-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeature_ablation.py
487 lines (421 loc) · 21 KB
/
feature_ablation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
import re
import os
import json
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from rank_bm25 import BM25Okapi
import math
import numpy as np
from sentence_transformers import SentenceTransformer
from ragatouille import RAGPretrainedModel
from transformers import AutoTokenizer
import subprocess
from tqdm import tqdm
fields = ['title', 'description', 'tags', 'author', 'schema']
def read_dataset_metadata(filename='dataset_metadata.json', sep='\n'):
dataset_info_dict = {}
with open(filename, 'r') as f:
data = json.load(f)
for item in data:
dataset_id = item[0]
info = sep.join(item[1:])
dataset_info_dict[dataset_id] = info
return dataset_info_dict
def replace_sep(text, sep='\n'):
pattern = r' \[SEP\] '
return sep.join(re.split(pattern, text))
def read_query_info(filename, dataset_info_dict):
query_info_dict = {}
with open(filename, 'r') as f:
data = json.load(f)
for item in data:
query_info_dict[item['id']] = {
'content': item['content'],
'query': item['keywords'],
'dataset': dataset_info_dict[item['dataset_id']],
}
return query_info_dict
def read_dataset_mask_info(filename='dataset_mask_info.json', remove_sep=True):
dataset_mask_info_dict = {}
pattern = r' \[SEP\] | '
with open(filename, 'r') as f:
data = json.load(f)
if not remove_sep:
dataset_mask_info_dict = data
else:
for dataset_id, mask_dict in data.items():
dataset_mask_info_dict[dataset_id] = {k: replace_sep(v) for k, v in mask_dict.items()}
return dataset_mask_info_dict
def read_qrels_origin(filename='qrels.txt'):
qrels_kw, qrels_ds = {}, {}
with open(filename, 'r') as f:
for line in f:
if not line:
continue
data = line.split('\t')
query_id, dataset_id, rel_k, rel_d = data[0], data[3], data[4], data[5]
if query_id not in qrels_kw:
qrels_kw[query_id] = {}
qrels_kw[query_id][dataset_id] = int(rel_k)
if query_id not in qrels_ds:
qrels_ds[query_id] = {}
qrels_ds[query_id][dataset_id] = int(rel_d)
return qrels_kw, qrels_ds
def read_explain_pair(run_results_filename, qrels_filename):
with open(run_results_filename, 'r') as f:
run_dict = json.load(f)
qrels_kw, qrels_ds = read_qrels_origin(qrels_filename)
exp_pair= []
for query_id, rel_dict in run_dict.items():
for dataset_id, score in rel_dict.items():
if qrels_kw[query_id].get(dataset_id, 0) > 0 or qrels_ds[query_id].get(dataset_id, 0) > 0:
exp_pair.append((query_id, dataset_id, score))
return exp_pair
def similarity_bm25(bm25, document_a, document_b):
"""Computes BM25 score of given `document A` in relation to given `document B` .
Parameters
----------
bm25: BM25Okapi
document_a : list of str
Document to be scored.
document_b : list of str
Document to be scored.
Returns
-------
float
BM25 score.
