-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbase.py
executable file
·169 lines (110 loc) · 7.72 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import numpy as np
import tensorflow as tf
import tensorflow_probability as tfp
EPS = 1e-4
def calculateUpperBound(batch_ns, n_compile):
n_batch = batch_ns.shape[0]
batch_ns_sorted = np.sort(batch_ns)[::-1]
container = np.zeros((n_compile, n_batch))
tabular_index = np.zeros((n_compile, n_batch), dtype=int)
tabular_value = np.zeros((n_compile, n_batch), dtype=int)
container[0] = batch_ns_sorted[0] * np.arange(1, n_batch+1)
container[:, 0] = batch_ns_sorted[0] * np.ones((n_compile))
tabular_value[0] = batch_ns_sorted[0]
tabular_value[:, 0] = batch_ns_sorted[0]
for i in range(1, n_compile):
for j in range(1, n_batch):
candidates = []
for l in range(j, 0, -1):
candidates.append(container[i-1, l-1] + batch_ns_sorted[l] * (j - l + 1))
container[i, j] = np.min(candidates)
ind = j - np.argmin(candidates)
tabular_index[i, j] = ind - 1
tabular_value[i, j] = batch_ns_sorted[ind]
batch_us_unique = []
ind = n_batch - 1
for i in range(n_compile-1, -1, -1):
batch_us_unique.append(tabular_value[i, ind])
ind = tabular_index[i, ind]
ind = tf.math.argmin(tf.where((batch_us_unique - batch_ns[:, tf.newaxis]) >= 0, batch_us_unique - batch_ns[:, tf.newaxis], tf.reduce_max(batch_ns)), axis=-1)
batch_us = tf.gather(batch_us_unique, ind)
return batch_us
def matmul_mask_mat(mask, mat):
mat = replace_nan_to_zero(mat)
return tf.transpose(tf.linalg.matvec(tf.transpose(mask)[:, tf.newaxis, tf.newaxis], tf.transpose(mat, (1, 2, 3, 0))), (3, 0, 1, 2))
def matmul_mask_vec(mask, vec):
vec = replace_nan_to_zero(vec)
return tf.transpose(tf.linalg.matvec(tf.transpose(mask)[:, tf.newaxis], tf.transpose(vec, (1, 2, 0))), (2, 0, 1))
def matmul_mask_tranpose_vec(mask, vec):
vec = replace_nan_to_zero(vec)
return tf.transpose(tf.linalg.matvec(tf.transpose(mask, (2, 0, 1))[:, tf.newaxis], tf.transpose(vec, (1, 2, 0))), (2, 0, 1))
def replace_nan_to_zero(value):
value_not_nan = tf.dtypes.cast(tf.math.logical_not(tf.math.is_nan(value)), dtype=tf.float32)
return tf.math.multiply_no_nan(value, value_not_nan)
def fill_triangular(values):
tri = tfp.math.fill_triangular(values)
last_dim, rank = tf.shape(tri)[-1] + 1, tf.rank(tri)
paddings = tf.concat([tf.zeros((rank-2, 2), dtype=tf.int32), tf.constant([[1, 0], [0, 1]])], axis=0)
tri = tf.eye(last_dim) + tf.pad(tri, paddings)
return tri
class TriangularDense(tf.keras.layers.Layer):
def __init__(self, units, activation_diag=None, activation_upper=None, kernel_diag_initializer='glorot_uniform', bias_diag_initializer='zeros', kernel_upper_initializer='glorot_uniform', bias_upper_initializer='zeros'):
super().__init__()
self.units = units
self.activation_diag = tf.keras.activations.get(activation_diag)
self.activation_upper = tf.keras.activations.get(activation_upper)
self.kernel_diag_initializer = tf.keras.initializers.get(kernel_diag_initializer)
self.bias_diag_initializer = tf.keras.initializers.get(bias_diag_initializer)
self.kernel_upper_initializer = tf.keras.initializers.get(kernel_upper_initializer)
self.bias_upper_initializer = tf.keras.initializers.get(bias_upper_initializer)
def build(self, input_shape):
last_dim = tf.compat.dimension_value(input_shape[-1])
self.kernel_diag = self.add_weight(name='kernel_diag', shape=[last_dim, self.units], initializer=self.kernel_diag_initializer)
self.bias_diag = self.add_weight(name='bias_diag', shape=[self.units], initializer=self.bias_diag_initializer)
self.kernel_upper = self.add_weight(name='kernel_upper', shape=[last_dim, self.units*(self.units-1)//2], initializer=self.kernel_upper_initializer)
