-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcompute-metric.py
124 lines (105 loc) · 4.39 KB
/
compute-metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torchvision
from torchvision import transforms
from tensorboardX import SummaryWriter
from datasets import DSprites, Reconstruction
from datasets.celeba import CelebA
from datasets.sampler import FactorSampler
from models.vae_dsprites import VAE as VAE64
from utils.torch_utils import to_var
from utils.io_utils import get_latest_checkpoint
parser = argparse.ArgumentParser(description='metric')
parser.add_argument('--batch-size', type=int, default=100, metavar='N',
help='Input batch size for training (default: 100)')
parser.add_argument('--batch-size2', type=int, default=50, metavar='N',
help='Input batch size for training (default: 50)')
parser.add_argument('--load', type=str, default=None,
help='Save folder for the model')
parser.add_argument('--metric', type=str, default=None,
help='Save folder for the metric')
parser.add_argument('--dataset', type=str, default='dsprites',
help='Dataset to train the VAE on (default: dsprites)')
parser.add_argument('--num-steps', type=int, default=50, metavar='N',
help='Number training steps (default: 50)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='Disables CUDA training')
parser.add_argument('--seed', type=int, default=7691, metavar='S',
help='Random seed (default: 7691)')
parser.add_argument('--output-folder', type=str, default='metric',
help='Name of the output folder (default: metric)')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
if 'SLURM_JOB_ID' in os.environ:
args.output_folder += '-{0}'.format(os.environ['SLURM_JOB_ID'])
if not os.path.exists('./.saves/{0}'.format(args.output_folder)):
os.makedirs('./.saves/{0}'.format(args.output_folder))
# Data loading
if args.dataset == 'dsprites':
dataset = DSprites(root='./data/dsprites',
transform=transforms.ToTensor(), download=True)
batch_sampler = FactorSampler('data/dsprites/processed/factors.hdf5',
batch_size=2 * args.batch_size2)
vae = VAE64(num_channels=1, zdim=10)
elif args.dataset == 'celeba':
dataset = CelebA(root='./data/celeba',
transform=transforms.ToTensor())
batch_sampler = FactorSampler('data/celeba/processed/factors.hdf5',
batch_size=2 * args.batch_size2)
vae = VAE64(num_channels=3, zdim=32)
else:
raise ValueError('The `dataset` argument must be dsprites or celeba')
data_loader = torch.utils.data.DataLoader(dataset=dataset,
batch_sampler=batch_sampler)
# Model
if args.cuda:
vae.cuda()
with open(get_latest_checkpoint(args.load), 'r') as f:
state_dict = torch.load(f)
state_dict = state_dict['model']
vae.load_state_dict(state_dict)
vae.eval()
metric = nn.Linear(vae.zdim, batch_sampler.num_factors)
if args.cuda:
metric.cuda()
with open(get_latest_checkpoint(args.metric), 'r') as f:
state_dict = torch.load(f)
state_dict = state_dict['model']
metric.load_state_dict(state_dict)
metric.eval()
accs = []
for _ in range(args.num_steps):
diffs, factors = [], []
for images, targets in data_loader:
images = to_var(images, args.cuda, volatile=True)
latents = vae.encode(images)
z1, z2 = torch.chunk(latents, 2, dim=0)
diff = torch.mean(torch.abs(z1 - z2), dim=0)
diffs.append(diff.data)
targets_np = targets.numpy()
common_factors = np.all(targets_np == targets_np[0], axis=0)
p = common_factors.astype(np.float32) / np.sum(common_factors)
factor = np.random.choice(len(common_factors), p=p)
factors.append(factor)
if len(diffs) == args.batch_size:
diffs = to_var(torch.stack(diffs, dim=0), args.cuda)
factors = to_var(torch.from_numpy(np.asarray(factors)).long(), args.cuda)
logits = metric(diffs)
_, predictions = torch.max(logits, dim=1)
correct_prediction = (predictions == factors)
accuracy = correct_prediction.data.cpu().numpy().mean()
accs.append(accuracy)
print accuracy
break
print 'Mean'
print np.mean(accs)
print 'Std'
print np.std(accs)