-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path06-regression.Rmd
383 lines (310 loc) · 10.4 KB
/
06-regression.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
# Regression
For the regression models, we have built up what the DAG could look like.
These representations are shown below.
```{r chp6-dag-1, echo=FALSE,fig.align='center',fig.cap='DAG a simple regression model with 1 predictor'}
knitr::include_graphics(paste0(w.d,'/dag/chp6-regression1.png'),
auto_pdf = TRUE)
```
```{r chp6-dag-2, echo=FALSE,fig.align='center',fig.cap='DAG for a regression with $J$ predictors'}
knitr::include_graphics(paste0(w.d,'/dag/chp6-regression2.png'),
auto_pdf = TRUE)
```
```{r chp6-dag-3, echo=FALSE,fig.align='center',fig.cap='Expanded DAG representation for regression with hyperparameters included'}
knitr::include_graphics(paste0(w.d,'/dag/chp6-regression3.png'),
auto_pdf = TRUE)
```
Next, we gave a general representation of how the model specification diagram could be constructed.
```{r chp6-spec-1, echo=FALSE,fig.align='center',fig.cap='Model specification diagram for a linear regression model'}
knitr::include_graphics(paste0(w.d,'/model-spec/chp6-regression1.png'),
auto_pdf = TRUE)
```
## Stan Model for Regression Model
```{r chp6-reg-fit-stan, warnings=T, message=T,error=T, cache=TRUE}
model_reg <- '
data {
int N;
real x1[N];
real x2[N];
real y[N];
}
parameters {
real beta[3];
real<lower=0> tau;
}
transformed parameters {
real<lower=0> sigma;
sigma = 1/sqrt(tau);
}
model {
for(i in 1:N){
y[i] ~ normal(beta[1] + beta[2]*x1[i] + beta[3]*x2[i], sigma);
}
beta ~ normal(0, 100);
tau ~ gamma(1, 1);
}
generated quantities {
real varerror;
real vary;
real Rsquared;
real error[N];
for(i in 1:N){
error[i] = y[i] - (beta[1] + beta[2]*x1[i] + beta[3]*x2[i]);
}
varerror = variance(error);
vary = variance(y);
Rsquared = 1 - (varerror/vary);
}
'
# data must be in a list
dat <- read.table("data/Chp4_Reg_Chapter_Tests.dat", header=T)
mydata <- list(
N=nrow(dat),
x1=dat$Ch1Test,
x2=dat$Ch2Test,
y =dat$Ch3Test
)
# start values
start_values <- function(){
list(sigma=1, beta=c(0,0,0))
}
# Next, need to fit the model
# I have explicited outlined some common parameters
fit <- stan(
model_code = model_reg, # model code to be compiled
data = mydata, # my data
init = start_values, # starting values
chains = 4, # number of Markov chains
warmup = 1000, # number of warm up iterations per chain
iter = 5000, # total number of iterations per chain
cores = 4, # number of cores (could use one per chain)
refresh = 0 # no progress shown
)
# first get a basic breakdown of the posteriors
print(fit)
# plot the posterior in a
# 95% probability interval
# and 80% to contrast the dispersion
plot(fit)
# traceplots
rstan::traceplot(fit, pars = c("beta", "sigma"), inc_warmup = TRUE)
# Gelman-Rubin-Brooks Convergence Criterion
p1 <- ggs_grb(ggs(fit, family = "beta")) +
theme_bw() + theme(panel.grid = element_blank())
p2 <- ggs_grb(ggs(fit, family = "sigma")) +
theme_bw() + theme(panel.grid = element_blank())
p1 + p2
# autocorrelation
p1 <- ggs_autocorrelation(ggs(fit, family="beta")) +
theme_bw() + theme(panel.grid = element_blank())
p2 <- ggs_autocorrelation(ggs(fit, family="sigma")) +
theme_bw() + theme(panel.grid = element_blank())
p1 + p2
# plot the posterior density
plot.data <- as.matrix(fit)
