Skip to content

numalariamodeling/environment_calibration

Β 
Β 

Repository files navigation

environment_calibration

Background

Our goal is to adapt a botorch multi-objective Bayesian optimization workflow to select EMOD habitat & climate parameters to fit reference site seasonality.

Status Summary

Tested Not Yet Tested
Interventions treatment-seeking
non-malaria fever treatment
SMC(vaccDrug)
bednets (season- and age-dependent)
IRS
Campaigns (MSAT/MDA)
Vectors arabiensis
gambiae
funestus
Habitats constant
temporary rainfall
water vegetation
linear spline

Instructions

Before following the steps below, please fork this repository and clone it to your local machine

For Quest users:

#navigate to your home directory or desired project location (ex. /projects/<your_net_id>/)
cd ~

# initialize git
git init

# clone repository and submodules
git clone <ssh path to your fork of the repository> --recursive
Step 1: Create Virtual Environment


To start, create a virtual environment containing botorch, idmtools, emodpy, and other required packages.

Example: Creating an environment named pytorch_test inside my home directory my_environments folder

module purge all
module load mamba
mamba create --prefix=/home/tmh6260/my_environments/pytorch_test -c conda-forge pytorch=1.11[build=cuda112*] numpy python=3.9 cudatoolkit=11.2

Running the three lines above will produce the following output:

                  __    __    __    __
                 /  \  /  \  /  \  /  \
                /    \/    \/    \/    \
β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ/  /β–ˆβ–ˆ/  /β–ˆβ–ˆ/  /β–ˆβ–ˆ/  /β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ
              /  / \   / \   / \   / \  \____
             /  /   \_/   \_/   \_/   \    o \__,
            / _/                       \_____/  `
            |/
        β–ˆβ–ˆβ–ˆβ•—   β–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ•—   β–ˆβ–ˆβ–ˆβ•—β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—  β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—
        β–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ•‘β–ˆβ–ˆβ•”β•β•β–ˆβ–ˆβ•—β–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ•‘β–ˆβ–ˆβ•”β•β•β–ˆβ–ˆβ•—β–ˆβ–ˆβ•”β•β•β–ˆβ–ˆβ•—
        β–ˆβ–ˆβ•”β–ˆβ–ˆβ–ˆβ–ˆβ•”β–ˆβ–ˆβ•‘β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•‘β–ˆβ–ˆβ•”β–ˆβ–ˆβ–ˆβ–ˆβ•”β–ˆβ–ˆβ•‘β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•”β•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•‘
        β–ˆβ–ˆβ•‘β•šβ–ˆβ–ˆβ•”β•β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•”β•β•β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘β•šβ–ˆβ–ˆβ•”β•β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•”β•β•β–ˆβ–ˆβ•—β–ˆβ–ˆβ•”β•β•β–ˆβ–ˆβ•‘
        β–ˆβ–ˆβ•‘ β•šβ•β• β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘  β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘ β•šβ•β• β–ˆβ–ˆβ•‘β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•”β•β–ˆβ–ˆβ•‘  β–ˆβ–ˆβ•‘
        β•šβ•β•     β•šβ•β•β•šβ•β•  β•šβ•β•β•šβ•β•     β•šβ•β•β•šβ•β•β•β•β•β• β•šβ•β•  β•šβ•β•

        mamba (1.4.2) supported by @QuantStack

        GitHub:  https://github.com/mamba-org/mamba
        Twitter: https://twitter.com/QuantStack

β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ


Looking for: ['pytorch=1.11[build=cuda112*]', 'numpy', 'python=3.9', 'cudatoolkit=11.2']

error    libmamba Could not open lockfile '/hpc/software/mamba/23.1.0/pkgs/cache/cache.lock'
error    libmamba Could not open lockfile '/hpc/software/mamba/23.1.0/pkgs/cache/cache.lock'
warning  libmamba Could not parse state file: Could not load cache state: [json.exception.type_error.302] type must be string, but is null
warning  libmamba Could not remove state file "/hpc/software/mamba/23.1.0/pkgs/cache/09cdf8bf.state.json": Permission denied
conda-forge/noarch                                  19.8MB @   4.9MB/s  4.4s
conda-forge/linux-64                                46.3MB @   4.6MB/s 10.6s
Transaction

  Prefix: /home/tmh6260/my_environments/pytorch_test

  Updating specs:

