From b39dba49ded86de3076755e27c9d9434d8fec0e5 Mon Sep 17 00:00:00 2001 From: Eliza Wszola Date: Fri, 2 Aug 2024 12:45:44 +0000 Subject: [PATCH] clean up the CPU code --- csrc/moe/marlin_moe_ops.cu | 1527 ++--------------- csrc/moe/marlin_moe_ops.h | 13 +- csrc/moe/torch_bindings.cpp | 9 +- .../layers/fused_moe/fused_moe.py | 34 +- vllm/model_executor/models/mixtral_quant.py | 11 +- 5 files changed, 196 insertions(+), 1398 deletions(-) diff --git a/csrc/moe/marlin_moe_ops.cu b/csrc/moe/marlin_moe_ops.cu index ebc1693b2ba50..92184f43c9eb0 100644 --- a/csrc/moe/marlin_moe_ops.cu +++ b/csrc/moe/marlin_moe_ops.cu @@ -30,8 +30,6 @@ inline std::string str(T x) { return std::to_string(x); } -#define CPU_OFFSETS true - namespace marlin_moe { constexpr int ceildiv(int a, int b) { return (a + b - 1) / b; } @@ -232,1031 +230,72 @@ __global__ void permute_cols_kernel(int4 const* __restrict__ a_int4_ptr, if (finish_row > size_m) { finish_row = size_m; } - int cur_block_rows = finish_row - start_row; - - int row_stride = size_k * sizeof(half) / 16; - - auto permute_row = [&](int row) { - int iters = size_k / blockDim.x; - int rest = size_k % blockDim.x; - - int offset = row * row_stride; - - half const* a_row_half = reinterpret_cast(a_int4_ptr + offset); - half* out_half = reinterpret_cast(out_int4_ptr + offset); - - int base_k = 0; - - for (int i = 0; i < iters; i++) { - int cur_k = base_k + threadIdx.x; - int src_pos = perm_int_ptr[cur_k]; - - out_half[cur_k] = a_row_half[src_pos]; - - base_k += blockDim.x; - } - - if (rest) { - if (threadIdx.x < rest) { - int cur_k = base_k + threadIdx.x; - int src_pos = perm_int_ptr[cur_k]; - - out_half[cur_k] = a_row_half[src_pos]; - } - } - }; - - for (int i = 0; i < cur_block_rows; i++) { - int cur_row = start_row + i; - if (cur_row < size_m) { - permute_row(cur_row); - } - } -} - -__global__ void compute_expert_offsets(int const* __restrict__ topk_ids, - int* __restrict__ expert_offsets, - int topk_length, - int block_size) { - int expert_id = threadIdx.x; - int num_experts = blockDim.x; - - int occurrences = 0; - for (int i = 0; i < topk_length; ++i) { - occurrences += (topk_ids[i] == expert_id); - } - expert_offsets[expert_id + 1] = occurrences; - __syncthreads(); - - if (threadIdx.x == 0) { - int tot_offset = 0; - expert_offsets[0] = 0; - for (int i = 0; i < num_experts; ++i) { - tot_offset += ceildiv(expert_offsets[i + 1], block_size) * block_size; - expert_offsets[i + 1] = tot_offset; - } - // for (int i = 0; i < num_experts + 1; ++i) { - // printf("expert offset: %d -> %d (%d %d)\n", - // i, expert_offsets[i], topk_length, block_size); - // } - } - __syncthreads(); - -} - -#if CPU_OFFSETS - -template shared - // fetch pipeline - const bool has_act_order, // whether act_order is enabled - const int group_blocks = -1 // number of consecutive 16x16 blocks - // with a separate quantization scale - > -__global__ void MarlinMoE( - const int4* __restrict__ A, // fp16 input matrix of shape mxk - const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn - int4* __restrict__ C, // fp16 output buffer of shape mxn - const int* __restrict__ sorted_ids, // int32 sorted ids of experts - const float* __restrict__ topk_weights, // float topk weights - const int4* __restrict__ scales_ptr, // fp16 quantization scales of shape - // (k/groupsize)xn - const int* __restrict__ g_idx, // int32 group indices of shape k - const int* __restrict__ expert_offsets, - int num_groups, // number of scale groups per output channel - int expert_idx, // idx of current expert // TODO must decide based on offsets - int num_experts, // number of experts - int topk, // topk parameter of moe - int prob_m, // batch dimension m - int prob_n, // output dimension n - int prob_k, // reduction dimension k - int tot_m, // total number of rows in A and C - int* locks, // extra global storage for barrier synchronization - bool replicate_input, // do we use the same input for each expert? - bool apply_weights, // apply weights to output - int try_m_block_ctr, // experiment - int* barrier_ctrs -) { - - // int tot_m_blocks = ceildiv(tot_m, 16); - // if (try_m_block_ctr >= tot_m_blocks) { - // return; - // } - - // Each threadblock processes one "stripe" of the B matrix with (roughly) the - // same size, which might involve multiple column "slices" (of width 16 * - // `thread_n_blocks`). Stripes are defined as shown in the 3x3 matrix 5 SM - // example: - // 0 1 3 - // 0 2 3 - // 1 2 4 - // While this kind of partitioning makes things somewhat more complicated, it - // ensures good utilization of all SMs for many kinds of shape and GPU - // configurations, while requiring as few slow global cross-threadblock - // reductions as possible. - - // For larger GEMMs we run multiple batchsize 64 versions in parallel for a - // better partitioning with less reductions - int parallel = 1; - if (prob_m > 16 * thread_m_blocks) { - parallel = prob_m / (16 * thread_m_blocks); - prob_m = 16 * thread_m_blocks; - } - - int k_tiles = prob_k / 16 / thread_k_blocks; - int n_tiles = prob_n / 16 / thread_n_blocks; - int iters = ceildiv(k_tiles * n_tiles * parallel, gridDim.x); - - if constexpr (!has_act_order && group_blocks != -1) { - if (group_blocks >= thread_k_blocks) { - // Ensure that the number of tiles in each stripe is a multiple of the - // groupsize; this avoids an annoying special case where a stripe starts - // in the middle of group. - iters = (group_blocks / thread_k_blocks) * - ceildiv(iters, (group_blocks / thread_k_blocks)); - } - } - - int slice_row = (iters * blockIdx.x) % k_tiles; - int slice_col_par = (iters * blockIdx.x) / k_tiles; - int slice_col = slice_col_par; - int slice_iters; // number of threadblock tiles in the current slice - int slice_count = - 0; // total number of active threadblocks in the current slice - int slice_idx; // index of threadblock in current slice; numbered bottom to - // top - - // We can easily implement parallel problem execution by just remapping - // indices and advancing global pointers - if (slice_col_par >= n_tiles) { - locks += (slice_col_par / n_tiles) * n_tiles; - slice_col = slice_col_par % n_tiles; - sorted_ids += (slice_col_par / n_tiles) * 16 * thread_m_blocks; - } - - // Compute all information about the current slice which is required for - // synchronization. - auto init_slice = [&]() { - slice_iters = - iters * (blockIdx.x + 1) - (k_tiles * slice_col_par + slice_row); - if (slice_iters < 0 || slice_col_par >= n_tiles * parallel) slice_iters = 0; - if (slice_iters == 0) return; - if (slice_row + slice_iters > k_tiles) slice_iters = k_tiles - slice_row; - slice_count = 1; - slice_idx = 0; - int col_first = iters * ceildiv(k_tiles * slice_col_par, iters); - if (col_first <= k_tiles * (slice_col_par + 1)) { - int col_off = col_first - k_tiles * slice_col_par; - slice_count = ceildiv(k_tiles - col_off, iters); - if (col_off > 0) slice_count++; - int delta_first = iters * blockIdx.x - col_first; - if (delta_first < 0 || (col_off == 0 && delta_first == 0)) - slice_idx = slice_count - 1; - else { - slice_idx = slice_count - 1 - delta_first / iters; - if (col_off > 0) slice_idx--; - } - } - if (slice_col == n_tiles) { - sorted_ids += 16 * thread_m_blocks; - locks += n_tiles; - slice_col = 0; - } - }; - init_slice(); - - // A sizes/strides - - // stride of the A matrix in global memory - int a_gl_stride = prob_k / 8; - // stride of an A matrix tile in shared memory - constexpr int a_sh_stride = 16 * thread_k_blocks / 8; - // delta between subsequent A tiles in global memory - constexpr int a_gl_rd_delta_o = 16 * thread_k_blocks / 8; - // between subsequent accesses within a tile - int a_gl_rd_delta_i = a_gl_stride * (threads / a_gl_rd_delta_o); - // between shared memory writes - constexpr int a_sh_wr_delta = a_sh_stride * (threads / a_gl_rd_delta_o); - // between shared memory tile reads - constexpr int a_sh_rd_delta_o = 2 * ((threads / 32) / (thread_n_blocks / 4)); - // within a shared memory tile - constexpr int a_sh_rd_delta_i = a_sh_stride * 16; - // overall size