-
Notifications
You must be signed in to change notification settings - Fork 1
/
vae.py
179 lines (154 loc) · 7.07 KB
/
vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import os
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torchvision
from torchvision import datasets, transforms
from tensorboardX import SummaryWriter
from datasets import DSprites, Reconstruction
from datasets.celeba import CelebA
from models.vae_dsprites import VAE as VAE64
from models.vae_mnist import VAE as VAE28
from utils.torch_utils import to_var
from utils.io_utils import get_latest_checkpoint
parser = argparse.ArgumentParser(description='VAE')
parser.add_argument('--batch-size', type=int, default=100, metavar='N',
help='Input batch size for training (default: 100)')
parser.add_argument('--num-steps', type=int, default=200000, metavar='N',
help='Number training steps (default: 500000)')
parser.add_argument('--log-interval', type=int, default=200, metavar='N',
help='Log interval, number of steps before save/image '
'in Tensorboard (default: 200)')
parser.add_argument('--beta', type=float, default=1, metavar='N',
help='Value of the hyperparameter beta (default: 1)')
parser.add_argument('--obs', type=str, default='normal',
help='Type of the observation model (in [normal, '
'bernoulli], default: normal)')
parser.add_argument('--pretrained', type=str, default=None,
help='Path to pretrained model')
parser.add_argument('--C', type=float, default=None,
help='Parameter C, in nats, for improved beta-VAE')
parser.add_argument('--dataset', type=str, default='dsprites',
help='Dataset to train the VAE on (default: dsprites)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='Disables CUDA training')
parser.add_argument('--no-tsne', action='store_true', default=False,
help='Disables TSNE')
parser.add_argument('--seed', type=int, default=7691, metavar='S',
help='Random seed (default: 7691)')
parser.add_argument('--output-folder', type=str, default='vae',
help='Name of the output folder (default: vae)')
parser.add_argument('--anirudh', action='store_true', default=False,
help='does anirudth algorithm')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
if args.C is not None:
args.beta = 1.
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
if not args.no_tsne:
from matplotlib import pyplot as plt
from sklearn.manifold import TSNE
if 'SLURM_JOB_ID' in os.environ:
args.output_folder += '-{0}'.format(os.environ['SLURM_JOB_ID'])
if not os.path.exists('./.saves/{0}'.format(args.output_folder)):
os.makedirs('./.saves/{0}'.format(args.output_folder))
# Data loading
if args.dataset == 'fashion-mnist':
dataset = datasets.FashionMNIST(root='./data/fashion-mnist',
train=True, transform=transforms.ToTensor(), download=True)
model = VAE28(num_channels=1, zdim=10)
elif args.dataset == 'mnist':
dataset = datasets.MNIST(root='./data/mnist',
train=True, transform=transforms.ToTensor(), download=True)
model = VAE28(num_channels=1, zdim=10)
elif args.dataset == 'dsprites':
dataset = DSprites(root='./data/dsprites',
transform=transforms.ToTensor(), download=True)
model = VAE64(num_channels=1, zdim=10)
elif args.dataset == 'celeba':
dataset = CelebA(root='./data/celeba',
transform=transforms.ToTensor())
model = VAE64(num_channels=3, zdim=32)
args.obs = 'normal'
else:
raise ValueError('The `dataset` argument must be fashion-mnist, mnist, dsprites or celeba')
data_loader = torch.utils.data.DataLoader(dataset=dataset,
batch_size=args.batch_size, shuffle=True)
# Model
if args.cuda:
model.cuda()
if args.pretrained is not None:
with open(get_latest_checkpoint(args.pretrained), 'r') as f:
state_dict = torch.load(f)
state_dict = state_dict['model']
model.load(state_dict)
writer = SummaryWriter('./.logs/{0}'.format(args.output_folder))
# Optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=5e-4)
# Fixed input for Tensorboard
fixed_x, fixed_label = next(iter(data_loader))
fixed_grid = torchvision.utils.make_grid(fixed_x, normalize=True, scale_each=True)
writer.add_image('original', fixed_grid, 0)
fixed_x = to_var(fixed_x, args.cuda)
steps = 0
while steps < args.num_steps:
for images, _ in data_loader:
images = to_var(images, args.cuda)
logits, mu, log_var, z = model(images)
if args.anirudh:
logits, mu, log_var, z = vae(logits.detach())
if args.obs == 'normal':
# QKFIX: We assume here that the image is in B&W
reconst_loss = F.mse_loss(F.sigmoid(logits), images, size_average=False)
elif args.obs == 'bernoulli':
reconst_loss = F.binary_cross_entropy_with_logits(logits, images, size_average=False)
else:
raise ValueError('Argument `obs` must be in [normal, bernoulli]')
reconst_loss /= args.batch_size
kl_divergence = 0.5 * args.beta * torch.sum(mu ** 2 + torch.exp(log_var) - log_var - 1)
kl_divergence /= args.batch_size
if args.C is not None:
C = min(args.C * float(steps) / 100000, args.C)
gamma = 1000
loss = reconst_loss + gamma * torch.abs(kl_divergence - C)
writer.add_scalar('C', C, steps)
else:
loss = reconst_loss + kl_divergence
optimizer.zero_grad()
loss.backward()
optimizer.step()
writer.add_scalar('loss', loss.data[0], steps)
writer.add_scalar('reconst_loss', reconst_loss.data[0], steps)
writer.add_scalar('kl_divergence', kl_divergence.data[0], steps)
writer.add_histogram('mu', mu.data, steps)
writer.add_histogram('log_var', log_var.data, steps)
if (steps > 0) and (steps % args.log_interval == 0):
# Save the reconstructed images
logits, _, _, z = model(fixed_x)
grid = torchvision.utils.make_grid(F.sigmoid(logits).data,
normalize=True, scale_each=True)
writer.add_image('reconstruction', grid, steps)
if not args.no_tsne:
z_tsne = TSNE(n_components=2).fit_transform(z.data.cpu().numpy()[:,:,0,0])
plt.scatter(z_tsne[:,0], z_tsne[:,1], c=fixed_label.numpy())
directory = os.path.join("./tsnes", output_folder, args.dataset)
if not os.path.exists(directory):
os.makedirs(directory)
plt.savefig(os.path.join(directory, "tsne_%i" % steps))
# Save the checkpoint
state = {
'steps': steps,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'loss': loss.data[0],
'args': args
}
torch.save(state, './.saves/{0}/{0}_{1:d}.ckpt'.format(
args.output_folder, steps))
steps += 1
if steps >= args.num_steps:
break