-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadafactor.py
212 lines (180 loc) · 8.06 KB
/
adafactor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Taken from https://github.com/pytorch/fairseq/blob/master/fairseq/optim/adafactor.py
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import torch
class Adafactor(torch.optim.Optimizer):
"""Implements Adafactor algorithm.
This implementation is based on:
`Adafactor: Adaptive Learning Rates with Sublinear Memory Cost`
(see https://arxiv.org/abs/1804.04235)
Note that this optimizer internally adjusts the learning rate
depending on the *scale_parameter*, *relative_step* and
*warmup_init* options. To use a manual (external) learning rate
schedule you should set `scale_parameter=False` and
`relative_step=False`.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): external learning rate (default: None)
eps (tuple[float, float]): regularization constans for square gradient
and parameter scale respectively (default: (1e-30, 1e-3))
clip_threshold (float): threshold of root mean square of
final gradient update (default: 1.0)
decay_rate (float): coefficient used to compute running averages of square
gradient (default: -0.8)
beta1 (float): coefficient used for computing running averages of gradient
(default: None)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
scale_parameter (bool): if True, learning rate is scaled by root mean square of
parameter (default: True)
relative_step (bool): if True, time-dependent learning rate is computed
instead of external learning rate (default: True)
warmup_init (bool): time-dependent learning rate computation depends on
whether warm-up initialization is being used (default: False)
"""
def __init__(
self,
params,
lr=None,
eps=(1e-30, 1e-3),
clip_threshold=1.0,
decay_rate=-0.8,
beta1=None,
weight_decay=0.0,
scale_parameter=True,
relative_step=True,
warmup_init=False,
):
if lr is not None and relative_step:
raise ValueError("Cannot combine manual lr and relative_step options")
if warmup_init and not relative_step:
raise ValueError("warmup_init requires relative_step=True")
defaults = dict(
lr=lr,
eps=eps,
clip_threshold=clip_threshold,
decay_rate=decay_rate,
beta1=beta1,
weight_decay=weight_decay,
scale_parameter=scale_parameter,
relative_step=relative_step,
warmup_init=warmup_init,
)
super(Adafactor, self).__init__(params, defaults)
@property
def supports_memory_efficient_fp16(self):
return True
@property
def supports_flat_params(self):
return False
def _get_lr(self, param_group, param_state):
rel_step_sz = param_group["lr"]
if param_group["relative_step"]:
min_step = (
1e-6 * param_state["step"] if param_group["warmup_init"] else 1e-2
)
rel_step_sz = min(min_step, 1.0 / math.sqrt(param_state["step"]))
param_scale = 1.0
if param_group["scale_parameter"]:
param_scale = max(param_group["eps"][1], param_state["RMS"])
return param_scale * rel_step_sz
def _get_options(self, param_group, param_shape):
factored = len(param_shape) >= 2
use_first_moment = param_group["beta1"] is not None
return factored, use_first_moment
def _rms(self, tensor):
return tensor.norm(2) / (tensor.numel() ** 0.5)
def _approx_sq_grad(self, exp_avg_sq_row, exp_avg_sq_col):
r_factor = (
(exp_avg_sq_row / exp_avg_sq_row.mean(dim=-1, keepdim=True))
.rsqrt_()
.unsqueeze(-1)
)
c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt()
return torch.mul(r_factor, c_factor)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad.data
if grad.dtype in {torch.float16, torch.bfloat16}:
grad = grad.float()
if grad.is_sparse:
raise RuntimeError("Adafactor does not support sparse gradients.")
state = self.state[p]
grad_shape = grad.shape
factored, use_first_moment = self._get_options(group, grad_shape)
# State Initialization
if len(state) == 0:
state["step"] = 0
if use_first_moment:
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(grad)
if factored:
state["exp_avg_sq_row"] = torch.zeros(grad_shape[:-1]).to(grad)
state["exp_avg_sq_col"] = torch.zeros(
grad_shape[:-2] + grad_shape[-1:]
).to(grad)
else:
state["exp_avg_sq"] = torch.zeros_like(grad)
state["RMS"] = 0
else:
if use_first_moment:
state["exp_avg"] = state["exp_avg"].to(grad)
if factored:
state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to(grad)
state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to(grad)
else:
state["exp_avg_sq"] = state["exp_avg_sq"].to(grad)
p_data_fp32 = p.data
if p.data.dtype in {torch.float16, torch.bfloat16}:
p_data_fp32 = p_data_fp32.float()
state["step"] += 1
state["RMS"] = self._rms(p_data_fp32)
group["lr"] = self._get_lr(group, state)
beta2t = 1.0 - math.pow(state["step"], group["decay_rate"])
update = (grad**2) + group["eps"][0]
if factored:
exp_avg_sq_row = state["exp_avg_sq_row"]
exp_avg_sq_col = state["exp_avg_sq_col"]
exp_avg_sq_row.mul_(beta2t).add_(
update.mean(dim=-1), alpha=1.0 - beta2t
)
exp_avg_sq_col.mul_(beta2t).add_(
update.mean(dim=-2), alpha=1.0 - beta2t
)
# Approximation of exponential moving average of square of gradient
update = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col)
update.mul_(grad)
else:
exp_avg_sq = state["exp_avg_sq"]
exp_avg_sq.mul_(beta2t).add_(update, alpha=1.0 - beta2t)
update = exp_avg_sq.rsqrt().mul_(grad)
update.div_(
(self._rms(update) / group["clip_threshold"]).clamp_(min=1.0)
)
update.mul_(group["lr"])
if use_first_moment:
exp_avg = state["exp_avg"]
exp_avg.mul_(group["beta1"]).add_(update, alpha=1 - group["beta1"])
update = exp_avg
if group["weight_decay"] != 0:
p_data_fp32.add_(
p_data_fp32, alpha=-group["weight_decay"] * group["lr"]
)
p_data_fp32.add_(-update)
if p.data.dtype in {torch.float16, torch.bfloat16}:
p.data.copy_(p_data_fp32)
return loss