of a tile - constexpr int a_sh_stage = a_sh_stride * (16 * thread_m_blocks); - // number of shared write iterations for a tile - constexpr int a_sh_wr_iters = ceildiv(a_sh_stage, a_sh_wr_delta); - - // B sizes/strides - int b_gl_stride = 16 * prob_n / 32; - constexpr int b_sh_stride = 32 * thread_n_blocks / 4; - int b_gl_rd_delta_o = b_gl_stride * thread_k_blocks; - int b_gl_rd_delta_i = b_gl_stride * (threads / b_sh_stride); - constexpr int b_sh_wr_delta = threads; - constexpr int b_sh_rd_delta = threads; - constexpr int b_sh_stage = b_sh_stride * thread_k_blocks; - constexpr int b_sh_wr_iters = b_sh_stage / b_sh_wr_delta; - - // Scale sizes/strides without act_order - int s_gl_stride = prob_n / 8; - constexpr int s_sh_stride = 16 * thread_n_blocks / 8; - constexpr int s_tb_groups = !has_act_order && group_blocks < thread_k_blocks - ? thread_k_blocks / group_blocks - : 1; - constexpr int s_sh_stage = s_tb_groups * s_sh_stride; - int s_gl_rd_delta = s_gl_stride; - // Scale size/strides with act_order - constexpr int tb_k = 16 * thread_k_blocks; - constexpr int g_idx_stage = has_act_order ? (tb_k * sizeof(int)) / 16 : 0; - // constexpr int act_s_row_stride = 1; - // int act_s_col_stride = act_s_row_stride * num_groups; - int act_s_col_stride = 1; - int act_s_col_warp_stride = act_s_col_stride * 8; - int tb_n_warps = thread_n_blocks / 4; - int act_s_col_tb_stride = act_s_col_warp_stride * tb_n_warps; - - constexpr int sorted_sh_stride = threads; - constexpr int sorted_gl_stride = threads; - - // Global A read index of current thread. - int a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) + - (threadIdx.x % a_gl_rd_delta_o); - a_gl_rd += a_gl_rd_delta_o * slice_row; - // Shared write index of current thread. - int a_sh_wr = a_sh_stride * (threadIdx.x / a_gl_rd_delta_o) + - (threadIdx.x % a_gl_rd_delta_o); - // Shared read index. - int a_sh_rd = - a_sh_stride * ((threadIdx.x % 32) % 16) + (threadIdx.x % 32) / 16; - a_sh_rd += 2 * ((threadIdx.x / 32) / (thread_n_blocks / 4)); - - int b_gl_rd = - b_gl_stride * (threadIdx.x / b_sh_stride) + (threadIdx.x % b_sh_stride); - b_gl_rd += b_sh_stride * slice_col; - b_gl_rd += b_gl_rd_delta_o * slice_row; - int b_sh_wr = threadIdx.x; - int b_sh_rd = threadIdx.x; - - // For act_order - constexpr int k_iter_size = tb_k / b_sh_wr_iters; - int slice_k_start = tb_k * slice_row; - int slice_k_finish = slice_k_start + tb_k * slice_iters; - int slice_k_start_shared_fetch = slice_k_start; - int slice_n_offset = act_s_col_tb_stride * slice_col; - - // No act_order - int s_gl_rd; - if constexpr (group_blocks == -1 || group_blocks == 0) { - s_gl_rd = s_sh_stride * slice_col + threadIdx.x; - } else { - s_gl_rd = s_gl_stride * ((thread_k_blocks * slice_row) / group_blocks) + - s_sh_stride * slice_col + threadIdx.x; - } - int s_sh_wr = threadIdx.x; - bool s_sh_wr_pred = threadIdx.x < s_sh_stride; - - // We use a different scale layout for grouped and column-wise quantization as - // we scale a `half2` tile in column-major layout in the former and in - // row-major in the latter case. - int s_sh_rd; - if constexpr (group_blocks != -1) - s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) + - (threadIdx.x % 32) / 4; - else - s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) + - (threadIdx.x % 32) % 4; - - int sh_first_group_id = -1; - int sh_num_groups = -1; - constexpr int sh_max_num_groups = 32; - - int shs_size; - if constexpr (has_act_order) - shs_size = sh_max_num_groups * s_sh_stride + threads; - else - shs_size = group_blocks > 0 ? stages * s_sh_stage : threads; - - extern __shared__ int4 sh[]; - // Shared memory storage for global fetch pipelines. - int4* sh_a = sh; - int4* sh_b = sh_a + (stages * a_sh_stage); - int4* sh_g_idx = sh_b + (stages * b_sh_stage); - int4* sh_s = sh_g_idx + (stages * g_idx_stage); - int* sh_sorted = (int*)(sh_s + shs_size); - - // Precompute which thread should not read memory in which iterations; this is - // needed if there are more threads than required for a certain tilesize or - // when the batchsize is not a multiple of 16. - bool a_sh_wr_pred[a_sh_wr_iters]; - #pragma unroll - for (int i = 0; i < a_sh_wr_iters; i++) { - int a_idx = a_sh_wr_delta * i + a_sh_wr; - int row = a_idx / a_gl_rd_delta_o; - if (row >= prob_m) { - a_sh_wr_pred[i] = false; - } else { - a_sh_wr_pred[i] = a_sh_wr_delta * i + a_sh_wr < a_sh_stride * prob_m; - } - } - - // To ensure that writing and reading A tiles to/from shared memory, the - // latter in fragment format, is fully bank conflict free, we need to use a - // rather fancy XOR-based layout. The key here is that neither reads nor - // writes of the 16-byte `int4` blocks of 8 consecutive threads involve the - // same shared memory banks. Further, it seems (based on NSight-Compute) that - // each warp must also write a consecutive memory segment? - auto transform_a = [&](int i) { - int row = i / a_gl_rd_delta_o; - return a_gl_rd_delta_o * row + (i % a_gl_rd_delta_o) ^ row; - }; - // Since the computation of this remapping is non-trivial and, due to our main - // loop unrolls, all shared memory accesses are static, we simply precompute - // both transformed reads and writes. - int a_sh_wr_trans[a_sh_wr_iters]; - #pragma unroll - for (int i = 0; i < a_sh_wr_iters; i++) - a_sh_wr_trans[i] = transform_a(a_sh_wr_delta * i + a_sh_wr); - int a_sh_rd_trans[b_sh_wr_iters][thread_m_blocks]; - #pragma unroll - for (int i = 0; i < b_sh_wr_iters; i++) { - #pragma unroll - for (int j = 0; j < thread_m_blocks; j++) - a_sh_rd_trans[i][j] = - transform_a(a_sh_rd_delta_o * i + a_sh_rd_delta_i * j + a_sh_rd); - } - - // Since B-accesses have non-constant stride they have to be computed at - // runtime; we break dependencies between subsequent accesses with a tile by - // maintining multiple pointers (we have enough registers), a tiny - // optimization. - const int4* B_ptr[b_sh_wr_iters]; - #pragma unroll - for (int i = 0; i < b_sh_wr_iters; i++) - B_ptr[i] = B + b_gl_rd_delta_i * i + b_gl_rd; - - // Register storage for double buffer of shared memory reads. - FragA frag_a[2][thread_m_blocks]; - I4 frag_b_quant[2]; - FragC frag_c[thread_m_blocks][4][2]; - FragS frag_s[2][4]; // No act-order - FragS act_frag_s[2][4][4]; // For act-order - - // Zero accumulators. - auto zero_accums = [&]() { - #pragma unroll - for (int i = 0; i < thread_m_blocks * 4 * 2 * 4; i++) - reinterpret_cast(frag_c)[i] = 0; - }; - - auto fetch_scales_to_shared = [&](bool is_async, int first_group_id, - int last_group_id) { - sh_first_group_id = first_group_id; - sh_num_groups = last_group_id - first_group_id + 1; - - if (sh_num_groups < sh_max_num_groups) { - sh_num_groups = sh_max_num_groups; - } - - if (sh_first_group_id + sh_num_groups > num_groups) { - sh_num_groups = num_groups - sh_first_group_id; - } - - int row_offset = first_group_id * s_gl_stride; - - if (is_async) { - for (int i = 0; i < sh_num_groups; i++) { - if (threadIdx.x < s_sh_stride) { - cp_async4_pred(&sh_s[(i * s_sh_stride) + threadIdx.x], - &scales_ptr[row_offset + (i * s_gl_stride) + - slice_n_offset + threadIdx.x]); - } - } - } else { - for (int i = 0; i < sh_num_groups; i++) { - if (threadIdx.x < s_sh_stride) { - sh_s[(i * s_sh_stride) + threadIdx.x] = - scales_ptr[row_offset + (i * s_gl_stride) + slice_n_offset + - threadIdx.x]; - } - } - } - }; - // Asynchronously fetch the next A, B and s tile from global to the next - // shared memory pipeline location. - auto fetch_to_shared = [&](int pipe, int a_off, bool pred = true) { - if (pred) { - int4* sh_a_stage = sh_a + a_sh_stage * pipe; - #pragma unroll - for (int i = 0; i < a_sh_wr_iters; i++) { - int a_idx = a_gl_rd_delta_i * i + a_gl_rd + a_gl_rd_delta_o * a_off; - int row = a_idx / a_gl_stride; - int sorted_row = - replicate_input ? sorted_ids[row] / topk : sorted_ids[row]; - int new_idx = sorted_row * a_gl_stride + a_idx % a_gl_stride; - if (sorted_row < tot_m * (replicate_input ? 1 : topk) && - new_idx < a_gl_stride * tot_m * (replicate_input ? 