"""
PARAM_K1 = bm25.k1
PARAM_B = bm25.b
EPSILON = bm25.epsilon
score = 0
doc_freqs = {}
for word in document_b:
if word not in doc_freqs:
doc_freqs[word] = 0
doc_freqs[word] += 1
freq = 1
default_idf = math.log(bm25.corpus_size - freq + 0.5) - math.log(freq + 0.5)
for word in document_a:
if word not in doc_freqs:
continue
score += (bm25.idf.get(word,default_idf) * doc_freqs[word] * (PARAM_K1 + 1)
/ (doc_freqs[word] + PARAM_K1 * (1 - PARAM_B + PARAM_B * len(document_b) / bm25.avgdl)))
return score
def bm25_explain(save_path):
dataset_info_dict = read_dataset_metadata(sep='\n')
query_info_dict_all = read_query_info('shap_lime/query_info.json', dataset_info_dict)
dataset_mask_info_dict = read_dataset_mask_info(remove_sep=True)
run_results_filename = 'shap_lime/results/bm25_results.json'
qrels_filename = '../dense/coCondenser/qrels.txt'
exp_pair = read_explain_pair(run_results_filename, qrels_filename)
dataset_ids, corpus = dataset_info_dict.keys(), dataset_info_dict.values()
tokenized_corpus = [doc.split() for doc in corpus]
bm25 = BM25Okapi(tokenized_corpus)
def compute_mask_scores(query_info_dict):
results_pair = {}
for query_id, dataset_id, score in exp_pair:
tokenized_query = replace_sep(query_info_dict[query_id], sep='\n').split()
mask_info_dict = dataset_mask_info_dict[dataset_id]
tokenized_dataset = replace_sep(mask_info_dict['full'], '\n').split()
similarity_full = similarity_bm25(bm25, tokenized_query, tokenized_dataset) + np.finfo(np.float64).eps
if query_id not in results_pair.keys():
results_pair[query_id] = {}
results_pair[query_id][dataset_id] = {'full': similarity_full}
for field in fields:
mask_info = mask_info_dict[field]
tokenized_doc = replace_sep(mask_info, '\n').split()
similarity_mask = similarity_bm25(bm25, tokenized_query, tokenized_doc)
results_pair[query_id][dataset_id][field] = similarity_mask / similarity_full
return results_pair
query_info_dict_qd = {k: v['content'] for k, v in query_info_dict_all.items()}
query_info_dict_q = {k: v['query'] for k, v in query_info_dict_all.items()}
query_info_dict_d = {k: v['dataset'] for k, v in query_info_dict_all.items()}
results = {
'query-dataset': compute_mask_scores(query_info_dict_qd),
'query': compute_mask_scores(query_info_dict_q),
'dataset': compute_mask_scores(query_info_dict_d),
}
with open(save_path, 'w') as f:
json.dump(results, f, indent=2)
def tfidf_explain(save_path):
dataset_info_dict = read_dataset_metadata(sep='\n')
query_info_dict_all = read_query_info('shap_lime/query_info.json', dataset_info_dict)
dataset_mask_info_dict = read_dataset_mask_info(remove_sep=True)
run_results_filename = 'shap_lime/results/tfidf_results.json'
qrels_filename = '../dense/coCondenser/qrels.txt'
exp_pair = read_explain_pair(run_results_filename, qrels_filename)
dataset_ids, corpus = dataset_info_dict.keys(), dataset_info_dict.values()
vectorizer = TfidfVectorizer()
vectorizer.fit(corpus)
def compute_mask_scores(query_info_dict):
results_pair = {}
for query_id, dataset_id, score in exp_pair:
query_info = replace_sep(query_info_dict[query_id], sep='\n')
mask_info_dict = dataset_mask_info_dict[dataset_id]
dataset_info = replace_sep(mask_info_dict['full'], '\n')
query_vector = vectorizer.transform([query_info])
dataset_vector = vectorizer.transform([dataset_info])
similarity_full = cosine_similarity(query_vector, dataset_vector).tolist()[0][0] + np.finfo(np.float64).eps
if query_id not in results_pair.keys():
results_pair[query_id] = {}
results_pair[query_id][dataset_id] = {'full': similarity_full}
for field in fields:
mask_info = replace_sep(mask_info_dict[field], '\n')
mask_vector = vectorizer.transform([mask_info])