   - pytorch=1.11[build=cuda112*]
   - numpy
   - python=3.9
   - cudatoolkit=11.2


  Package                Version  Build                  Channel                    Size
──────────────────────────────────────────────────────────────────────────────────────────
  Install:
──────────────────────────────────────────────────────────────────────────────────────────

  + _libgcc_mutex            0.1  conda_forge            conda-forge/linux-64     Cached
  + _openmp_mutex            4.5  2_kmp_llvm             conda-forge/linux-64     Cached
  + bzip2                  1.0.8  h4bc722e_7             conda-forge/linux-64     Cached
  + ca-certificates    2024.8.30  hbcca054_0             conda-forge/linux-64     Cached
  + cffi                  1.17.1  py39h15c3d72_0         conda-forge/linux-64     Cached
  + cuda-version            11.2  hb11dac2_3             conda-forge/noarch       Cached
  + cudatoolkit           11.2.2  hc23eb0c_13            conda-forge/linux-64     Cached
  + cudnn               8.9.7.29  hbc23b4c_3             conda-forge/linux-64     Cached
  + ld_impl_linux-64        2.43  h712a8e2_2             conda-forge/linux-64      669kB
  + libblas                3.9.0  16_linux64_mkl         conda-forge/linux-64     Cached
  + libcblas               3.9.0  16_linux64_mkl         conda-forge/linux-64     Cached
  + libffi                 3.4.2  h7f98852_5             conda-forge/linux-64     Cached
  + libgcc                14.2.0  h77fa898_1             conda-forge/linux-64      849kB
  + libgcc-ng             14.2.0  h69a702a_1             conda-forge/linux-64       54kB
  + libhwloc              2.11.1  default_hecaa2ac_1000  conda-forge/linux-64     Cached
  + libiconv                1.17  hd590300_2             conda-forge/linux-64     Cached
  + liblapack              3.9.0  16_linux64_mkl         conda-forge/linux-64     Cached
  + libnsl                 2.0.1  hd590300_0             conda-forge/linux-64     Cached
  + libprotobuf           3.20.3  h3eb15da_0             conda-forge/linux-64     Cached
  + libsqlite             3.47.0  hadc24fc_1             conda-forge/linux-64      875kB
  + libstdcxx             14.2.0  hc0a3c3a_1             conda-forge/linux-64        4MB
  + libstdcxx-ng          14.2.0  h4852527_1             conda-forge/linux-64       54kB
  + libuuid               2.38.1  h0b41bf4_0             conda-forge/linux-64     Cached
  + libxcrypt             4.4.36  hd590300_1             conda-forge/linux-64     Cached
  + libxml2               2.13.4  h064dc61_2             conda-forge/linux-64      689kB
  + libzlib                1.3.1  hb9d3cd8_2             conda-forge/linux-64       61kB
  + llvm-openmp           19.1.3  h024ca30_0             conda-forge/linux-64        3MB
  + magma                  2.5.4  hc72dce7_4             conda-forge/linux-64     Cached
  + mkl                 2022.2.1  h6508926_16999         conda-forge/linux-64     Cached
  + nccl                2.23.4.1  h03a54cd_2             conda-forge/linux-64      134MB
  + ncurses                  6.5  he02047a_1             conda-forge/linux-64     Cached
  + ninja                 1.12.1  h297d8ca_0             conda-forge/linux-64     Cached
  + numpy                 1.26.4  py39h474f0d3_0         conda-forge/linux-64     Cached
  + openssl                3.3.2  hb9d3cd8_0             conda-forge/linux-64     Cached
  + pip                   24.3.1  pyh8b19718_0           conda-forge/noarch          1MB
  + pycparser               2.22  pyhd8ed1ab_0           conda-forge/noarch       Cached
  + python                3.9.20  h13acc7a_1_cpython     conda-forge/linux-64       24MB
  + python_abi               3.9  5_cp39                 conda-forge/linux-64     Cached
  + pytorch               1.11.0  cuda112py39ha0cca9b_1  conda-forge/linux-64     Cached
  + readline                 8.2  h8228510_1             conda-forge/linux-64     Cached
  + setuptools            75.3.0  pyhd8ed1ab_0           conda-forge/noarch        780kB
  + sleef                    3.7  h1b44611_0             conda-forge/linux-64        2MB
  + tbb                2021.13.0  h84d6215_0             conda-forge/linux-64     Cached
  + tk                    8.6.13  noxft_h4845f30_101     conda-forge/linux-64     Cached
  + typing_extensions     4.12.2  pyha770c72_0           conda-forge/noarch       Cached
  + tzdata                 2024b  hc8b5060_0             conda-forge/noarch        122kB
  + wheel                 0.44.0  pyhd8ed1ab_0           conda-forge/noarch       Cached
  + xz                     5.2.6  h166bdaf_0             conda-forge/linux-64     Cached

