-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_EmoReact.py
232 lines (183 loc) · 10 KB
/
train_EmoReact.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import argparse
import collections
import torch
import numpy as np
import model.loss as module_loss
import model.metric as module_metric
from parse_config import ConfigParser
from EmoReact.transforms import *
from logger import setup_logging
from model import loss
from EmoReact.dataset import TSNDataSet
from trainer.trainer import Trainer
from EmoReact.models import TSN
SEED = 42
torch.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(SEED)
def main(args, config):
if args.modality == 'RGB':
data_length = 1
elif args.modality == "depth":
data_length = args.data_length
elif args.modality in ['Flow', 'RGBDiff']:
data_length = args.data_length
model = TSN(8, args.num_segments, args.modality, modalities_fusion=args.modalities_fusion,
num_feats=args.num_feats, base_model=args.arch, new_length=data_length, embed=args.embed,
consensus_type=args.consensus_type, dropout=args.dropout,
categorical=args.categorical, partial_bn=not args.no_partialbn,
is_shift=args.shift, shift_div=args.shift_div, shift_place=args.shift_place, temporal_pool=args.temporal_pool)
crop_size = model.crop_size
scale_size = model.scale_size
input_mean = model.input_mean
input_std = model.input_std
train_augmentation = model.get_augmentation()
# Data loading code
if args.modality != 'RGBDiff':
normalize = GroupNormalize(input_mean, input_std)
else:
normalize = IdentityTransform()
dataset = TSNDataSet("train", num_segments=args.num_segments, mask=args.mask, input=args.input,
new_length=data_length,
modality=args.modality,
image_tmpl="{:06d}.jpg" if args.modality in ["RGB", "RGBDiff", "depth"] else args.flow_prefix+"{}_{:05d}.jpg",
transform=torchvision.transforms.Compose([
GroupScale((256,256)),
GroupRandomHorizontalFlip(),
GroupRandomCrop(224),
Stack(roll=args.arch == 'BNInception'),
ToTorchFormatTensor(div=args.arch != 'BNInception'),
normalize,
]))
collate_fn = None
sampler = None
train_loader = torch.utils.data.DataLoader(
dataset,
sampler=sampler,
batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True, collate_fn=collate_fn, drop_last=False)
val_loader = torch.utils.data.DataLoader(
TSNDataSet("val", num_segments=args.num_segments, mask=args.mask, input=args.input,
new_length=data_length,
modality=args.modality,
image_tmpl="{:06d}.jpg" if args.modality in ["RGB", "RGBDiff", "depth"] else args.flow_prefix+"{}_{:05d}.jpg",
random_shift=False,
transform=torchvision.transforms.Compose([
GroupScale((int(224),int(224))),
Stack(roll=args.arch == 'BNInception'),
ToTorchFormatTensor(div=args.arch != 'BNInception'),
normalize,
])),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True, collate_fn=collate_fn)
logger = config.get_logger('train')
logger.info(model)
criterion_categorical = getattr(module_loss, config['loss'])
metrics = [getattr(module_metric, met) for met in config['metrics']]
optimizer = torch.optim.SGD(model.parameters(),
args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
lr_scheduler = config.init_obj('lr_scheduler', torch.optim.lr_scheduler, optimizer)
for param_group in optimizer.param_groups:
print(param_group['lr'])
trainer = Trainer(model, criterion_categorical, metrics, optimizer, fusion=args.input=='fusion',
categorical=args.categorical,
config=config,
data_loader=train_loader,
valid_data_loader=val_loader,
lr_scheduler=lr_scheduler)
trainer.train()
test_loader = torch.utils.data.DataLoader(
TSNDataSet("test", num_segments=args.num_segments, mask=args.mask, input=args.input,
new_length=data_length,
modality=args.modality,
image_tmpl="{:06d}.jpg" if args.modality in ["RGB", "RGBDiff", "depth"] else args.flow_prefix+"{}_{:05d}.jpg",
random_shift=False,
transform=torchvision.transforms.Compose([
GroupScale((int(224),int(224))),
# GroupCenterCrop(crop_size),
Stack(roll=args.arch == 'BNInception'),
ToTorchFormatTensor(div=args.arch != 'BNInception'),
normalize,