similarity_mask = cosine_similarity(query_vector, mask_vector).tolist()[0][0]
results_pair[query_id][dataset_id][field] = similarity_mask / similarity_full
return results_pair
query_info_dict_qd = {k: v['content'] for k, v in query_info_dict_all.items()}
query_info_dict_q = {k: v['query'] for k, v in query_info_dict_all.items()}
query_info_dict_d = {k: v['dataset'] for k, v in query_info_dict_all.items()}
results = {
'query-dataset': compute_mask_scores(query_info_dict_qd),
'query': compute_mask_scores(query_info_dict_q),
'dataset': compute_mask_scores(query_info_dict_d),
}
with open(save_path, 'w') as f:
json.dump(results, f, indent=2)
def pretrained_model_explain(model_name, run_results_filename, save_path):
dataset_info_dict = read_dataset_metadata(sep=' [SEP] ')
query_info_dict_all = read_query_info('shap_lime/query_info.json', dataset_info_dict)
dataset_mask_info_dict = read_dataset_mask_info(remove_sep=False)
qrels_filename = '../dense/coCondenser/qrels.txt'
exp_pair = read_explain_pair(run_results_filename, qrels_filename)
if 'stella_en_1.5B_v5' in model_name:
model = SentenceTransformer(model_name, trust_remote_code=True).cuda()
def encode_query(texts: list):
embeddings = model.encode(texts, normalize_embeddings=True, prompt_name="s2p_query")
return embeddings
elif 'thenlper/gte-large' in model_name:
model = SentenceTransformer(model_name)
def encode_query(texts: list):
embeddings = model.encode(texts, normalize_embeddings=True)
return embeddings
elif 'bge-large-en-v1.5' in model_name:
model = SentenceTransformer(model_name)
def encode_query(texts: list):
instruction = "Represent this sentence for searching relevant passages:"
texts = [instruction+q for q in texts]
embeddings = model.encode(texts, normalize_embeddings=True)
return embeddings
def compute_mask_scores(query_info_dict):
results_pair = {}
for query_id, dataset_id, score in exp_pair:
query_info = query_info_dict[query_id]
mask_info_dict = dataset_mask_info_dict[dataset_id]
dataset_info = mask_info_dict['full']
query_vector = encode_query([query_info])
dataset_vector = model.encode([dataset_info], normalize_embeddings=True)
similarity = query_vector @ dataset_vector.T
similarity_full = similarity[0, 0] + np.finfo(np.float64).eps
if query_id not in results_pair.keys():
results_pair[query_id] = {}
results_pair[query_id][dataset_id] = {'full': similarity_full}
for field in fields:
mask_info = mask_info_dict[field]
mask_vector = model.encode([mask_info], normalize_embeddings=True)
similarity = query_vector @ mask_vector.T
similarity_mask = similarity[0, 0]
results_pair[query_id][dataset_id][field] = similarity_mask / similarity_full
return results_pair
query_info_dict_qd = {k: v['content'] for k, v in query_info_dict_all.items()}
query_info_dict_q = {k: v['query'] for k, v in query_info_dict_all.items()}
query_info_dict_d = {k: v['dataset'] for k, v in query_info_dict_all.items()}
results = {
'query-dataset': compute_mask_scores(query_info_dict_qd),
'query': compute_mask_scores(query_info_dict_q),
'dataset': compute_mask_scores(query_info_dict_d),
}
with open(save_path, 'w') as f:
json.dump(results, f, indent=2)
def tevatron_explain(ckpt_path, run_results_filename, save_path, temp_data_path):
dataset_info_dict = read_dataset_metadata(sep=' [SEP] ')
query_info_dict_all = read_query_info('shap_lime/query_info.json', dataset_info_dict)
dataset_mask_info_dict = read_dataset_mask_info(remove_sep=False)
qrels_filename = '../dense/coCondenser/qrels.txt'
exp_pair = read_explain_pair(run_results_filename, qrels_filename)
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased', use_fast=True)
def compute_mask_scores():