  Summary:

  Install: 48 packages

  Total download: 172MB

──────────────────────────────────────────────────────────────────────────────────────────


Confirm changes: [Y/n] **Y**

When the prompt appears asking you to Confirm changes: [Y/n]. Enter 'Y'

libzlib                                             61.0kB @ 214.5kB/s  0.3s

Downloading and Extracting Packages
tzdata                                             122.4kB @ 273.1kB/s  0.1s
Preparing transaction: done
Verifying transaction: done━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 171.6MB / 171.6MB                            2.9s
Executing transaction: \ By downloading and using the CUDA Toolkit conda packages, you accept the terms and conditions of the CUDA End User License Agreement (EULA): https://docs.nvidia.com/cuda/eula/index.html
[+] 8.2s
\ By downloading and using the cuDNN conda packages, you accept the terms and conditions of the NVIDIA cuDNN EULA -━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 171.6MB / 171.6MB                            2.9s
  https://docs.nvidia.com/deeplearning/cudnn/sla/index.html
[+] 8.1s
/ wnloading      ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 171.6MB / 171.6MB                            2.9s
done
python                                              23.7MB @  26.0MB/s  0.4s
To activate this environment, use                  133.5MB @  46.1MB/s  2.4s
[+] 7.7s
     $ mamba activate /home/tmh6260/my_environments/pytorch_test━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 171.6MB / 171.6MB                            2.9s

To deactivate an active environment, use

     $ mamba deactivate

Activate your virtual environment

source activate /home/tmh6260/my_environments/pytorch_test

Add 2 additional conda packages

conda install icu=75.1
conda install zstd=1.5.6

Some packages need to be installed or specified using pip. To add them:

# pip install others emodpy-malaria and idmtools
pip install emodpy-malaria --ignore-installed --index-url=https://packages.idmod.org/api/pypi/pypi-production/simple 

# copy idm_tools_platform_slurm v1.7.11 from emodpy-torch environment, along with dist-info
cp -r /projects/b1139/environments/emodpy-torch/lib/python3.9/site-packages/idmtools_platform_slurm/ /<PATH TO YOUR ENVIRONMENT>/lib/python3.9/site-packages/idmtools_platform_slurm
cp -r /projects/b1139/environments/emodpy-torch/lib/python3.9/site-packages/idmtools_platform_slurm-1.7.11.dist-info /<PATH TO YOUR ENVIRONMENT>/lib/python3.9/site-packages/idmtools_platform_slurm-1.7.11.dist-info

# pip install others from requirements.txt
pip install -r /projects/b1139/environments/emodpy-torch/requirements.txt

# pip install a few more required packages 
pip install gpytorch
pip install botorch==0.8.1
pip install seaborn
Step 2: Customize site-specific inputs
  1. Update VENV_PATH in manifest.py and supply the same virtual environment to the placeholder in sbatch_run_calib.sh

