This repository contains the code to train and run SALICON with pytorch. In our implementation we follow the original CVPR'15 paper
The implementation details of SALICON is based on Kotseruba's work, whichs is implemented with tensorflow
More detalis please see the original paper
- Python>=3.5.0
- Pytorch>=1.5.0
- torchvision>=0.6.0
- opencv3>=3.1.0
- numpy>=1.14.2
Download OSIE dataset if you want to train SALICON.
cd osie_dataset
sh download_osie_dataset.sh
Download MIT1003 dataset used for evaluation (optional).
cd mit1003_dataset
sh download_mit1003.sh
1 . Train a model with default parameters.
python3 train_net.py
2 . You can change the tranning parameters according to your needs, such as whether to use GPU, etc.
# use gpu
python3 train_net.py --gpu --batch_size 1 --lr 0.1 --momentum 0.9 --decay 0.0005 --epochs 500 --checkpoint 1
# use cpu only
python3 train_net.py --batch_size 1 --lr 0.1 --momentum 0.9 --decay 0.0005 --epochs 500 --checkpoint 1
1 . Test the model with default dataset (osie) .
python3 test.py
2 . Test the model with optional parameters, such as selecting the mit1003 dataset, whether to use gpu, etc.
python3 test.py --test_dataset mit1003 --gpu
The model weights must be at the same level as test.py in the src directory
- Baidu NetDisk
https://pan.baidu.com/s/1IdWwChDfLmOpRZfyABbdIQ
password: 6wpu
- ecloud NetDisk
https://cloud.189.cn/t/ZZrumuBFnyia
password: 5jzf
- Google Drive
https://drive.google.com/file/d/1hxa1rlm94cV_dABu-1B3Jg3cQ9j_f3-P/view?usp=sharing
- Zhengxi Hu
Please raise an issue or send email to hzx@mail.nankai.edu.cn if there are any issues running the code.