size": 16,
"learning_rate": "1e-4",
"description": "ViT Large model (632M parameters) - ImageNet-21k pretrained"
},
"vit_base": {
"name": "timm/vit_base_patch16_224.augreg_in21k_ft_in1k",
"batch_size": 16,
"learning_rate": "1e-4",
"description": "ViT Base model (86M parameters) - ImageNet-21k pretrained"
},
"convnext_xxlarge": {
"name": "timm/convnext_xxlarge.clip_laion2b_soup_ft_in1k",
"batch_size": 16,
"learning_rate": "1e-4",
"description": "ConvNeXt XXLarge (846M parameters) - LAION-2B CLIP pretrained"
},
"convnext_xlarge": {
"name": "timm/convnext_xlarge.fb_in22k_ft_in1k",
"batch_size": 16,
"learning_rate": "1e-4",
"description": "ConvNeXt XLarge (350M parameters) - ImageNet-22k pretrained"
},
"swin_large": {
"name": "timm/swinv2_large_window12to24_192to384.ms_in22k_ft_in1k",
"batch_size": 8,
"learning_rate": "1e-4",
"description": "Swin Transformer Large (196M parameters) - ImageNet-22k pretrained"
},
"efficientnet_b7": {
"name": "timm/tf_efficientnet_b7.ns_jft_in1k",
"batch_size": 16,
"learning_rate": "1e-4",
"description": "EfficientNet B7 (66M parameters) - JFT-300M pretrained"
},
"efficientnet_b5": {
"name": "timm/tf_efficientnet_b5.ns_jft_in1k",
"batch_size": 16,
"learning_rate": "1.5e-5",
"description": "EfficientNet B5 (30M parameters) - JFT-300M pretrained"
},
"efficientnet_b3": {
"name": "timm/tf_efficientnet_b3.ns_jft_in1k",
"batch_size": 16,
"learning_rate": "1e-4",
"description": "EfficientNet B3 (12M parameters) - JFT-300M pretrained"
},
"efficientnet_b0": {
"name": "timm/tf_efficientnet_b0.ns_jft_in1k",
"batch_size": 16,
"learning_rate": "1e-4",
"description": "EfficientNet B0 (5.3M parameters) - JFT-300M pretrained"
},
"mobilenetv3_large": {
"name": "timm/mobilenetv3_large_100.ra_in1k",
"batch_size": 16,
"learning_rate": "3e-5",
"description": "MobileNetV3 Large (5.5M parameters) - Efficient mobile architecture"
},
"mobilenetv3_small": {
"name": "timm/mobilenetv3_small_100.ra_in1k",
"batch_size": 16,
"learning_rate": "3e-5",
"description": "MobileNetV3 Small (2.5M parameters) - Lightweight mobile architecture"
},
"eva_giant": {
"name": "timm/eva_giant_patch14_224.clip_ft_in1k",
"batch_size": 8,
"learning_rate": "1e-4",
"description": "EVA Giant model (1B+ parameters) - CLIP pretrained"
},
"maxvit_xlarge": {
"name": "timm/maxvit_xlarge_tf_224.in21k_ft_in1k",
"batch_size": 16,
"learning_rate": "1e-4",
"description": "MaxViT XLarge (475M parameters) - ImageNet-21k pretrained"
},
"beit_large": {
"name": "timm/beitv2_large_patch16_224.in1k_ft_in22k_in1k",
"batch_size": 64,
"learning_rate": "1e-4",
"description": "BEiT Large (325M parameters) - ImageNet-22k pretrained"
},
"resnet_152": {
"name": "timm/resnet152.a1_in1k",
"batch_size": 16,
"learning_rate": "1e-4",
"description": "ResNet-152 - Deepest ResNet variant (60M parameters)"
},
"resnet_101": {
"name": "timm/resnet101.a1_in1k",
"batch_size": 16,
"learning_rate": "1e-4",
"description": "ResNet-101 (44M parameters)"
},
"resnet_50": {
"name": "timm/resnet50.a1_in1k",
"batch_size": 16,
"learning_rate": "1e-4",
"description": "ResNet-50 (25M parameters)"
},
"resnet_34": {
"name": "timm/resnet34.a1_in1k",
"batch_size": 16,
"learning_rate": "1e-4",
"description": "ResNet-34 (21M parameters)"
},
"vgg19": {
"name": "timm/vgg19.tv_in1k",
"batch_size": 16,
"learning_rate": "1e-4",
"description": "VGG19 (144M parameters)"
},
"vgg16": {
"name": "timm/vgg16.tv_in1k",
"batch_size": 16,
"learning_rate": "1e-4",
"description": "VGG16 (138M parameters)"
},
"vgg13": {
"name": "timm/vgg13.tv_in1k",
"batch_size": 16,
"learning_rate": "1e-4",
"description": "VGG13 (133M parameters)"
}
},
"default_settings": {
"dataset": "SemilleroCV/Cocoa-dataset-2",
"epochs": 100,
"seed": 1337,
"logging_steps": 1000,
"save_total_limit": 3
}
}