-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathMission_to_Mars_Challenge.py
109 lines (72 loc) · 2.71 KB
/
Mission_to_Mars_Challenge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# Import Splinter, BeautifulSoup, and Pandas
from splinter import Browser
from bs4 import BeautifulSoup as soup
import pandas as pd
from webdriver_manager.chrome import ChromeDriverManager
# Set the executable path and initialize Splinter
executable_path = {'executable_path': ChromeDriverManager().install()}
browser = Browser('chrome', **executable_path, headless=False)
# Visit the mars nasa news site
url = 'https://redplanetscience.com/'
browser.visit(url)
# Optional delay for loading the page
browser.is_element_present_by_css('div.list_text', wait_time=1)
# Convert the browser html to a soup object and then quit the browser
html = browser.html
news_soup = soup(html, 'html.parser')
slide_elem = news_soup.select_one('div.list_text')
slide_elem.find('div', class_='content_title')
# Use the parent element to find the first a tag and save it as `news_title`
news_title = slide_elem.find('div', class_='content_title').get_text()
news_title
# Use the parent element to find the paragraph text
news_p = slide_elem.find('div', class_='article_teaser_body').get_text()
news_p
# Visit URL
url = 'https://spaceimages-mars.com'
browser.visit(url)
# Find and click the full image button
full_image_elem = browser.find_by_tag('button')[1]
full_image_elem.click()
# Parse the resulting html with soup
html = browser.html
img_soup = soup(html, 'html.parser')
img_soup
# find the relative image url
img_url_rel = img_soup.find('img', class_='fancybox-image').get('src')
img_url_rel
# Use the base url to create an absolute url
img_url = f'https://spaceimages-mars.com/{img_url_rel}'
img_url
df = pd.read_html('https://galaxyfacts-mars.com')[0]
df.head()
df.columns=['Description', 'Mars', 'Earth']
df.set_index('Description', inplace=True)
df
df.to_html()
# 1. Use browser to visit the URL
url = 'https://marshemispheres.com/'
browser.visit(url)
# 2. Create a list to hold the images and titles.
hemisphere_image_urls = []
# 3. Write code to retrieve the image urls and titles for each hemisphere.
for hemis in range(4):
# Browse through each article
browser.links.find_by_partial_text('Hemisphere')[hemis].click()
# Parse the HTML
html = browser.html
hemi_soup = soup(html,'html.parser')
# Scraping
title = hemi_soup.find('h2', class_='title').text
img_url = hemi_soup.find('li').a.get('href')
# Store findings into a dictionary and append to list
hemispheres = {}
hemispheres['img_url'] = f'https://marshemispheres.com/{img_url}'
hemispheres['title'] = title
hemisphere_image_urls.append(hemispheres)
# Browse back to repeat
browser.back()
# Quit browser
browser.quit()
# 4. Print the list that holds the dictionary of each image url and title.
hemisphere_image_urls