-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_pnet.py
98 lines (80 loc) · 2.91 KB
/
train_pnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# coding: utf-8
import sys
import time
from data.DataSouce import DataSource
from data.augmentation import *
from network import *
from util.Logger import Logger
import os
import random
import time
import mxnet as mx
from mxnet import autograd, gluon, init, nd
from mxnet.gluon import loss as gloss, nn
if not os.path.exists("./log/"):
os.mkdir("./log/")
log = Logger("./log/{}_{}.log".format(__file__.split('/')[-1],
time.strftime("%Y%m%d-%H%M%S"), time.localtime), level='debug').logger
train_batch = 600
display = 100
base_lr = 0.001
momentum = 0.9
weight_decay = 0.0005
max_iter = 150000
lr_steps = [50000, 80000, 100000, 120000, 140000]
lr_decay = 0.1
ctx = mx.gpu()
save_dir = "./models"
if not os.path.exists(save_dir):
os.mkdir(save_dir)
root_dir = r"dataset/"
INPUT_IMAGE_SIZE = 12
MEANS = [127.5, 127.5, 127.5]
train_anno_path = []
val_anno_path = []
train_anno_path += [os.path.join(root_dir, "train_faces_p/pos/image_pos")]
train_anno_path += [os.path.join(root_dir, "train_faces_p/pos/label_pos")]
train_anno_path += [os.path.join(root_dir, "train_faces_p/part/image_part")]
train_anno_path += [os.path.join(root_dir, "train_faces_p/part/label_part")]
train_anno_path += [os.path.join(root_dir, "train_faces_p/neg/image_neg")]
train_anno_path += [os.path.join(root_dir, "train_faces_p/neg/label_neg")]
start_epoch = 0
net = PNet1()
net.initialize( ctx=ctx)
net.hybridize()
trainer = gluon.Trainer(
net.collect_params(), 'sgd',
{'learning_rate': base_lr, 'wd': weight_decay, 'momentum': momentum})
lossFun = LossFun()
eval = Evaluate()
train_dataset = DataSource(train_anno_path, transform=Compose([
RandomMirror(0.5), SubtractFloatMeans(
MEANS), ToPercentCoords(), PermuteCHW()
]), ratio=6)
save = './models/pnet1_'
for k in range(start_epoch, max_iter + 1):
# net.train()
while lr_steps and k >= lr_steps[0]:
new_lr = trainer.learning_rate * lr_decay
lr_steps.pop(0)
trainer.set_learning_rate(new_lr)
images, targets = train_dataset.getbatch(train_batch)
images = images.as_in_context(ctx)
targets = targets.as_in_context(ctx)
with autograd.record():
cls, box = net(images)
cls = cls.reshape(cls.shape[0], cls.shape[1])
box = box.reshape(box.shape[0], box.shape[1])
cls_loss = lossFun.AddClsLoss(cls, targets)
box_loss = lossFun.AddRegLoss(box, targets)
loss = 3*cls_loss + box_loss
loss.backward()
trainer.step(1)
if k % 100 == 0:
cls_auc = eval.AddClsAccuracy(cls, targets)
reg_auc = eval.AddBoxMap(box, targets, 12, 12)
log.info('iter: {}, cls_loss: {:.4f}, box_loss: {:.4f}, lr: {}, cls_auc: {:.4f}, reg_auc: {:.4f} '.format(
k, cls_loss.asscalar(), box_loss.asscalar(), trainer.learning_rate,
cls_auc.asscalar(), reg_auc ) )
if k % 10000 == 0:
net.save_parameters(save + str(k))