-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathstereo.py
99 lines (65 loc) · 2.78 KB
/
stereo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import numpy
from scipy.ndimage import filters
def plane_sweep_ncc(im_l, im_r, start, steps, wid):
'''Find disparity image using normalized cross-correlation.'''
m, n = im_l.shape # Must match im_r.shape.
mean_l = numpy.zeros(im_l.shape)
mean_r = numpy.zeros(im_l.shape)
s = numpy.zeros(im_l.shape)
s_l = numpy.zeros(im_l.shape)
s_r = numpy.zeros(im_l.shape)
dmaps = numpy.zeros((m, n, steps))
filters.uniform_filter(im_l, wid, mean_l)
filters.uniform_filter(im_r, wid, mean_r)
norm_l = im_l - mean_l
norm_r = im_r - mean_r
for disp in range(steps):
filters.uniform_filter(numpy.roll(norm_l, -disp - start) * norm_r, wid, s)
filters.uniform_filter(numpy.roll(norm_l, -disp - start) *
numpy.roll(norm_l, -disp - start), wid, s_l)
filters.uniform_filter(norm_r * norm_r, wid, s_r)
dmaps[:, :, disp] = s / numpy.sqrt(s_l * s_r)
return numpy.argmax(dmaps, axis=2)
def plane_sweep_ssd(im_l, im_r, start, steps, wid):
'''Find disparity image using sum of squared differences.'''
m, n = im_l.shape # Must match im_r.shape.
s = numpy.zeros(im_l.shape)
dmaps = numpy.zeros((m, n, steps))
for disp in range(steps):
filters.uniform_filter((numpy.roll(im_l, -disp - start) - im_r) ** 2,
wid, s)
dmaps[:, :, disp] = s
return numpy.argmin(dmaps, axis=2)
def plane_sweep_gauss(im_l, im_r, start, steps, wid):
'''Find disparity image using normalized cross-correlation with Gaussian
weighted neighborhoods.'''
m, n = im_l.shape # Must match im_r.shape.
mean_l = numpy.zeros(im_l.shape)
mean_r = numpy.zeros(im_l.shape)
s = numpy.zeros(im_l.shape)
s_l = numpy.zeros(im_l.shape)
s_r = numpy.zeros(im_l.shape)
dmaps = numpy.zeros((m, n, steps))
filters.gaussian_filter(im_l, wid, 0, mean_l)
filters.gaussian_filter(im_r, wid, 0, mean_r)
norm_l = im_l - mean_l
norm_r = im_r - mean_r
for disp in range(steps):
filters.gaussian_filter(numpy.roll(norm_l, -disp - start) *
norm_r, wid, 0, s)
filters.gaussian_filter(numpy.roll(norm_l, -disp - start) *
numpy.roll(norm_l, -disp - start), wid, 0, s_l)
filters.gaussian_filter(norm_r * norm_r, wid, 0, s_r)
dmaps[:, :, disp] = s / numpy.sqrt(s_l * s_r)
return numpy.argmax(dmaps, axis=2)
def plane_sweep_gauss_ssd(im_l, im_r, start, steps, wid):
'''Find disparity image using sum of squared differences with Gaussian
weighted neighborhoods.'''
m, n = im_l.shape # Must match im_r.shape.
s = numpy.zeros(im_l.shape)
dmaps = numpy.zeros((m, n, steps))
for disp in range(steps):
filters.gaussian_filter((numpy.roll(im_l, -disp - start) - im_r) ** 2,
wid, 0, s)
dmaps[:, :, disp] = s
return numpy.argmin(dmaps, axis=2)