-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqualification-03.py
52 lines (50 loc) · 1.82 KB
/
qualification-03.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import numpy as np
import matplotlib.pyplot as plt
from scipy.special import factorial
from numpy.random import normal, poisson
from random import sample
def val_n(mean,sig,bins):
d = 1/(sig * np.sqrt(2 * np.pi))*np.exp( - (bins - mean)**2 / (2 * sig**2) )
return d
def val_p(lam,t):
d = np.exp(-lam)*np.power(lam, t)/factorial(t)
return d
xaxes = ['x1','x2','x3']
yaxes = ['y1','y2','y3']
color = ['green','orange','violet']
lam=[10,15,20]
mean=[0,5,5]
sig =[2,2,5]
min,max=-20,20
ran=np.arange(min, max, 0.1)
f,a = plt.subplots(4,2)
for idx,ax in enumerate(a[0]):
if idx==0:
for l,c in zip(lam, color):
ax.bar(ran,val_p(l,ran), color=c)
ax.set_title('different poisson distributions'+str(lam))
else:
for m,s,c in zip(mean,sig, color):
ax.bar(ran,val_n(m,s,ran), color=c)
ax.set_title('different normal distributions'+str([(x,y) for x,y in zip(mean,sig)]))
ax.set_xlim(min,max)
for idx,ax1 in enumerate(a[1:]):
for idx1,ax in enumerate(ax1):
if idx1==0:
p=[sum(sample(list(poisson(lam[idx], 1000)), 100))/100 for x in range(100)]
count, bins, ignored = ax.hist(p,20,density=True, color=color[idx])
#print(bins)
ax.plot(bins,val_p(lam[idx],bins),linewidth=2, color='r')
ax.set_title("for lamda"+str(lam[idx]))
else:
n=[sum(sample(list(normal(mean[idx],sig[idx], 1000)), 100))/100 for x in range(100)]
count, bins, ignored = ax.hist(n,20,density=True, color=color[idx])
ax.plot(bins,val_n(mean[idx],sig[idx],bins),linewidth=2, color='r')
ax.set_title("for mean and sigma"+str(mean[idx])+" "+str(sig[idx]))
ax.set_xlabel(xaxes[idx])
ax.set_ylabel(yaxes[idx])
#ax.set_xlim(min,max)
plt.tight_layout()
plt.show()
f.savefig('./ScreenShots/3_Means_of_both_distributions.png')
plt.close(f)