plot_title <- ggtitle("Posterior distributions",
"with medians and 80% intervals")
mcmc_areas(
plot.data,
pars = c("beta[1]", "beta[2]", "beta[3]", "sigma"),
prob = 0.8) +
plot_title
mcmc_areas(
plot.data,
pars = c("Rsquared"),
prob = 0.8) +
plot_title
# I prefer a posterior plot that includes prior and MLE
# Expanded Posterior Plot
fit.lm <- summary(lm(Ch3Test ~ 1 + Ch1Test + Ch2Test, data=dat))
MLE <- c(fit.lm$coefficients[,1], fit.lm$sigma**2, fit.lm$r.squared)
prior_beta <- function(x){dnorm(x, 0, 1000)}
x.beta <- seq(-10, 4.99, 0.01)
prior.beta <- data.frame(beta=x.beta, dens.beta = prior_beta(x.beta))
prior_sig <- function(x){dgamma(x, 1, 1)}
x.sig <- seq(0.01, 2.5, 0.01)
prior.sig <- data.frame(sig=x.sig, dens.sig = prior_sig(x.sig))
cols <- c("Posterior"="#0072B2", "Prior"="#E69F00", "MLE"= "black")#"#56B4E9", "#E69F00" "#CC79A7"
plot.data <- as.data.frame(plot.data)
p1 <- ggplot()+
geom_density(data=plot.data,
aes(x=`beta[1]`, color="Posterior"))+
geom_line(data=prior.beta,
aes(x=beta, y=dens.beta, color="Prior"))+
geom_vline(aes(xintercept=MLE[1], color="MLE"))+
scale_color_manual(values=cols, name=NULL)+
theme_bw()+
theme(panel.grid = element_blank())
p2 <- ggplot()+
geom_density(data=plot.data,
aes(x=`beta[2]`, color="Posterior"))+
geom_line(data=prior.beta,
aes(x=beta, y=dens.beta, color="Prior"))+
geom_vline(aes(xintercept=MLE[2], color="MLE"))+
scale_color_manual(values=cols, name=NULL)+
lims(x=c(0, 1))+
theme_bw()+
theme(panel.grid = element_blank())
p3 <- ggplot()+
geom_density(data=plot.data,
aes(x=`beta[3]`, color="Posterior"))+
geom_line(data=prior.beta,
aes(x=beta, y=dens.beta, color="Prior"))+
geom_vline(aes(xintercept=MLE[3], color="MLE"))+
scale_color_manual(values=cols, name=NULL)+
lims(x=c(0, 1))+
theme_bw()+
theme(panel.grid = element_blank())
p4 <- ggplot()+
geom_density(data=plot.data,
aes(x=sigma, color="Posterior"))+
geom_line(data=prior.sig,
aes(x=sig, y=dens.sig, color="Prior"))+
geom_vline(aes(xintercept=MLE[4], color="MLE"))+
scale_color_manual(values=cols, name=NULL)+
theme_bw()+
theme(panel.grid = element_blank())
p5 <- ggplot()+
geom_density(data=plot.data,
aes(x=Rsquared, color="Posterior"))+
geom_vline(aes(xintercept=MLE[5], color="MLE"))+
scale_color_manual(values=cols, name=NULL)+
lims(x=c(0, 1))+
theme_bw()+
theme(panel.grid = element_blank())
p1 + p2 + p3 + p4 + p5 + plot_layout(guides="collect")
```
## JAGS Model for Regression Model
```{r chp6-reg-fit-jags, warnings=T, message=T, error=T, cache=TRUE}
# model code
jags.model <- function(){
############################################
# Prior distributions
############################################
beta.0 ~ dnorm(0, .001) # prior for the intercept
beta.1 ~ dnorm(0, .001) # prior for coefficient 1
beta.2 ~ dnorm(0, .001) # prior for coefficient 2
tau.e ~ dgamma(1, 1) # prior for the error precision
sigma.e <- 1/sqrt(tau.e) # standard deviation of the errors
############################################
# Conditional distribution of the data
# Via a regression model
############################################
for(i in 1:n){
y.prime[i] <- beta.0 + beta.1*x1[i] + beta.2*x2[i]
y[i] ~ dnorm(y.prime[i], tau.e)
}
############################################
# Calculate R-squared
############################################
for(i in 1:n){
