-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathbayes.py
41 lines (36 loc) · 1.26 KB
/
bayes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import numpy
class BayesClassifier(object):
def __init__(self):
"""Initialize classifier with training data."""
self.labels = []
self.mean = []
self.var = []
self.n = 0
def train(self, data, labels=None):
"""Train on data (list of arrays n * dim). labels default to 0...n-1."""
if labels is None:
labels = range(len(data))
self.labels = labels
self.n = len(labels)
for c in data:
self.mean.append(numpy.mean(c, axis=0))
self.var.append(numpy.var(c, axis=0))
def classify(self, points):
"""Classify points by computing probabilities for each class and returning
the most probable label."""
est_prob = numpy.array([gauss(m, v, points)
for m, v in zip(self.mean, self.var)])
ndx = est_prob.argmax(axis=0)
est_labels = numpy.array([self.labels[n] for n in ndx])
return est_labels, est_prob
def gauss(m, v, x):
"""Evaluate Gaussian in d dimensions with mean m and variance v at the
points in the rows of x."""
if len(x.shape) == 1:
n, d = 1, x.shape[0]
else:
n, d = x.shape
S = numpy.diag(1 / v)
x = x - m
y = numpy.exp(-0.5 * numpy.diag(numpy.dot(x, numpy.dot(S, x.T))))
return y * (2 * numpy.pi)**(-d / 2.0) / (numpy.sqrt(numpy.prod(v)) + 1e-6)