-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathch05_ex02_extra_epipolar_matches.py
249 lines (197 loc) · 6.68 KB
/
ch05_ex02_extra_epipolar_matches.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
from PIL import Image
import glob
import math
import md5
import numpy
import os
import cPickle as pickle
import camera
import homography
import sfm
import sift
import tic
imname = glob.glob('out_corner/IMG_*.jpg')
#imname = glob.glob('out_alcatraz/*.jpg')
siftname = [os.path.splitext(im)[0] + '.sift' for im in imname]
tic.k('start')
l, d = {}, {}
for i in range(len(imname)):
l[i], d[i] = sift.read_or_compute(imname[i], siftname[i])
tic.k('loaded sifts')
print '{} / {} features'.format(len(d[0]), len(d[1]))
immd5 = md5.md5(''.join(imname)).hexdigest()
matchcache = 'out_ch05ex02_cache_matches_%s.pickle' % immd5
if not os.path.exists(matchcache):
#matches = sift.match(d[0], d[1])
matches = sift.match_twosided(d[0], d[1])
pickle.dump(matches, open(matchcache, 'wb'))
matches = pickle.load(open(matchcache, 'rb'))
tic.k('matched')
ndx = matches.nonzero()[0]
x1 = homography.make_homog(l[0][ndx, :2].T)
ndx2 = [int(matches[i]) for i in ndx]
x2 = homography.make_homog(l[1][ndx2, :2].T)
print '{} matches'.format(len(ndx))
image = [numpy.array(Image.open(name)) for name in imname]
# calibration (FIXME?)
K = camera.my_calibration(image[0].shape[:2])
# Normalize with inv(K) (allows metric reconstruction).
x1n = numpy.dot(numpy.linalg.inv(K), x1)
x2n = numpy.dot(numpy.linalg.inv(K), x2)
tic.k('normalized')
# Estimate E.
ransaccache = 'out_ch05ex02_cache_ransac_%s.pickle' % immd5
if not os.path.exists(ransaccache):
model = sfm.RansacModel()
# Note that x2n is passed as first parameter, since F_from_ransac() and
# friends compute the F matrix mapping from the 2nd parameter to the first,
# and the code below gives camera 1 the identity transform.
E, inliers = sfm.F_from_ransac(x2n, x1n, model)
pickle.dump((E, inliers), open(ransaccache, 'wb'))
E, inliers = pickle.load(open(ransaccache, 'rb'))
tic.k('ransacd, %d inliers' % len(inliers))
# compute camera matrices
P1 = numpy.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]])
P2 = sfm.compute_P_from_essential(E)
tic.k('computed possible camera matrices')
# Pick the solution with points in front of cameras
ind = 0
maxres = 0
for i in range(4):
X = sfm.triangulate(x1n[:, inliers], x2n[:, inliers], P1, P2[i])
d1 = numpy.dot(P1, X)[2]
d2 = numpy.dot(P2[i], X)[2]
res = numpy.sum(d1 > 0) + numpy.sum(d2 > 0)
if res > maxres:
maxres = res
ind = i
infront = (d1 > 0) & (d2 > 0)
tic.k('picked one')
X = sfm.triangulate(x1n[:, inliers], x2n[:, inliers], P1, P2[ind])
X = X[:, infront]
tic.k('triangulated')
unmatched1 = homography.make_homog(numpy.delete(l[0], ndx, axis=0)[:, :2].T)
unmatched1d = numpy.delete(d[0], ndx, axis=0)
unmatched1n = numpy.dot(numpy.linalg.inv(K), unmatched1)
unmatched2 = homography.make_homog(numpy.delete(l[1], ndx2, axis=0)[:, :2].T)
unmatched2d = numpy.delete(d[1], ndx2, axis=0)
unmatched2n = numpy.dot(numpy.linalg.inv(K), unmatched2)
# Limit point set for debugging.
N = 8000 # Pick so that only a handful new features are found.
