-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlightning_base.py
243 lines (211 loc) · 8.01 KB
/
lightning_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# Copyright (c) 2022, Yamagishi Laboratory, National Institute of Informatics
# Author: Canasai Kruengkrai (canasai@nii.ac.jp)
# All rights reserved.
import math
import warnings
import pytorch_lightning as pl
import torch
from datetime import datetime
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AutoConfig,
AutoTokenizer,
AutoModelForSequenceClassification,
logging,
)
from transformers.optimization import (
AdamW,
get_cosine_schedule_with_warmup,
get_linear_schedule_with_warmup,
)
from adafactor import Adafactor
warnings.filterwarnings("ignore")
logging.set_verbosity_error()
arg_to_scheduler = {
"linear": get_linear_schedule_with_warmup,
"cosine": get_cosine_schedule_with_warmup,
}
class BaseTransformer(pl.LightningModule):
def __init__(
self,
hparams,
num_labels=None,
config=None,
tokenizer=None,
model=None,
**config_kwargs,
):
super().__init__()
self.save_hyperparameters(hparams)
if config is None:
self.config = AutoConfig.from_pretrained(
self.hparams.pretrained_model_name,
**({"num_labels": num_labels} if num_labels is not None else {}),
)
else:
self.config = config
if tokenizer is None:
self.tokenizer = AutoTokenizer.from_pretrained(
self.hparams.pretrained_model_name, use_fast=True
)
else:
self.tokenizer = tokenizer
if model is None:
self.model = AutoModelForSequenceClassification.from_pretrained(
self.hparams.pretrained_model_name, config=self.config
)
else:
self.model = model
def setup(self, stage):
if self.training and stage == "fit":
self.init_parameters()
self.train_loader = self.get_dataloader(
"train",
self.hparams.train_batch_size,
self.hparams.num_workers,
)
effective_batch_size = (
self.hparams.train_batch_size
* self.hparams.accumulate_grad_batches
* max(1, self.hparams.gpus)
)
dataset_size = len(self.train_loader.dataset)
rank_zero_info(f"Training data size: {dataset_size}")
self.total_steps = (
dataset_size / effective_batch_size
) * self.hparams.max_epochs
else:
self.total_steps = 0
def get_dataloader(self, mode, batch_size, num_workers):
raise NotImplementedError("You must implement this for your task")
def train_dataloader(self):
return self.train_loader
def val_dataloader(self):
return self.get_dataloader(
"dev", self.hparams.eval_batch_size, self.hparams.num_workers
)
def test_dataloader(self):
return self.get_dataloader(
"test", self.hparams.eval_batch_size, self.hparams.num_workers
)
def get_lr_scheduler(self):
get_schedule_func = arg_to_scheduler[self.hparams.lr_scheduler]
if self.hparams.warmup_steps > 0:
rank_zero_info(f"warmup_steps = {self.hparams.warmup_steps:.2f}")
if self.hparams.warmup_ratio > 0 and self.hparams.warmup_steps == 0:
assert self.hparams.warmup_ratio > 0 and self.hparams.warmup_ratio <= 1
self.hparams.warmup_steps = math.ceil(
self.total_steps * self.hparams.warmup_ratio
)
rank_zero_info(f"total_steps = {self.total_steps:.2f}")
rank_zero_info(f"warmup_ratio = {self.hparams.warmup_ratio:.2f}")
rank_zero_info(f"warmup_steps = {self.hparams.warmup_steps:.2f}")
self.lr_scheduler = get_schedule_func(
self.opt,
num_warmup_steps=self.hparams.warmup_steps,
num_training_steps=self.total_steps,
)
scheduler = {"scheduler": self.lr_scheduler, "interval": "step", "frequency": 1}
return scheduler
def configure_optimizers(self):
model = self.model
for n, p in model.named_parameters():
if any(f in n for f in self.hparams.freeze):
p.requires_grad_(False)
rank_zero_info(f"Freeze [{n}]")
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [
p
for n, p in model.named_parameters()
if not any(nd in n for nd in no_decay)
],
"weight_decay": self.hparams.weight_decay,
},
{
"params": [
p
for n, p in model.named_parameters()
if any(nd in n for nd in no_decay)
],
"weight_decay": 0.0,
},
]
rank_zero_info(f"\u2728 Use {self.hparams.loss_fn} optimizer")
if self.hparams.loss_fn == "adamw":
optimizer = AdamW(
optimizer_grouped_parameters,
lr=self.hparams.learning_rate,
eps=self.hparams.adam_epsilon,
)
elif self.hparams.loss_fn == "sgd":
optimizer = torch.optim.SGD(
filter(lambda p: p.requires_grad, model.parameters()),
lr=self.hparams.learning_rate,
momentum=0.9,
weight_decay=0,
)
elif self.hparams.loss_fn == "adafactor":
optimizer = Adafactor(
optimizer_grouped_parameters,
lr=self.hparams.learning_rate,
scale_parameter=False,
relative_step=False,
)
else:
raise KeyError(self.hparams.loss_fn)
self.opt = optimizer
if self.hparams.loss_fn == "sgd":
self.lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer)
scheduler = {
"scheduler": self.lr_scheduler,
"monitor": "train_loss",
}
else:
scheduler = self.get_lr_scheduler()
return [optimizer], [scheduler]
@staticmethod
def add_model_specific_args(parser):
parser.add_argument("--data_dir", type=str, required=True)
parser.add_argument("--model_name", type=str, default="base")
parser.add_argument(
"--pretrained_model_name", type=str, default="bert-base-uncased"
)
parser.add_argument("--learning_rate", type=float, default=2e-5)
parser.add_argument("--lr_scheduler", type=str, default="linear")
parser.add_argument("--min_lr", type=float, default=1e-5)
parser.add_argument("--weight_decay", type=float, default=0.0)
parser.add_argument("--adam_epsilon", type=float, default=1e-8)
parser.add_argument("--warmup_ratio", type=float, default=0.0)
parser.add_argument("--warmup_steps", type=int, default=0)
parser.add_argument("--num_workers", type=int, default=4)
parser.add_argument("--train_batch_size", type=int, default=32)
parser.add_argument("--eval_batch_size", type=int, default=32)
parser.add_argument(
"--loss_fn",
type=str,
choices=[
"adamw",
"sgd",
"adafactor",
],
default="adamw",
)
parser.add_argument("--seed", type=int, default=3435)
parser.add_argument("--patience", type=int, default=2)
parser.add_argument("--skip_validation", action="store_true")
parser.add_argument("--freeze", nargs="+", default=[])
def generic_train(model, args, callbacks):
train_params = {}
if args.gpus > 1:
train_params["distributed_backend"] = "ddp"
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=callbacks,
**train_params,
)
t_start = datetime.now()
trainer.fit(model)
rank_zero_info(f"\nTraining took '{datetime.now() - t_start}'")
return trainer