1 : topk)) { - cp_async4_pred(&sh_a_stage[a_sh_wr_trans[i]], &A[new_idx], - a_sh_wr_pred[i]); - } - } - int4* sh_b_stage = sh_b + b_sh_stage * pipe; - #pragma unroll - for (int i = 0; i < b_sh_wr_iters; i++) { - cp_async4(&sh_b_stage[b_sh_wr_delta * i + b_sh_wr], B_ptr[i]); - B_ptr[i] += b_gl_rd_delta_o; - } - - if constexpr (has_act_order) { - // Fetch g_idx thread-block portion - int full_pipe = a_off; - int cur_k = slice_k_start_shared_fetch + tb_k * full_pipe; - if (cur_k < prob_k && cur_k < slice_k_finish) { - int4* sh_g_idx_stage = sh_g_idx + g_idx_stage * pipe; - - int4 const* cur_g_idx_stage_ptr = - reinterpret_cast(&g_idx[cur_k]); - - if (threadIdx.x < g_idx_stage) { - cp_async4_pred(&sh_g_idx_stage[threadIdx.x], - &cur_g_idx_stage_ptr[threadIdx.x]); - } - } - } else { - if constexpr (group_blocks != -1) { - int4* sh_s_stage = sh_s + s_sh_stage * pipe; - - if constexpr (group_blocks >= thread_k_blocks) { - // Only fetch scales if this tile starts a new group - if (pipe % (group_blocks / thread_k_blocks) == 0) { - if (s_sh_wr_pred) { - cp_async4(&sh_s_stage[s_sh_wr], &scales_ptr[s_gl_rd]); - } - s_gl_rd += s_gl_rd_delta; - } - } else { - for (int i = 0; i < s_tb_groups; i++) { - if (s_sh_wr_pred) { - cp_async4(&sh_s_stage[i * s_sh_stride + s_sh_wr], - &scales_ptr[s_gl_rd]); - } - s_gl_rd += s_gl_rd_delta; - } - } - } - } - } - // Insert a fence even when we are winding down the pipeline to ensure that - // waiting is also correct at this point. - cp_async_fence(); - }; - - // TODO fix - auto fetch_sorted_ids_to_shared = [&]() { - const int mpt = ceildiv(prob_m, threads); - for (int i = 0; i < mpt; i++) { - if ((i * sorted_gl_stride) + threadIdx.x < prob_m) { - sh_sorted[(i * sorted_sh_stride) + threadIdx.x] = - sorted_ids[(i * sorted_gl_stride) + threadIdx.x]; - } - } - }; - - // Wait until the next thread tile has been loaded to shared memory. - auto wait_for_stage = [&]() { - // We only have `stages - 2` active fetches since we are double buffering - // and can only issue the next fetch when it is guaranteed that the previous - // shared memory load is fully complete (as it may otherwise be - // overwritten). - cp_async_wait(); - __syncthreads(); - }; - - // Load the next sub-tile from the current location in the shared memory pipe - // into the current register buffer. - auto fetch_to_registers = [&](int k, int pipe) { - int4* sh_a_stage = sh_a + a_sh_stage * pipe; - #pragma unroll - for (int i = 0; i < thread_m_blocks; i++) - ldsm4(frag_a[k % 2][i], &sh_a_stage[a_sh_rd_trans[k % b_sh_wr_iters][i]]); - int4* sh_b_stage = sh_b + b_sh_stage * pipe; - frag_b_quant[k % 2] = *reinterpret_cast( - &sh_b_stage[b_sh_rd_delta * (k % b_sh_wr_iters) + b_sh_rd]); - }; - - bool is_same_group[stages]; - int same_group_id[stages]; - - auto init_same_group = [&](int pipe) { - int4* sh_g_idx_stage = sh_g_idx + g_idx_stage * pipe; - int* sh_g_idx_int_ptr = reinterpret_cast(sh_g_idx_stage); - - int group_id_1 = sh_g_idx_int_ptr[0]; - int group_id_2 = sh_g_idx_int_ptr[tb_k - 1]; - - is_same_group[pipe] = group_id_1 == group_id_2; - same_group_id[pipe] = group_id_1; - }; - - auto fetch_scales_to_registers = [&](int k, int full_pipe) { - int pipe = full_pipe % stages; - - if constexpr (!has_act_order) { - // No act-order case - if constexpr (group_blocks != -1) { - if constexpr (group_blocks >= thread_k_blocks) { - int4* sh_s_stage = - sh_s + s_sh_stage * ((group_blocks / thread_k_blocks) * - (pipe / (group_blocks / thread_k_blocks))); - reinterpret_cast(&frag_s[k % 2])[0] = sh_s_stage[s_sh_rd]; - } else { - int warp_id = threadIdx.x / 32; - int n_warps = thread_n_blocks / 4; - - int warp_row = warp_id / n_warps; - - int cur_k = warp_row * 16; - cur_k += k_iter_size * (k % b_sh_wr_iters); - - int k_blocks = cur_k / 16; - int cur_group_id = k_blocks / group_blocks; - - int4* sh_s_stage = sh_s + s_sh_stage * pipe; - - reinterpret_cast(&frag_s[k % 2])[0] = - sh_s_stage[s_sh_rd + cur_group_id * s_sh_stride]; - } - } - - return; - } - - // Act-order case - - // Determine K of the "current" thread-block - int cur_k = slice_k_start + tb_k * full_pipe; - if (cur_k >= prob_k || cur_k >= slice_k_finish) { - return; - } - - // Reset (to current thread-block) since we read g_idx portion from the - // shared memory - cur_k = 0; - - // Progress to current iteration - cur_k += k_iter_size * (k % b_sh_wr_iters); - - // Determine "position" inside the thread-block (based on warp and - // thread-id) - int warp_id = threadIdx.x / 32; - int n_warps = - thread_n_blocks / 4; // Each warp processes 4 16-size tiles over N - - int warp_row = warp_id / n_warps; - int warp_col = warp_id % n_warps; - - cur_k += warp_row * 16; - - int th_id = threadIdx.x % 32; - cur_k += (th_id % 4) * 2; // Due to tensor-core layout for fp16 B matrix - - int s_col_shift = - /*slice_n_offset +*/ (act_s_col_warp_stride * warp_col) + - (th_id / 4) * act_s_col_stride; - - if (is_same_group[pipe]) { - if (k % 2 == 0) { - *(reinterpret_cast(&(act_frag_s[k % 2][0][0]))) = - sh_s[(same_group_id[pipe] - sh_first_group_id) * s_sh_stride + - s_col_shift]; - } else { - *(reinterpret_cast(&(act_frag_s[k % 2][0][0]))) = - *(reinterpret_cast(&(act_frag_s[(k - 1) % 2][0][0]))); - } - - for (int i = 1; i < 4; i++) { - *(reinterpret_cast(&(act_frag_s[k % 2][i][0]))) = - *(reinterpret_cast(&(act_frag_s[k % 2][0][0]))); - } - return; - } - - int4* sh_g_idx_stage = sh_g_idx + g_idx_stage * pipe; - int* sh_g_idx_int_ptr = reinterpret_cast(sh_g_idx_stage); - - constexpr int k_frag_offsets[4] = {0, 1, 8, - 9}; // Tensor core offsets per thread - - #pragma unroll - for (int i = 0; i < 4; i++) { - int actual_k = cur_k + k_frag_offsets[i]; - - int group_id = sh_g_idx_int_ptr[actual_k]; - int rel_group_id = group_id - sh_first_group_id; - - *(reinterpret_cast(&(act_frag_s[k % 2][i][0]))) = - sh_s[rel_group_id * s_sh_stride + s_col_shift]; - } - }; - - // Execute the actual tensor core matmul of a sub-tile. - auto matmul = [&](int k) { - // We have the m dimension as the inner loop in order to encourage overlapping - // dequantization and matmul operations. - #pragma unroll - for (int j = 0; j < 4; j++) { - int b_quant = frag_b_quant[k % 2][j]; - int b_quant_shift = b_quant >> 8; - - FragB frag_b0 = dequant(b_quant); - - // Apply scale to frag_b0 - if constexpr (has_act_order) { - scale4(frag_b0, act_frag_s[k % 2][0][j], act_frag_s[k % 2][1][j], - act_frag_s[k % 2][2][j], act_frag_s[k % 2][3][j], 0); - } else { - if constexpr (group_blocks != -1) { - scale(frag_b0, frag_s[k % 2][j], 0); - } - } - - FragB frag_b1 = dequant(b_quant_shift); - - // Apply scale to frag_b1 - if constexpr (has_act_order) { - scale4(frag_b1, act_frag_s[k % 2][0][j], act_frag_s[k % 2][1][j], - act_frag_s[k % 2][2][j], act_frag_s[k % 2][3][j], 1); - - } else { - if constexpr (group_blocks != -1) { - scale(frag_b1, frag_s[k % 2][j], 1); - } - } - - #pragma unroll - for (int i = 0; i < thread_m_blocks; i++) { - mma(frag_a[k % 2][i], frag_b0, frag_c[i][j][0]); - mma(frag_a[k % 2][i], frag_b1, frag_c[i][j][1]); - } - } - }; - - // Since we slice across the k dimension of a tile in order to increase the - // number of warps while keeping the n dimension of a tile reasonable, we have - // multiple warps that accumulate their partial sums of the same output - // location; which we have to reduce over in the end. We do in shared memory. - auto thread_block_reduce = [&]() { - constexpr int red_off = threads / b_sh_stride / 2; - if (red_off >= 1) { - int red_idx = threadIdx.x / b_sh_stride; - constexpr int red_sh_stride = b_sh_stride * 4 * 2; - constexpr int red_sh_delta = b_sh_stride; - int red_sh_rd = red_sh_stride * (threadIdx.x / b_sh_stride) + - (threadIdx.x % b_sh_stride); - - // Parallel logarithmic shared memory reduction. We make sure to avoid any - // unnecessary read or write iterations, e.g., for two warps we write only - // once by warp 1 and read only once by warp 0. - - #pragma unroll - for (int m_block = 0; m_block < thread_m_blocks; m_block++) { - #pragma unroll - for (int i = red_off; i > 0; i /= 2) { - if (i <= red_idx && red_idx < 2 * i) { - #pragma