-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUnifactorAnalysis.cs
226 lines (175 loc) · 4.45 KB
/
UnifactorAnalysis.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using nilnul.math.complex.real;
using nilnul.set;
using nilnul.statistics.distribution;
namespace nilnul.probability.factorAnalysis
{
/// <summary>
/// Variance Analysis.
///
/// Note:Level# starts from 0.
/// </summary>
public class UnifactorAnalysis
{
private double[][] _observations;
#region constructions
public UnifactorAnalysis() { }
public UnifactorAnalysis(double[][] observations) {
this.observations = observations;
}
#endregion
#region properties
public double[][] observations {
set {
_observations = value;
}
get {
return _observations;
}
}
public int levelsCount {
get {
return observations.Length;
}
}
public int observationsCountByLevel(int level) {
return observations[level].Length;
}
public int observationsCountAllLevel {
get {
return
observations.Sum(x=>x.Count());
}
}
[Obsolete("use observationsAverageOfAllLevel")]
public double observationsAverageTotal {
get {
return observations.Sum(x => x.Sum()) / observationsCountAllLevel;
}
}
public double observationsAverage
{
get
{
return observations.Sum(x => x.Sum()) / observationsCountAllLevel;
}
}
public double observationsTotal {
get {
return observations.Sum(x => x.Sum());
}
}
public double observationsTotalByLevel(int level) {
return observations[level].Sum();
}
public double observationsAverageByLevel(int level) {
return observations[level].Sum()/observationsCountByLevel(level);
}
public double observationsVariationByLevel(int level) {
return observations[level].Sum() / observationsCountByLevel(level);
}
/// <summary>
/// 总变差;总偏差平方和
/// </summary>
public double observationVariationTotal {
get {
return
observations.Sum(
x => x.Sum(
y => (
y - observationsAverageTotal
).Power(2)
)
)
;
}
}
/// <summary>
/// 误差平方和。
/// </summary>
public double errorSquareSum {
get {
double r=0;
for(int i=0;i<observations.Length;i++){
r+=observations[i].Sum(x=>(x-observationsAverageByLevel(i)).Power(2));
}
return r;
}
}
public double effectSquareSum {
get {
double r = 0;
for (int i = 0; i < observations.Length; i++)
{
r += observationsCountByLevel(i)* (observationsAverageByLevel(i) - observationsAverageTotal).Power(2);
}
return r;
}
}
public double effectSquareAverage {
get {
return effectSquareSum / degreesOfFreedomFactor;
}
}
public double errorSquareAverage {
get {
return errorSquareSum / degreesOfFreedomError;
}
}
public double FRatio
{
get
{
return effectSquareAverage / errorSquareAverage;
}
}
public int degreesOfFreedomFactor {
get {
return levelsCount - 1;
}
}
public int degreesOfFreedomError {
get {
return observationsCountAllLevel - levelsCount;
}
}
public int degreesOfFreedomTotal {
get {
return observationsCountAllLevel - 1;
}
}
public double varianceEstimate {
get {
return effectSquareSum / degreesOfFreedomError;
}
}
public double meanEstimate {
get {
return observationsAverage;
}
}
public double meanEstimateByLevel(int level) {
return observationsAverageByLevel(level);
}
/// <summary>
/// confidence level is alpha
/// </summary>
/// <param name="alpha"></param>
/// <returns></returns>
public ClosedNeighborhood<double> meanDifferenceConfidenceInterval(int levelA,int levelB,double confidenceLevel) {
return new ClosedNeighborhood<double>(
observationsAverageByLevel(levelA)-observationsAverageByLevel(levelB),
TDistribution.UpperDividePoint((1-confidenceLevel) / 2, this.degreesOfFreedomError)
*
((errorSquareAverage
* (1.0 / observationsCountByLevel( levelA) + 1.0 / observationsCountByLevel( levelB))
).Power(.5))
);
}
///TDistribution.UpperDividePoint((1-confidenceLevel) / 2, this.degreesOfFreedomError) * (errorSquareAverage * (1.0 / observationsCountByLevel( levelA) + 1.0 / observationsCountByLevel( levelB)) ).Power(.5)
#endregion
}
}