])),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True, collate_fn=collate_fn)
# load best model and evaluate on test
cp = torch.load(str(trainer.checkpoint_dir / 'model_best.pth'))
cp_state = cp['state_dict']
# if args.shift == False:
# for key in list(cp_state.keys()):
# cp_state[key.replace("module.","")] = cp_state[key]
# cp_state.pop(key)
model.load_state_dict(cp_state,strict=True)
print('loaded', str(trainer.checkpoint_dir / 'model_best.pth'), 'best_epoch', cp['epoch'])
trainer = Trainer(model, criterion_categorical, metrics, optimizer,
categorical=args.categorical, fusion=args.input=='fusion',
config=config,
data_loader=train_loader,
valid_data_loader=test_loader,
lr_scheduler=lr_scheduler)
trainer.test()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PyTorch Template')
parser.add_argument('-c', '--config', default=None, type=str,
help='config file path (default: None)')
parser.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
parser.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
###### Modified
parser.add_argument('--mask', default=False, action="store_true", help='apply medical mask on input')
parser.add_argument('--input', type=str, choices=['face', 'body', 'fullbody', 'fusion'])
parser.add_argument('--shift', default=False, action="store_true", help='use shift for models')
parser.add_argument('--shift_div', default=8, type=int, help='number of div for shift (default: 8)')
parser.add_argument('--shift_place', default='blockres', type=str, help='place for shift (default: stageres)')
parser.add_argument('--temporal_pool', default=False, action="store_true", help='add temporal pooling')
######
parser.add_argument('--modality', default='RGB', type=str, choices=['RGB', 'Flow', 'RGBDiff', 'depth'])
# ========================= Model Configs ==========================
parser.add_argument('--arch', type=str, default="resnet50", choices=['resnet50', 'mobilenet_v2'])
parser.add_argument('--weights', type=str, default=None)
parser.add_argument('--num_segments', type=int, default=5)
parser.add_argument('--consensus_type', type=str, default='avg',
choices=['avg', 'max', 'topk', 'identity', 'rnn', 'cnn'])
parser.add_argument('--k', type=int, default=3)
parser.add_argument('--data_length', type=int, default=5)
parser.add_argument('--modalities_fusion', type=str, default='cat')
parser.add_argument('--lossembed', type=str, default='mse')
parser.add_argument('--dropout', '--do', default=0.5, type=float,
metavar='DO', help='dropout ratio (default: 0.5)')
# ========================= Learning Configs ==========================
parser.add_argument('-b', '--batch-size', default=8, type=int,
metavar='N', help='mini-batch size (default: 8)')
parser.add_argument('--lr', '--learning-rate', default=0.01, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=5e-4, type=float,
metavar='W', help='weight decay (default: 5e-4)')
parser.add_argument('--clip-gradient', '--gd', default=None, type=float,
metavar='W', help='gradient norm clipping (default: disabled)')
parser.add_argument('--no_partialbn', '--npb', default=False, action="store_true")
parser.add_argument('--categorical', default=True, action="store_true")
parser.add_argument('--embed', default=False, action="store_true")
parser.add_argument('--num_feats', default=2048, type=int)
parser.add_argument('--audio', default=False, action="store_true")
# ========================= Monitor Configs ==========================
parser.add_argument('--print-freq', '-p', default=1, type=int,
metavar='N', help='print frequency (default: 1)')
parser.add_argument('--eval-freq', '-ef', default=5, type=int,
metavar='N', help='evaluation frequency (default: 5)')
# ========================= Runtime Configs ==========================
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--flow_prefix', default="", type=str)
CustomArgs = collections.namedtuple('CustomArgs', 'flags type target')
options = [
CustomArgs(['--exp_name'], type=str, target='name'),
]
config = ConfigParser.from_args(parser, options)
args = parser.parse_args()
main(args, config)