  2. Describe reference site simulation options

    • Example simulation_coordinator.csv

      option value description
      site Nanoro site name
      lat 12.68 site latitude
      lon -2.19 site longitude
      climate_start_year 2010 First year of climate data to request from ERA5
      climate_year_dur 10 # years of climate data to pull from ERA5
      pop 1000 simulated population
      birth_rate 38 Crude birth rate for site
      prev0 0.2 Initial prevalence to supply to demographics file
      nSims 1 # of random seeds to simulate
      simulation_start_year 1960 Day 0 of simulation is Jan 1 of this year
      simulation_years 60 # of years to simulate (Jan 1- Dec 31)
      demographics_filepath demographics_files/Nanoro_demographics.json _demographics.json if using create_files.py
      NMF_filepath nonmalarial_fevers/nmf_rates_generic.csv blank if not applicable
      CM_filepath cm/Nanoro_case_management.csv blank if not applicable
      SMC_filepath smc/SMC.csv "file describing SMC campaigns
      ITN_filepath itn/Nanoro_ITN.csv "file describing ITN distribution campaigns
      ITN_age_filepath itn/ITN_age.csv "file describing age-based patterns in ITN usage
      ITN_season_filepath itn/ITN_season.csv "file describing seasonal patterns in ITN usage
      vector_filepath vectors/vectors.csv file describing mix of vector species and their ecology
      prevalence_comparison TRUE include a measure of prevalence in scoring?
      prevalence_comparison_reference monthly_pfpr_by_microscopy.csv reference dataset for prevalence
      prevalence_comparison_frequency monthly """monthly""
      prevalence_comparison_diagnostic Microscopy """PCR"" or ""Microscopy""
      prevalence_comparison_agebin 100 agebin (within prevalence_comparison_reference) to use for comparison
      incidence_comparison TRUE include a measure of clinical incidence in scoring?
      incidence_comparison_reference routine_incidence_by_district.csv reference dataset for incidence
      incidence_comparison_frequency monthly """monthly"" or ""annual"""
      incidence_comparison_agebin 100 agebin (within incidence_comparison_reference) to use for comparison
    • Related .csv files for vectors and interventions

      • Example: vectors/vectors.csv

        species fraction anthropophily indoor_feeding constant temp_rain water_veg
        gambiae 0.9 0.74 0.9 1 1 0
        funestus 0.05 0.5 0.86 1 0 1
        arabiensis 0.05 0.88 0.5 1 1 0
      • Example: interventions/cm/case_management.csv

        year month day duration trigger age_min age_max coverage rate drug
        2005 1 1 1825 NewClinicalCase 0 5 0.153903191 0.3 AL
        2005 1 1 1825 NewClinicalCase 5 15 0.092341914 0.3 AL
        2005 1 1 1825 NewClinicalCase 15 115 0.061561276 0.3 AL
        2005 1 1 1825 NewSevereCase 0 115 0.6 0.5 AL
        2010 1 1 365 NewClinicalCase 0 5 0.153903191 0.3 AL
        2010 1 1 365 NewClinicalCase 5 15 0.092341914 0.3 AL
        2010 1 1 365 NewClinicalCase 15 115 0.061561276 0.3 AL
        2010 1 1 365 NewSevereCase 0 115 0.6 0.5 AL
  3. run create_files.py to generate climate and demographics files.

    • Files created inside simulation_inputs/:
      • demographics_files/site_demographics.json
      • site_climate/site/...
    • If you already have files:
      • supply the path to the desired demographics file inside simulation_coordinator.csv 'demographics_filepath' row
      • copy climate files into folder site_climate/site/
Step 3: Setup calibration algorithm specifications
  1. Define input parameter sampling space

    • Example parameter_key.csv

      parameter min max transformation
      Temperature Shift -5 5 none
      Constant Habitat Multiplier -4 4 log
      Temporary Rainfall Habitat Multiplier -4 4 log
      Water Vegetation Habitat Multiplier -4 4 log
  2. Refine scoring system

    • Example weights.csv

      objective weight
      shape_score 0.001 Normalized monthly incidence
      intensity_score 0.1 Average annual clinical incidence
      prevalence_score 0.1 Monthly prevalence by PCR or microscopy
      eir_score 10.0 EIR threshold
  3. Set up calibration scheme

    • Example calibration_coordinator.csv

      init_size init_batches batch_size max_eval failure_limit
      1000 1 200 5000 2
Step 4: Run calibration loop
  1. edit run_calib.py with updated experiment name

  2. run sbatch sbatch_run_calib.sh

Step 5: Analyze Output

The output files automatically created by the calibration loop are found in simulations/output/exp_label:

Output from each round of calibration 0-n_batches:

  • LF_0/

    • translated_params.csv

    Files pertaining to the best-scoring parameter set, if a new one is identified

    • emod.best.csv
      parameter param_set unit_value emod_value min max team_default transformation type
      0 Temperature_Shift
      1 CONST_Multiplier
      2 TEMPR_Multiplier
      3 WATEV_Multiplier
    • emod.ymax.txt : best score so far, y_max
    • EIR_range.csv :
      param_set minEIR maxEIR
    • ACI.csv
      param_set agebin Inc
    • incidence_site.png
      alt text
    • prevalence_site.png
      Via PCR
      alt text
      Via Microscopy
      alt text

    A copy of the simulation_output folder containing analyzed outputs

    • SO/site/
      • InsetChart.csv
      • ...
      • finished.txt
  • ...\

  • LF_n_batches/

    • translated_params.csv
    • SO/site/
      • InsetChart.csv
      • ...
      • finished.txt

For any round in which there was an improvement in overall score will contain all of the same files shown above for LF_0. If no improvment, only those shown for LF_<n_batches> above will appear.