unroll - for (int j = 0; j < 4 * 2; j++) { - int red_sh_wr = - red_sh_delta * j + (red_sh_rd - red_sh_stride * i); - if (i < red_off) { - float* c_rd = - reinterpret_cast(&sh[red_sh_delta * j + red_sh_rd]); - float* c_wr = reinterpret_cast(&sh[red_sh_wr]); - #pragma unroll - for (int k = 0; k < 4; k++) - reinterpret_cast(frag_c)[4 * 2 * m_block + j][k] += - c_rd[k] + c_wr[k]; - } - sh[red_sh_wr] = - reinterpret_cast(&frag_c)[4 * 2 * m_block + j]; - } - } - __syncthreads(); - } - if (red_idx == 0) { - #pragma unroll - for (int i = 0; i < 4 * 2; i++) { - float* c_rd = - reinterpret_cast(&sh[red_sh_delta * i + red_sh_rd]); - #pragma unroll - for (int j = 0; j < 4; j++) - reinterpret_cast(frag_c)[4 * 2 * m_block + i][j] += - c_rd[j]; - } - } - __syncthreads(); - } - } - }; - - // Since multiple threadblocks may process parts of the same column slice, we - // finally have to globally reduce over the results. As the striped - // partitioning minimizes the number of such reductions and our outputs are - // usually rather small, we perform this reduction serially in L2 cache. - auto global_reduce = [&](bool first = false, bool last = false) { - // We are very careful here to reduce directly in the output buffer to - // maximize L2 cache utilization in this step. To do this, we write out - // results in FP16 (but still reduce with FP32 compute). - constexpr int active_threads = 32 * thread_n_blocks / 4; - if (threadIdx.x < active_threads) { - int c_gl_stride = prob_n / 8; - int c_gl_wr_delta_o = 8 * c_gl_stride; - int c_gl_wr_delta_i = 4 * (active_threads / 32); - int c_gl_wr = c_gl_stride * ((threadIdx.x % 32) / 4) + - 4 * (threadIdx.x / 32) + threadIdx.x % 4; - c_gl_wr += (2 * thread_n_blocks) * slice_col; - constexpr int c_sh_wr_delta = active_threads; - int c_sh_wr = threadIdx.x; - - int row = (threadIdx.x % 32) / 4; - - if (!first) { - // Interestingly, doing direct global accesses here really seems to mess up - // the compiler and lead to slowdowns, hence we also use async-copies even - // though these fetches are not actually asynchronous. - #pragma unroll - for (int i = 0; i < thread_m_blocks * 4; i++) { - int c_idx = - c_gl_wr + c_gl_wr_delta_o * (i / 2) + c_gl_wr_delta_i * (i % 2); - int sorted_row = sorted_ids[c_idx / c_gl_stride]; - int new_idx = sorted_row * c_gl_stride + c_idx % c_gl_stride; - cp_async4_pred(&sh[c_sh_wr + c_sh_wr_delta * i], &C[new_idx], - sorted_row < tot_m * topk && - (8 * (i / 2) + row < prob_m && - (i < (thread_m_blocks - 1) * 4 || - sorted_ids[8 * (i / 2) + row] < tot_m * topk))); - } - cp_async_fence(); - cp_async_wait<0>(); - } - - #pragma unroll - for (int i = 0; i < thread_m_blocks * 4; i++) { - if (8 * (i / 2) + row < prob_m && - (i < (thread_m_blocks - 1) * 4 || - sorted_ids[8 * (i / 2) + row] < tot_m * topk)) { - if (!first) { - int4 c_red = sh[c_sh_wr + i * c_sh_wr_delta]; - #pragma unroll - for (int j = 0; j < 2 * 4; j++) { - reinterpret_cast( - &frag_c)[4 * 2 * 4 * (i / 4) + 4 * j + (i % 4)] += - __half2float(reinterpret_cast<__half*>(&c_red)[j]); - } - } - if (!last) { - int4 c; - #pragma unroll - for (int j = 0; j < 2 * 4; j++) { - reinterpret_cast<__half*>(&c)[j] = - __float2half(reinterpret_cast( - &frag_c)[4 * 2 * 4 * (i / 4) + 4 * j + (i % 4)]); - } - int c_idx = - c_gl_wr + c_gl_wr_delta_o * (i / 2) + c_gl_wr_delta_i * (i % 2); - int row = sorted_ids[c_idx / c_gl_stride]; - if (row < tot_m * topk) { - int new_idx = row * c_gl_stride + c_idx % c_gl_stride; - C[new_idx] = c; - } - } - } - } - } - }; - - // Write out the reduce final result in the correct layout. We only actually - // reshuffle matrix fragments in this step, the reduction above is performed - // in fragment layout. - auto write_result = [&]() { - int c_gl_stride = prob_n / 8; - constexpr int c_sh_stride = 2 * thread_n_blocks + 1; - int c_gl_wr_delta = c_gl_stride * (threads / (2 * thread_n_blocks)); - constexpr int c_sh_rd_delta = - c_sh_stride * (threads / (2 * thread_n_blocks)); - - int c_gl_wr = c_gl_stride * (threadIdx.x / (2 * thread_n_blocks)) + - (threadIdx.x % (2 * thread_n_blocks)); - c_gl_wr += (2 * thread_n_blocks) * slice_col; - int c_sh_wr = - (4 * c_sh_stride) * ((threadIdx.x % 32) / 4) + (threadIdx.x % 32) % 4; - c_sh_wr += 32 * (threadIdx.x / 32); - int c_sh_rd = c_sh_stride * (threadIdx.x / (2 * thread_n_blocks)) + - (threadIdx.x % (2 * thread_n_blocks)); - - int c_gl_wr_end = c_gl_stride * prob_m; - - // We first reorder in shared memory to guarantee the most efficient final - // global write patterns - auto write = [&](int idx, float c0, float c1, FragS& s) { - half2 res = __halves2half2(__float2half(c0), __float2half(c1)); - - // For per-column quantization we finally apply the scale here - if constexpr (!has_act_order && group_blocks == -1) { - res = __hmul2(res, s[0]); - } - - ((half2*)sh)[idx] = res; - }; - if (threadIdx.x / 32 < thread_n_blocks / 4) { - #pragma unroll - for (int i = 0; i < thread_m_blocks; i++) { - #pragma unroll - for (int j = 0; j < 4; j++) { - int wr = c_sh_wr + 8 * j; - write(wr + (4 * c_sh_stride) * 0 + 0, frag_c[i][j][0][0], - frag_c[i][j][0][1], frag_s[j / 2][2 * (j % 2) + 0]); - write(wr + (4 * c_sh_stride) * 8 + 0, frag_c[i][j][0][2], - frag_c[i][j][0][3], frag_s[j / 2][2 * (j % 2) + 0]); - write(wr + (4 * c_sh_stride) * 0 + 4, frag_c[i][j][1][0], - frag_c[i][j][1][1], frag_s[j / 2][2 * (j % 2) + 1]); - write(wr + (4 * c_sh_stride) * 8 + 4, frag_c[i][j][1][2], - frag_c[i][j][1][3], frag_s[j / 2][2 * (j % 2) + 1]); - } - c_sh_wr += 16 * (4 * c_sh_stride); - } - } - __syncthreads(); - - #pragma unroll - for (int i = 0; - i < ceildiv(16 * thread_m_blocks, threads / (2 * thread_n_blocks)); - i++) { - if (c_gl_wr < c_gl_wr_end) { - int row = sorted_ids[c_gl_wr / c_gl_stride]; - if (row < tot_m * topk) { - int off = row * c_gl_stride + c_gl_wr % c_gl_stride; - if (!apply_weights) { - C[off] = sh[c_sh_rd]; - } else { - __half* ctrg = reinterpret_cast<__half*>(&C[off]); - __half* csrc = reinterpret_cast<__half*>(&sh[c_sh_rd]); - for (int j = 0; j < 8; ++j) { - ctrg[j] = __float2half(topk_weights[row] * __half2float(csrc[j])); - } - } - c_gl_wr += c_gl_wr_delta; - c_sh_rd += c_sh_rd_delta; - } - } - } - }; + int cur_block_rows = finish_row - start_row; - // Start global fetch and register load pipelines. - auto start_pipes = [&]() { - // fetch_sorted_ids_to_shared(); - __syncthreads(); + int row_stride = size_k * sizeof(half) / 16; - #pragma unroll - for (int i = 0; i < stages - 1; i++) { - if (has_act_order && i == 0) { - int last_g_idx = slice_k_start + stages * tb_k * 2; - if (last_g_idx >= prob_k) { - last_g_idx = prob_k - 1; - } - fetch_scales_to_shared(true, g_idx[slice_k_start], g_idx[last_g_idx]); - } - fetch_to_shared(i, i, i < slice_iters); - } + auto permute_row = [&](int row) { + int iters = size_k / blockDim.x; + int rest = size_k % blockDim.x; - zero_accums(); - wait_for_stage(); - init_same_group(0); - fetch_to_registers(0, 0); - fetch_scales_to_registers(0, 0); - a_gl_rd += a_gl_rd_delta_o * (stages - 1); - slice_k_start_shared_fetch += tb_k * (stages - 1); - }; - if (slice_iters) { - start_pipes(); - } + int offset = row * row_stride; - // Main loop. - while (slice_iters) { - // We unroll over both the global fetch and the register load pipeline to - // ensure all shared memory accesses are static. Note that both pipelines - // have even length meaning that the next iteration will always start at - // index 0. - #pragma unroll - for (int pipe = 0; pipe < stages;) { - #pragma unroll - for (int k = 0; k < b_sh_wr_iters; k++) { - fetch_to_registers(k + 1, pipe % stages); - fetch_scales_to_registers(k + 1, pipe); - if (k == b_sh_wr_iters - 2) { - fetch_to_shared((pipe + stages - 1) % stages, pipe, - slice_iters >= stages); - pipe++; - wait_for_stage(); - init_same_group(pipe % stages); - } - matmul(k); - } - slice_iters--; - if (slice_iters == 0) { - break; - } + half const* a_row_half = reinterpret_cast(a_int4_ptr + offset); + half* out_half = reinterpret_cast(out_int4_ptr + offset); + + int base_k = 0; + + for (int i = 