query_info_dict_all_encoded = {outer_key: {inner_key: tokenizer.encode(inner_value, add_special_tokens=False, max_length=512, truncation=True) for inner_key, inner_value in inner_dict.items()} for outer_key, inner_dict in query_info_dict_all.items()}
results_pair = {}
with tqdm(total=len(exp_pair)) as pbar:
for query_id, dataset_id, score in exp_pair:
mask_info_dict = dataset_mask_info_dict[dataset_id]
mask_info_dict_encoded = {k: tokenizer.encode(v, add_special_tokens=False, max_length=512, truncation=True) for k, v in mask_info_dict.items()}
# build corpus
corpus_path = f'{temp_data_path}/bert/corpus'
os.makedirs(corpus_path, exist_ok=True)
f = open(os.path.join(corpus_path, 'split00.json'), 'w')
for document_id, document_encoded in mask_info_dict_encoded.items():
encoded = {
'text_id': document_id,
'text': document_encoded
}
f.write(json.dumps(encoded) + '\n')
f.close()
# build query
query_path = f'{temp_data_path}/bert/query'
os.makedirs(query_path, exist_ok=True)
f = open(os.path.join(query_path, 'query.json'), 'w')
query_info_dict = query_info_dict_all_encoded[query_id]
for key, text in query_info_dict.items():
encoded = {
'text_id': f'{query_id}_{key}',
'text': text
}
f.write(json.dumps(encoded) + '\n')
f.close()
# encode corpus
encoding_path = f'{temp_data_path}/encoding'
os.makedirs(os.path.join(encoding_path, 'corpus'), exist_ok=True)
os.makedirs(os.path.join(encoding_path, 'query'), exist_ok=True)
command = [
"python", "-m", "tevatron.driver.encode",
"--output_dir", "./retriever_model",
"--model_name_or_path", ckpt_path,
"--fp16",
"--p_max_len", "512",
"--per_device_eval_batch_size", "128",
"--encode_in_path", os.path.join(corpus_path, 'split00.json'),
"--encoded_save_path", os.path.join(encoding_path, 'corpus', 'split00.json')
]
result = subprocess.run(command, capture_output=True, text=True)
# encode query
command = [
"python", "-m", "tevatron.driver.encode",
"--output_dir", "./retriever_model",
"--model_name_or_path", ckpt_path,
"--fp16",
"--q_max_len", "512",
"--encode_is_qry",
"--per_device_eval_batch_size", "128",
"--encode_in_path", os.path.join(query_path, 'query.json'),
"--encoded_save_path", os.path.join(encoding_path, 'query', 'qry.pt')
]
result = subprocess.run(command, capture_output=True, text=True)
# index search
tsv_path = f'{temp_data_path}/rank.tsv'
command = [
"python", "-m", "tevatron.faiss_retriever",
"--query_reps", os.path.join(encoding_path, 'query', 'qry.pt'),
"--passage_reps", os.path.join(encoding_path, 'corpus', 'split00.json'),
"--depth", str(len(mask_info_dict)),
"--batch_size", "-1",
"--save_text",
"--save_ranking_to", tsv_path,
]
result = subprocess.run(command, capture_output=True, text=True)
search_scores = {}
with open(tsv_path, 'r') as f:
for line in f:
if line:
query_id, document_id, score = line.strip().split()
if query_id not in search_scores:
search_scores[query_id] = {}
search_scores[query_id][document_id] = float(score)
for query_id in search_scores.keys():
similarity_full = search_scores[query_id]['full'] + np.finfo(np.float64).eps
if query_id not in results_pair.keys():
results_pair[query_id] = {}
results_pair[query_id][dataset_id] = {'full': similarity_full}
for field in fields:
results_pair[query_id][dataset_id][field] = search_scores[query_id][field] / similarity_full
pbar.update(1)
return results_pair
results_pair = compute_mask_scores()
query_info_dict_qd, query_info_dict_q, query_info_dict_d = {}, {}, {}
for k, v in results_pair.items():
query_id, query_type = k.split('_')
if query_type == 'content':
query_info_dict_qd[query_id] = v
elif query_type == 'query':
query_info_dict_q[query_id] = v
elif query_type == 'dataset':
query_info_dict_d[query_id] = v
results = {
