-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathharris.py
118 lines (88 loc) · 3.32 KB
/
harris.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
from scipy.ndimage import filters
import matplotlib
import numpy
def compute_harris_response(im, sigma=3):
"""Compute harris image for each pixel in a graylevel."""
imx = numpy.zeros(im.shape)
filters.gaussian_filter(im, sigma, (0, 1), imx)
imy = numpy.zeros(im.shape)
filters.gaussian_filter(im, sigma, (1, 0), imy)
Wxx = filters.gaussian_filter(imx*imx, sigma)
Wxy = filters.gaussian_filter(imx*imy, sigma)
Wyy = filters.gaussian_filter(imy*imy, sigma)
Wdet = Wxx*Wyy - Wxy**2
Wtr = Wxx + Wyy
#return Wdet - 0.06 * Wtr**2
# Use Noble's measure (see wikipedia)
return 2 * Wdet / (Wtr + 0.000001)
def get_harris_points(harrisim, min_dist=10, threshold=0.1):
"""Return corners from a harris image."""
corner_threshold = harrisim.max() * threshold
harrisim_t = (harrisim > corner_threshold) * 1
coords = numpy.array(harrisim_t.nonzero()).T
candidate_values = [harrisim[c[0], c[1]] for c in coords]
index = numpy.argsort(candidate_values)
allowed_locations = numpy.zeros(harrisim.shape)
allowed_locations[min_dist:-min_dist, min_dist:-min_dist] = 1
filtered_coords = []
for i in index:
if allowed_locations[coords[i, 0], coords[i, 1]] == 1:
filtered_coords.append(coords[i])
allowed_locations[(coords[i, 0] - min_dist):(coords[i, 0] + min_dist),
(coords[i, 1] - min_dist):(coords[i, 1] + min_dist)] = 0
return filtered_coords
def plot_harris_points(image, filtered_coords):
"""Plot corners found in an image."""
import pylab
pylab.figure()
pylab.gray()
pylab.imshow(image)
pylab.plot([p[1] for p in filtered_coords],
[p[0] for p in filtered_coords], '*')
pylab.axis('off')
def get_descriptors(image, filtered_coords, wid=5):
"""Extract a patch of size 2*wid+1 around each coord."""
desc = []
for coord in filtered_coords:
patch = image[coord[0] - wid:coord[0] + wid + 1,
coord[1] - wid:coord[1] + wid + 1].flatten()
desc.append(patch)
return desc
def ncc(patch1, patch2):
"""Returns normalized cross-correlation between two patches."""
d1 = (patch1 - numpy.mean(patch1)) / numpy.std(patch1)
d2 = (patch2 - numpy.mean(patch2)) / numpy.std(patch2)
return numpy.sum(d1 * d2) / (len(patch1) - 1)
def match(desc1, desc2, threshold=0.5):
"""Matches all patches in desc1 with a patch in desc2."""
n = len(desc1[0])
d = -numpy.ones((len(desc1), len(desc2)))
for i in range(len(desc1)):
for j in range(len(desc2)):
ncc_value = ncc(desc1[i], desc2[j])
if ncc_value > threshold:
d[i,j] = ncc_value
ndx = numpy.argsort(-d)
return ndx[:, 0]
def match_twosided(desc1, desc2, threshold=0.5):
matches_12 = match(desc1, desc2, threshold)
matches_21 = match(desc2, desc1, threshold)
ndx_12 = numpy.where(matches_12 >= 0)[0]
for n in ndx_12:
if matches_21[matches_12[n]] != n:
matches_12[n] = -1
return matches_12
def appendimages(im1, im2):
return numpy.concatenate((im1, im2), axis=1)
def plot_matches(im1, im2, locs1, locs2, matchscores, show_below=True):
import pylab
im3 = appendimages(im1, im2)
if show_below:
im3 = numpy.vstack((im3, im3))
pylab.imshow(im3)
cols1 = im1.shape[1]
for i, m in enumerate(matchscores):
if m > 0:
pylab.plot([locs1[i][1], locs2[m][1] + cols1],
[locs1[i][0], locs2[m][0]], 'c')
pylab.axis('off')