0; i < iters; i++) { + int cur_k = base_k + threadIdx.x; + int src_pos = perm_int_ptr[cur_k]; + + out_half[cur_k] = a_row_half[src_pos]; + + base_k += blockDim.x; } - a_gl_rd += a_gl_rd_delta_o * stages; - slice_k_start += tb_k * stages; - slice_k_start_shared_fetch += tb_k * stages; + if (rest) { + if (threadIdx.x < rest) { + int cur_k = base_k + threadIdx.x; + int src_pos = perm_int_ptr[cur_k]; - if constexpr (has_act_order) { - int first_group_id = g_idx[slice_k_start]; - int last_g_idx = slice_k_start + stages * tb_k * 2; - if (last_g_idx >= prob_k) { - last_g_idx = prob_k - 1; - } - int last_group_id = g_idx[last_g_idx]; - if (last_group_id >= sh_first_group_id + sh_num_groups) { - fetch_scales_to_shared(false, first_group_id, last_group_id); - __syncthreads(); + out_half[cur_k] = a_row_half[src_pos]; } } + }; - // Process results and, if necessary, proceed to the next column slice. - // While this pattern may not be the most readable, other ways of writing - // the loop seemed to noticeably worse performance after compilation. - if (slice_iters == 0) { - cp_async_wait<0>(); - bool last = slice_idx == slice_count - 1; - // For per-column scales, we only fetch them here in the final step before - // write-out - if constexpr (!has_act_order && group_blocks == -1) { - if (last) { - if (s_sh_wr_pred) { - cp_async4(&sh_s[s_sh_wr], &scales_ptr[s_gl_rd]); - } - cp_async_fence(); - } - } + for (int i = 0; i < cur_block_rows; i++) { + int cur_row = start_row + i; + if (cur_row < size_m) { + permute_row(cur_row); + } + } +} - thread_block_reduce(); - if constexpr (!has_act_order && group_blocks == -1) { - if (last) { - cp_async_wait<0>(); - __syncthreads(); - if (threadIdx.x / 32 < thread_n_blocks / 4) { - reinterpret_cast(&frag_s)[0] = sh_s[s_sh_rd + 0]; - reinterpret_cast(&frag_s)[1] = sh_s[s_sh_rd + 4]; - } - } - } - if (slice_count > 1) { // only globally reduce if there is more than one - // block in a slice - barrier_acquire(&locks[slice_col], slice_idx); - global_reduce(slice_idx == 0, last); - barrier_release(&locks[slice_col], last); - } - if (last) // only the last block in a slice actually writes the result - write_result(); - slice_row = 0; - slice_col_par++; - slice_col++; - init_slice(); - if (slice_iters) { - a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) + - (threadIdx.x % a_gl_rd_delta_o); - #pragma unroll - for (int i = 0; i < b_sh_wr_iters; i++) - B_ptr[i] += b_sh_stride - b_gl_rd_delta_o * k_tiles; - if (slice_col == 0) { - #pragma unroll - for (int i = 0; i < b_sh_wr_iters; i++) B_ptr[i] -= b_gl_stride; - } +__global__ void compute_expert_offsets(int const* __restrict__ topk_ids, + int* __restrict__ expert_offsets, + int topk_length, int block_size) { + int expert_id = threadIdx.x; + int num_experts = blockDim.x; - // Update slice k/n for scales loading - if constexpr (has_act_order) { - slice_k_start = tb_k * slice_row; - slice_k_finish = slice_k_start + tb_k * slice_iters; - slice_k_start_shared_fetch = slice_k_start; - slice_n_offset = act_s_col_tb_stride * slice_col; + int occurrences = 0; + for (int i = 0; i < topk_length; ++i) { + occurrences += (topk_ids[i] == expert_id); + } + expert_offsets[expert_id + 1] = occurrences; + __syncthreads(); - } else { - s_gl_rd = s_sh_stride * slice_col + threadIdx.x; - } - start_pipes(); - } + if (threadIdx.x == 0) { + int tot_offset = 0; + expert_offsets[0] = 0; + for (int i = 0; i < num_experts; ++i) { + tot_offset += ceildiv(expert_offsets[i + 1], block_size) * block_size; + expert_offsets[i + 1] = tot_offset; } } + __syncthreads(); } -#else - -// TODO could just run MarlinMoE? template -__device__ inline void RunSingleIter( +__device__ inline void MarlinMoESingle( const int4* __restrict__ A, // fp16 input matrix of shape mxk const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn int4* __restrict__ C, // fp16 output buffer of shape mxn @@ -1279,24 +318,19 @@ __device__ inline void RunSingleIter( // (k/groupsize)xn const int* __restrict__ g_idx, // int32 group indices of shape k const int* __restrict__ expert_offsets, - int num_groups, // number of scale groups per output channel - int expert_idx, // idx of current expert // TODO must decide based on offsets - int num_experts, // number of experts - int topk, // topk parameter of moe - int prob_m, // batch dimension m - int prob_n, // output dimension n - int prob_k, // reduction dimension k - int tot_m, // total number of rows in A and C + int num_groups, // number of scale groups per output channel + int expert_idx, // idx of current expert + int num_experts, // number of experts + int topk, // topk parameter of moe + int prob_m, // batch dimension m + int prob_n, // output dimension n + int prob_k, // reduction dimension k + int tot_m, // total number of rows in A and C int* locks, // extra global storage for barrier synchronization bool replicate_input, // do we use the same input for each expert? - bool apply_weights, // apply weights to output - int try_m_block_ctr // experiment + bool apply_weights, // apply weights to output + int current_m_block // current m block to start kernel computation from ) { - - // if (threadIdx.x == 0 && blockIdx.x == 0) { - // printf("%d, %d\n", thread_m_blocks, prob_m); - // } - // For larger GEMMs we run multiple batchsize 64 versions in parallel for a // better partitioning with less reductions int parallel = 1; @@ -1361,8 +395,6 @@ __device__ inline void RunSingleIter( } if (slice_col == n_tiles) { sorted_ids += 16 * thread_m_blocks; - // sorted_off += 16 * thread_m_blocks; - // printf("advance 2: %d (%d %d)\n", sorted_off, blockIdx.x, threadIdx.x); locks += n_tiles; slice_col = 0; } @@ -1595,9 +627,6 @@ __device__ inline void RunSingleIter( int row = a_idx / a_gl_stride; int sorted_row = replicate_input ? sorted_ids[row] / topk : sorted_ids[row]; - // if (expert_idx == 0) { - // printf("row A: %d (%d %d), iter %d\n", row, blockIdx.x, threadIdx.x, i); - // } int new_idx = sorted_row * a_gl_stride + a_idx % a_gl_stride; if (sorted_row < tot_m * (replicate_input ? 1 : topk) && new_idx < a_gl_stride * tot_m * (replicate_input ? 1 : topk)) { @@ -1656,7 +685,8 @@ __device__ inline void RunSingleIter( cp_async_fence(); }; - // TODO fix + // TODO we are currently hitting illegal memory accesses when fetching + // sorted_ids to shared data: fix this auto fetch_sorted_ids_to_shared = [&]() { const int mpt = ceildiv(prob_m, threads); for (int i = 0; i < mpt; i++) { @@ -1933,8 +963,6 @@ __device__ inline void RunSingleIter( int c_idx = c_gl_wr + c_gl_wr_delta_o * (i / 2) + c_gl_wr_delta_i * (i % 2); int sorted_row = sorted_ids[c_idx / c_gl_stride]; - // printf("row C reduce:\n"); - // printf("row C reduce: %d (%d %d)\n", c_idx / c_gl_stride, blockIdx.x, threadIdx.x); int new_idx = sorted_row * c_gl_stride + c_idx % c_gl_stride; cp_async4_pred(&sh[c_sh_wr + c_sh_wr_delta * i], &C[new_idx], sorted_row < tot_m * topk && @@ -2040,9 +1068,6 @@ __device__ inline void RunSingleIter( i++) { if (c_gl_wr < c_gl_wr_end) { int row = sorted_ids[c_gl_wr / c_gl_stride]; - // if (blockIdx.x == 8 && threadIdx.x == 95) { - // printf("row C write: %d (%d %d)\n", c_gl_wr / c_gl_stride, blockIdx.x, threadIdx.x); - // } if (row < tot_m * topk) { int off = row * c_gl_stride + c_gl_wr % c_gl_stride; if (!apply_weights) { @@ -2063,6 +1088,7 @@ __device__ inline void RunSingleIter( // Start global fetch and register load pipelines. auto start_pipes = [&]() { + // TODO re-enable after fixing this function // fetch_sorted_ids_to_shared(); __syncthreads(); @@ -2092,7 +1118,6 @@ __device__ inline void RunSingleIter( // Main loop. while (slice_iters) { - // printf("slice\n"); // We unroll over both the global fetch and the register load pipeline to // ensure all shared memory accesses are static. Note that both pipelines // have even length meaning that the next iteration will always start at @@ -2165,7 +1190,6 @@ __device__ inline void RunSingleIter( } if (slice_count > 1) { // only globally reduce if there is more than one // block in a slice - // TODO we deadlock