After the calibration loop completes, post_calibration_analysis produces a few meta-performance plots and fits a GP to each objective separately for more detailed parameter sensitivity analysis. This produces the files:

  • performance/
    • GP/ - _LS.csv # For each scoretype calculated - length_scales.png - predictions.png - timing.png

Additionally, plots of score and parameter convergence over time can be produced by running post_calibration_plots.Rmd, with the appropriate <exp_label>.

This produces new files inside simulations/output/<exp_label>:

  • performance/
    • scores/

      • scores_total.png
      • scores_by_objective.png
    • parameters/

      • unit_parameters.png
      • emod_parameters.png
      • search_space_x_objective_scores_round_.png
      • search_space_x_total_score_round_.png
    • GP/

      • detailed_length_scales.png alt text

Methods

Parameter Space Translation

The GP emulator emplyed by Botorch works with input values $x_{i}$ that are standardized to the unit space $$0,1$$. EMOD parameter values are translated from unit space according to parameter_key.csv

If transform=="none" : $x_{emod} = min + x_{i}*(max-min)$

  • Temperature_Shift : Shift (in degrees) to apply to daily air and land temperature series

If transform=="log" : $x_{emod} = 10^{log10(min)+x_{i}*(log10(max)-log10(min))}$

  • CONSTANT_Multiplier : Scale factor to apply to maximum capacity for mosquito larvae in habitats of type "Constant"
  • TEMPR_Multiplier : Scale factor to apply to maximum capacity for mosquito larvae in habitats of type "Temporary Rainfall"
  • WATEV_Multiplier : Scale factor to apply to maximum capacity for mosquito larvae in habitats of type "Water Vegetation"

Scoring Simulations vs. Data

Steps taken to report out, analyze, and compare simulation results to targets:

Objectives

(eir_score) Maximum and minimum monthly EIR
  • Report: InsetChart
  • Analyzer: EIRAnalyzer
  • Output: InsetChart_EIR.csv
  • Scoring: check_EIR_threshold(site)
    • Filter to last 10 years of simulation
    • Sum daily EIR to monthly EIR in each month-year-run
    • Average EIR in each month-year across runs
    • Calculate minimum and maximum EIR across all month-years
    • If any monthly EIR >= 100 or any monthly EIR == 0 : score = 1
      • Else, score = 0\
(shape_score) Normalized monthly clinical incidence in one age group
  • Report: MalariaSummaryReport
  • Analyzer: MonthlyIncidenceAnalyzer
  • Output: ClinicalIncidence_monthly.csv
  • Scoring: compare_incidence_shape(site,agebin)
    • Filter to target agebin
    • Find max incidence each year
    • Normalize monthly incidence within each year (month / max)
    • Average normalized incidence per month across years
    • Score = $log(\frac{pop_{ref}!(pop_{sim}+1)!}{(pop_{ref}+pop_{sim}+1)!} * \frac{(cases_{ref}+(cases_{sim})!}{(cases_{ref}!cases_{sim}!} * \frac{(pop_{ref}-(cases_{ref})!(pop_{sim}-cases_{sim})!}{((pop_{ref}-(cases_{ref})+(pop_{sim}-cases_{sim}))!})$
      • ${\color{red}\text{Currently hard-coded with presumed reference and simulation population of 1000}}$
(intensity_score) Average annual clinical incidence in one age group
  • Report: MalariaSummaryReport
  • Analyzer: MonthlyIncidenceAnalyzer
  • Output: ClinicalIncidence_monthly.csv
  • Scoring: compare_annual_incidence(site,agebin)
    • Filter to target agebin
    • Average annual incidence across months in each year
    • Average annual incidence across years
    • Score = $e^{((|incidence_{sim}-incidence_{ref}|) / incidence_{ref})}$
(prevalence_score) PCR prevalence by month and year (*all-age only*)
  • Report: InsetChart
  • Analyzer: PCRAnalyzer
  • Output: InsetChart_PCR.csv
  • Scoring: compare_all_age_PCR_prevalence(site)
    • Average PCR Parasite Prevalence in each month-year across runs
    • Score each month-year as $\sqrt{|prev_{sim}-prev_{ref}|^2}$
    • Average score across month-years
(prevalence_score) Microscopy prevalence by month and year (*by age, or all-ages*)
  • Report: MalariaSummaryReport
  • Analyzer: MonthlyPfPRAnalyzer
  • Output: PfPR_monthly.csv
  • Scoring: compare_PfPR_prevalence(site,agebin)
    • Filter to target agebin
    • Average PfPR in each month-year across runs
    • Score each month-year as $\sqrt{|pfpr_{sim}-pfpr_{ref}|^2}$
    • Average score across month-years

