Skip to content

Commit

Permalink
Merge pull request #32 from neuralmagic/cherrypick-upstream-fix
Browse files Browse the repository at this point in the history
[Cherry-pick] [Upstream] Fix for detect.py
  • Loading branch information
KSGulin authored Apr 13, 2022
2 parents 14eb1dc + 44637dc commit 7c07fde
Showing 1 changed file with 8 additions and 6 deletions.
14 changes: 8 additions & 6 deletions utils/general.py
Original file line number Diff line number Diff line change
Expand Up @@ -707,12 +707,13 @@ def clip_coords(boxes, shape):

def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
labels=(), max_det=300):
"""Runs Non-Maximum Suppression (NMS) on inference results
"""Non-Maximum Suppression (NMS) on inference results to reject overlapping bounding boxes
Returns:
list of detections, on (n,6) tensor per image [xyxy, conf, cls]
"""

bs = prediction.shape[0] # batch size
nc = prediction.shape[2] - 5 # number of classes
xc = prediction[..., 4] > conf_thres # candidates

Expand All @@ -721,18 +722,19 @@ def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=Non
assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'

# Settings
min_wh, max_wh = 2, 7680 # (pixels) minimum and maximum box width and height
# min_wh = 2 # (pixels) minimum box width and height
max_wh = 7680 # (pixels) maximum box width and height
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
time_limit = 10.0 # seconds to quit after
time_limit = 0.030 * bs # seconds to quit after
redundant = True # require redundant detections
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
merge = False # use merge-NMS

t = time.time()
output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
output = [torch.zeros((0, 6), device=prediction.device)] * bs
for xi, x in enumerate(prediction): # image index, image inference
# Apply constraints
x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
x = x[xc[xi]] # confidence

# Cat apriori labels if autolabelling
Expand Down Expand Up @@ -793,7 +795,7 @@ def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=Non

output[xi] = x[i]
if (time.time() - t) > time_limit:
LOGGER.warning(f'WARNING: NMS time limit {time_limit}s exceeded')
LOGGER.warning(f'WARNING: NMS time limit {time_limit:.3f}s exceeded')
break # time limit exceeded

return output
Expand Down

0 comments on commit 7c07fde

Please sign in to comment.