-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathcamera.py
74 lines (58 loc) · 1.71 KB
/
camera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import numpy
import scipy.linalg
class Camera(object):
'''Represents a pin-hole camera.'''
def __init__(self, P):
self.P = P
self.K = None # Calibration matrix.
self.R = None # Rotation matrix.
self.t = None # Translation vector.
self.c = None # Camera center.
def project(self, X):
x = numpy.dot(self.P, X)
for i in range(3):
x[i] /= x[2]
return x
def factor(self):
'''Factor camera matrix P into K, R, t such that P = K[R|t].'''
# Factor 3x3 part.
K, R = scipy.linalg.rq(self.P[:, :3])
# Make sure K has a positive determinant.
T = numpy.diag(numpy.sign(numpy.diag(K)))
if numpy.linalg.det(T) < 0:
T[1, 1] *= -1
self.K = numpy.dot(K, T)
self.R = numpy.dot(T, R) # T is self-inverse
self.t = numpy.dot(numpy.linalg.inv(self.K), self.P[:, 3])
return self.K, self.R, self.t
def center(self):
'''Returns the camera center, the point in space projected to (0, 0) on
screen.'''
if self.c is None:
self.factor()
self.c = -numpy.dot(self.R.T, self.t)
return self.c
def rotation_matrix(a):
'''Returns a rotation matrix around the axis of a, by an angle that's equal
to the length of a in radians.'''
R = numpy.eye(4)
R[:3, :3] = scipy.linalg.expm([[0, -a[2], a[1]],
[a[2], 0, -a[0]],
[-a[1], a[0], 0]])
return R
def my_calibration(sz):
dX = 10.0 # cm
dY = 8.0 # cm
dZ = 30.0 # cm
# from Acorn:
dx = 1744 - 974 # px
dy = 1269 - 650 # px
fx = (dx / dX) * dZ
fy = (dy / dY) * dZ
row, col = sz
fx = fx * col / 2592
fy = fy * row / 1944
K = numpy.diag([fx, fy, 1])
K[0, 2] = 0.5 * col
K[1, 2] = 0.5 * row
return K