-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathhomography.py
146 lines (111 loc) · 3.84 KB
/
homography.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import numpy
def normalize(points):
for row in points:
row /= points[-1]
return points
def make_homog(points):
return numpy.vstack((points, numpy.ones((1, points.shape[1]))))
def H_from_points(fp, tp):
'''Find H such that H * fp = tp.
H has eight degrees of freedom, so this needs at least 4 points in fp and tp.
'''
if fp.shape != tp.shape:
raise RuntimeError('number of points do not match')
# condition:
# -from
m = numpy.mean(fp[:2], axis=1)
maxstd = numpy.max(numpy.std(fp[:2], axis=1)) + 1e-9
C1 = numpy.diag([1/maxstd, 1/maxstd, 1])
C1[0, 2] = -m[0] / maxstd
C1[1, 2] = -m[1] / maxstd
fp = numpy.dot(C1, fp)
# -to
m = numpy.mean(tp[:2], axis=1)
maxstd = numpy.max(numpy.std(tp[:2], axis=1)) + 1e-9
C2 = numpy.diag([1/maxstd, 1/maxstd, 1])
C2[0, 2] = -m[0] / maxstd
C2[1, 2] = -m[1] / maxstd
tp = numpy.dot(C2, tp)
correspondences_count = fp.shape[1]
A = numpy.zeros((2 * correspondences_count, 9))
for i in range(correspondences_count):
A[2 * i ] = [-fp[0][i], -fp[1][i], -1, 0, 0, 0,
tp[0][i] * fp[0][i], tp[0][i] * fp[1][i], tp[0][i]]
A[2 * i + 1] = [0, 0, 0, -fp[0][i], -fp[1][i], -1,
tp[1][i] * fp[0][i], tp[1][i] * fp[1][i], tp[1][i]]
U, S, V = numpy.linalg.svd(A)
H = V[8].reshape((3, 3))
# decondition
H = numpy.dot(numpy.linalg.inv(C2), numpy.dot(H, C1))
return H / H[2, 2]
def Haffine_from_points(fp, tp):
'''Find affine H such that H * fp = tp.
H has six degrees of freedom, so this needs at least 3 points in fp and tp.
'''
if fp.shape != tp.shape:
raise RuntimeError('number of points do not match')
# condition:
# -from
m = numpy.mean(fp[:2], axis=1)
maxstd = numpy.max(numpy.std(fp[:2], axis=1)) + 1e-9
C1 = numpy.diag([1/maxstd, 1/maxstd, 1])
C1[0, 2] = -m[0] / maxstd
C1[1, 2] = -m[1] / maxstd
fp_cond = numpy.dot(C1, fp)
# -to
m = numpy.mean(tp[:2], axis=1)
maxstd = numpy.max(numpy.std(tp[:2], axis=1)) + 1e-9
C2 = numpy.diag([1/maxstd, 1/maxstd, 1])
C2[0, 2] = -m[0] / maxstd
C2[1, 2] = -m[1] / maxstd
tp_cond = numpy.dot(C2, tp)
A = numpy.concatenate((fp_cond[:2], tp_cond[:2]), axis=0)
U, S, V = numpy.linalg.svd(A.T)
tmp = V[:2].T
B = tmp[:2]
C = tmp[2:4]
tmp2 = numpy.concatenate((numpy.dot(C, numpy.linalg.pinv(B)),
numpy.zeros((2, 1))),
axis=1)
H = numpy.vstack((tmp2, [0, 0, 1]))
# decondition
H = numpy.dot(numpy.linalg.inv(C2), numpy.dot(H, C1))
return H / H[2, 2]
class RansacModel(object):
def fit(self, data):
data = data.T # for H_from_points()
fp = data[:3]
tp = data[3:]
return H_from_points(fp, tp)
def get_error(self, data, H):
data = data.T
fp = data[:3]
tp = data[3:]
fp_transformed = numpy.dot(H, fp)
normalize(fp_transformed)
return numpy.sqrt(numpy.sum((tp - fp_transformed) ** 2, axis=0))
def H_from_ransac(fp, tp, model, maxiter=1000, match_threshold=10):
import ransac
data = numpy.vstack((fp, tp))
H, ransac_data = ransac.ransac(data.T, model, 4, maxiter, match_threshold, 10,
return_all=True)
return H, ransac_data['inliers']
class AffineRansacModel(object):
def fit(self, data):
data = data.T # for Haffine_from_points
fp = data[:3]
tp = data[3:]
return Haffine_from_points(fp, tp)
def get_error(self, data, H):
data = data.T
fp = data[:3]
tp = data[3:]
fp_transformed = numpy.dot(H, fp)
#normalize(fp_transformed)
return numpy.sqrt(numpy.sum((tp - fp_transformed) ** 2, axis=0))
def Haffine_from_ransac(fp, tp, model, maxiter=1000, match_threshold=10):
import ransac
data = numpy.vstack((fp, tp))
H, ransac_data = ransac.ransac(data.T, model, 3, maxiter, match_threshold, 7,
return_all=True)
return H, ransac_data['inliers']