-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMULTINOMIAL.PY
52 lines (35 loc) · 1.09 KB
/
MULTINOMIAL.PY
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from sklearn.metrics import r2_score
from sklearn.metrics import mean_squared_error
import numpy as np
from pandas import DataFrame
from sklearn import linear_model
import statsmodels.api as sm
import pandas as pd
dataset = pd.read_csv('survey lung cancer.csv')
dataset['LUNG_CANCER']=dataset['LUNG_CANCER'].map({'YES': 1, 'NO': 0})
df = DataFrame(dataset,columns=['SMOKING','YELLOW_FINGERS','LUNG_CANCER'])
#print(df)
X = df[['SMOKING','YELLOW_FINGERS']]
Y = df['LUNG_CANCER']
# with sklearn
regr = linear_model.LinearRegression()
regr.fit(X, Y)
print('Intercept: \n', regr.intercept_)
print('Coefficients: \n', regr.coef_)
Predicted_vals = regr.predict(X.values)
print('The R^2 score is: ')
print(r2_score(Y,Predicted_vals))
#prediction with sklearn
SMOKING = 2
YELLOW_FINGERS = 2
print ('Predicted CANCER: \n', regr.predict([[SMOKING ,YELLOW_FINGERS]]))
##
##
## with statsmodels
#X = sm.add_constant(X) # adding a constant
#
#model = sm.OLS(Y, X).fit()
#predictions = model.predict(X)
#
##print_model = model.summary()
#print(print_model)