-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathhcluster.py
131 lines (94 loc) · 3.38 KB
/
hcluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from itertools import combinations
import numpy
class ClusterNode(object):
def __init__(self, vec, left, right, distance=0.0, count=1):
self.left = left
self.right = right
self.vec = vec
self.distance = distance
self.count = count
def extract_clusters(self, dist):
'''Extract list of subtree clusters with distance < dist.'''
if self.distance < dist:
return [self]
return self.left.extract_clusters(dist) + self.right.extract_clusters(dist)
def get_cluster_elements(self):
'''Return ids for elements in a cluster subtree.'''
return self.left.get_cluster_elements() + self.right.get_cluster_elements()
def get_height(self):
'''Return the height of a node.'''
return self.left.get_height() + self.right.get_height()
def get_depth(self):
'''Return the depth of a node.'''
return max(self.left.get_depth(), self.right.get_depth()) + self.distance
def draw(self, draw, x, y, s, imlist, im):
'''Draw nodes recursively with iages for leaf nodes.'''
# n^2 :-/
h1 = int(self.left.get_height() * 20 / 2)
h2 = int(self.right.get_height() * 20 / 2)
top = y - (h1 + h2)
bottom = y + (h1 + h2)
draw.line((x, top + h1, x, bottom - h2), fill=(0, 0, 0))
l1 = self.distance * s
draw.line((x, top + h1, x + l1, top + h1), fill=(0, 0, 0))
draw.line((x, bottom - h2, x + l1, bottom - h2), fill=(0, 0, 0))
self.left.draw(draw, x + l1, top + h1, s, imlist, im)
self.right.draw(draw, x + l1, bottom - h2, s, imlist, im)
class ClusterLeafNode(object):
def __init__(self, vec, id):
self.vec = vec
self.id = id
def extract_clusters(self, dist):
return [self]
def get_cluster_elements(self):
return [self.id]
def get_height(self):
return 1
def get_depth(self):
return 0
def draw(self, draw, x, y, s, imlist, im):
from PIL import Image
nodeim = Image.open(imlist[self.id])
nodeim.thumbnail((20, 20))
ns = nodeim.size
im.paste(nodeim, [int(x), int(y - ns[1] // 2),
int(x + ns[0]), int(y + ns[1] - ns[1] // 2)])
def l2dist(v1, v2):
return numpy.sqrt(numpy.sum((v1 - v2) ** 2))
def l1dist(v1, v2):
return numpy.sum(numpy.abs(v1 - v2))
def hcluster(features, distfn=l2dist):
'''Cluster the rows of features using hiearchical clustering.'''
distances = {}
node = [ClusterLeafNode(numpy.array(f), id=i) for i, f in enumerate(features)]
# O(n^3)
while len(node) > 1:
closest = float('Inf')
# Find closest pair.
for ni, nj in combinations(node, 2):
if (ni, nj) not in distances:
distances[ni, nj] = distfn(ni.vec, nj.vec)
d = distances[ni, nj]
if d < closest:
closest = d
lowestpair = ni, nj
ni, nj = lowestpair
# Combine closest pair.
new_vec = (ni.vec + nj.vec) / 2.0
new_node = ClusterNode(new_vec, left=ni, right=nj, distance=closest)
node.remove(ni)
node.remove(nj)
node.append(new_node)
return node[0]
def draw_dendrogram(node, imlist, filename='out_clusters.png'):
'''Draw a clsuter dendrogram and save it.'''
from PIL import Image, ImageDraw
rows = node.get_height() * 20
cols = 1200
s = float(cols - 150) / node.get_depth()
im = Image.new('RGB', (cols, rows), (255, 255, 255))
draw = ImageDraw.Draw(im)
draw.line((0, rows/2, 20, rows/2), fill=(0, 0, 0))
node.draw(draw, 20, rows / 2, s, imlist, im)
im.save(filename)
im.show()