Skip to content

Code to align GEDI and ECOSTRESS Datasets for machine learning applications

Notifications You must be signed in to change notification settings

nkorinek/GEDI-ECOSTRESS_data_project

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NEON Data Project

Summary

This project covers building a dataset, training and evlauating machine learning models on the data, and running diagnostics. The unified dataset combines Ecostress Water Use Efficiency, SRTM, NLCD (2019), slope, aspect, and GEDI level 2B cover, pavd, and fhd data at a 5m resolution.

Requirements

...

Directory structure

neon_data_project

  • raw_data
    • aspect_raw
    • ecostress_wue
    • frontrange_aoi
    • gedi_pts
    • nlcd_raw
    • srtm_raw
    • slope_raw
  • data
    • (your datasets)
  • create_data
    • tif_merge_convert.py
    • code_match.py
    • analyze_clipped.py
    • check_clip.py
    • reset_raster_nd.py
    • match_create_set.py
    • rfdata_loader.py
    • build_train_val_test.py
    • h5_sanitycheck.py
    • dat_obj.py
    • datacube_set.py
    • corr_analysis.py
    • testbed.py
    • test_vnoi.py
    • test_xdata.py
    • voronator.py
  • models
    • custom_models
      • cnn_1.py
      • auto_regress.py
      • kernel_regress.py
      • lasso_regress.py
      • reduce_regress.py
      • regress.py
      • rf_regress.py
      • svr_1.py
    • saved_models
      • (auto-saved models)
    • train_frame.py
    • model_train.py
    • mutils.py
    • logger.py
  • figures
    • corr_comparison
      • (auto-generated figures)
    • data
      • (auto-generated figures)
    • gedi_distributions
      • (auto-generated figures)
    • pixel_distributrions
      • (auto-generated figures)
    • (auto-generated figures)
  • logs
    • (auto-generated logs)

About

Code to align GEDI and ECOSTRESS Datasets for machine learning applications

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.2%
  • Shell 0.8%