-
Notifications
You must be signed in to change notification settings - Fork 0
/
CFG.py
35 lines (29 loc) · 1.28 KB
/
CFG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import numpy as np
class CFG:
target_cols = ['camp', 'corylus', 'dust', 'grim', 'qrob', 'qsub', 'cont']
target_size = len(target_cols)
prob_cols = ['p_' + i for i in target_cols]
cols_mva = ['Area (ABD)', 'Area (Filled)', 'Aspect Ratio', 'Biovolume (Cylinder)',
'Biovolume (P. Spheroid)', 'Circle Fit',
'Circularity', 'Circularity (Hu)', 'Compactness', 'Convex Perimeter',
'Convexity', 'Diameter (ABD)', 'Diameter (ESD)', 'Edge Gradient',
'Elongation', 'Feret Angle Max', 'Feret Angle Min', 'Fiber Curl',
'Fiber Straightness', 'Geodesic Aspect Ratio', 'Geodesic Length',
'Geodesic Thickness', 'Intensity', 'Length', 'Particles Per Chain',
'Perimeter', 'Roughness', 'Sigma Intensity', 'Sum Intensity',
'Symmetry', 'Transparency', 'Volume (ABD)', 'Volume (ESD)', 'Width']
size = 128
n_fold = 1
num_workers = 8
batch_size = 512
model_name = 'resnet18'
if_pretrained = True
lr = 1e-4
epochs = 40
run_umap_test = True
save_model = True
load_model = False
model_name_saved = 'ICELEARNING_net'
OUTPUT_DIR = 'saved_model/'
save_conf_matrix = 'confusion_matrix_test_dataset.pdf'
save_inference_csv_files = True