here barrier_acquire(&locks[slice_col], slice_idx); global_reduce(slice_idx == 0, last); barrier_release(&locks[slice_col], last); @@ -2216,168 +1240,89 @@ template __global__ void MarlinMoE( - const int4* __restrict__ A, // fp16 input matrix of shape mxk - const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn - int4* __restrict__ C, // fp16 output buffer of shape mxn - const int* __restrict__ sorted_ids_base, // int32 sorted ids of experts - const float* __restrict__ topk_weights, // float topk weights + const int4* __restrict__ A, // fp16 input matrix of shape mxk + const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn + int4* __restrict__ C, // fp16 output buffer of shape mxn + const int* __restrict__ sorted_ids_base, // int32 sorted ids of experts + const float* __restrict__ topk_weights, // float topk weights const int4* __restrict__ scales_ptr, // fp16 quantization scales of shape // (k/groupsize)xn const int* __restrict__ g_idx, // int32 group indices of shape k const int* __restrict__ expert_offsets, - int num_groups, // number of scale groups per output channel - int expert_idx, // idx of current expert // TODO must decide based on offsets - int num_experts, // number of experts - int topk, // topk parameter of moe - int prob_m, // batch dimension m - int prob_n, // output dimension n - int prob_k, // reduction dimension k - int tot_m, // total number of rows in A and C + int num_groups, // number of scale groups per output channel + int expert_idx, // idx of current expert + int num_experts, // number of experts + int topk, // topk parameter of moe + int prob_m, // batch dimension m + int prob_n, // output dimension n + int prob_k, // reduction dimension k + int tot_m, // total number of rows in A and C int* locks, // extra global storage for barrier synchronization bool replicate_input, // do we use the same input for each expert? - bool apply_weights, // apply weights to output - int try_m_block_ctr, // experiment - int* barrier_ctrs + bool apply_weights, // apply weights to output + int current_m_block, // current m block to start kernel computation from + int max_par // maximum parallelism ) { - // Each threadblock processes one "stripe" of the B matrix with (roughly) the - // same size, which might involve multiple column "slices" (of width 16 * - // `thread_n_blocks`). Stripes are defined as shown in the 3x3 matrix 5 SM - // example: - // 0 1 3 - // 0 2 3 - // 1 2 4 - // While this kind of partitioning makes things somewhat more complicated, it - // ensures good utilization of all SMs for many kinds of shape and GPU - // configurations, while requiring as few slow global cross-threadblock - // reductions as possible. - - int m_block_ctr = try_m_block_ctr; - - constexpr int max_par = 4; // TODO should be passed as arg - const int* sorted_ids_expert = sorted_ids_base + expert_offsets[expert_idx] + - m_block_ctr * 4 * max_par; - int tot_its = expert_offsets[expert_idx + 1] - - expert_offsets[expert_idx]; + int m_block_ctr = current_m_block; + + const int* sorted_ids_expert = + sorted_ids_base + expert_offsets[expert_idx] + m_block_ctr * 4 * max_par; + int tot_its = expert_offsets[expert_idx + 1] - expert_offsets[expert_idx]; if (tot_its == 0) { return; } - // TODO try no padding? int tot_m_blocks = ceildiv(tot_its, 16); - // int pad = 16 * tot_m_blocks - tot_its; - - // Main loop - for (int m_block_ctr = 0; m_block_ctr < tot_m_blocks; m_block_ctr += 4) { - - const int* sorted_ids = sorted_ids_expert; - // if (m_block_ctr >= tot_m_blocks) { - // return; - // } - - // int* locks = locks_base; //+ (prob_n / 64 * 16) * (m_block_ctr / 4); - - int max_block = tot_m_blocks - m_block_ctr; - prob_m = tot_its - 16 * m_block_ctr; - int full_prob_m = prob_m; - - // int m_offset = m_block_ctr * 16; - // printf("call with m_offset: %d / %d\n", m_offset, tot_its); - - int par = 1; - if (max_block > 4) { - // Note that parallel > 1 currently only works for inputs without any - // padding - // par = (16 * max_block - pad) / 64; - par = min((16 * max_block) / 64, max_par); - prob_m = 64 * par; - m_block_ctr += 4 * (par - 1); - max_block = 4; - } - - if (max_block == 1) { - RunSingleIter( - A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx, - expert_offsets, num_groups, expert_idx, num_experts, topk, - prob_m, prob_n, prob_k, tot_m, locks, replicate_input, - apply_weights, try_m_block_ctr); - } - else if (max_block == 2) { - RunSingleIter( - A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx, - expert_offsets, num_groups, expert_idx, num_experts, topk, - prob_m, prob_n, prob_k, tot_m, locks, replicate_input, - apply_weights, try_m_block_ctr); - } - else if (max_block == 3) { - RunSingleIter( - A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx, - expert_offsets, num_groups, expert_idx, num_experts, topk, - prob_m, prob_n, prob_k, tot_m, locks, replicate_input, - apply_weights, try_m_block_ctr); - } - else { - RunSingleIter( - A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx, - expert_offsets, num_groups, expert_idx, num_experts, topk, - prob_m, prob_n, prob_k, tot_m, locks, replicate_input, - apply_weights, try_m_block_ctr); - } + int pad = 16 * tot_m_blocks - tot_its; - // sorted_ids_expert += 16 * max_block * par; - // break; - // cooperative_groups::this_grid().sync(); - // __atomic__ int ctr; - if (threadIdx.x == 0) { - printf("start bar0 %d %d %d | %d\n", barrier_ctrs[0], barrier_ctrs[1], - barrier_ctrs[2], gridDim.x); - atomicAdd(&barrier_ctrs[0], 1); - // if (barrier_ctrs[2] == gridDim.x) { - // barrier_ctrs[2] = 0; - // } - // else { - while(barrier_ctrs[0] != gridDim.x); - // } - if (blockIdx.x == 0) { - barrier_ctrs[2] = 0; - } - printf("start bar1 %d %d %d | %d\n", barrier_ctrs[0], barrier_ctrs[1], - barrier_ctrs[2], gridDim.x); - atomicAdd(&barrier_ctrs[1], 1); - // if (barrier_ctrs[0] == gridDim.x) { - // barrier_ctrs[0] = 0; - // } - // else { - while(barrier_ctrs[1] != gridDim.x); - // } - if (blockIdx.x == 0) { - barrier_ctrs[0] = 0; - } - printf("start bar2 %d %d %d | %d\n", barrier_ctrs[0], barrier_ctrs[1], - barrier_ctrs[2], gridDim.x); - atomicAdd(&barrier_ctrs[2], 1); - // if (barrier_ctrs[1] == gridDim.x) { - // barrier_ctrs[1] = 0; - // } - // else { - while(barrier_ctrs[2] != gridDim.x); - // } - if (blockIdx.x == 0) { - barrier_ctrs[1] = 0; - } - printf("end bar %d\n", gridDim.x); - } + if (m_block_ctr >= tot_m_blocks) { + return; + } - // barrier_acquire(&locks2[blockIdx.x], gridDim.x, 0, 0); - // barrier_release(&locks2[blockIdx.x], gridDim.x, 0, 0); + int max_block = tot_m_blocks - m_block_ctr; + prob_m = tot_its - 16 * m_block_ctr; + + int par = 1; + if (max_block > 4) { + // Note that parallel > 1 currently only works for inputs without any + // padding + par = (16 * max_block - pad) / 64; + par = min((16 * max_block - pad) / 64, max_par); + prob_m = 64 * par; + m_block_ctr += 4 * (par - 1); + max_block = 4; + } + if (max_block == 1) { + MarlinMoESingle( + A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx, + expert_offsets, num_groups, expert_idx, num_experts, topk, prob_m, + prob_n, prob_k, tot_m, locks, replicate_input, apply_weights, + current_m_block); + } else if (max_block == 2) { + MarlinMoESingle( + A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx, + expert_offsets, num_groups, expert_idx, num_experts, topk, prob_m, + prob_n, prob_k, tot_m, locks, replicate_input, apply_weights, + current_m_block); + } else if (max_block == 3) { + MarlinMoESingle( + A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx, + expert_offsets, num_groups, expert_idx, num_experts, topk, prob_m, + prob_n, prob_k, tot_m, locks, replicate_input, apply_weights, + current_m_block); + } else { + MarlinMoESingle( + A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx, + expert_offsets, num_groups, expert_idx, num_experts, topk, prob_m, + prob_n, prob_k, tot_m, locks, replicate_input, apply_weights, + current_m_block); } } -#endif - #else __global__ void permute_cols_kernel(int4 const* __restrict__ a_int4_ptr, @@ -2390,12 +1335,11 @@ __global__ void permute_cols_kernel(int4 const* __restrict__ a_int4_ptr, } __global__ void compute_expert_offsets(int const* __restrict__ topk_ids, - int* __restrict__ expert_offsets, - int topk_length, - int block_size) { - // Marlin is not implemented yet for SM < 8.0 - assert(false); - return; + int* __restrict__ expert_offsets, + int topk_length, int block_size) { + // Marlin is not implemented yet for SM < 8.0 + assert(false); + return; } template \ <<>>( \ A_ptr, B_ptr, C_ptr, sorted_ids_ptr, topk_weights_ptr, s_ptr, \ - g_idx_ptr, expert_offsets2_ptr, num_groups, expert_idx, \ + g_idx_ptr, expert_offsets_ptr, num_groups, expert_idx, \ num_experts, topk, prob_m, prob_n, prob_k, tot_m, locks, \ - replicate_input, apply_weights, m_block, barrier_ctrs_ptr); \ + replicate_input, apply_weights, m_block, max_par); \ } typedef struct { @@ -2578,16 +1522,14 @@ thread_config_t determine_thread_config(int prob_m, int prob_n, int prob_k) { void marlin_mm_moe_f16i4(const void* A, const void* B, void* C, const void* sorted_ids, const void* topk_weights, - const void* topk_ids, - const void* s, const void* g_idx, const void* perm, - void* a_tmp, void* expert_offsets, void* expert_offsets2, int prob_m, - int prob_n, int prob_k, void* workspace, + const void* topk_ids, const void* s, const void* g_idx, + const void* perm, void* a_tmp, void* expert_offsets, + int prob_m, int prob_n, int prob_k, void* workspace, bool has_act_order, bool is_k_full, int num_groups, - int group_size, - int num_experts, int topk, int moe_block_size, int dev, - cudaStream_t stream, int thread_k, int thread_n, - int sms, int max_par, bool replicate_input, - bool apply_weights, void* barrier_ctrs) { + int group_size, int num_experts, int topk, + int moe_block_size, int dev, cudaStream_t stream, + int thread_k, int thread_n, int sms, int max_par, + bool replicate_input, bool apply_weights) { TORCH_CHECK(prob_m > 0 && prob_n > 0 && prob_k > 0, "Invalid MNK = [", prob_m, ", ", prob_n, ", ", prob_k, "]"); @@ -2620,7 +1562,6 @@ void marlin_mm_moe_f16i4(const void* A, const void* B, void* C, int thread_n_blocks = thread_n / 16; int blocks = sms; - // printf("sms: %d\n", sms); TORCH_CHECK(prob_n % thread_n == 0, "prob_n = ", prob_n, " is not divisible by thread_n = ", thread_n); @@ -2656,16 +1597,10 @@ void marlin_mm_moe_f16i4(const void* A, const void* B, void* C, int tot_m = prob_m; - #if CPU_OFFSETS - const long* expert_offsets_ptr = (const long*)expert_offsets; - int* expert_offsets2_ptr = (int*)expert_offsets2; - #else const int* topk_ids_ptr = (const int*)topk_ids; - int* expert_offsets2_ptr = (int*)expert_offsets2; + int* expert_offsets_ptr = (int*)expert_offsets; compute_expert_offsets<<<1, num_experts, 0, stream>>>( - topk_ids_ptr, expert_offsets2_ptr, tot_m * topk, moe_block_size); - #endif - int* barrier_ctrs_ptr = (int*)barrier_ctrs; + topk_ids_ptr, expert_offsets_ptr, tot_m * topk, moe_block_size); bool do_permute_a = has_act_order; @@ -2677,108 +1612,21 @@ void marlin_mm_moe_f16i4(const void* A, const void* B, void* C, } for (int expert_idx = 0; expert_idx < num_experts; ++expert_idx) { - #if CPU_OFFSETS - const int4* A_ptr = (const int4*)A; - int4* a_tmp_ptr = (int4*)a_tmp; - const int4* B_ptr = (const int4*)B + (prob_n * prob_k / 32) * expert_idx; - int4* C_ptr = (int4*)C; - const float* topk_weights_ptr = (const float*)topk_weights; - const int* sorted_ids_ptr = - (const int*)sorted_ids + expert_offsets_ptr[expert_idx]; - const int4* s_ptr = - (const int4*)s + - (((group_size == -1 || group_size == 0) ? 1 : prob_k / group_size) * - prob_n / 8) * - expert_idx; - - const int* g_idx_ptr = (const int*)g_idx + prob_k * expert_idx; - const int* perm_ptr = (const int*)perm + prob_k * expert_idx; - int* locks = (int*)workspace; - - if (do_permute_a) { - // Permute A columns - int topk_rows = replicate_input ? tot_m : tot_m * topk; - int block_rows = ceildiv(topk_rows, blocks); - permute_cols_kernel<<>>( - A_ptr, perm_ptr, a_tmp_ptr, topk_rows, prob_k, block_rows); - A_ptr = a_tmp_ptr; - } - - int tot_its = expert_offsets_ptr[expert_idx + 1] - - expert_offsets_ptr[expert_idx]; // prob_m; - // printf("%d ", tot_its); - if (tot_its == 0) { - continue; - } - int tot_m_blocks = ceildiv(tot_its, 16); - int pad = 16 * tot_m_blocks - tot_its; - - // Main loop - for (int i = 0; i < tot_m_blocks; i += 4) { - int thread_m_blocks = tot_m_blocks - i; - prob_m = tot_its - 16 * i; - int par = 1; - if (thread_m_blocks > 4) { - // Note that parallel > 1 currently only works for inputs without any - // padding - par = (16 * thread_m_blocks - pad) / 64; - if (par > max_par) par = max_par; - prob_m = 64 * par; - i += 4 * (par - 1); - thread_m_blocks = 4; - } - - // doesn't matter for this version of the code - int m_block = 0; - - // Define kernel configurations - - if (false) { - } - CALL_IF_MOE(16, 4, 256) - CALL_IF_MOE(8, 8, 256) - CALL_IF_MOE(8, 4, 128) - CALL_IF_MOE(4, 8, 128) - else { - TORCH_CHECK(false, "Unsupported shapes: MNK = [" + str(prob_m) + ", " + - str(prob_n) + ", " + str(prob_k) + "]" + - ", has_act_order = " + str(has_act_order) + - ", num_groups = " + str(num_groups) + - ", group_size = " + str(group_size) + - ", thread_m_blocks = " + str(thread_m_blocks) + - ", thread_n_blocks = " + str(thread_n_blocks) + - ", thread_k_blocks = " + str(thread_k_blocks)); - } - - sorted_ids_ptr += 16 * thread_m_blocks * par; - // break; - } - - ///// - - #else - - ///// - const int4* A_ptr = (const int4*)A; int4* a_tmp_ptr = (int4*)a_tmp; const int4* B_ptr = (const int4*)B + (prob_n * prob_k / 32) * expert_idx; int4* C_ptr = (int4*)C; const float* topk_weights_ptr = (const float*)topk_weights; - // TODO can't know expert_offsets at this point - const int* sorted_ids_ptr = - (const int*)sorted_ids;// + expert_offsets_ptr[expert_idx]; + const int* sorted_ids_ptr = (const int*)sorted_ids; const int4* s_ptr = (const int4*)s + (((group_size == -1 || group_size == 0) ? 1 : prob_k / group_size) * prob_n / 8) * expert_idx; - const int* g_idx_ptr = (const int*)g_idx + prob_k * expert_idx; const int* perm_ptr = (const int*)perm + prob_k * expert_idx; int* locks = (int*)workspace; - // TODO we need an expert identifying mechanism here too if (do_permute_a) { // Permute A columns int topk_rows = replicate_input ? tot_m : tot_m * topk; @@ -2789,8 +1637,7 @@ void marlin_mm_moe_f16i4(const void* A, const void* B, void* C, } int max_m_blocks = ceildiv(tot_m, 16); - int m_block = 0; - // for (int m_block = 0; m_block < max_m_blocks; m_block += 16) { + for (int m_block = 0; m_block < max_m_blocks; m_block += 16) { // Define kernel configurations // make it max possible value @@ -2811,14 +1658,9 @@ void marlin_mm_moe_f16i4(const void* A, const void* B, void* C, ", thread_m_blocks = " + str(thread_m_blocks) + ", thread_n_blocks = " + str(thread_n_blocks) + ", thread_k_blocks = " + str(thread_k_blocks)); - // } - - // sorted_ids_ptr += 16 * thread_m_blocks * max_par; - // sorted_ids_ptr += 16 * thread_m_blocks * 4; + } } - #endif } - // printf("\n"); } } // namespace marlin_moe @@ -2826,34 +1668,24 @@ void marlin_mm_moe_f16i4(const void* A, const void* B, void* C, torch::Tensor marlin_gemm_moe( const torch::Tensor& a, const torch::Tensor& b_q_weights, const torch::Tensor& sorted_ids, const torch::Tensor& topk_weights, - const torch::Tensor& topk_ids, - const torch::Tensor& b_scales, const torch::Tensor& g_idx, - const torch::Tensor& perm, const torch::Tensor& expert_offsets, + const torch::Tensor& topk_ids, const torch::Tensor& b_scales, + const torch::Tensor& g_idx, const torch::Tensor& perm, torch::Tensor& workspace, int64_t size_m, int64_t size_n, int64_t size_k, - bool is_k_full, int64_t num_experts, - int64_t topk, int64_t moe_block_size, bool replicate_input, - bool apply_weights) { + bool is_k_full, int64_t num_experts, int64_t topk, int64_t moe_block_size, + bool replicate_input, bool apply_weights) { int max_par = 4; int dev = a.get_device(); - auto options_dtype = torch::TensorOptions().dtype(a.dtype()).device(a.device()); - auto options_int = torch::TensorOptions().dtype(torch::kInt).device(a.device()); + auto options_dtype = + torch::TensorOptions().dtype(a.dtype()).device(a.device()); + auto options_int = + torch::TensorOptions().dtype(torch::kInt).device(a.device()); torch::Tensor c = torch::zeros({size_m, topk, size_n}, options_dtype); - torch::Tensor a_tmp = replicate_input - ? torch::zeros({size_m, size_k}, options_dtype) - : torch::zeros({size_m, topk, size_k}, options_dtype); - #if CPU_OFFSETS - torch::Tensor expert_offsets2 = torch::empty({0}, options_dtype); - #else - torch::Tensor expert_offsets2 - = torch::empty({num_experts + 1}, options_int); - // torch::Tensor expert_offsets2 = torch::arange(0, - // num_experts * moe_block_size, moe_block_size, - // torch::TensorOptions().dtype(torch::kInt).device(a.device())); - // torch::Tensor expert_offsets2 = expert_offsets; - #endif - torch::Tensor barrier_ctrs = torch::zeros({3}, options_int); + torch::Tensor a_tmp = + replicate_input ? torch::zeros({size_m, size_k}, options_dtype) + : torch::zeros({size_m, topk, size_k}, options_dtype); + torch::Tensor expert_offsets = torch::empty({num_experts + 1}, options_int); // thread_k: `k` size of a thread_tile in `weights` (can usually be left as // auto -1) @@ -2896,20 +1728,13 @@ torch::Tensor marlin_gemm_moe( } } - // std::stringstream sstream; - // sstream << topk_ids.dtype().name(); - // std::string s = sstream.str(); - // printf("topk dtype: %s\n", s.c_str()); - - // printf("run with %ld, %ld, %ld\n", size_m, size_n, size_k); - marlin_moe::marlin_mm_moe_f16i4( a.data_ptr(), b_q_weights.data_ptr(), c.data_ptr(), sorted_ids.data_ptr(), - topk_weights.data_ptr(), topk_ids.data_ptr(), b_scales.data_ptr(), g_idx.data_ptr(), - perm.data_ptr(), a_tmp.data_ptr(), expert_offsets.data_ptr(), expert_offsets2.data_ptr(), size_m, - size_n, size_k, workspace.data_ptr(), has_act_order, is_k_full, - num_groups, group_size, num_experts, topk, + topk_weights.data_ptr(), topk_ids.data_ptr(), b_scales.data_ptr(), + g_idx.data_ptr(), perm.data_ptr(), a_tmp.data_ptr(), + expert_offsets.data_ptr(), size_m, size_n, size_k, workspace.data_ptr(), + has_act_order, is_k_full, num_groups, group_size, num_experts, topk, moe_block_size, dev, at::cuda::getCurrentCUDAStream(dev), thread_k, - thread_n, sms, max_par, replicate_input, apply_weights, barrier_ctrs.data_ptr()); + thread_n, sms, max_par, replicate_input, apply_weights); return c; } diff --git a/csrc/moe/marlin_moe_ops.h b/csrc/moe/marlin_moe_ops.h index a24ca32a52be7..78e2f5d346652 100644 --- a/csrc/moe/marlin_moe_ops.h +++ b/csrc/moe/marlin_moe_ops.h @@ -5,10 +5,9 @@ torch::Tensor marlin_gemm_moe( const torch::Tensor& a, const torch::Tensor& b_q_weights, const torch::Tensor& sorted_ids, const torch::Tensor& topk_weights, - const torch::Tensor& topk_ids, - const torch::Tensor& b_scales, const torch::Tensor& g_idx, - const torch::Tensor& perm, const torch::Tensor& expert_offsets, - torch::Tensor& workspace, int64_t size_m, int64_t size_n, int64_t size_k, - bool is_k_full, int64_t num_experts, - int64_t topk, int64_t moe_block_size, bool replicate_input, - bool apply_weights); + const torch::Tensor& topk_ids, const torch::Tensor& b_scales, + const torch::Tensor& g_idx, const torch::Tensor& perm, + const torch::Tensor& expert_offsets, torch::Tensor& workspace, + int64_t size_m, int64_t size_n, int64_t size_k, bool is_k_full, + int64_t num_experts, int64_t topk, int64_t moe_block_size, + bool replicate_input, bool apply_weights); diff --git a/csrc/moe/torch_bindings.cpp b/csrc/moe/torch_bindings.cpp index ca1b5c3341ef1..0b4b92e16f7b4 100644 --- a/csrc/moe/torch_bindings.cpp +++ b/csrc/moe/torch_bindings.cpp @@ -14,11 +14,10 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) { ops.def( "marlin_gemm_moe(Tensor! a, Tensor! b_q_weights, Tensor! sorted_ids, " "Tensor! topk_weights, Tensor! topk_ids, Tensor! b_scales, Tensor! " - "g_idx, Tensor! perm, " - "Tensor! expert_offsets, Tensor! workspace, int size_m, int size_n, int " - "size_k, bool is_k_full, int num_experts, " - "int topk, int moe_block_size, bool replicate_input, bool apply_weights) " - "-> Tensor"); + "g_idx, Tensor! perm, Tensor! workspace, int size_m, int size_n, int " + "size_k, bool is_k_full, int num_experts, int topk, int moe_block_size, " + "bool replicate_input, bool apply_weights) -> Tensor"); + ops.impl("marlin_gemm_moe", torch::kCUDA, &marlin_gemm_moe); } diff --git a/vllm/model_executor/layers/fused_moe/fused_moe.py b/vllm/model_executor/layers/fused_moe/fused_moe.py index 47400f06e02e0..3774a442f9180 100644 --- a/vllm/model_executor/layers/fused_moe/fused_moe.py +++ b/vllm/model_executor/layers/fused_moe/fused_moe.py @@ -384,6 +384,8 @@ def fused_topk( topk, dtype=torch.int32, device=hidden_states.device) + from pprint import pprint + pprint(vars(ops)) ops.topk_softmax( topk_weights, topk_ids, @@ -628,19 +630,6 @@ def fused_moe( a2_scale=a2_scale) -def get_expert_offsets(sorted_token_ids: torch.Tensor, topk_ids: torch.Tensor, - num_experts: int, block_size_m: int): - expert_offsets = [0] * (num_experts + 1) - occurrences = torch.bincount(topk_ids.flatten()).to(dtype=torch.int) - erange = min(num_experts, len(occurrences)) - for i in range(erange): - ex_blocks = (occurrences[i].item() + block_size_m - 1) // block_size_m - expert_offsets[i + 1] = ex_blocks * block_size_m + expert_offsets[i] - for i in range(len(occurrences), num_experts): - expert_offsets[i + 1] = sorted_token_ids.size()[0] - return torch.as_tensor(expert_offsets) - - def single_marlin_moe( hidden_states: torch.Tensor, w: torch.Tensor, @@ -712,13 +701,10 @@ def single_marlin_moe( device="cuda", requires_grad=False) - expert_offsets = get_expert_offsets(sorted_token_ids, topk_ids, E, - block_size_m) - intermediate_cache = torch.ops._moe_C.marlin_gemm_moe( hidden_states, w, sorted_token_ids, topk_weights, topk_ids, scales, - g_idx, rand_perm, expert_offsets, workspace, M, N, K, True, E, topk, - block_size_m, True, False) + g_idx, rand_perm, workspace, M, N, K, True, E, topk, block_size_m, + True, False) return torch.sum(intermediate_cache.view(*intermediate_cache.shape), dim=1) @@ -804,25 +790,21 @@ def fused_marlin_moe(hidden_states: torch.Tensor, device="cuda", requires_grad=False) - expert_offsets = get_expert_offsets(sorted_token_ids, topk_ids, E, - block_size_m) - # expert_offsets = torch.empty((0)) - intermediate_cache2 = torch.empty((M * topk_ids.shape[1], N), device=hidden_states.device, dtype=hidden_states.dtype) intermediate_cache1 = torch.ops._moe_C.marlin_gemm_moe( hidden_states, w1, sorted_token_ids, topk_weights, topk_ids, w1_scale, - g_idx1, rand_perm1, expert_offsets, workspace, M, 2 * N, K, True, E, - topk, block_size_m, True, False) + g_idx1, rand_perm1, workspace, M, 2 * N, K, True, E, topk, + block_size_m, True, False) ops.silu_and_mul(intermediate_cache2, intermediate_cache1.view(-1, 2 * N)) intermediate_cache3 = torch.ops._moe_C.marlin_gemm_moe( intermediate_cache2, w2, sorted_token_ids, topk_weights, topk_ids, - w2_scale, g_idx2, rand_perm2, expert_offsets, workspace, M, K, N, True, - E, topk, block_size_m, False, True) + w2_scale, g_idx2, rand_perm2, workspace, M, K, N, True, E, topk, + block_size_m, False, True) # intermediate_cache3 = torch.zeros((M, topk, K), # device=hidden_states.device, diff --git a/vllm/model_executor/models/mixtral_quant.py b/vllm/model_executor/models/mixtral_quant.py index 86e6e3c2b299f..85dafd55bbcf8 100644 --- a/vllm/model_executor/models/mixtral_quant.py +++ b/vllm/model_executor/models/mixtral_quant.py @@ -369,15 +369,8 @@ def __init__( ) -> None: super().__init__() - # print(config) - # print(cache_config) - # print(quant_config) - - # FP8 hasn't been tested. Works only with enforce-eager - self.use_fused_moe = True - #(config.torch_dtype != torch.float8_e4m3fn and - #config.torch_dtype != torch.float16) - # print("use fused?", config.torch_dtype) + # TODO check runs with dtype=float16 + self.use_fused_moe = (config.torch_dtype != torch.float8_e4m3fn) self.config = config self.quant_config = quant_config