#unmatched1 = unmatched1[:, :N]
#unmatched1d = unmatched1d[:N, :]
#unmatched1n = unmatched1n[:, :N]
#unmatched2 = unmatched2[:, :N]
#unmatched2d = unmatched2d[:N, :]
#unmatched2n = unmatched2n[:, :N]
# For every feature in image 1, collect all feature descriptors in image 2 whose
# locations are close to the feature's epipolar line and compute the best one.
print 'unmatched:', unmatched1n.shape[1]
#Ep = numpy.dot(unmatched1n.T, E)
Ep = numpy.dot(E, unmatched1n)
umatchscores = numpy.zeros((unmatched1n.shape[1], 1), 'int')
for i in range(unmatched1n.shape[1]):
e = Ep[:, i]
# Normalize plane equation, so that Dist is in (calibrated) pixels.
planelen = numpy.sqrt(e[0] ** 2 + e[1] ** 2)
#print planelen
e /= planelen
Dist = numpy.dot(unmatched2n.T, e) ** 2
#I = Dist < (1e-4 ** 2)
I = Dist < (1e-2 / K[0][0]) ** 2
possible_matches = I.nonzero()[0]
#print '%d possible matches for feature %d' % (numpy.sum(I), i)
Ds = unmatched2d[I]
if len(possible_matches) >= 2:
# FIXME: this doesn't work well (skips most stuff, and the stuff it doesn't
# skip is usually wrong)
#siftmatch = sift.match(numpy.array([unmatched1d[i]]), Ds)[0]
#if siftmatch != 0:
#print 'multiple (%d) hits for %d (keeping)' % (Ds.shape[0], i)
#umatchscores[i] = possible_matches[siftmatch]
#else:
#print 'multiple (%d) hits for %d (skipping)' % (Ds.shape[0], i)
#umatchscores[i] = 0
print 'multiple (%d) hits for %d (skipping)' % (Ds.shape[0], i)
umatchscores[i] = 0
else:
if len(possible_matches) == 1:
#print Ds.shape
# FIXME: Probably want to check that the feature descriptors look at least
# somewhat alike.
desc1 = numpy.array([unmatched1d[i]])
desc2 = numpy.array([Ds[0]])
desc1 = desc1 / numpy.linalg.norm(desc1)
desc2 = desc2 / numpy.linalg.norm(desc2)
dotprod = numpy.dot(desc1, desc2.T)
dotprod = 0.9999 * dotprod
angle = numpy.arccos(dotprod)
if angle < math.pi / 6:
print '1 hit for %d (keeping)' % i
umatchscores[i] = possible_matches[0]
else:
print '1 hit for %d (skipping)' % i
umatchscores[i] = 0
else:
umatchscores[i] = 0
tic.k('unmatched features epipoled')
# Keep the 25% best matches...
# XXX: implement ^
# ...triangulate those.
undx = umatchscores.nonzero()[0]
ux1 = unmatched1[:, undx]
ux1n = unmatched1n[:, undx]
undx2 = [int(umatchscores[i]) for i in undx]
ux2 = unmatched2[:, undx2]
ux2n = unmatched2n[:, undx2]
# Debugging: Print match quality.
#for i in undx:
#x1 = unmatched1n[:, i]
#x2 = unmatched2n[:, int(umatchscores[i])]
#print numpy.dot(x1.T, numpy.dot(E, x2))
#print unmatched1[:, i]
#print unmatched2[:, int(umatchscores[i])]
UX = sfm.triangulate(ux1n, ux2n, P1, P2[ind])
tic.k('unmatched features triangulated')
#X = UX
#x1 = ux1
#x2 = ux2
# Plot!
from mpl_toolkits.mplot3d import axes3d
from pylab import *
fig = figure()
ax = fig.gca(projection='3d')
ax.plot(X[0], X[1], X[2], 'k.')
ax.plot(UX[0], UX[1], UX[2], 'g.')
axis('off')
cam1 = camera.Camera(P1)
cam2 = camera.Camera(P2[ind])
#x1p = cam1.project(UX)
#x2p = cam2.project(UX)
x1p = cam1.project(X)
x2p = cam2.project(X)
x1p = numpy.dot(K, x1p)
x2p = numpy.dot(K, x2p)
figure()
imshow(image[0])
gray()
plot(x1p[0], x1p[1], 'o')
plot(x1[0], x1[1], 'r.')
axis('off')
figure()
imshow(image[1])
gray()
plot(x2p[0], x2p[1], 'o')
plot(x2[0], x2[1], 'r.')
#print ux1
#print ux1n
#print E
#for i in range(ux1n.shape[1]):
# E is in calibrated camera coordinates, but plot_epipolar_line() draws
# pixels, so bake the calibration matrix into E for this call.
#sfm.plot_epipolar_line(
#image[1], numpy.dot(numpy.linalg.inv(K.T), E), ux1n[:, i])
axis('off')
#figure()
#sift.plot_matches(image[0], image[1], l[0], l[1], matches, show_below=True)
show()