-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunsupervised_dense.py
87 lines (70 loc) · 3.35 KB
/
unsupervised_dense.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import faiss
import numpy as np
from sentence_transformers import SentenceTransformer
import os
import json
import re
from sparse import read_qrels_origin, get_qrels_multi, output_eval_result
from sentence_transformers.util import cos_sim
def read_dataset_info(filename='dataset_corpus_info.json'):
dataset_info_dict = {}
with open(filename, 'r') as f:
data = json.load(f)
for item in data:
dataset_info_dict[item['id']] = item['content']
return dataset_info_dict
def read_query_info(filename='query_info.json'):
query_info_dict = {}
with open(filename, 'r') as f:
data = json.load(f)
for item in data:
query_info_dict[item['id']] = item['content']
return query_info_dict
def encode_texts(model, texts, prompt_name=None):
if prompt_name:
embeddings = model.encode(texts, normalize_embeddings=True, prompt_name=prompt_name)
else:
embeddings = model.encode(texts, normalize_embeddings=True)
return embeddings
def unsupervised_dense_search(model_name, save_path, top_k=20):
dataset_info_dict = read_dataset_info()
query_info_dict = read_query_info()
dataset_ids, corpus = list(dataset_info_dict.keys()), list(dataset_info_dict.values())
query_ids, query_content = list(query_info_dict.keys()), list(query_info_dict.values())
if 'stella_en_1.5B_v5' in model_name:
model = SentenceTransformer(model_name, trust_remote_code=True).cuda()
query_embeddings = encode_texts(model, query_content, prompt_name="s2p_query")
document_embeddings = encode_texts(model, corpus)
elif 'thenlper/gte-large' in model_name:
model = SentenceTransformer(model_name)
query_embeddings = encode_texts(model, query_content)
document_embeddings = encode_texts(model, corpus)
elif 'bge-large-en-v1.5' in model_name:
model = SentenceTransformer(model_name)
instruction = "Represent this sentence for searching relevant passages:"
query_embeddings = encode_texts(model, [instruction+q for q in query_content])
document_embeddings = encode_texts(model, corpus)
d = document_embeddings.shape[1]
index = faiss.index_factory(d, "Flat", faiss.METRIC_INNER_PRODUCT)
index.train(document_embeddings)
index.add(document_embeddings)
distances, indices = index.search(query_embeddings, top_k)
# print(distances)
results = {}
for i, query_id in enumerate(query_ids):
results[query_id] = {}
for j in range(top_k):
dataset_id = dataset_ids[indices[i, j]]
score = distances[i, j]
results[query_id][dataset_id] = float(score)
with open(save_path, 'w') as f:
json.dump(results, f)
print('='*10 + model_name + '='*10)
qrels_kw, qrels_ds = read_qrels_origin()
qrels_dict = get_qrels_multi(qrels_kw, qrels_ds)
metrics = ['map_cut_5', 'ndcg_cut_5', 'P_5', 'recall_5', 'map_cut_10', 'ndcg_cut_10', 'P_10', 'recall_10']
output_eval_result(qrels_dict, results, metrics)
if __name__ == "__main__":
unsupervised_dense_search(model_name='BAAI/bge-large-en-v1.5', save_path='bge_results.json', top_k=20)
# unsupervised_dense_search(model_name='thenlper/gte-large', save_path='gte_results.json', top_k=20)
# unsupervised_dense_search(model_name='dunzhang/stella_en_1.5B_v5', save_path='rerank_stella_100.json', top_k=100)