-
Notifications
You must be signed in to change notification settings - Fork 0
/
PacketIdeas.tex
319 lines (244 loc) · 7.56 KB
/
PacketIdeas.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
%Packet ideas and such
\documentclass[12pt]{article}
\usepackage{esvect, graphicx,relsize, verbatim, amssymb, amsmath, amsthm, mathabx,dcolumn,mathrsfs, dsfont, enumerate, soul, titlesec}
\newcolumntype{2}{D{.}{}{2.0}}
\textwidth = 7 in
\textheight = 9.5 in
\oddsidemargin = -0.3 in
\evensidemargin = -0.3 in
\topmargin = -0.4 in
\headheight = 0.0 in
\headsep = 0.0 in
\parskip = 0.2in
\parindent = 0.0in
\titlespacing*{\section}
{0pt}{0ex plus .1ex minus .2ex}{.1ex plus .1ex}
\titlespacing*{\subsection}
{0pt}{.5ex plus .1ex minus .2ex}{.3ex plus .2ex}
\DeclareMathOperator{\Gal}{Gal}
\DeclareMathOperator{\gal}{Gal}
\DeclareMathOperator{\im}{Image}
\DeclareMathOperator{\Ann}{Ann}
\DeclareMathOperator{\spn}{span}
\DeclareMathOperator{\sgn}{sgn}
\DeclareMathOperator{\sinc}{sinc}
\newcommand{\CC}{\mathbb{C}}
\newcommand{\GG}{\mathbb{G}}
\newcommand{\LL}{\mathbb{L}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\FF}{\mathfrak{F}}
\newcommand{\one}{\mathds{1}}
\newcommand{\eps}{\epsilon}
\newcommand{\floor}[1]{\lfloor #1 \rfloor}
\newcommand{\s}[1]{\sqrt{#1}}
\newcommand{\norm}[1]{\left\lVert#1\right\rVert}
\newcommand{\I}[1]{#1^{-1}}
\newcommand{\Rw}{\Rightarrow}
\newcommand{\Lw}{\Leftarrow}
\newcommand{\lw}{\leftarrow}
\newcommand{\rw}{\rightarrow}
\newcommand{\p}{\partial}
\newcommand{\var}{\mathrm{Var}}
\newcommand{\sumi}{\sum_{i=0}}
\newcommand{\sumo}{\sum_{i=1}}
\newcommand{\num}[1]{{\large \bf #1)}}
\newcommand{\del}{\Delta}
\newcommand{\lamb}{\lambda}
\newcommand{\al}{\alpha}
\newcommand{\nab}{\nabla}
\newcommand{\pp}[2]{\frac{\p #1}{\p #2}}
\newcommand{\di}{\mathrm{d}}
\newcommand{\dd}[2]{\frac{\di #1}{\di #2}}
\newcommand{\ddt}[2]{\frac{\di^2 #1}{\di #2 ^2}}
\newcommand{\intinf}{\int\limits_{-\infty}^\infty}
\newcommand{\suminf}[1]{\sum_{#1 = -\infty}^\infty}
\newcommand{\ispi}{\frac 1 {\sqrt{2 \pi}} }
\newtheorem{thm}{Theorem}
\theoremstyle{definition}
\newtheorem{defi}{Definition}[section]
\newtheorem{lem}{Lemma}[section]
%%%%% End of preamble %%%%%
\begin{document}
\title{Linear Math In Infinte Dimensions}
{\Large Nicholas Hemleben} \hfill
{\large packets? }
\hfill \today
Properties of the Henkel and Bessel Functions
\begin{enumerate}
\item Linear superopoition of plane waves
\item
They are Integration contours in the complex plane
\item
The integral rep. of the two Hankel functions do not depend on any real changes in the integration limits.
\item
The cylinder harmonics are eigenfunctions of the rotational gneerator $L_\theta = \frac 1 i \pp {} \theta$.
\item
They satisfy the Helmholtz's euqation, whihc in polar coordinates beocome bessels equation
\item
The domain of a cylinder hrarmonic is the r and $\theta$ coordinate transverse cross section of a cylinder. A cylinder harmonic itself is the r and $\theta$ dependent part of a cylinder wave.
\item
The two Hnakel functions are distinguished by the direction and shape of their contour in the complex plane.
\item
The bessel function is the average of the two types of hankel function
\item
Neuman is the 'sin' average of the two hankel funcitosn (the arugnemnt of the hankels are not negated though)
\item
Analog to exponential functions
\item
$J_\nu(\rho)$ is real when $\nu$ is real and $J_0(0)=1$. Moreover $J_\nu$ satisifies the reflection principal from complex analysis.