error[i] <- y[i] - y.prime[i]
}
var.error <- sd(error[])*sd(error[])
var.y <- sd(y[])*sd(y[])
R.squared <- 1 - (var.error/var.y)
}
# data
dat <- read.table("data/Chp4_Reg_Chapter_Tests.dat", header=T)
mydata <- list(
n=nrow(dat),
x1=dat$Ch1Test,
x2=dat$Ch2Test,
y =dat$Ch3Test
)
# starting values
start_values <- function(){
list("tau.e"=0.01, 'beta.0'=0, "beta.1"=0, "beta.2"=0)
}
# vector of all parameters to save
param_save <- c("tau.e", "beta.0", "beta.1", "beta.2", "R.squared")
# fit model
fit <- jags(
model.file=jags.model,
data=mydata,
inits=start_values,
parameters.to.save = param_save,
n.iter=4000,
n.burnin = 1000,
n.chains = 4,
n.thin=1,
progress.bar = "none")
print(fit)
# extract posteriors for all chains
jags.mcmc <- as.mcmc(fit)
R2jags::traceplot(jags.mcmc)
# gelman-rubin-brook
gelman.plot(jags.mcmc)
# convert to single data.frame for density plot
a <- colnames(as.data.frame(jags.mcmc[[1]]))
plot.data <- data.frame(as.matrix(jags.mcmc, chains=T, iters = T))
colnames(plot.data) <- c("chain", "iter", a)
plot_title <- ggtitle("Posterior distributions",
"with medians and 80% intervals")
mcmc_areas(
plot.data,
pars = c("beta.0", "beta.1", "beta.2", "tau.e"),
prob = 0.8) +
plot_title
mcmc_areas(
plot.data,
pars = c("R.squared"),
prob = 0.8) +
plot_title
# Expanded Posterior Plot
fit.lm <- summary(lm(Ch3Test ~ 1 + Ch1Test + Ch2Test, data=dat))
MLE <- c(fit.lm$coefficients[,1], 1/fit.lm$sigma**2, fit.lm$r.squared)
prior_beta <- function(x){dnorm(x, 0, 1000)}
x.beta <- seq(-5, 4.99, 0.01)
prior.beta <- data.frame(beta=x.beta, dens.beta = prior_beta(x.beta))
prior_tau <- function(x){dgamma(x, 1, 1)}
x.tau <- seq(0.01, 0.50, 0.01)
prior.tau <- data.frame(tau=x.tau, dens.tau = prior_tau(x.tau))
cols <- c("Posterior"="#0072B2", "Prior"="#E69F00", "MLE"= "black")#"#56B4E9", "#E69F00" "#CC79A7"
p1 <- ggplot()+
geom_density(data=plot.data,
aes(x=beta.0, color="Posterior"))+
geom_line(data=prior.beta,
aes(x=beta, y=dens.beta, color="Prior"))+
geom_vline(aes(xintercept=MLE[1], color="MLE"))+
scale_color_manual(values=cols, name=NULL)+
theme_bw()+
theme(panel.grid = element_blank())
p2 <- ggplot()+
geom_density(data=plot.data,
aes(x=beta.1, color="Posterior"))+
geom_line(data=prior.beta,
aes(x=beta, y=dens.beta, color="Prior"))+
geom_vline(aes(xintercept=MLE[2], color="MLE"))+
scale_color_manual(values=cols, name=NULL)+
lims(x=c(0, 1))+
theme_bw()+
theme(panel.grid = element_blank())
p3 <- ggplot()+
geom_density(data=plot.data,
aes(x=beta.2, color="Posterior"))+
geom_line(data=prior.beta,
aes(x=beta, y=dens.beta, color="Prior"))+
geom_vline(aes(xintercept=MLE[3], color="MLE"))+
scale_color_manual(values=cols, name=NULL)+
lims(x=c(0, 1))+
theme_bw()+
theme(panel.grid = element_blank())
p4 <- ggplot()+
geom_density(data=plot.data,
aes(x=tau.e, color="Posterior"))+
geom_line(data=prior.tau,
aes(x=tau, y=dens.tau, color="Prior"))+
geom_vline(aes(xintercept=MLE[4], color="MLE"))+
scale_color_manual(values=cols, name=NULL)+
theme_bw()+
theme(panel.grid = element_blank())
p5 <- ggplot()+
geom_density(data=plot.data,
aes(x=R.squared, color="Posterior"))+
geom_vline(aes(xintercept=MLE[5], color="MLE"))+
scale_color_manual(values=cols, name=NULL)+
lims(x=c(0.5, 0.65))+
theme_bw()+
theme(panel.grid = element_blank())
p1 + p2 + p3 + p4 + p5 + plot_layout(guides="collect")
```