-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfinetune.py
316 lines (288 loc) · 11.9 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import os
import sys
from typing import List
import fire
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import torch
import transformers
from datasets import load_dataset, load_from_disk
from dataclasses import dataclass, field
"""
Unused imports:
import torch.nn as nn
import bitsandbytes as bnb
"""
import shutil
from typing import Optional, Dict, Sequence
from peft import (
AdaLoraConfig,
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
prepare_model_for_int8_training,
set_peft_model_state_dict,
)
from transformers import LlamaForCausalLM, LlamaTokenizer, LlamaConfig
from commonsenseqa_prompter import CommonsensePrompter
from utils.prompter import Prompter
@dataclass
class DataCollatorForSupervisedDataset(object):
"""Collate examples for supervised fine-tuning."""
tokenizer: transformers.PreTrainedTokenizer
def __call__(self, instances: Sequence[Dict]):
input_ids, labels, words_ents_list, words_subtoken_map= tuple([instance[key] for instance in instances] for key in ("input_ids", "labels", "words_ents_list", "words_subtoken_map"))
input_ids = [torch.IntTensor(input_id) for input_id in input_ids]
words_ents_list = [torch.IntTensor(ent) for ent in words_ents_list]
words_subtoken_map = [torch.IntTensor(ent) for ent in words_subtoken_map]
labels = [torch.LongTensor(label) for label in labels]
input_ids = torch.nn.utils.rnn.pad_sequence(
input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id
)
labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=-100)
return dict(
input_ids=input_ids,
labels=labels,
attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
words_ents_list = words_ents_list,
words_subtoken_map = words_subtoken_map
)
def compute_metrics(pred):
#print("---------------------------")
predict_res = torch.Tensor(pred.predictions[0]) # size:[验证集样本量, label的token长度, vocab大小]
#print(predict_res.size())
pred_ids = predict_res.argmax(dim=2)
## 2.处理 pred.label_ids
labels_actual = torch.LongTensor(pred.label_ids)
## 3.计算accuracy
total_num = labels_actual.shape[0]
acc = torch.sum(torch.all(torch.eq(pred_ids, labels_actual), dim=1))/total_num
return {'accuracy': acc}
def train(
# model/data params
base_model: str = './llama2_7B', # the only required argument
data_path: str = "alpaca_data_cleaned.json",
output_dir: str = "",
embedding_path: str = "./data/kgs/conceptnet/ent.npy",
# training hyperparams
batch_size: int =128,
kg_path: str = "./data/kgs/conceptnet/concept.txt",
micro_batch_size: int = 2,
num_epochs: int = 3,
learning_rate: float = 3e-4,
cutoff_len: int = 256,
val_set_size: int = 1221,
# lora hyperparams
lora_r: int = 8,
lora_alpha: int = 16,
lora_dropout: float = 0.05,
lora_target_modules: List[str] = [
"q_proj",
"v_proj",
],
# llm hyperparams
train_on_inputs: bool = True, # if False, masks out inputs in loss
group_by_length: bool = False, # faster, but produces an odd training loss curve
# wandb params
wandb_project: str = "",
wandb_run_name: str = "",
wandb_watch: str = "", # options: false | gradients | all
wandb_log_model: str = "", # options: false | true
resume_from_checkpoint: str = "", # either training checkpoint or final adapter
prompt_template_name: str = "alpaca", # The prompt template to use, will default to alpaca.
):
if int(os.environ.get("LOCAL_RANK", 0)) == 0:
print(
f"Training Alpaca-LoRA model with params:\n"
f"base_model: {base_model}\n"
f"data_path: {data_path}\n"
f"output_dir: {output_dir}\n"
f"batch_size: {batch_size}\n"
f"micro_batch_size: {micro_batch_size}\n"
f"num_epochs: {num_epochs}\n"
f"learning_rate: {learning_rate}\n"
f"cutoff_len: {cutoff_len}\n"
f"val_set_size: {val_set_size}\n"
f"lora_r: {lora_r}\n"
f"lora_alpha: {lora_alpha}\n"
f"lora_dropout: {lora_dropout}\n"
f"lora_target_modules: {lora_target_modules}\n"
f"train_on_inputs: {train_on_inputs}\n"
f"group_by_length: {group_by_length}\n"
f"wandb_project: {wandb_project}\n"
f"wandb_run_name: {wandb_run_name}\n"
f"wandb_watch: {wandb_watch}\n"
f"wandb_log_model: {wandb_log_model}\n"
f"resume_from_checkpoint: {resume_from_checkpoint or False}\n"
f"prompt template: {prompt_template_name}\n"
)
assert (
base_model
), "Please specify a --base_model, e.g. --base_model='decapoda-research/llama-7b-hf'"
gradient_accumulation_steps = batch_size // micro_batch_size
#device_map = "balanced"
device_map={"": "mps"},
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
print("--------------------------")
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
gradient_accumulation_steps = gradient_accumulation_steps // world_size
# Check if parameter passed or if set within environ
use_wandb = len(wandb_project) > 0 or (
"WANDB_PROJECT" in os.environ and len(os.environ["WANDB_PROJECT"]) > 0
)
# Only overwrite environ if wandb param passed
if len(wandb_project) > 0:
os.environ["WANDB_PROJECT"] = wandb_project
if len(wandb_watch) > 0:
os.environ["WANDB_WATCH"] = wandb_watch
if len(wandb_log_model) > 0:
os.environ["WANDB_LOG_MODEL"] = wandb_log_model
shutil.copyfile(base_model + "/modeling_llama.py", os.path.abspath(sys.modules[LlamaForCausalLM.__module__].__file__), follow_symlinks=True)
model = LlamaForCausalLM.from_pretrained(
base_model,
#load_in_8bit=True,
torch_dtype=torch.float32,
device_map="auto",
)
#torch.set_default_tensor_type('torch.cuda.FloatTensor')
tokenizer = LlamaTokenizer.from_pretrained(base_model)
tokenizer.pad_token_id = (
0 # unk. we want this to be different from the eos token
)
#tokenizer.padding_side = "left" # Allow batched inference
prompter = Prompter(tokenizer, kg_path, prompt_template_name)
if lora_r == 32:
warmup_steps = 400
else:
warmup_steps = 200
def tokenize(prompt, add_eos_token=True):
# there's probably a way to do this with the tokenizer settings
# but again, gotta move fast
result = tokenizer(
prompt,
truncation=True,
max_length=cutoff_len,
padding=False,
return_tensors=None,
)
if (
result["input_ids"][-1] != tokenizer.eos_token_id
and len(result["input_ids"]) < cutoff_len
and add_eos_token
):
result["input_ids"].append(tokenizer.eos_token_id)
result["attention_mask"].append(1)
result["labels"] = result["input_ids"].copy()
words_ents_list, words_subtoken_map = prompter.get_mapping_ids(prompt, result["input_ids"], tokenizer)
try:
result["words_ents_list"] = torch.nn.utils.rnn.pad_sequence(words_ents_list, batch_first=True, padding_value=-1)
result["words_subtoken_map"] = torch.nn.utils.rnn.pad_sequence(words_subtoken_map, batch_first=True, padding_value=-1)
except:
result["words_ents_list"] = []
result["words_subtoken_map"] = []
#print(result)
return result
def generate_and_tokenize_prompt(data_point):
#print(data_point)
full_prompt = prompter.generate_prompt(
data_point["instruction"],
data_point["input"],
data_point["output"],
)
tokenized_full_prompt = tokenize(full_prompt)
if not train_on_inputs:
user_prompt = prompter.generate_prompt(
data_point["instruction"], data_point["input"]
)
tokenized_user_prompt = tokenize(user_prompt, add_eos_token=False)
user_prompt_len = len(tokenized_user_prompt["input_ids"])
tokenized_user_prompt["input_ids"] = torch.IntTensor(tokenized_user_prompt["input_ids"])
tokenized_full_prompt["labels"] = [
-100
] * user_prompt_len + tokenized_full_prompt["labels"][
user_prompt_len:
] # could be sped up, probably
tokenized_user_prompt["labels"] = torch.IntTensor(tokenized_user_prompt["labels"])
tokenized_full_prompt["input_ids"] = torch.IntTensor(tokenized_full_prompt["input_ids"])
tokenized_full_prompt["labels"] = torch.IntTensor(tokenized_full_prompt["labels"])
#print(tokenized_full_prompt)
return tokenized_full_prompt
#model = prepare_model_for_int8_training(model)
config = LoraConfig(
r=lora_r,
lora_alpha=lora_alpha,
target_modules=lora_target_modules,
lora_dropout=lora_dropout,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
print(model)
if data_path.endswith(".json") or data_path.endswith(".jsonl"):
data = load_dataset("json", data_files=data_path)
else:
data = load_dataset(data_path)
model.print_trainable_parameters() # Be more transparent about the % of trainable params.
if val_set_size > 0:
train_val = data["train"].train_test_split(
test_size=val_set_size, shuffle=True, seed=42
)
train_data = (
train_val["train"].shuffle().map(generate_and_tokenize_prompt, num_proc=8)
)
val_data = (
train_val["test"].shuffle().map(generate_and_tokenize_prompt, num_proc=8)
)
else:
train_data = data["train"].shuffle().map(generate_and_tokenize_prompt, num_proc=8)
val_data = None
trainer = transformers.Trainer(
model=model,
train_dataset=train_data,
eval_dataset=val_data,
#compute_metrics = compute_metrics,
args=transformers.TrainingArguments(
remove_unused_columns = False,
per_device_train_batch_size=micro_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
warmup_steps=warmup_steps,
num_train_epochs=num_epochs,
learning_rate=learning_rate,
#fp16=True,
logging_steps=50,
optim="adamw_torch",
evaluation_strategy="steps" if val_set_size > 0 else "no",
save_strategy="steps",
eval_steps=5000000 if val_set_size > 0 else None,
save_steps=5000000,
output_dir=output_dir,
save_total_limit=3,
load_best_model_at_end=False,
ddp_find_unused_parameters=False if ddp else None,
group_by_length=group_by_length,
report_to="wandb" if use_wandb else None,
run_name=wandb_run_name if use_wandb else None,
),
#data_collator=transformers.DataCollatorForSeq2Seq(
# tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
#),
data_collator=DataCollatorForSupervisedDataset(tokenizer=tokenizer)
)
#model.config.use_cache = True
old_state_dict = model.state_dict
model.state_dict = (
lambda self, *_, **__: get_peft_model_state_dict(
self, old_state_dict()
)
).__get__(model, type(model))
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
trainer.train(resume_from_checkpoint=(resume_from_checkpoint or False))
model.save_pretrained(output_dir)
#save_KG_module(model.base_model.model.model.layers, output_dir)
print(
"\n If there's a warning about missing keys above, please disregard :)"
)
if __name__ == "__main__":
fire.Fire(train)