\item
For integer $\nu= m$ we have
\[
J_m ( \rho ) = \frac 1 \pi \int_0^\pi \cos ( \rho \sin \beta - m \beta ) \di \beta
\]
\item
There is a very ugly power expansion of $J_\nu$
\item
\[
H_\nu^{1} = \frac { e^{- i \nu \pi } J_\nu - J_{-\nu}} {-i \sin \pi \nu}
\]
\item
\[
\overline { H_\nu^2} = H_\nu^1
\]
\item
\[
Z_{\nu+1} + Z_{\nu-1} = \frac { 2 \nu} \rho Z_\nu
\]
\[
Z_{\nu+1} - Z_{\nu-1} = -2 \dd {} \rho Z_\nu
\]
\item
\[
L_+Z_\nu e^{i\nu \theta} =
- Z_{\nu+1} e^{i(\nu+1) \theta }
\]
\[
L_-Z_\nu e^{i\nu \theta} =
- Z_{\nu-1} e^{i(\nu-1) \theta }
\]
\item
Plane wave in the Euclidian plane can be represented as a linear combination of cylinder harmonics of integral order.
\item
\item
\item
\item
\item
\end{enumerate}
Since part (ii) gives a guess we might as well say $\lambda$ cooresponds with $\bar \lamb$ for eigenvalues between L and $L^*$.
We can see this with u and v as in the satement of the problem
\[
\langle L u , v \rangle = \bar \lambda \langle u, v \rangle
\]
from the definition of eigenvalue/function.
\[
= \langle u , L^* v \rangle = \lambda' \langle u, v \rangle
\]
Thus we see that if $\langle u , v \rangle \neq 0$ that $\bar \lamb = \lamb '$.
*********8MAKE NOTE FOR LATER POST*****Problem is Done though*************\\
In fact it is clear from the above that $\bar \lamb$ being an eigenvalue of the adjoint is implied by $\exists v, \langle u, v \rangle \neq 0$.
Thus if an operator is self adjoint we see that $\lamb = \bar \lamb$ and the eigenvalues must all be real valued.
%Basicly this is just a slight modificaiton of the proof found on page 168 for theorem 1 of this section.
% \begin{enumerate}[1)]
% \item
% \[
% Lu_n = - \frac{ d^2u_n} { dx^2} + x^2 u_n(x) = \lambda_n u_n(x)
% \]
% Now multiply both sides by $u_m$
% \[
% \bar u_m Lu_n = -\bar u_m \frac{ d^2u_n} { dx^2} + \bar u_m x^2 u_n(x) = \lambda_n \bar u_m u_n(x)
% \]
% Now we multiply by $-1$ and then add the analgous equation with $u_m$ to get:
% \[
% u_n L \bar u_m - \bar u_m Lu_n
% =
% \dd {} x \left[ \bar u_m u_n ' - u_n \bar u_m ' \right]
% \]
% Now the right hand side is just the difference of the eigenvalues times the functions:
% \[
% = (\lambda_n - \lamb_m ) \bar u_m u_n
% \]
% \item
% Integrating both sides we get:
% \[
% (\lambda_n - \lamb_m ) \intinf \bar u_m u_n \di x
% =
% \intinf u_n L \bar u_m - \bar u_m Lu_n \di x
% \]
% Which we can see the right hand side is just
% \[
% =
% \left[ \bar u_m u_n ' - u_n \bar u_m ' \right]_{\pm \infty}
% \]
% thanks to the work above (aka Lagrange's Identity).
%
% \item
% We wish to show that
% $\left[ \bar u_m u_n ' - u_n \bar u_m ' \right]_{\pm \infty} =0$
% This is straight forward as $u_m \rw 0$ as $ x \rw \pm \infty$.
% \end{enumerate}
We consider:
\[
u''+ b(x) u'+ c(x) u=0
\]
*********************PACKT******************\\
Let u be some solution, let us try $v(x) = F(x) u(x)$
then:
\[
v' = F' u + F u',
v'' = F'' u + 2F'u' + F u''
\]
Now we plug this into $v''+Qv$ and find:
\[
F'' u + 2F'u' + F u''
+
Fu
=
F'' u + 2F'u' + F (u'' +Qu)
\]
\[
=
F \left[
u'' +2F'/Fu' +(F''/F +Q)u
\right]
\]
We know that $u'' = -bu'-cu$
\[
=
F \left[
(2F'/F-b)u' +(F''/F +Q-c)u
\right]
\]
If we let $Q = c- F''/F$ then all we have to do is solve $2F'/F =b$.
This leads to
\[
2 F'/F -b=0 \Rw 2 \int^x F'/F = \int^x b
\Rw 2 \ln F = \int^x b
\]
\[
\Rw F = \exp \{ \frac 1 2 \int^x b \}
\]
Thus our subsitition ends up being: $v(x) = \exp \{ \frac 1 2 \int^x b \} u(x)$.
Note that $F' = \frac {b} 2 F, \ F'' = \frac {b'+ b^2/2} 2 F$
and our equation gets:
\[
Q= c- F''/F
=
c- F''/F
=
c- \frac {b'+ b^2/2} 2
\]
All togther we have:
\[
u \rw v = \exp \{ \frac 1 2 \int^x b \} u(x), \quad
\]
\[
u''+ b(x) u'+ c(x) u=0
\ \rw \
v''+Q(x) v=0, \ Q(x) = c- \frac {b'+ b^2/2} 2
\]
\end{document}