-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathlayers.py
153 lines (124 loc) · 5.44 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Copyright 2020 The Sabertooth Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Layers used in a Transformer."""
from typing import Any, Callable, Optional
import jax
import jax.numpy as jnp
from flax import linen as nn
def gelu(x):
return jax.nn.gelu(x, approximate=False)
def truncated_normal_initializer(stddev=0.02, dtype=jnp.float32):
def init(key, shape, dtype=dtype):
return jax.random.truncated_normal(key, -2, 2, shape, dtype) * stddev
return init
class PositionalEncoding(nn.Embed):
"""Learned positional embeddings for the Transformer."""
# num_embeddings: int
# features: int
# dtype: Dtype = jnp.float32
# embedding_init: Callable[[PRNGKey, Shape, Dtype], Array] = default_embed_init
# embedding: Array = field(init=False)
def __call__(self, inputs):
"""Applies PositionalEncoding module."""
assert inputs.ndim in (
2,
3,
), f"Number of dimention should be 2 or 3, but it is: {inputs.ndim}"
length = inputs.shape[1]
assert length <= self.num_embeddings, (
f"Sequence is too long for position emdeddings"
" (length {length}, expected at most {self.num_embeddings})"
)
return self.embedding[None, :length, :]
class FeedForward(nn.Module):
"""Feed-forward layer for a Transformer model."""
d_model: int
d_ff: int
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
intermediate_activation: Callable[..., Any] = gelu
kernel_init: Callable[..., Any] = truncated_normal_initializer(0.02)
def setup(self):
self.intermediate = nn.Dense(
self.d_ff,
kernel_init=self.kernel_init,
name="intermediate",
dtype=self.dtype,
)
self.output = nn.Dense(
self.d_model, kernel_init=self.kernel_init, name="output"
)
def __call__(self, hidden_states, *, deterministic=False):
hidden_states = self.intermediate(hidden_states)
hidden_states = self.intermediate_activation(hidden_states)
hidden_states = self.output(hidden_states)
return hidden_states
class SelfAttention(nn.SelfAttention):
"""Self-attention, but expecting a different format for mask."""
@nn.compact
def __call__(self, hidden_states, mask=None, *, deterministic=False):
# Attention mask input has mask.shape == (batch_size, kv_length)
# Flax instead expects mask.shape == (batch_size, 1, 1, kv_length)
if mask is not None:
mask = jnp.expand_dims(mask, axis=(-3, -2))
return super().__call__(hidden_states, mask, deterministic=deterministic)
class TransformerBlock(nn.Module):
"""Transformer block with normalization after each sub-layer."""
build_feed_forward: Callable[..., Any]
build_self_attention: Callable[..., Any]
dropout_rate: float = 0.0
layer_norm_epsilon: float = 1e-12
def setup(self):
self.self_attention = self.build_self_attention()
self.self_attention_dropout = nn.Dropout(rate=self.dropout_rate)
self.self_attention_layer_norm = nn.LayerNorm(epsilon=self.layer_norm_epsilon)
self.feed_forward = self.build_feed_forward()
self.output_dropout = nn.Dropout(rate=self.dropout_rate)
self.output_layer_norm = nn.LayerNorm(epsilon=self.layer_norm_epsilon)
def __call__(self, hidden_states, mask, *, deterministic=False):
attention_output = self.self_attention(
hidden_states, mask, deterministic=deterministic
)
attention_output = self.self_attention_dropout(
attention_output, deterministic=deterministic
)
hidden_states = self.self_attention_layer_norm(hidden_states + attention_output)
feed_forward_output = self.feed_forward(
hidden_states, deterministic=deterministic
)
feed_forward_output = self.output_dropout(
feed_forward_output, deterministic=deterministic
)
hidden_states = self.output_layer_norm(hidden_states + feed_forward_output)
return hidden_states
class OutputProjection(nn.Module):
"""A dense projection layer for computing output logits."""
n_out: Optional[int] = None
use_bias: bool = True
kernel_init: Callable[..., Any] = truncated_normal_initializer(0.02)
bias_init: Callable[..., Any] = nn.initializers.zeros
@nn.compact
def __call__(self, inputs: jnp.ndarray, kernel: jnp.ndarray = None):
"""Applies OutputProjection module."""
if kernel is None:
assert (
self.n_out is not None
), "n_out argument is required when not re-using an embedding matrix"
kernel = self.param(
"kernel", self.kernel_init, (self.n_out, inputs.shape[-1])
)
y = jnp.matmul(inputs, jnp.transpose(kernel, (1, 0)))
if self.use_bias:
bias = self.param("bias", self.bias_init, (y.shape[-1],))
y = y + bias
return y