'query-dataset': query_info_dict_qd,
'query': query_info_dict_q,
'dataset': query_info_dict_d,
}
with open(save_path, 'w') as f:
json.dump(results, f, indent=2)
def ColBERTv2_explain(ckpt_path, run_results_filename, save_path):
RAG = RAGPretrainedModel.from_pretrained(ckpt_path)
dataset_info_dict = read_dataset_metadata(sep=' [SEP] ')
query_info_dict_all = read_query_info('shap_lime/query_info.json', dataset_info_dict)
dataset_mask_info_dict = read_dataset_mask_info(remove_sep=False)
qrels_filename = '../dense/coCondenser/qrels.txt'
exp_pair = read_explain_pair(run_results_filename, qrels_filename)
def compute_mask_scores(query_info_dict):
results_pair = {}
for query_id, dataset_id, score in exp_pair:
query_info = query_info_dict[query_id]
mask_info_dict = dataset_mask_info_dict[dataset_id]
search_results = RAG.rerank(
query=query_info,
documents=list(mask_info_dict.values()),
k=len(mask_info_dict)
)
if query_id not in results_pair.keys():
results_pair[query_id] = {}
results_pair[query_id][dataset_id] = {}
mask_info_dict_keys = list(mask_info_dict.keys())
for sr in search_results:
field = mask_info_dict_keys[sr['result_index']]
score = sr['score']
results_pair[query_id][dataset_id][field] = score
score_full = results_pair[query_id][dataset_id]['full']
results_pair[query_id][dataset_id] = {k: v/score_full for k, v in results_pair[query_id][dataset_id].items() if k in fields}
return results_pair
query_info_dict_qd = {k: v['content'] for k, v in query_info_dict_all.items()}
query_info_dict_q = {k: v['query'] for k, v in query_info_dict_all.items()}
query_info_dict_d = {k: v['dataset'] for k, v in query_info_dict_all.items()}
results = {
'query-dataset': compute_mask_scores(query_info_dict_qd),
'query': compute_mask_scores(query_info_dict_q),
'dataset': compute_mask_scores(query_info_dict_d),
}
with open(save_path, 'w') as f:
json.dump(results, f, indent=2)
if __name__ == "__main__":
bm25_explain(save_path='output/bm25_explain_ablation.json')
# tfidf_explain(save_path='output/tfidf_explain_ablation.json')
# pretrained_model_explain(
# model_name='BAAI/bge-large-en-v1.5',
# run_results_filename='shap_lime/results/bge_results.json',
# save_path='output/bge_explain_ablation.json'
# )
# pretrained_model_explain(
# model_name='thenlper/gte-large',
# run_results_filename='shap_lime/results/gte_results.json',
# save_path='output/gte_explain_ablation.json'
# )
# ckpt_path = '/home/qshi/ds_rec_benchmark/datasetRec/dense/coCondenser/coCondenser_ckpt'
# run_results_path = '/home/qshi/ds_rec_benchmark/datasetRec/dense/coCondenser/results/coCondenser'
# for fold in list(range(5)) + [100]: #
# print(f'coCondenser fold: {fold}')
# tevatron_explain(
# ckpt_path=os.path.join(ckpt_path, f'fold_{fold}'),
# run_results_filename=os.path.join(run_results_path, f'fold_{fold}.json'),
# save_path=f'output/coCondenser_explain_ablation_fold_{fold}.json',
# temp_data_path='.temp_ccds',
# )
# ckpt_path = '/home/qshi/ds_rec_benchmark/datasetRec/dense/coCondenser/dpr_ckpt'
# run_results_path = '/home/qshi/ds_rec_benchmark/datasetRec/dense/coCondenser/results/dpr'
# for fold in list(range(5)) + [100]: #
# print(f'dpr fold: {fold}')
# tevatron_explain(
# ckpt_path=os.path.join(ckpt_path, f'fold_{fold}'),
# run_results_filename=os.path.join(run_results_path, f'fold_{fold}.json'),
# save_path=f'output/dpr_explain_ablation_fold_{fold}.json',
# temp_data_path='.temp_dpr',
# )
# for fold in list(range(5)) + [100]: #
# print(f'fold: {fold}')
# ColBERTv2_explain(
# ckpt_path=f'checkpoints/fold_{fold}',
# run_results_filename=f'results/ColBERTv2/fold_{fold}.json',
# save_path=f'explain/colbert_explain_ablation_fold_{fold}.json'
# )
pass