Weighting and Summary Score

For each objective_score calculated, a weight is described in weights.csv:

Final score = $-\Sigma (objective_score*weight)$

  • If any objective_score is missing or NA, a value of 10 is given post-weighting
  • Because the optimization function is a maximizing function, we negate the total score

Example: from the simulation with setup

simulation_coordinator.csv weights.csv
incidence_comparison TRUE eir_score 10
incidence_comparison_frequency monthly shape_score 0.001
incidence_comparison_agebin 100 intensity_score 1
prevalence_comparison TRUE prevalence_score 10
prevalence_comparison_diagnostic PCR

$score= (10\times{}eir\_score) + (0.001\times{}shape\_score) + intensity\_score + (10\times{}prevalence\_score)$

For the first init_batches training rounds:

  • Save the best (highest) score

In later, post-training rounds:

  • If the best score in this round is worse (lower) than the current best

    • success_counter resets to zero (or stays there)

    • failure_counter increases by one

  • If the best score in this round is better (higher) than the current best

    • success_counter increases by one

    • failure_counter resets to zero (or stays there)

Emulation

Between rounds, an ExactGP is trained on the $$batch_size</code> x <code>n_parameters$$ unit input vector $X$ and the [1 x n_objectives] score output vector $Y$

The GP is a surrogate model based on a Multivarate Normal Distribution with mean function (my_func) and covariance

  • Mean function is basically my_func : Y(X)

  • Covariance kernel is Matern5/2, which allows the GP propose any function that is 2x differentiable

The model fit to maximize marginal log likelihood has length_scale hyperparameters for each input parameter to describe the strength of correlation between scores across values of the parameter

  • This is sort of like the "sensitivity" of the score to changes in the parameter

TuRBO Thompson Sampling

Initially the Trust Region spans the entire domain $$0,1$$ of each input parameter

  • if success_counter meets success_tolerance : expand search region proportionally to lengthscales for each parameter, and reset success_counter to 0

  • if failure_counter meets failure_tolerance : shrink search region proportionally to lengthscales for each parameter, and reset failure_counter to 0

  1. the GP emulator is used to predict the scores at 5,000 candidate locations in the unit parameter space within the Trust Region

  2. candidate parameter sets with the top batch_size predicted scores are selected for the next round of simulation

The process of translating parameters -> running simulations -> scoring objectives -> fitting GP emulator -> Acquiring samples continues until max_eval simulations have been run and scored.

Tips for adding new objectives

To add a new objective (example: vector_species_mix), you may need to

  1. Make changes to files here in your project directory to allow for control of new objective

    • simulation_inputs/simulation_coordinator.csv :
      • Add logical flag for inclusion (ex. 'vector_mix_comparison')
      • Add reference_dataset path (ex. 'vector_mix_reference')
    • simulation_inputs/weights.csv:
      • Add row with weight for new objective (ex. 'vector_mix_score')

    Different objectives may require more controls (ex. agebin, frequency, diagnostic, etc.)

  2. Make changes to files in your fork of the environment_calibration_common module

    • helpers.py : add logic for including EMOD reports in simulation
    • analyzers/analyzer_collection.py : define new analyzer collect simulation output from reporter\
    • analyzers/analyze.py: add logic for when to require analyzer
    • compare_to_data/calculate_all_scores.py :
      • add function to compare outputs of analyzer to reference_data and produce a score by parameter set (ex. 'compare_vector_mix()')
      • add logic to include scores produced in compute_all_scores()
    • compare_to_data/run_full_comparison.py :
      • add logic to compute_scores_across_site() for weighting score and handling missing values

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 95.8%
  • Shell 2.2%
  • HTML 2.0%