self.bias_upper = self.add_weight(name='bias_upper', shape=[self.units*(self.units-1)//2], initializer=self.bias_upper_initializer)
self.built = True
def call(self, inputs, **kwargs):
outputs_diag = self.activation_diag(tf.matmul(inputs, self.kernel_diag) + self.bias_diag)
outputs_upper = self.activation_upper(tf.matmul(inputs, self.kernel_upper) + self.bias_upper)
return tf.concat([outputs_diag, outputs_upper], axis=-1)
class ParallelDense(tf.keras.layers.Layer):
def __init__(self, units, activation=None, kernel_initializer='glorot_uniform', bias_initializer='zeros'):
super().__init__()
self.units = units
self.activation = tf.keras.activations.get(activation)
self.kernel_initializer = tf.keras.initializers.get(kernel_initializer)
self.bias_initializer = tf.keras.initializers.get(bias_initializer)
def build(self, input_shape):
kernel_init = tf.stack([self.kernel_initializer([input_shape[-1], self.units]) for _ in range(input_shape[-2])], axis=0).numpy()
self.kernel = self.add_weight(name='kernel', shape=[input_shape[-2], input_shape[-1], self.units], initializer=tf.constant_initializer(kernel_init))
self.bias = self.add_weight(name='bias', shape=[input_shape[-2], self.units], initializer=self.bias_initializer)
self.built = True
def call(self, inputs):
outputs = self.activation(tf.squeeze(tf.matmul(tf.expand_dims(inputs, axis=-2), tf.expand_dims(self.kernel, axis=0)), axis=-2) + self.bias)
return outputs
class ParallelTriangularDense(tf.keras.layers.Layer):
def __init__(self, units, activation_diag=None, activation_upper=None, kernel_diag_initializer='glorot_uniform', bias_diag_initializer='zeros', kernel_upper_initializer='glorot_uniform', bias_upper_initializer='zeros'):
super().__init__()
self.units = units
self.activation_diag = tf.keras.activations.get(activation_diag)
self.activation_upper = tf.keras.activations.get(activation_upper)
self.kernel_diag_initializer = tf.keras.initializers.get(kernel_diag_initializer)
self.bias_diag_initializer = tf.keras.initializers.get(bias_diag_initializer)
self.kernel_upper_initializer = tf.keras.initializers.get(kernel_upper_initializer)
self.bias_upper_initializer = tf.keras.initializers.get(bias_upper_initializer)
def build(self, input_shape):
n_site = tf.compat.dimension_value(input_shape[-2])
last_dim = tf.compat.dimension_value(input_shape[-1])
kernel_diag_init = tf.stack([self.kernel_diag_initializer([last_dim, self.units]) for _ in range(n_site)], axis=0).numpy()
kernel_upper_init = tf.stack([self.kernel_upper_initializer([last_dim, self.units*(self.units-1)//2]) for _ in range(n_site)], axis=0).numpy()
self.kernel_diag = self.add_weight(name='kernel_diag', shape=[n_site, last_dim, self.units], initializer=tf.constant_initializer(kernel_diag_init))
self.bias_diag = self.add_weight(name='bias_diag', shape=[n_site, self.units], initializer=self.bias_diag_initializer)
self.kernel_upper = self.add_weight(name='kernel_upper', shape=[n_site, last_dim, self.units*(self.units-1)//2], initializer=tf.constant_initializer(kernel_upper_init))
self.bias_upper = self.add_weight(name='bias_upper', shape=[n_site, self.units*(self.units-1)//2], initializer=self.bias_upper_initializer)
self.built = True
def call(self, inputs, **kwargs):
outputs_diag = self.activation_diag(tf.squeeze(tf.matmul(tf.expand_dims(inputs, axis=-2), tf.expand_dims(self.kernel_diag, axis=0)), axis=-2) + self.bias_diag)
outputs_upper = self.activation_upper(tf.squeeze(tf.matmul(tf.expand_dims(inputs, axis=-2), tf.expand_dims(self.kernel_upper, axis=0)), axis=-2) + self.bias_upper)
return tf.concat([outputs_diag, outputs_upper], axis=-1)
clip_by_value = tf.keras.layers.Lambda(lambda input: tf.clip_by_value(input, -1., 1.))